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Abstract: In the present study, we have evaluated the effects of increased UV-B radiation that simulates 17% ozone depletion, on
fungal colonisation and concentrations of rutin, catechin and quercetin in common buckwheat (Fagopyrum esculentum)
and tartary buckwheat (Fagopyrum tataricum). Induced root growth and reduced shootroot ratios were seen in both of
these buckwheat species after enhanced UV-B radiation. There was specific induction of shoot quercetin concentrations in
UV-B-treated common buckwheat, whereas there were no specific responses for flavonoid metabolism in tartary buckwheat.
Root colonisation with arbuscular mycorrhizal fungi significantly reduced catechin concentrations in common buckwheat
roots, and induced rutin concentrations in tartary buckwheat, but did not affect shoot concentrations of the measured
phenolics. Specific UV-B-related reductions in the density of microsclerotia were observed in tartary buckwheat, indicating
a mechanism that potentially affects fungus—plant interactions. The data support the hypothesis that responses to enhanced
UV-B radiation can be influenced by the plant pre-adaptation properties and related changes in flavonoid metabolism.
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1. Introduction

Research into the effects of ultraviolet (UV) radiation on
terrestrial organisms can be split to two main themes:
the effects of increased UV-B radiation arising from
depletion of the stratospheric ozone concentration,
and the effects of solar UV radiation as a source of
information about the environment for microbes, plants
and animals [1]. The UV-C region of the UV spectrum
includes wavelengths under 280 nm, which are
effectively absorbed by ozone in the stratosphere. In
contrast, UV-A (320-400 nm) and UV-B (280-320 nm)
radiation do reach ground level [2]. As the stratospheric
ozone concentration decreases, the UV-B portion of the
sunlight will increase [3].

Common buckwheat (Fagopyrum esculentum) and
tartary buckwheat (Fagopyrum tataricum) are frequently

* E-mail: marjana.regvar@bf.uni-Ij.si

used for human consumption and they receive
additional attention through medicinal research. They
are particularly rich in flavonoids, which have numerous
beneficial effects on human health. Among the flavonoids
found in both of these buckwheat species, rutin and
quercetin have a broad range of physiological activities
in humans and other animals, such as anti-inflammatory
[4], anti-tumour [5,6], and anti-bacteria [7,8] effects and
thus they might also be of interest to the pharmaceutical
industry.

Tartary buckwheat is frequently cultivated at higher
altitudes, and thus under intense UV radiation, where
the environment is not suitable for rice or other major
crops. Plants exposed to elevated UV-B radiation
frequently show reduced growth as a consequence of
induced morphological changes [9,10]. Although the
efficiency of damage caused by UV-A radiation is much
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lower, it appears to lead to similar inactivation of the light
reactions of photosynthesis as seen for UV-B radiation
[11,12]. At the cellular level, UV-B radiation initiates the
formation of superoxide radicals, resulting in oxidative
damage that has to be counteracted by antioxidants
and protective pigments before adequate shielding by
the flavonoids is achieved [13,14].

In a genetic approach to evaluate the relative
importance of the proposed UV-B protective
mechanisms in flowering plants, it was demonstrated
that two distinct classes of phenylalanine-derived,
UV-absorptive secondary products provide UV-B
protection to Arabidopsis: flavonols and sinapic acid
esters [15]. Among the secondary products in buckwheat
plants, the catechins are known to increase differentially
in plants exposed to enhanced UV-B conditions,
although they might not provide sufficient protection
against excessive UV-B radiation. Higher quercetin
concentrations are also seen in plant populations with
higher UV-B exposure. These were thus shown to
increase under enhanced UV-B radiation in correlation
with plant-growth reduction, conferring protection to the
plants against UV-B-induced damage [16]. In contrast,
rutin showed dependence on the irradiation levels used,
as its concentrations can be either lower or higher than
in plants grown under ambient conditions [17,18].

There is increasing evidence that UV radiation can
affect trophic interactions and, in turn, influence a variety
of ecosystem functions through both direct and indirect
effects. Areduction in plant diseases has been seen under
enhanced UV-B conditions, as this can directly kill spores
of casual fungi [1]. In addition, with the changes that can
occur in the plant chemistry, the host plant is frequently
more resistant to pathogens and may also change their
environment via root exudation [1,19]. Through these
effects variations in UV radiation might impact on the
interactions of plants with beneficial microorganisms.

The majority of plants form associations with
arbuscular mycorrhizal (AM) fungi and/or dark septate
endophytes (DSEs) [20]. These provide plants with
mineral nutrients [21,22] in exchange for carbon
compounds [23,24]. Although there are several
reports that indicate the absence of AM colonisation
in buckwheat [25-27], its colonisation by AM fungi and
DSE was recently reported [28]. The susceptibility of AM
fungi to UV-B stress might be partially attributed to the
changes in plant hormone levels, and partially to host
changes in the phenylpropanoid pathway [29,30].

The main objectives of the present study were: (i)
to evaluate the effects of enhanced UV radiation on
the selected flavonoid concentrations; (ii) to establish
root colonisation levels with fungal endophytes under
enhanced UV-B radiation conditions; and (iii) to shed

more light on flavonoid metabolism and the interactions
of both of these buckwheat species with their endophytes
under enhanced UV-B radiation.

2.Experimental Procedures

2.1 Plant growth conditions and
inoculations

Seeds of common buckwheat (Fagopyrum esculentum
Moench, cv. Siva) and tartary buckwheat (Fagopyrum
tataricum  Gaertn.; domestic  population  from
Luxembourg) were surface sterilised for 5 min in
Na-hypochlorite solution (3% active chlorine, in water),
and rinsed with sterile water. These surface-sterilised
seeds were sown in plastic trays (30 seeds per tray)
containing a sterilised soil and vermiculite mixture (1:3,
v/v), and germinated in a growing chamber (22°C,
80% humidity, 16-h day period, under 325 pmol/m?/s
illumination). One half of the trays (for each treatment)
was layered with 1 cm fungal inoculum prepared from
an indigenous fungal mixture from a buckwheat field
with maize (Zea mays L.) as the inoculum host plant.
AM fungi in the inoculum were identified by spore
morphology as Glomus mosseae, G. fasciculatum
(Thaxt.) Gerd.&Trappe, G. etunicatum W. N. Becker
&Gerd., G. intraradices N.C. Schenck& G.S. Smith and
Scutellospora sp. Inoculation of the maize growing on
the inoculum was F% 100+x0%, M% 69.5+3.6% and
A% 69.5+4.2% (Mean = SE, n=10). The experiments
were conducted over two consecutive years (2002 and
2003), with the same trends observed; therefore, only
the results from 2002 are shown here.

2.2 UV-B simulation

Trays with 2-week-old buckwheat plants were
transferred to the research plot in the Ljubljana Botanical
Garden for the duration of the experiment. At the
stage of two to three leaves per plant, the plants were
thinned to 15 plants per tray, with the trays filled with
10 litres of substrate and subjected to three different
light treatments, as described previously [17,31]. A
UV-B supplementary system for outdoor experiments
was designed as described in [32]. Three different
treatments were applied: (1) Enhanced UV-B treatment
[UV-B] that simulated 17% ozone depletion, using
Q-Panel UV-B 313 lamps (Cleveland, OH, USA) filtered
with cellulose diacetate filters (to block the UV-C range,
as wavelengths <280 nm) that allowed transmission
of both UV-A and UV-B radiation. (2) Reduced UV-B
treatment achieved by Q-Panel UV-B 313 lamps filtered
with Mylar foil, which cuts out wavelengths approx.
<320 nm and allows transmission of only UV-A radiation
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[UV-A], therefore allowing for responses to be specifically
attributed to UV-B radiation [33,34]. (3) Exposure to
ambient radiation, with no interference [ambient].

The lamps were placed 140 cm above ground level,
to provide sufficient aeration and to exclude possible
phytotoxic effects of cellulose diacetate [35]. The system
was timer controlled. The UV-B doses were calculated and
adjusted weekly using the programme of Bjérn and Murphy
[32] and based on the generalised plant action spectrum of
Caldwell [36]. The filters were replaced every two weeks
to ensure uniformity of UV transmission. The plants of
common and tartary buckwheat were harvested at seed
maturity (84 and 91 days after germination, respectively).

2.3 Fungal colonisation

At harvest, the roots of the buckwheat plants were
washed thoroughly with water, and stained with
Trypan Blue [37]. The level of colonisation by AM fungi
and DSEs was estimated under light microscopy on
1-cm-long root fragments (15 fragments per plant, 15
plants pertreatment). The fungal colonisation parameters
of colonisation frequency (F%), global intensity of
colonisation of the root system (M%), and density of the
arbuscules (A%), were assessed according to Trouvelot
et al. [38]. The density of microsclerotia (MS%), as
typical structures of DSEs, was calculated in the same
way, as the density of arbuscules. The fungi that had
colonised the roots of both of these buckwheat species
were identified using molecular tools [28].

2.4 Flavonoid analysis

Atharvest, four plants per treatment were sampled randomly
(10 to 20 mg/plant for both shoots [stems with leaves]
or plant roots). They were immersed in liquid nitrogen,
lyophilised, and extracted with methanol: water (60:40,
v/v) at room temperature for 45 min. After centrifugation for
10 min at 10000%g, the supernatants were filtered (Millipore,
Durapore membrane filters; 0.22 ym GVPP).

For the analysis of shoot and root flavonoids, a
Waters HPLC system (Separation Module 2960 with
PDA 996 detector) was used in combination with
Millenium 32 (Waters) software. The flavonoids in
50 pl supernatant were separated on 5 mm Waters
Spherisorb, ODC-II, C18 column (250x4.6 mm) by high-
performance liquid chromatography, with elution with a
two-step linear gradient using acetonitrile (solvent A) and
water — methanol — 1.5% H,PO, in water (1:1:1, vivly,
solvent B). The mobile phase started at 100% solvent A,
and was increased linearly to 40% solvent B in 20 min,
followed by a further linear increase to 100% solvent B
in 20 min. The flow rate was 1 ml/min, and the detection
wavelengths for quantification were 350 nm for rutin and
quercetin, and 280 nm for catechin (Figure 1).

2.5 Statistical analyses

The effects of UV radiation on plant biomass, flavonoid
concentrations, and fungal colonisation levels were
examined by analysis of variance according to a general
linear-model procedure. The differences among the
various treatment means were separated by Holm-Sidak
post-hoctests at the 0.05 level of probability. Differences in
flavonoid concentrations between both of the buckwheat
species were evaluated using the t-test. All analyses
were performed in SigmaPlot (Systat Software Inc.).

3. Results

3.1 Fresh weight of common and tartary
buckwheat

Exposure of the plants to enhanced UV-B radiation

specifically increased the shoot (stems with leaves)

biomass in common buckwheat and the root biomass

of both buckwheat species, when compared to the

UV-A plants; in contrast, the shoot biomass in tartary
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Figure 1. HPLCchromatograms of common buckwheat leaf extracts
separated by C18 reverse-phase chromatography.
Chromatograms were analyses at 350 nm for rutin and
quercetin quantification (upper panel), and at 280 nm for
catechin quantification (lower panel). The retention times
are shown next to the relevant peaks.
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buckwheat was significantly reduced (Table 1). The
shoot:root ratios of the UV-B plants of both buckwheat
species were therefore significantly decreased (Table 1).

3.2 Colonisation with AM and DSE fungi

Root fungal colonisation of both buckwheat species was
characterised by hyphae and distinct microsclerotia of
DSEs. In addition, occasional arbuscules, as typical
AM structures, were seen, although these appeared
in numbers that were too low for any reliable statistical
analysis. Colonisation frequencies (F%) and densities
of arbuscules (A%) were not affected by the exposure to
enhanced UV radiation (Table 2). In contrast, the density

of microsclerotia (MS%) in the root system of tartary
buckwheat was specifically reduced after enhanced
UV-B radiation, when compared to the UV-A plants. In
addition, the global intensity of colonisation of the root
system (M%) and the density of microsclerotia (MS%)
were reduced in both buckwheat species under the
enhanced UV-B radiation, when compared to the non-
treated (ambient) plants.

3.3 Flavonoid concentrations

Tartary buckwheat contained higher root rutin and shoot
catechin and quercetin concentrations as compared
to common buckwheat (Table 3). The root quercetin

Treatments Biomass (g)
Shoots Roots Shoot/root ratio
Common Tartary b%(;?ﬁggt Tartary Common Tartary
buckwheat buckwheat buckwheat buckwheat buckwheat
Ambient 3.73 = 0.14bc 397 = 0.21b 0.58 = 0.06yz 0.8 = 0.16xy 7.3 0.6y 6.7 = 0.8y
UV-A 3.26 = 0.29¢c 4.82 = 0.28a 0.44 = 0.04z 0.4 = 0.04z 7.7 = 0.6y 18.2 = 1.4x
UV-B 3.81 + 0.25b 2.92 = 0.30c 0.90 + 0.08x 0.8 = 0.13xy 4.4 +03z 4.8 + 0.4z

Table 1. The effects of the UV treatments on the biomass of shoots (stems with leaves) and roots in common and tartary buckwheat plants. Data
are means +=SE (n=15). Different letters in each pair of columns represent statistically significant differences at P<0.05.

BUCKW.h eat Treatment F% M% A% MS%
species
Common Ambient 96.19 + 1.35 3542 +4.06b 0.00 + 0.00 9.38 + 2.54 bc
UV-A 9524 = 215 20.29 = 3.72¢c 0.00 = 0.00 3.16 = 0.51d
UV-B 97.62 + 1.13 24.07 + 3.05¢ 0.00 = 0.00 392 +0.61d
Tartary Ambient 96.41 = 1.22 47.05 = 4.65a 0.26 = 0.22 18.76 = 3.08 a
UV-A 98.79 = 1.21 36.28 = 2.67b 0.00 = 0.00 1320 +191b
uv-B 98.79 + 0.81 30.06 = 4.30 bc 0.06 = 0.06 5.47 = 1.57 cd

Table 2. The effects of the UV treatments on colonisation of common buckwheat and tartary buckwheat with fungal endophytes. Data are means
+SE (n=8). Different letters in each pair of columns represent statistically significant differences at P<0.05.

Flavonoid Flavonoid concentration (% dw)
Shoots Roots
Common buckwheat Tartary buckwheat Common buckwheat Tartary buckwheat
Rutin 2.808 +0.127 2.998 +0.078 0.065 +0.004 a 0.207 +0.024 b
Catechin 0.080 +0.007 a 0.106 +0.006 b 0.025 +0.002 a 0.018 +0.002 b
Quercetin 0.016 +=0.004 a 0.047 +0.007 b nd’ nd’

Table 3. The mean flavonoid concentrations in the shoots (stems with leaves) and roots of the common and tartary buckwheat plants. 'nd = not
detected. Data are means +=SE (n=8). Different letters in each pair of columns represent statistically significant differences of t-test at
P<0.05.
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concentrations in both of these buckwheat species were
under the detection limits.

UV radiation did not affect the shoot rutin, catechin
and quercetin concentrations in tartary buckwheat
plants (Figure 2a-c). In common buckwheat, the only
UV-B-specific effect was an increase in shoot quercetin
concentrations of the UV-B-treated plants, when
compared to the UV-A-treated plants (Figure 2c).

Inoculation with the indigenous fungal mixture from
the buckwheat field resulted in a significant reduction in
root catechin concentrations in the common buckwheat
roots (Figure 3a), whereas there was a significant
increase in root rutin concentrations in the tartary

ab ab
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Figure 2. Shoot (stems with leaves) flavonoid concentrations. (a)
rutin, (b) catechin and (c) quercetin concentrations in
common buckwheat [J and tartary buckwheat 4 under
ambient radiation, UV-A and UV-B treatments. Data are
means =SE (n=8). Different letters represent statistically
significant differences at P<0.05

buckwheat roots when compared to the non-inoculated
plants (Figure 3b). No changes in shoot flavonoid
concentrations were seen as a result of the fungal
inoculations in either of the species.

4. Discussion

Both reductions as well as enhancements in plant
biomass have been reported as responses to
enhanced UV-B radiation under field conditions [9]. The
UV-B-specific induction of root biomass and reduction
in shoot:root ratios seen for both of these buckwheat
species were attributed to changes in water relations and
carbon partitioning, as previously reported for common
buckwheat plants [31]. The reduction in shoot biomass
of the tartary buckwheat is also in line with previous
observations [18], and might have been accompanied
by a reduced number of nodes, reduced branching, and
reduced length of the petiole [10].

The flavonoid content in buckwheat species depends
on the plant genotype, the plant organ, the phenological
state, and the time of sowing [17,39,40]. Therefore, both
common and tartary buckwheat plants were deliberately
collected at the stage of seed maturity (e.g. 84 and 91

0,01 4

Root catechin concentration
(% dw)
N
—

0,00

0,3 c

o

(% dw)

0.1 a

Root rutin concentration

0,0 :

Non-inoculated Inoculated

Figure 3. Root flavonoid concentrations. (a) catechin and (b)
rutin concentrations in common buckwheat O and
tartary buckwheat 4 non-inoculated and inoculated with
indigenous fungi. Data are means =SE (n=8). Different
letters represent statistically significant differences at
P<0.05
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days after sowing). The tartary buckwheat showed higher
shoot catechin and quercetin concentrations and root
rutin concentration. Increased concentrations of these
measured secondary metabolites can be viewed as the
result of genetic pre-adaptation of tartary buckwheat to
higher altitudes, where they would serve for protection
against UV radiation [41]. As a consequence, no further
UV-B-specific changes in flavonoid concentrations were
seen. In contrast, the common buckwheat showed a
specific increase in shoot quercetin concentrations when
exposed to enhanced UV-B radiation. The lower overall
flavonoid concentrations in this common buckwheat and
the more intensive responses in flavonoid metabolism
to enhanced UV-B radiation suggest that the common
buckwheat is less pre-adapted than the tartary
buckwheat.

Various flavonoid compounds are known to
specifically affect the growth of mycorrhizal fungi [42,43].
Rutin has been reported not to impact on the growth
of AM fungal hyphae, but to have an impact on fungal
colonisation of tomato plants when exogenously applied
[42,44]; however, rutin has also been demonstrated to
enhance hyphal growth of some ectomycorrhizal fungi
[45]. Knowledge of the changes in plant-root flavonoid
concentrations induced after fungal inoculation is even
more limited. The few reports point to complex pathways
of metabolism of the flavonoids and their glycoside forms
after fungal colonisation. Reduced catechin contents
were found in roots of Fagus sylvatica L. and Larix
decidua Mill. after colonisation by ectomycorrhizal fungi
[46-48]. The reduced catechin concentrations in common
buckwheat roots and increased rutin concentrations in
tartary buckwheat roots seen after fungal colonisation
in the present study indicate specific changes in the
metabolic pathways related to fungal infections. The
roots of both buckwheat species used in our experiments
were colonised by Ascomycota, Basidiomycota and
Chytridiomycota, with tartary buckwheat roots also
colonised by AM fungi (Glomeromycota) [28]. It is not yet
possible to relate observed root flavonoid concentration
changes to root colonisation by specific representatives
of the fungal groups. A more extensive study would be
needed to relate these root flavonoid concentrations to
the root fungal colonisation levels. Due to the importance
of flavonoid metabolism for plants, fungi and fungus—
plant interactions, this area of study clearly deserves
further attention.

Reports on the impact of elevated UV-B radiation
on soil and endophytic microbial communities are rare,
despite the vital role of these communities in ecosystem
functioning [29,49-51]. In tartary buckwheat roots, a
UV-B-specific reduction in density of microsclerotia
(M%) was observed, when compared to the UV-A-

treated plants. Reductions in both the global colonisation
intensity (M%) and the density of microsclerotia (MS%)
were seen for both of these buckwheat species exposed
to enhanced UV-B and UV-A radiation, when compared
to the ambient-grown plants. This emphasises the subtle
receptiveness of fungus—plant interactions to changes in
UV radiation in general. Reductions in root colonisation
by AM fungi in gramineous species exposed to enhanced
UV-B radiation, accompanied by unexpected shifts in
the competitive balance between pigmented and non-
pigmented saprobic fungi, have already been reported
[19,30]. The responses seen in the present study might
have resulted from changes in plant rhizodeposition,
changes in host hormonal balance, and/or changes
in the phenylpropanoid pathway [29]. The effects of
the flavonoid levels on the root fungal colonisation
are far from being one-sided, as endophytic fungi can
also affect the metabolism of the host. Clearly, more
investigations are needed before we can decipher the
complex interactions between flavonoid metabolism and
root fungal colonisation under changed UV radiation of
environmental conditions.

5. Conclusions

Increases in UV-B radiation due to reductions in the
ozone layer are expected to affect plants and fungi
and their interactions. In the present study, repartition
of carbohydrates toward more intensive root growth
and changed shoot:root ratios were seen for both the
common and tartary buckwheat species. The variability
of the responses in flavonoid metabolism, which provide
protection against harmful UV-B radiation, might arise
from pre-adaptation of the plant to environmental UV-B
conditions. Reduction in the root fungal colonisation
levels due to the enhanced UV-B radiation might, as
a consequence, reducte the effectiveness of plant
interactions with their beneficial fungal colonisers.
More detailed studies on flavonoid metabolism in plants
inoculated with specific fungal colonisers are needed if
we are to find the fungus—plant combinations that have
the greatest beneficial effects under such changed UV
environmental conditions.
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