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Abstract: Background: Asparagus officinalis L. is often infected by fungi from the Fusarium genus which also contaminate the
plant tissues with highly toxic secondary metabolites. To elucidate the plant-pathogen interactions between asparagus
and Fusarium oxysporum or F. proliferatum, a fungal mycotoxins profile was assessed together with an impact of the
infection on all forms of salicylic acid content. Methodology: Fungal isolates were identified by their morphological features,
species-specific PCR and transcription elongation factor 1a (TEF-1a) sequencing. Mycotoxins were assessed by
high-performance liquid chromatography (HPLC). The salicylic acid and its derivatives content was analyzed by the HPLC method
combined with fluorometric detection. The levels of free radicals were measured by electron paramagnetic resonance (EPR).
Results: After infection both Fusarium pathogens formed fumonisin B, and moniliformin. Infection altered salicylic
acid biosynthesis and conjugation rates both in the roots and stems when compared with non-inoculated plants.
Samples with higher free radical concentrations in stems showed higher concentrations of all forms of salicylic acid.
Conclusions: We postulate thatinfection by both Fusarium pathogens produces mycotoxins, which may be transported to the upper part of
plant. Pathogen attackinitiated a plant defense reactioninvolvingincreased salicylic acid levels and resultinginincrease infree radical levels.
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Foa - F oxysporum f. sp. asparagi; ROS - reactive oxygen species;
FR - free radicals; SA - salicylic acid;
FBs - fumonisins; SAG - salicylic acid glucoside esters;
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1. Introduction

Fungi of the genus Fusarium are severe pathogens
of Asparagus officinalis L. — an important vegetable
worldwide [1,2]. Infection of asparagus plants by
particular Fusarium species depends on cultivar
susceptibility, environmental conditions, agronomic
practices and other factors [3-5]. Fusarium proliferatum
(Matsushima)Nirenbergand F. oxysporum (Schlechtend)
are the most common pathogens of asparagus causing
crown and root rot. Considering their diverse ability to
form mycotoxins, variability in pathogenicity and other
characteristics, a correct identification of Fusarium
species is very important [6-8].

Both Fusarium species are able to generate
mycotoxins (moniliformin - MON and fumonisins - FBs),
which pose potential health hazards to humans and
animals [9-11]. The most abundant fumonisin produced
in nature is fumonisin B, (FB,), a suspected risk factor
for esophageal and liver cancers, neural tube defects,
and cardiovascular problems [12-15] in populations
where food contains contaminated maize. On the basis
of these reports the International Agency for Research
on Cancer classified FB, as a probable carcinogen
in humans (class 2B carcinogen) [16]. Tolerable
concentration levels of fumonisins (FB, and FB,) in food,
feed and their components are regulated in several
countries [17]. MON exhibits cytotoxic and cardiotoxic
activities, causes developmental disorders and may
also induce the development of Keshan’s disease,
which attacks mainly the cardiac muscle leading to the
circulatory failure, cardiac rhythm disorders and cardiac
contractility problems, as well as clots inside cardiac
chambers causing embolism [18].

Interactions between plants and their pathogens
comprise a rapidly developing field in plant science. The
plant response to infection is determined by the genetic
background of the host as well as the pathogen [19,20].
Plants have evolved integrated defense mechanisms
against fungi, such as hypersensitive reaction (HR),
leading to the rapid host-cell collapse at the infection
site, and systemic acquired resistance (SAR). Salicylic
acid (o-hydroxobenzoic acid) (SA) is a key molecule
involved in the immune response in plants; however, the
exact role of this compound remains the subject of an
ongoing debate [21]. Biosynthesis of SA accompanies
oxidative stress after a pathogen attack, which has
been confirmed in many plant species [22-24]. In plant
tissues SA exists as free SA and conjugated SA forms,
including methyl-salicylates (MeSA), glucoside esters
(SAG) and amino acid conjugates of the compound.
The major form, however, is its 2-O-B-D-glucoside [25].
SA influences many physiological processes regulating

seed germination, growth of the root system and
leaves, chlorophyll biosynthesis, as well as flowering
and thermogenesis [22,26-29]. Moreover, SA at higher
concentrations (50-100 mmol L) may trigger the local
cell death programme [30,31]. During the hypersensitive
response, SA alters hydrogen peroxide metabolism in
infected plants by intensifying superoxide dismutase
(SOD) activity and inactivating catalase (CAT) and
ascorbate peroxidase (APx), thus leading to the
accumulation of hydrogen peroxide, which oxidizes cell
constituents, reduces the efficiency of photosynthesis
and destroys cell membranes, leading to cell death
[32,33]. On the other hand, SA also plays an important
role in the signal transduction chain releasing defense
reactions within SAR, i.e. biosynthesis of pathogenesis
related proteins (PR) [19]. The role of SA in the
development of induced resistance (IR) is confirmed
by its local and remote accumulation in plant tissues in
response to biotic and abiotic stressors [34,35].

During disease development, the level of free
radicals (FR) was determined in order to correlate it with
macroscopic observations of asparagus spears, the
concentration of SA and concentration of mycotoxins
(MON, FBs) in plant tissue. Free radicals are generated
in areas surrounding infection sites as an early response
to pathogen attack [37]. All the above components
(FR, SA, mycotoxins and fusariosis symptoms) probably
participate in the complex pathogenesis process [36-38].

Recently, electron paramagnetic resonance (EPR)
was applied in multidisciplinary studies for direct detection
of free radicals and paramagnetic species such as Fe, Mn
and Cu [39-41]. EPR technique involves the interaction
of electromagnetic radiation with the magnetic moments
of electrons. When a sample with unpaired electrons is
placed in the external magnetic field the electron spin will
align parallel or antiparallel in the direction of the magnetic
field, which corresponds to the energy state. The energy
difference between these two states is proportional to the
intensity of the applied magnetic field. If electromagnetic
radiation corresponding to the energy difference is
applied to the sample, resonance transition is possible
between the lower and the upper energy states and we
can observe an EPR line [40,42].

The present study was undertaken to elucidate
plant-pathogen interactions between asparagus and its
fungal pathogens. The principal aim was to evaluate the
impact of infection by F. proliferatum and F. oxysporum
on the concentrations of SA and mycotoxins (MON, FB,)
formed in asparagus tissues. Moreover, the relationships
between mycotoxin levels and SA content (free and
glucoside forms) were investigated. EPR spectroscopy
was additionally used to investigate changes in free
radicals level after plant inoculation.
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2. Experimental Procedures

2.1 Plant material,

inoculation test
In a greenhouse experiment 1-year-old plants of
asparagus cv. Andreas were used. Plants growing in pots
(each with a capacity of 5 dm?®) with steamed soil were
grown from seeds disinfected with a 5% suspension of
Benlate fungicide in acetone. Isolates of F. proliferatum
originated from asparagus spears cv. Eposs grown in
Swidowiec (100 km west of Poznan, Poland), while
F. oxysporum strains were isolated from spears collected
at the Poznan farmers’ market. Inoculums of 5 mm disks
of potato dextrose agar (PDA) medium overgrown by
one of the four single spore isolates, i.e. F. proliferatum
(06-76sb and 06-94s) and F. oxysporum (07-25wz and
07-32s), were placed under incised skin of storage roots.

Storage roots of seven different seedlings were
inoculated by each of the tested isolates separately,
while six non-inoculated asparagus seedlings were
used as the control. Asparagus plants were incubated in
a greenhouse at 22°C. The occurrence of F. proliferatum
and F. oxysporum, as well as the level of salicylic acid
and mycotoxins were determined in roots and stems of
seedlings. After two weeks (1%t term) from inoculation
three random plants and after four weeks (2" term)
another three plants were used for the assessment
(including the control).

fungal cultures and

2.2 Evaluation of F proliferatum and
F. oxysporum occurrence in asparagus
seedlings

Each asparagus seedling was divided into two parts

(storage root and stem base) and from each part five

plant sections were put on PDA medium supplemented

with streptomycin at 100 ug ml' to test the presence of

F. proliferatum and F. oxysporum. Plant parts of 1 cm

in length were disinfected with 1% sodium hypochlorite.

Five sections (2 mm in diameter) were cut from each

part (storage root and stem base) and transferred

onto separate Petri dish with the medium. Fungal
colonies grown from the sections were transferred onto
standard media and identified according to the methods

described by Booth [43], Gerlach and Nirenberg [44],

Kwasna et al. [45], and Barnett and Hunter [46].

2.3 Molecular identification of Fusarium spp.
isolates

Mycelia from 9-day-old single spore cultures of

F. proliferatum and F. oxysporum grown on liquid medium

(5gL"of glucose, 1 gL' of yeast extract) were collected

by vacuum filtration using a Buchner funnel. DNA was

extracted and purified using a DNeasy Mini Kit (QIAGEN

Inc., Hilden, Germany) according to the manufacturer’s
recommendations.  Species-specific PCRs were
used to verify mycological identification of species.
In the polymerase chain reaction a forward primer:
5-TGCATCAGACCACTCAAATCCT-3' and a reverse
primer: 5-TGTCAGTAACTCGACGTTGTTGTT-3
were used to detect F proliferatum and a forward

primer. 5-CAGCAAAGCATCAGACCACTATAACTC-3’
and a reverse primer:
5-CTTGTCAGTAACTGGACGTTGGTACT-3 were

used for F. oxysporum (Sigma-Genosys, Pampisford,
UK). The species-specific primers were designed based
on a partial sequence of the calmodulin gene [43,44].
The amplification reactions were carried out using a Taq
PCR Core Kit (QIAGEN, Inc., Hilden, Germany). The
reaction mixture was described earlier [49]. Amplification
was carried out in a Biometra Tpersonal 48 thermocycler
(Whatman Biometra, Goettingen, Germany) using the
following programme: initial denaturation for 3 min at
94°C, followed by 35 cycles of denaturation at 94°C for
40 s, primer annealing at 60°C for 40 s and extension
at 72°C for 1 min. The amplification was ended with an
additional extension at 72°C for 3 min. The PCR products
were separated by electrophoresis in 1.5% agarose
gel with 1"TBE buffer (89 mmol L' Tris-borate and
2 mmol L' EDTA, pH 8.0) and visualised under UV light
following ethidium bromide staining. A Gene Ruler™
100bpDNALadderPlus (Fermentas GMBH, St.Leon-Rot,
Germany) was used as a molecular size standard.

Additionally sequence analysis of translocation
elongation factor 1-a (TEF) was applied to confirm
the morphological identification of all fungal isolates
as described earlier [49]. Both molecular analyses
confirmed identification of Fusarium isolates used for
inoculation of asparagus.

2.4 Chemicals

Fumonisin B,, moniliformin and SA standards were
purchased with a standard grade certificate from
Sigma-Aldrich  (Steinheim, = Germany).  Sodium
dihydrophosphate, potassium hydroxide, acetic acid,
n-hexane and o-phosphoric acid were purchased from
POCh (Gliwice, Poland). Organic solvents (HPLC grade),
disodium tetraborate, ortho-phthalaldehyde,
2-mercaptoethanol and t-butyl-ammonium hydroxide,
sodium acetate and all the other chemicals were also
purchased from Sigma-Aldrich (Steinheim, Germany).
Water for the HPLC mobile phase was purified using
a Milli-Q system (Millipore, Bedford, MA, USA).

2.5 Chemical analysis
Fumonisin B, was extracted from fresh plant tissue.
Samples (5 g) of storage roots and stem bases,
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remaining after the previous collection of 1 cm long
parts for the detection of fungi, were homogenized for
3 min in 10 ml of methanol:water (3:1, v/v) and filtered
through Whatman no. 4 filter paper according to the
method described by Sydenham et al. [50]. The extract
was adjusted to pH 5.8-6.3 using 0.1 mol L' KOH.
A SAX cartridge was attached to the SPE manifold unit
(Supelco, Bellefonte, PA, USA) and conditioned at a flow
rate of 2 ml min"' successively with 5 ml of methanol,
followed by 5 ml of methanol:water (3:1, v/v). Next, an
aliquot (10 ml) of the filtered extract was applied at a flow
rate of 2 ml min-', then washed with 8 ml methanol:water
(3:1, viv), immediately followed by 3 ml of methanol.
Fumonisin was eluted from the column with 10 ml of 1%
acetic acid in methanol. The eluate was evaporated to
dryness at 40°C under a stream of nitrogen. Dry residue
was stored at -20°C until HPLC analysis.

The OPA (ortho-phthalaldehyde) reagent was
prepared as follows: 20 mg per 0.5 ml methanol were
diluted with 2.5 ml of 0.1 mmol L' disodium tetraborate,
then mixed with 25 pl of 2-mercaptoethanol. The
fumonisin B, standards (5 pl) or extracts (20 ul) were
derivatized with 20 and 80 pl of the OPA reagent,
respectively. After 3 min the reaction mixture (10 pl) was
injected onto an HPLC column.

A Waters 2695 apparatus (Waters Company, Milford,
MA, USA) equipped with a C-18 Nova Pak column
(4 mm, 3.9x150 mm) and a Waters 2475 fluorescence
detector (A;,=335 nm; A, =440 nm) were used to quantify
the metabolite. Methanol:sodium dihydrophosphate
(0.1 M in water) solution (77:23, v/v) - adjusted to pH
3.35 with o-phosphoric acid, after filtration through
a 0.45 ym Waters HV membrane - was used as the
mobile phase at a flow rate of 0.6 ml min-'.

The detection limit for FB, was 0.1 ng g' FW.
Positive results (on the basis of retention times) were
confirmed by HPLC analysis and compared with the
relevant calibration curve (r=0.9967). Recovery for
FB, was 89% (measured in triplicates by extracting the
mycotoxin from blank samples spiked with 0.1-10 ng g™*
of the compound). The relative standard deviation was
below 8%.

Moniliformin was extracted from plant material with
acetonitrile:methanol:water (16:3:1, v/v/v) using 5 ml
of solvent per 1 g of sample. Extracts were defatted
with n-hexane (3x50 ml) and then concentrated. The
extract was purified on a Florisil column according to the
method described by Goliski et al. [51].

MON was quantified by HPLC using a Waters 501
apparatus (Waters Company, Milford, MA, USA) with
a C-18 Nova Pak column (4 mm, 3.9x300 mm) and a
Waters 486 UV detector (A=229 nm). MON was eluted
from the column at the flow rate of 0.6 ml min with

acetonitrile:water (15:85, v/v) buffered with 10 ml of
0.1 mol L K,HPO, in 40% t-butyl-ammonium hydroxide in
1 L of solvent [52]. Retention time of MON was 11.5 min
with the compound detection limit of 10 ng g FW. Positive
results (on the basis of retention times) were confirmed
by HPLC analysis and by comparison with the relevant
calibration curve (r=0.9990). Recovery for MON was 90%,
(measured in triplicates by extracting mycotoxins from
blank samples spiked with 10—100 ng g~' of the compound).
The relative standard deviation was below 7%.

SA in the free form as well as that conjugated as
a glucoside (SAG) were determined according to the
methodology recommended by Yalpani et al. [24]. Plant
material was ground in liquid nitrogen to a fine powder
and approximately 0.5 g was taken for analyses.
SA was extracted twice with 3 ml of methanol, and
after centrifugation, the supernatant was divided into
two aliquot parts and the solvent was evaporated to
dryness under a stream of nitrogen. A 5% solution of
trichloroacetic acid (2.5 ml) was added to one part and
then SA was extracted three times with 2.5 ml of the
organic mixture of ethyl acetate:cyclopentane:isopro
panol (100:99:1, v/v/v). In order to determine the total
content of free and glucoside bound salicylic acid (TSA),
40 units of B-glucosidase in 0.5 ml of sodium acetate/
acetic acid buffer (0.1 mol L', pH 5.2) were added to
the second part of the dry extract and incubated for
90 minutes at 37°C. The reaction was terminated by
the addition of 2 ml of 5% trichloroacetic acid and then
salicylic acid was extracted as described above. After
solvent evaporation the dry residue was dissolved
in 1 ml of the mobile phase (0.2 mol L' potassium
acetate/acetic acid buffer, pH 5.0; with an addition
of 0.5 mM EDTA) and analysed by HPLC combined
with fluorometric detection using a Waters Company
chromatograph (Milford, MA, USA) composed of a
2699 Separation Module Alliance and a 2475 Multi-A
Fluorescence Detector. A Spherisorb ODS2 Waters
Company column (3 pm, 4.6x10 mm) with a flow rate of
1.5 ml min"' was used for chromatographic separation.
Detection parameters were as follows: A_ =295 nm and
A;,,=405 nm. Retention time of SA was 6.0 min with
a total analysis time of 12 min and detection limit of
10 ng g' FW. The content of SA released from its
glucoside was calculated as the difference between
assays with and without glucoside enzymatic degradation
(SAG=TSA-SA). Furthermore, the percentage of SA
in TSA content was calculated and labeled as SA,,.
The recoveries of the salicylic acid standard added to
samples were 89 and 86% for SA and TSA, respectively
(measured in triplicates by SA extraction from blank
samples spiked with 10-1000 ng g™ FW). The relative
standard deviation was below 7%.
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2.6 Electron paramagnetic resonance

of asparagus plants

The EPR measurements were performed with a
Bruker EPR EMX-10 X-band (9.4 GHz) spectrometer
with magnetic field second modulation frequency of
100 kHz. The samples were stored and EPR spectra
were recorded at a temperature of 77 K. The first
derivative spectra were recorded using a magnetic field
scan range width of 10 mT and 600 mT and amplitudes
of the second modulation were 0.3 mT up to 1 mT. The
values of the microwave power were adjusted to obtain
non-saturating and non-broadening conditions for the
spectral components.

The standard weak pitch sample with a concentration
of free radicals of 2x 10" spins was used to determine the
concentration of free radicals in samples. Concentration
of free radicals (FR) was calculated from integrated
intensity of free radical signals with g factor g=2.0035
and it was about 10" spins in the samples.

2.7 Statistical analysis

Two-way analysis of variance of data obtained in two
harvest terms was carried out to determine the effects
of Fusarium isolates, plant parts and the Fusarium
isolates x parts interaction on the occurrence of
F. proliferatum and F. oxysporum as well as the variability
in concentrations of FB,, MON and salicylic acid content
(SA, SAG, TSA, SA,). Least significant differences were
calculated for each trait. The association between pathogen
occurrence and FB,, MON and salicylic acid contents was
estimated using analysis of regression. Data were analyzed
using the statistical package GenStat v. 7.1. [53].

3. Results

3.1 Evaluation of F proliferatum and
F. oxysporum occurrence in asparagus
seedlings

In the greenhouse experiment disease symptoms
caused by isolates of F. oxysporum and F. proliferatum
were investigated. Brown lesions were observed on
all asparagus roots in two weeks after inoculation
with £ oxysporum or F. proliferatum, while on stems
no symptoms were observed. However, 33% stems
were infected with F. proliferatum two weeks after
inoculation, whereas inoculation with F oxysporum
did not induce stem infection even after four weeks.
Analysis of variance showed significant differences
between pathogenic isolates in terms of most evaluated
traits, except for MON and SAG contents two weeks
after inoculation, and those of MON and TSA after four
weeks (Table 1). Observed differences between almost
all the examined traits were significantly related to the
analyzed plant part.

3.2 Evaluation of mycotoxin biosynthesis

It is well known that the activity of toxigenic fungi results
in mycotoxin biosynthesis immediately after inoculation.
Two weeks after inoculation the concentration of FB,
was higher in stems than in roots of asparagus for
each analyzed isolate, with the highest concentration
obtained from the F proliferatum isolate (06-94s) at
29.9 ng g (Table 2). Four weeks after inoculation the
concentration of FB, was increased in stems only from
the F. oxysporum isolate 07-25wz, while in all other

Terms 2-week period 4-week period
Source of variation Isolate Part Isolate x Part ~ Residual Isolate Part Isolate x Part  Residual
Degrees of freedom 4 1 4 20 4 1 4 20
Fp. 0.70** 0.3 0.03 0.11 0.63*** 0.83*** 0.33*** 0.04
Fo. 0.38** 1.2%** 0.45** 0.07 0.33*** 0.83*** 0.33*** 0.04
FB, 421.01*** 2034.3*** 289.22%** 199.01  275.14*** 92.09 33.21 29.28
MON 11811.24 38363.4* 11811.49 5621.36 632148.11 20149333.11***  858920.05* 279512.18
SA 384.44%** 31.7 67.51 47.42 841.61* 6607.16*** 770.32* 243.24
SAG 1779.09 43544 4%** 1357.47 736.18 910.18* 11981.38*** 696.53 297.05
TSA 3633.11* 45924.3%** 1573.28 927.38 2532.45 36381.31*** 2331.18 1001.37
SA,, 325.46* 33648.2%** 243.22 109.24  891.61*** 136.08 508.62** 77.93

Table 1. Mean squares from two-way analysis of variance (ANOVA) for investigated traits in both terms of observations.

* - significant at 0.05; ** - significant at 0.01; *** - significant at 0.001
F. p. — F. proliferatum occurrence, F. 0. — F. oxysporum occurrence, FB1 — fumonisin B1 content, MON — moniliformin content, SA — free salicylic
acid content, SAG — salicylic acid in form of glucoside content, TSA — total salicylic acid content, SA% — percentage of free in total salicylic

acid content
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FB, MON
Isolate 2-week period 4-week period 2-week period 4-week period
root stem root stem root stem root stem
07-25wz 0.5 51 0.5 0.7 0.0 0.0 1411 2418.3
07-32s 0.6 18.9 4.2 0.6 0.0 0.0 0.0 2555.2
06-76sb 55 35.1 22 10.6 93.2 0.0 529.4 1385.0
06-94s 0.0 29.9 2.7 0.1 2141 0.0 368.3 1881.1
Control 0.0 0.0 0.5 0.4 50.8 0.0 0.0 995.4
LSD, 46 12.3 9.2 126.7 906.9

Table 2. Concentration (ng g FW) of fumonisin B1 (FB1) and moniliformin (MON) in different parts of inoculated asparagus (mean values; n=30).

cases higher concentrations of this toxin were recorded
in roots. In the first term MON was found only in roots
inoculated with F. proliferatum isolates (06-76sb and
06-94s), while the aboveground part (stem) did not
contain the toxin at a detectable level. In the second term
MON was detected in both analyzed parts of plants, with
the concentration significantly higher in stems than in
roots (Table 2).

3.3 Changes in salicylic acid content upon
pathogen attack

Salicylic acid content was investigated in roots and

stems of asparagus plants two and four weeks after root

inoculation with Fusarium isolates, as well as the control

(non-inoculated) plants.

Two factorial analysis of variance revealed a
significant influence (at P=0.001) of Fusarium isolates
on the content of free salicylic acid (SA) two weeks
after inoculation, while asparagus organ (root, stem)
showed significant differences (at P=0.001) in the
contents of salicylic acid released from its glucoside
(SAG), total salicylic acid (TSA) and the ratio between
free and bound forms of the metabolite (Table 1). The
highest TSA contents were observed after infection
with both F. proliferatum isolates (06-76sb and 06-94s),
i.e. 158.2 and 126.5 ng g' FW, respectively, and they
were 2 and 2.5 higher than those observed for the
control plants (Table 3). F. oxysporum attack caused a
weaker (07-25wz) or no (07-32s) induction of salicylic
acid biosynthesis both in roots and stems of asparagus
plants. Nevertheless, inoculation caused a significant
decrease in the ratio between SA and TSA (SA,) in
stems for all the tested isolates — on average from
44.5 to ~21%.

Four weeks after inoculation, plant parts turned
out to be a strongly differentiating factor for SA, SAG
and TSA contents (at P=0.001). In turn, the Fusarium

isolate influenced significantly SA, (at P=0.001), SA
and SAG (at P=0.05), while isolate x plant part mixed
factors simultaneously influenced SA,, (at P=0.01) and
SA (at P=0.05) (Table 1). The highest TSA content was
observed for stems following F. oxysporum 07-25wz
inoculation and it was detected at a concentration level
of 156 ng g' FW (~170% of TSA content in stems of the
control plants) with a simultaneous, significant increase
of SA content from 35.3 up to 81 ng g-' FW for the control
and inoculated plants, respectively (Table 3). For the
other isolates no significant increase in SA accumulation
was observed; however, in case of F. proliferatum
06-94s a significant drop was observed for SAG and
TSA contents in stems and roots versus the control
plants (from 91.8 to 45.2 ng g' FW for TSA in stems).
Four weeks after the inoculation with isolates 06-94s
and 07-25w7 of F proliferatum and F. oxysporum,
respectively, a significant increase of SA,, in stems and
a decrease in roots were observed for isolate 06-76sb of
F. proliferatum (Table 3).

3.4 Free radical measurements

Examples of EPR spectra of paramagnetic substances
in asparagus are shown in Figure 1. Figure 1a and 1b
show spectra for roots, while Figure 1c and 1d show
spectra for stems. In Figure 1a two lines with g=4.3
and g=2.5 are correlated to lines of iron ions Fe3*.
The small selected area of the EPR spectrum referred
to as “FR RANGE” was amplified (see Figure 1b).
This appears to be a common signal of free radicals
generated in inoculated asparagus roots. In the whole
range of the magnetic field for stems (Figure 1c) six
lines of manganese Mn?* ions and one line of free
radicals were observed for stems. Concentrations of
these paramagnetic centers were different for particular
Fusarium isolates; however, no changes were observed
in the structure of the EPR spectrum. The spectroscopic
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SA SAG TSA SA,
Isolate 2-week period  4-week period  2-week period 4-week period  2-week period  4-week period 2-week period 4-week period

root stem root stem root stem root stem root stem root stem root stem root stem

07-25wz 171 8.1 13.0 81.0 1.1 70.3 8.3 748 182 784 213 156 944 111 60.9 52.8
07-32s 108 180 1562 232 0.4 49.8 1.0 578 112 68.1 26.2 810 970 269 57.7 27.9
06-76sb 275 340 7.0 347 6.6 1240 244 586 341 1582 314 933 811 220 223 37.3
06-94s 248 290 9.3 29.9 1.3 97.7 7.8 163 260 1265 171 452 949 227 54.0 66.4
Control 16.7 180 111 35.3 1.1 49.8 1.7 565 179 675 228 918 947 445 48.8 38.0

LSD, 4 1.8 26.8 46.4 29.6 53.3 54.3 17.8 1561

Table 3. Content of salicylic acid and conjugated forms of salycylic acid in asparagus tissue (mean values; n=30).

SA - free salicylic acid [ng g'' FW], SAG — salicylic acid in form of glucoside [ng g FW], TSA - total salicylic acid [ng g' FW], SA% - percentage
of free in total salicylic acid [%]
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Figure 1. EPR spectra of asparagus inoculated with Fusarium oxysporum (isolate 07-32s) a, b) — root; ¢, d) — stem; b, d) — free radical range.
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parameters for free radical lines were similar for both
parts of plants with g-factor characteristic of particular
paramagnetic centers (g=2.0035+0.0005) and line width
(AB=0.84+0.03 mT) (Figure 1b and 1d).

4. Discussion

This study was focused on an interaction between
asparagus plants and their fungal pathogens.
Inoculation of asparagus roots with selected isolates of
F. proliferatum (06-76sb and 06-94s) and F. oxysporum
(07-25wz) changed SA biosynthesis and conjugation
rates both in roots and stems when compared to non-
inoculated plants. Isolate 07-32s of F oxysporum
was an exception here, with no significant increase
of SA accumulation observed. The potential role for
salicylic acid in IR of asparagus to F. oxysporum f. sp.
asparagi (Foa) was described by He and Wolyn [54].
They reported that exogenous SA activated peroxidase
(POD) and phenylalanine ammonia lyase (PAL), as
well as lignifications upon Foa attack. In the other
studies Mandal et al. [55] showed that the exogenous
application of salicylic acid (200 ymol L) through root
feeding or foliar spray could induce resistance against
F. oxysporum f. sp. lycopersici (Fol) in tomato. After
168 h, PAL and POD activities were about 5 times
higher (compared to control plants) in case of salicylic
acid absorption through the roots, and almost four
times higher after treatments through foliar spray. The
salicylic acid-treated tomato plants challenged with
Fol exhibited significantly reduced vascular browning
and leaf yellowing and wilting. To data, there is little
information on changes in endogenous SA content
in plants infected with Fusarium and the induction of
intracellular resistance mechanisms.

In this experiment total SA content in asparagus
tissue did not exceed 160 ng g' FW and was markedly
lower when compared to values observed for plants
treated with necrotrophic pathogens or abiotic stressors
(up to 20 ug g' FW in tobacco leaves exposed to
the ambient ozone, 75 pug g' FW in tobacco leaves
inoculated with tobacco mosaic virus) [19,22,56-59].
This might indicate a relatively low ability of the
investigated fungi to induce controlled HR cell death and
SAR program in asparagus, regulated by this compound
[28,60]. Two weeks after inoculation we observed an
increase in the SA contents in roots as well as in stems
of asparagus plants inoculated with F. proliferatum (both
isolates) with a subsequent SAG increase in stems,
especially forisolate 06-76sb. In F. oxysporum inoculated
plants (isolate 07-25wz) an enhanced SA accumulation
was observed only in roots (after two weeks) and SAG

contents in roots and stems (after four weeks). The
highest and comparable contents were observed for
TSA in stems at two weeks (F. proliferatum), and four
weeks (F. oxysporum) after inoculation and they were
respectively 2 and 2.5 times higher than in the non-
inoculated plants. As previously described, constitutive
levels of SA can vary, not only between plant species,
but also between cultivars of the same species [21]
and organs of the same plant [61]. Differences in SA
biosynthesis, conjugation and transport rates to the
upper parts of plants may indicate differential abilities
of F. proliferatum and F. oxysporum to infect asparagus
plants and/or the diverse susceptibility of asparagus to
the investigated fungi.

Two weeks after inoculation SA, was about 90% of
TSA in roots for all the isolates as well as the control
plants. In contrast, we observed half or less SA, than
the level in the control (from 45% for the control to
11-27%) in stems of inoculated asparagus plants.
This was probably due to phloem transport of the
mobile free form of SA to upper parts of asparagus
plants, and its conjugation in stems with glucose to
O-B-D-glucoside for the purpose of nonspecific SAR, and
possible biosynthesis of volatile methyl salicylate serving
as a potential intra- and interplant signal transductor
[568,62-64]. The observation that SAR spreads in the
plant mainly in the apical direction and moves into
grafted stems strongly suggests that signaling agents
establishing SAR are translocated through the plant [65].
It was previously demonstrated that SAis accumulated As
already indicated, SA is accumulated at sites in pathogen
attack and then is transported via phloem to non-infected
parts of the plant [21]. Edgar et al. [66] demonstrated that
exogenous salicylic acid treatment prior to inoculation
activated PR1 and BGL2 defense gene expression in
leaves and provided an increased F. oxysporum systemic
resistance, as evidenced by reduced foliar necrosis and
plant death. In case of exogenous SA treatment of the
foliar tissue did not activate defense gene expression
in the roots of plants. This suggests that salicylate-
dependent defenses may function in the foliar tissue to
reduce the development of pathogen-induced wilting and
necrosis. Moreover, Molodchenkova et al. [20] pointed to
possible role of exogenous SA in the induction of trypsin
and lectin inhibitors that are important in defense against
F. moniliforme in maize sprouts. In this study a significant
drop of SA, in roots and an increase in stems were
recorded after the next two weeks (especially for isolates
07-25wz and 06-94s). The significant increase in SA, in
asparagus stems four weeks after inoculation might be
the effect of the observable increase in MON content.

Moniliformin exhibited a phytotoxic effect on
jimsonweed (Datura stramonium L.) at concentrations of
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50-800 pg mL-" via foliar application, causing symptoms
similar to those of the fungal isolates producing MON
[67]. Fumonisin B, inhibits amylase production in
germinating maize seeds and, as it was suggested by
the authors, a high level of this toxin in maize seeds may
have deleterious effects on seedling emergence [68].
According to Van Asch et al. [69], the concentrations of
102 pmol mL" MON and 13 ymol mL* FB, in the culture
medium were required to cause over 50% reduction
in growth of corn relative to the toxin-free control. In
another study phytotoxicity and inhibitory effects of FB,
and MON on chlorophyll biosynthesis were examined in
an aquatic macrophyte Lemna minor [70]. FB, proved
to be most active at 0.7 ug mL", reducing the growth of
L. minor fronds and their ability to synthesize chlorophyll
by 53 and 59%, respectively, while MON exhibited the
lowest phytotoxicity, with only a 16% suppression of
the growth rate and a 54% reduction in chlorophyll at
66.7 ug mL". Thus, we propose that the increase of SA
and FR contents in stems may be a result of high MON
accumulation, probably exceeding the phytotoxicity
threshold.

The expression of genes responsible for mycotoxin
biosynthesis is mainly regulated by temperature, pH,
humidity and host genomic background [71]. The effect
of external factors on mycotoxin biosynthesis is exerted
at the transcription level through the activation of fum1
gene of F. verticillioides under stress conditions.

Higher FR concentrations were observed in roots
rather than in stems, which was probably due to the free
radicalgeneration bythe woundedtissueintheinoculation
site (roots). Oxygen-centered radicals have been studied
to elucidate pathogenesis of several diseases and may
play an important role in the biochemistry of the different
stages of pathogen infection. The spectroscopic
factor g=2.0035 suggests the accumulation of carbon-
centered radicals with a nearby oxygen atom, resulting
in a g-factor increase in comparision with typical pure
carbon-centered radicals. In contrast to our results,
typical oxygen-centered radicals have a higher g-factor
(g>2.004) [72,73]. It is also interesting to compare FR
concentration with salicylic acid content in inoculated
with Fusarium asparagus plants. Samples with a
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