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Abstract: Background: Oxidative stress is a single mechanism relating all major pathways responsible for diabetic damage and plays

an important role in diabetes development, progression and related vascular complications. To investigate the impact of
oxidative stress related gene polymorphisms on development of diabetic nephropathy (DN), we tested 7 polymorphic
variants that could hypothetically affect the ability of the antioxidant defense system and thus accelerate oxidative stress.
Methodology: 197 Slovenian (Caucasian) type 2 diabetic (T2D) patients, age 34-83, classified into two groups
according to the presence of DN, were tested for SOD2 Val16Ala (rs4880), p22 phox C242T (rs4673), CAT C-262T
(rs1001179), MPO T-764C (rs2243828), GSTP1 lle105val (rs1695), GSTT1 and GSTM1 deletion polymorphisms
using PCR, RFLP and qPCR. Oxidative stress was assessed through serum 8-hydroxy-2-deoxyguanosine
(8-OHdG) level. Results were analyzed using ANOVA, Chi-square test and multivariate logistic regression.
Results and Conclusions: Despite the commonly recognized link between oxidative stress and diabetes and its
complications we found no association between the selected polymorphisms and DN. However, we confirmed an
association between oxidative stress level and MPO T-764C genotype, which was tested in relation to DN for the first time.

Keywords: S0D2 Val16Ala * p22 phox C242T « CAT C-262T « MPO T-764C « GSTP1 lle105Val « GSTT1 deletion « GSTM1 deletion

« Oxidative stress * Diabetic nephropathy
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Lo SPB - systolic blood pressure;

Abbreviations: TG - triglycerides;
SNP - single-nucleotide polymorphism.

8-OHdG - 8-hydroxy-2-deoxyguanosine;
BMI - body mass index; .
CVD - cardiovascular disease; 1. Introduction
DF - diabetic foot;
DBP - diastolic blood pressure; Diabetic nephropathy (DN) occurs in up to one third of
DN - diabetic nephropathy; patients after 20 years of diabetes. It is defined as a rise
DNeur - diabetic neuropathy; in urinary albumin excretion rate in the absence of other
DR - diabetic retinopathy; causes of renal disease. Usually, it is accompanied by
eGFR - estimated glomerular filtration rate; retinopathy and an increase in blood pressure [1]. DN is
Hb - haemoglobin; associated with high morbidity and mortality, mainly due to
HbA1c - haemoglobin A1c, glycated haemoglobin; cardiovascular disease (CVD) and before end-stage renal
HDL - high-density lipoprotein; disease develops. All-cause mortality of patients with DN
LDL - low-density lipoprotein; is 20-40 times higher in comparison to diabetic patients
MDRD - modification of diet in renal disease; without DN and 2-5 times higher than with other forms of
NO - nitric oxide; chronic kidney disease. Susceptibility to DN has a familial
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basis, diabetic siblings of probands with DN have a 3-fold
increase in the risk of DN. Presumably, DN is a complex,
polygenic disease - genetic susceptibility is most likely
determined by a large number of relatively common
allelic variants, possibly interlinked and interacting with
environmental influences, each individually conferring a
modest increase in relative risk [1-4].

Oxidative stress is a single mechanism relating all
major pathways responsible for diabetic damage. It plays
an important role in diabetes development, progression
and related vascular complications, including DN [5-13].
It occurs when the production of oxidants exceeds local
antioxidant capacity and is derived from the two main
chemical pathways: reactive oxygen species (ROS)
and reactive nitrogen oxide species (RNS) [14]. Direct
measurement of oxidative stress is difficult because of
low oxidant serum levels and short half-life. However, it
can be assessed indirectly by their oxidative byproducts,
e.g. 8-OHdG, an abundant oxidative DNA product and
therefore a reliable DNA damage marker [15]. There
is no consensus on what it's true levels are in human
DNA, but a significant increase was noticed from
healthy to prediabetic and finally diabetic individuals
[16,17]. A marked increase was confirmed in diabetic
nephropathy in comparison to diabetes without vascular
complications, especially in patients with proteinuria
greater than 3 g/day [18,19]. Oxidative stress can be
accelerated due to an increased production of oxidants
caused by hyperglycemia, and due to the a reduced
ability of the antioxidant defense system.

Superoxide dismutase (SOD), probably the most
important free radical scavenger, converts superoxide
(O,) into hydrogen peroxide (H,O,). Three SOD
isoforms exist in mammals: cytosolic SOD 1 (also
termed CuZnSOD), mitochondrial SOD 2 (MnSOD)
and extracellular SOD 3 (EC-SOD), each derived from
distinct genes but catalyzing the same reaction [20].
Catalase (CAT) has a predominant role in controlling the
concentration of hydrogen peroxide [21]. Glutathione
S-transferases (GSTs) inactivate secondary metabolites
of ROS by catalyzing their conjugation with glutathione.
GST isoforms can be classified into 7 groups: GSTA,
GSTM, GSTK, GSTO, GSTP, GSTT and GSTM [22].
Some enzymes produce and utilize oxidants as a part
of body’s defense system, e.g. mieloperoxidase (MPO)
and NADPH oxidases. MPO catalyses the conversion
of hydrogen peroxide to hypoclorous acid - a cytotoxic
antimicrobial agent in neutrophils and monocytes
[23,24]. NADPH oxidases, a family of multi-subunit
enzymes, are an important source of ROS in phagocytes
and non-phagocytic cells [25].

Numerous oxidative stress-related genes are
positional candidates (determined by GWAS) and

candidate genes studies have confirmed the association
of their polymorphisms with DN [26]. Considering these
facts we analyzed the association of 7 commonly reported
polymorphic variants with DN in T2D patients: SOD2
Val16Ala (rs4880), C242T polymorphism of the p22 phox
gene (rs4673), encoding a subunit of NADPH oxidase;
CAT C-262T (rs1001179), MPO T-764C (rs2243828),
GSTT1and GSTM1 deletion polymorphisms and GSTP1
lle105Val (rs1695). Genotype status was compared to
serum 8-OHdG, oxidative stress marker.

2. Experimental Procedures
2.1 Patients and study design

In our cross sectional study, reflecting a real diabetic
population, 197 unrelated Slovenian (Caucasian) T2D
patients, age 34-83, were classified into two groups
according to the presence of DN: a study group of 88
patients with DN (DN+) and a control group of 109
patients without DN but T2D lasting over 10 years (DN-).
Diagnosis of diabetes was made according to WHO
1999 diagnostic criteria [27]. Diabetic nephropathy
was defined by increased albumin/creatinin ratio
(>3 g/mol) in two out of three successive urine samples,
separated by 3-month intervals; or decreased eGFR in
combination with characteristic morphological changes
and presence of diabetic retinopathy; both criteria
in the absence of other renal disease. To avoid the
confounding effect of impaired kidney function, patients
with overt nephropathy were not enrolled in the study.
Patients with poor glycaemic control, significant heart
failure (NYHA 11-1V), alcoholism, infection and other
causes of renal disease were also excluded. The study
was approved by the national medical ethics committee.
All patients signed an informed consent for participation
in the study and were interviewed in person [28].

2.2 DNA isolation and genotyping

Information on smoking, presence of CVD, family history
of CVD, duration of arterial hypertension and diabetes,
diabetes management and complications (retinopathy
- DR, neuropathy, diabetic foot - DF), therapy and
routine laboratory measurements were obtained
from their medical records. DNA was extracted from
peripheral blood samples using a commercial isolation
kit according to manufacturer’s protocol (DNeasy Blood
& Tissue Kit, Qiagen). Selected polymorphisms were
tested using PCR, RFLP or real-time PCR (qPCR) with
protocols in Tables 1 and 2. Genotyping was performed
by two researchers (JM, DP), blinded for case or control
status of the patients; duplicate samples were used.
P22 phox and GST polymorphisms were tested using
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Gene Marker details qPCR protocol qPCR reaction mix
Pre - PCR Rgadl: GOOC 30 sec 2x TagMan Genotyping Master Mix
Predenaturation: 95°C 10 min 40x specific TagMan® SNP Genotyping Assay for rs4880
SOD2 rs4880 Cycling: Denaturation: 95°C 15 sec P q yPing Y
; R ; (C_8709053)
Annealing and extension: 60°C 60 sec; 35x 0,5l (500 ng) DNA
Post — PCR Read: 60°C 30 sec OH 9 '
Pre - PCR Refad.: 600(3 30 SPTC 2x TagMan Genotyping Master Mix
Predenaturation: 95°C 10 min 40x specific TagMan® SNP Genotyping Assay for rs1001179
CAT rs1001179 Cycling: Denaturation: 95°C 15 sec P q ypIng y
L ; (C_11468118)
Annealing and extension: 60°C 60 sec; 35x 0,5 41 (500 ng) DNA
Post — PCR Read: 60°C 30 sec o H 9 '
Initial denaturation: 94° C 15 min
Cég:]l?u(g;écnhgz%n ZC]OP;?: 2x KASPar Reaction Mix v3 2,5 ul
BN ) 40x specific Assay Mix for rs2243828 (KBioScience) 0,07 ul
MPO T-764C Annealing and extension; 61°C 60 sec; 10x 1.0 4l (3-10 ng) DNA
rs2243828 (0,6°C per cycle until 55°C) ' ,u1 38 4l Hgo
Adittional cycling: . 2
Denaturation 94°C 10 sec MgCI2 0,05 ul (50 mM)
Annealing and extension 55° C 60 sec; 26x

Table 2. Real time PCR (gPCR) protocol.

“Applied Biosystem 2720 Thermal Cycler” instrument
and the results were visualized after electrophoresis in
a SYBR Green (Invitrogene) stained 2% agarose gel.
SOD2, CAT and MPO gPCR genotyping was performed
in a 48-well StepOne™ Real-Time PCR instrument.

2.3 Serum 8-OHdG

Level of serum 8-OHdG, a reliable DNA damage marker,
was used to assess oxidative stress and was measured
by enzyme-linked immunosorbent assay (ELISA).

2.4 Statistical analysis

Statistical analysis was performed using SPSS version
20.0 software. Numeric variables are reported as mean
+ standard deviation (SD); variance between both
groups was assessed using ANOVA. Chi-square test
was used to compare categorical variables. Genotypes
were tested for Hardy-Weinberg equilibrium among
DN+ and DN- groups. Finally, a multivariate logistic
regression model was performed for the risk factors and
genotypes with respect to DN. A P value of <0.05 was
considered statistically significant.

3. Results and Discussion

Susceptibility to DN is most likely determined by a large
number of relatively common allelic variants, possibly
interlinked and interacting with environmental influences,
each individually conferring a modest increase in

relative risk [2]. Our previously published results in
this population (Table 3) [28] confirmed duration of
diabetes (P<0.001), male gender (P=0.008) and poor
glycaemic control (HbA1c; P=0.012) as DN risk factors
by multivariate logistic regression model. Using this
model, testing all unmatched variables and important
risk factors (gender, duration of T2D and hypertension,
SBP, DBP, BMI, smoking, fasting glucose, HbA1c, total
cholesterol, HDL, serum creatinine, cystatin C, eGFR,
urine albumine/creatinine ratio) with respect to DN, we
could also predict a significant increase in cardiovascular
morbidity in DN+ group (P=0.037). Importantly, there
was no significant difference between groups regarding
blood pressure, which is also a substantial contributor to
renal dysfunction.

As for the genetic component, we selected 7
polymorphic variants that could hypothetically affect
the ability of the antioxidant defense system and thus
accelerate oxidative stress (Table 4). Of the three
SOD isoforms, SOD2 is an essential defender against
mitochondrial superoxide radicals. SOD2 C47T
polymorphism (also called Ala16Val; rs4880) alters
the SOD 2 protein structure and function. This C/T
substitution results in a missense mutation (Ala/Val) that
disrupts the enzyme’s a-helix structure, changing the
structural conformation of the mitochondrial targeting
sequence (MTS). Ala-SOD 2/MTS allows efficient
SOD 2 import into the mitochondrial matrix, while the
Val-variant causes partial arrest of the precursor within
the inner membrane and the decreased formation of the
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Study group (DN)

Control group (-DN)

Significance (P)

No.
Sex (M/F)
Age (years)

Duration of T2D (years)
Duration of hypertension (years)
SBP [mm Hg]

DBP [mm Hg]

BMI
Active smokers
CvD
Family history of CVD
DR
Duration of DR (years)
DNeur
DF
S-HbA1c [%]
S-fasting glucose [mmol/l]
S-Hb [g/1]

S-urea [mmol/I]
S-creatinine [umol/l]
S-cystatin C [mg/I]
eGFR [MDRD equation, ml/min]
S-Total cholesterol [mmol/I]
S-HDL [mmol/l]

S-LDL [mmol/l]

S-TG [mmol/l]
U-albumin/creatinine ratio [g/mol] - sample No. 1
U-albumin/creatinine ratio [g/mol] - sample No. 2

U-albumin/creatinine ratio [g/mol] — sample No. 3

88 109
66/22 64/46 0.011
616 =99 621 =89 0.709
122 = 8.1 150+ 49 0.003
83+96 71+76 0.363
163.1 £ 19.4 1479 = 201 0.067
87.9 = 13.6 85.6 = 10.7 0.184
309 =39 30.0 = 41 0.108
10.2% 8.3% 0.634
22.7% 6.4% 0.001
30.7% 29.4% 0.520
37.5% 23.9% 0.115
3729 38 =39 0.955
37.5% 33.0% 0.5613
8.0% 2.75% 0.097
8.12 = 1.59 747 =115 0.001
9.16 = 2.67 8.41 = 2.06 0.028
142.06 = 156.17 138.44 = 12.41 0.067
6.39 + 2.62 588 + 1.82 0.115
76.31 = 28.91 66.73 = 15.2 0.003
0.78 = 0.28 0.68 = 0.18 0.002
79.70 = 15.79 84.51 +9.88 0.010
451 +=1.36 448 =1.10 0.858
117 £ 0.33 1.28 £0.37 0.038
263 = 1.16 2.64 = 0.85 0.921
2.19 = 2.06 1.83 £1.31 0.141
32.78 = 61.70 1.46 = 2.59 0.000
39.49 + 96.07 1.99 + 6.08 0.000
42.26 = 102.01 139 = 2.04 0.000

Table 3. Population characteristics.

BMI = body mass index, CVD = cardiovascular disease, DR = diabetic retinopathy, DNeur = diabetic neuropathy, DF = diabetic foot, eGFR -
estimated glomerular filtration rate, HDL = high-density lipoprotein, LDL = low-density lipoprotein, S- = serum, TG = triglycerides, U- = urine

active SOD 2 tetramer in the mitochondrial matrix [29].
In previous studies, in contrast to healthy controls with
predominant CT genotype, genotype TT (Val/Val) was
most common in T1D and T2D patients and was related
to lower enzyme activity [30]. The T allele has been
associated with all diabetic microvascular complications,
although the results were inconsistent across several
studies [31-37]. Our study also showed a more frequent
TT (ValVal) genotype accounting for the less frequent
CC (AlaAla) genotype in DN+ group, but the difference
was not statistically significant. There was no significant

difference in oxidative stress level in relation to the three
SOD2 C47T genotypes.

CAT has a predominant role in controlling the
concentration of H,O,. It is present in peroxisomes of
various cells and in cytoplasm of macrophages and
erythrocytes. The enzyme consists of four identical
subunits, which form a rigid, stable double shaped
tetramer. It is encoded by the CAT gene — the C-262T
polymorphism being located in its promoter region.
In patients with DN, CAT activity in erythrocytes is
decreased [38]. When exposed to hyperglycemic
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Genotype DN+ group DN- group Significance (P) 8-OHdG level Significance (P)
SOD2 Val16Ala TT 24/87 (27.6%) 34/109 (31.2%) 14.93+5.79
SOD2 Val16Ala CT 43/87 (49.4%) 54/109 (49.5%) 0.766 13.86+3.2 0.491
SOD2 Val16Ala CC 20/87 (23.0%) 21/109 (19.3%) 13.06+2.52
CAT C262T TT 4/88 (4.5%) 9/107 (8.4%) 13.82x4.21
CAT C262T CT 36/88 (40.9%) 34/107 (31.8%) 0.291 13.41x2.61 0.616
CAT C262T CC 48/88 (54.5%) 64/107 (59.8%) 14.61+5.08
p22 phox C242T TT 10/88 (11.4%) 15/108 (13.9%) 13.74+4.33
p22 phox C242T CT 31/88 (35.2%) 44/108 (40.7%) 0.530 13.72+2.51 0.649
p22 phox C242T CC 47/88 (53.4%) 49/108 (45.4%) 14.87+6.09
MPO T-764C CC 4/88 (4.5%) 2/108 (1.9%) 25.34+12.91
MPO T-764C CT 21/88 (23.9%) 34/108 (31.5%) 0.311 14.00+2.70 0.000
MPO T-764C TT 63/88 (71.6%) 72/108 (66.7%) 13.52+3.46
GSTP1 lle105val GG 6/87 (6.9%) 13/108 (12.0%) 13.39+1.95
GSTP1 lle105Val AG 41/87 (47.1%) 40/108 (37.0%) 0.251 13.88+3.21 0.827
GSTP1 lle105Val AA 40/87 (46.0%) 55/108 (50.9%) 14.45+5.52
GSTT1 - 56/88 (63.6%) 70/109 (64.2%) 14.24+3.53
0.932 0.935
GSTT1 + 32/88 (36.4%) 39/109 (35.8%) 14.08+4.34
GSTM1 - 19/88 (21.6%) 29/109 (26.6%) 14.24+516
0.414 0.801
GSTM1 + 69/88 (78.4%) 80/109 (73.4%) 13.95+2.96

Table 4. Genotype distributions and genotype status in comparison to 8-OHdG level.

conditions (in vitro), CAT mRNA expression in blood
cells was significantly decreased. CAT -262T promoter
variant has been associated with higher transcriptional
activity and increased erythrocyte CAT level, offering
protective effect. Previous studies associated C-262T
polymorphism to diabetic neuropathy but not DN or DR
[35,39,40]. Our study found no association between
CAT C-262T and DN and no genotype — 8-OHdG serum
level correlation.

P22 phox gene encodes a subunit of NADPH
oxidase, which is an important source of ROS in
phagocytes and less in non-phagocytic cells. There is
an entire family of NADPH oxidases, among which only
Nox2 and Nox4 (also termed Renox or renal oxidase)
are found in kidney cells [25]. Diabetic animal models
suggest that Nox4 is the major source of ROS during
early stages of diabetes, mediating renal hypertrophy
and increased fibronectin expression [41]. All Noxes
appear to have an obligatory need for p22phox. The
gene coding the p22 subunit is polymorphic. The
C242T (His72Tyr; rs4673) polymorphism showed
significance regarding the association with DN. This
polymorphism substitutes histidine by tyrosine in the
potential heme-binding sites, offering explanation of its

functional role. Both alleles were previously associated
to higher risk of DN [42-44]. In patients with coronary
artery disease, T allele has proven to have a protective
effect on coronary risk [45]. Our study showed no
significant correlation, although TT genotype was more
frequent in DN- group and CC genotype in DN+ group.
There was no genotype — oxidative stress marker level
association.

A functional SNP was also previously described
for MPO: the G-463A substitution (rs2333227),
located in the promoter region - the binding site of
a SP1 transcription factor - thus conferring lower
transcriptional activation due to disruption of the
binding site [46]. Hypothetically, the -463A variant
relates to reduced MPO activity and thus lower ROS
production. It was consequently expected to relate to
reduced cancer risk, but studies showed inconsistent
results, offering weak support for this biologically
plausible hypothesis [47-49]. Due to technical
difficulties, a MPO T-764C (rs2243828) was tested
instead - genotyping concordance between the two
SNPs was 100% [http://snp500cancer.nci.nih.gov,
48,49]. To our knowledge, this polymorphism has
previously not been tested in relation to diabetes
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or DN. We observed no difference in genotype
frequencies between both groups. There was,
however, a significantly higher oxidative stress level
associated with genotype CC.

Of the GST isoforms, deletion polymorphisms exist
for GSTM1 and GSTT1 genes, whereas homozygous
individuals with the “null allele” lack the respective
enzyme function. In the GSTP subfamily, two GSTP1
alleles (GSTP1a and GSTP1b) have been described
that differ in a single base pair (A/G) and result in an
amino acid substitution that alters the enzyme function
(GSTP1 lle105Val). So far, studies relating these
polymorphisms to diabetic microvascular complications
are contradictory. GSTT1 polymorphism has been
described as a risk factor for diabetic end stage renal
disease and associated with premature vascular
morbidity, progression of DN and DR in T2D [50-52],
but other studies have found no correlation with T2D
[53] and DN in T1D patients [35]. GSTM1 polymorphism
has been significantly associated with T2D but not
with DN [35,53-55]. GSTP1 polymorphism has been
correlated with T2D [55] and DN [54]. Considering
these diverse and often contradictory results it seems
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