

Central European Journal of Biology

The mycobiota of landfill leachates in the pretreatment process in a sequencing batch reactor

Research Article

Mirosław Szyłak-Szydłowski^{1,*}, Teresa Korniłłowicz-Kowalska²

¹Faculty of Environmental Engineering, Warsaw University of Technology, 00-653 Warszawa, Poland

²Department of Environmental Microbiology, University of Life Sciences in Lublin, 20-069 Lublin, Poland

Received 24 August 2011; Accepted 21 December 2011

Abstract: The paper discusses the dynamics of the accumulation of microscopic fungi, depending on the sludge load (Bx), in activated sludge used for landfill leachate pretreatment. The propagule washout from the sludge into pretreated leachates is determined, including genera and species that may threaten environmental health. An increased accumulation of microscopic fungi in sludge flocs occurred at Bx=0.23-0.45 mg chemical oxygen demand (COD) mg⁻¹ d⁻¹. Microscopic fungi were eluted at the maximal Bx value tested of 1.64 mg COD mg⁻¹ d⁻¹. Both the activated sludge and the leachate runoff from the sequencing batch reactor (SBR) pose health risks to the environment due to the occurrence of fungi such as Aspergillus fumigatus, Purpureocillium lilacinum, Cyberlindnera jadinii (C. utilis), Geotrichum candidum and G. fragrans. Their count is sufficient to cause multi-organ infections in homeothermal animals and in humans.

Keywords: Landfill • Waste • Leachates • Microscopic Fungi • Leachate's treatment • Sbr • Microbiological pollutants

© Versita Sp. z o.o.

1. Introduction

Landfill waste is a suitable substrate for the proliferation of saprophytic and pathogenic microorganisms. These microorganisms can access leachates from the landfill waste as well as feces of animals living in landfills (birds, insects, rodents, annelids, etc.) [1]. Byeon et al. [2] notice that a large part of municipal waste is subject to rot as it is readily colonized by both bacteria and fungi, and, upon the handling of such wastes, these bacteria and fungi can be aerosolized (i.e. form bioaerosols). Bioaerosols may present infectious, allergenic or toxic hazards, and, along with volatile organic compounds (VOCs), have been pointed out as agents of special concern. The presence of these microbiological and chemical pollutants can pose a risk to the health of workers in landfills and composting plants, making evident the necessity to control their levels to prevent adverse health effects [3]. Déportes et al. [4] have

proved that the microbiological hazard arising from fecal contamination is apparently modest, although direct intake of soil contaminated by fecal Streptococcus might represent a potential danger. Some of the fungi and bacteria are pathogens or can act through their toxins. The manipulation of compost triggers the aerial dispersion of pathogenic bacteria and fungi that can lead to their inhalation, as shown among workers in composting plants or in mushrooms farms [4] as well as municipal landfills. Albrecht et al. [5] have pointed out that Aspergillus and Penicillium species are some of the most abundant fungi in composting processes.

According to Herr et al. [6], gastric symptoms, e.g. nausea, loss of appetite or vomiting, and general health-related complaints are often associated with such contaminants. Possible health effects may also result from medically-relevant bioaerosols released from these sites into neighboring residential areas. In fact, emissions from waste facilities are an issue for

occupational health and safety as well as environmental hygiene [3]. According to Kummer and Thiel [7], microbial decomposition of organic material occurs under intensified conditions in waste treatment facilities and consequently bioaerosol emissions generated by them present a risk to the environment even though these facilities account only for a small part of a wide variety of potential emission sources.

As well as bioaerosols, microorganisms washed away by residual waters could, together with leachates, contaminate the soil, underground water, penetrate surface waters and migrate over long distances [8,9]. Investigations of soil microbiota conducted by Poputnikova and Terekhova [9] have demonstrated that several functional and structural indices are good markers of modifications occurring in bacterial and fungal communities at various distances from a landfill. Furthermore, deviations of various microbial indices compared to the background (conditionally undisturbed) are considerably different. Poputnikova and Terekhova have pointed out that the influence of the landfill as an environmental pollutant on adjacent soils stimulates the soil microbiota development, growth of bacterial and fungal populations as well as their biomass and biological diversity (shown by the biomass of certain species). In addition, increased spore fungal biomass has been reported and the activation of soil respiration. There is also a high negative correlation between the heavy metals content of the soil and the fungal fraction. Kulig et al. [8] observe that the pathogenic bacteria Listeria monocytogenes and Clostridium perfringens, the saprogenic bacterium Proteus vulgaris and microscopic fungi belonging to molds can be used as indicators of leachate sanitary pollution. Microscopic fungi in leachates in five different landfills examined by Kulig et al. ranged between 0 and 599 cfu·ml-1. Additional indicators are the total number of mesophilic bacteria and the number of thermotolerant coliform bacteria.

Microscopic fungi are of special importance as bioindicators of sanitary environmental pollution. Chemical compounds present in spores and mycelium showing allergenic effects and many fungal pathogens possess mycotoxins with cytotoxic, mutagenic, neurotoxic and teratogenic properties. Microscopic fungi enter the host organism by inhalation, ingestion and sexually, through the damaged oral mucosa, skin or cornea. They can cause multifocal fungal infections, endocarditis, osteomyelitis, meningitis and other diseases. Immunocompromised persons, *i.e.* in patients with food malabsorption, cancers, autoimmune disorders, AIDS, drug, medication or alcohol addicts and patients with implants are particularly susceptible to fungal infections. Causative organisms of these

infections are yeast-like fungi of the genera Candida, Cryptococcus, Kloeckera, Rhodotorula, and molds of the genera Penicillium, Aspergillus, Pullularia, Fusarium, Acremonium, Paecilomyces, Alternaria and Culvularia. Aspergillus fumigatus and Aspergillus niger show special pathogenicity to humans. The role of microscopic fungi in the transmission of diseases in water is discussed in a study by Grabińska-Łoniewska and Siński [10].

The aim of the study was to determine the dynamics of the accumulation of microscopic fungi in activated sludge used in the landfill leachate pretreatment process in relation to the sludge load. The propagule elution from the sludge into the pretreated leachate was estimated, including genera and species which could present a sanitary threat to the environment. The process was conducted in a sequencing batch reactor (SBR) used to treat sewage by biological methods [11,12].

2. Experimental Procedures

2.1 Samples

Leachate delivered to a collection sump *via* a drainage system near a landfill site designed for municipal waste (*i.e.* waste other than inert and hazardous), in the southeastern part of the town of Otwock was examined. The site has been in use since 1998 and will operate until 2028. Municipal wastes containing a high amount of biodegradable organic matter exceeding 20 Mg d⁻¹ are deposited at the site. The estimated capacity is $12 \cdot 10^5$ Mg. The landfill is lined with a 2 mm polyethylene *high-density* (PEHD) geomembrane. Wastes are stored in districts on 1.5-2 m thick plots. The lining thickness is 0.15 m. Leachate water and landfill gas as well as surface and underground waters near the landfill are monitored [11,13].

2.2 Leachate pretreatment process

Leachate was pretreated in a 6.9 litre SBR equipped with a mixer and a fine bubble aeration system that supplies oxygen concentration of 2 mg O_2 dm⁻³. The activated sludge from a domestic sewage treatment plant in Piaseczno near Warsaw was used as the seed. Volatile suspended solids constituted 67% of the sludge and mineral solids 33% on average. The sludge concentration in the reactor ranged from 3 to 4 g dm⁻³, the sludge age (qx) was 12.5 days and the hydraulic retention time (HRT) was 16 hours. The sludge load (Bx) ranged from 0.40 to 1.64 mg COD mg⁻¹ d⁻¹, obtained by an increase in the percentage leachate contribution (5, 10, 15, 20 and 30%) in the mixture with synthetic wastewaters prepared according to the recipe by Klimiuk

and Wojnowska-Baryła [14]. The system operated in three 8-hour cycles per day. Each cycle consisted of a 45 minutes fill phase, 30 minutes mixing phase, 2 h 10 min aeration phase, 45 minutes mixing phase, 1 h 5 min aeration phase, 1 h 30 min hour settling phase and 30 minutes decanting phase (including 25 minutes of decanting and 5 minutes idling) [11].

The total number of fungi was determined according to the methodology given by Grabińska-Łoniewska et al. [15]. Fungi were isolated with the dilution plate method using the Martin's medium (g · l¹): glucose – 10.0; peptone – 5.0; KH_2PO_4 – 1.0; $MgSO_4$ · 7 H_2O – 0.5; agar – 20.0; rose Bengal – 33.3 mg; streptomycin – 30.0 mg and chlorotetracycline – 2.0 mg. Incubation was conducted at 26°C for 7 days. Fungi counts were given as a mean from three replications in cfu ml¹1. The results were converted to dry matter for the activated sludge and given in cfu mg¹¹ d.m.

The genus and species of the fungi were identified based macro-morphological features observations of colonies on plates and fungal growth on slides and on micro-morphological features using observations of micro-cultures on agar circles and in water drops (yeasts), biometric measurements (colonies and spores), and biochemical properties (yeasts). Macroscopic studies of molds (filamentous fungi) were conducted on the following media: potato-dextrose agar (PDA, g I-1 of distilled water): potato - 200.0; glucose 20.0; agar – 20.0; Czapek-Dox (g⁻¹ of distilled water): $NaNO_3 - 3$; $K_2HPO_4 - 1.0$; $MgSO_4 \cdot 7 \cdot H_2O - 0.5$; KCI - 0.5; FeSO₄ · 7 H₂O - 0.01; saccharose - 30.0; agar - 15.0 and malt extract agar (MEA, g · l · 1 of distilled water): malt extract - 20.0; agar - 20.0. The colouring (reverse, face), the mycelium structure and the colony size (colony diameter in cm) after a specific period of time were examined. The morphology of reproductive structures: conidia and conidiophores, sporangia and sporangiophores, and the structure of vegetative hyphae (multi- and mono-cellular hyphae) of molds in microcultures on agar circles were observed under a microscope. Yeast colonies on MEA were observed and water drop preparations were made to examine the morphology of yeast cells, asexual reproduction and ascus formation. The formation of the pseudomycelium, arthrospores, blastospores and other reproductive forms of yeasts was observed in cultures on agar plates (PDA, MEA). The ability to assimilate various sugars and nitrates and to produce urease was examined to assess biochemical properties of yeasts. The final classification of molds and yeasts was based on the keys and systematic studies by Domsch et al. 1980 [16]; Fassatiova1983 [17]; Kreger-Van Rij 1984 [18]; Kurzman and Fell 2000 [19].

3. Results and Discussion

The microscopic fungi (MF) count in the SBR processed sewage has been found to increase progressively as the percentage of the leachate added to the synthetic domestic sewage increases. When the Bx values ranged from 0.23 to 0.96 mg COD mg⁻¹ d⁻¹, the mean MF count removed at the primary treatment reached 90%. When the Bx values ranged from 0.23-0.40 mg COD mg-1 d-1, the 375 - 390 cfu ml-1 MF count in the inflow decreased to 30-75 cfu ml-1 in the outflow. However, when Bx=45 mg COD mg-1 d-1, the MF count in the outflow increased approximately tenfold (reaching the mean value of 433 cfu ml-1), and when Bx=0.96 mg COD mg-1 d-1, the mean MF count rose to 1410 cfu ml-1. The MF were found to be eluted from the activated sludge when the maximalsewageloadingwasused(1.64 mgCOD mg⁻¹d⁻¹), which was illustrated by an approximately two-fold increase in MF count in the outflow as compared to the inflow. The MF count in the SBR outflow reached the mean value of 60·103 cfu ml-1 at the above mentioned Bx value.

The analysis of the MF count changes in the activated sludge shows that the MF accumulation rate in the activated sludge flocs is usually similar (*i.e.* from 34·10² to 124·10², with the mean value of 69·10² cfu mg-¹ of dry matter) when the Bx values range from 0.23 to 0.45 mg COD mg-¹ d-¹. A considerable MF accumulation increase in the sludge was observed at Bx=0.96 mg COD mg-¹ d-¹ (242·10² cfu mg-¹ of dry matter), *i.e.* at the loading preceding the critical value of Bx=1.64 mg COD mg-¹ d-¹. At this Bx value, the MF population in the sludge flocs increased considerably (576·10² cfu mg-¹ of dry matter) and the MF were eluted rapidly from the site (Table 1; Figures 1, 2).

The sewage microbiota present in the SBR inflow and outflow as well as in the activated sludge was revised taxonomically at Bx values of: 0.45; 0.96 and 1.64 mg COD mg⁻¹ d⁻¹. Since the SBR inflow sewage was a mixture of synthetic domestic sewage and natural leachate, the MF species observed in the SBR inflow may be assumed to have been identical with those in the natural leachate of the examined waste material disposal site.

As Table 2 shows, the dominant MF species present in the leachate were: Aspergillus fumigatus, Purpureocillium lilacinum (syn. Paecilomyces lilacinus), Cyberlindnera jadinii (syn. Pichia jadinii) and its anamorphic state Candida utilis, Trichosporon pullulans (current name Guehomyces pullulans), Geotrichum fermentans, and some unidentified yeast species. Aspergillus niger and Trichoderma viride mold species occurred periodically, and so did yeasts and yeast-like fungi: Saccharomyces cerevisiae, Geotrichum candidum and G. fragrans.

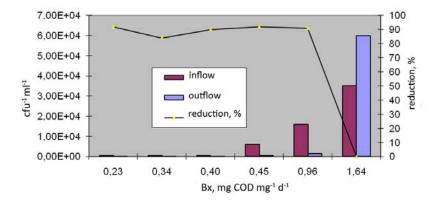


Figure 1. Microscopic fungi in the inflow and outflow and the removal efficiency in the leachate pretreatment process in an SBR.

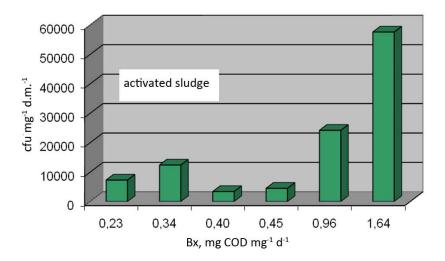


Figure 2. Microscopic fungi in the activated sludge in the leachate pretreatment process in an SBR.

Leachate MF species accumulated in the activated sludge flocs during the treatment process. These included A. fumigatus, Purpureocillium lilacinum, Cyberlindnera jadinii (C. utilis), Trichosporon pullulans, Trichoderma viride, C. fermentans, G. candidum and G. fragrans, as well as MF species typically not observed in the SBR inflow mixture (probably due to their low count in leachates) such as A. niger, Mucor plumbeus, Collectrichum dematium and Fusarium sp.

Numerous MF species occurring in the activated sludge were found in the SBR outflow sewage: A. niger, Purpureocillium lilacinum, Trichosporon pullulans, C. utilis, G. fermentans and G. candidum. The MF species found neither in the SBR inflow sewage nor in the activated sludge, such as Cladosporium resinae and Dipodascus armillarie, should be regarded as SBR outflow secondary contaminants.

The MF most identified in the activated sludge and in the SBR outflow sewage are pathogenic or at

least potentially pathogenic species. Habitats in the environment and pathogenicity of MF isolated from the leachate inflow and outflow, and from the activated sludge in the SBR are listed in Table 3.

According to the above data, the sewage pretreatment process can be considered to be a sanitary mycological hazard for the natural environment in which it is conducted.

A considerable mycological deterioration of the SBR outflow sewage quality (*i.e.* an MF count increase) was caused by 10% of the leachate added to synthetic domestic sewage (Bx=0.45 mg COD mg⁻¹ d⁻¹). A 30% leachate addition to domestic sewage (Bx=1.64 mg COD mg⁻¹ d⁻¹) caused MF to be rapidly eluted from the activated sludge flocs. The MF count in the SBR outflow reached 60·10³ cfu ml⁻¹ which can be considered to be a sanitary hazard if a water reservoir is used to receive treated waste water.

What is also alarming is the accumulation of those MF species that are pathogenic or potentially pathogenic

		Activated sludge				Mean values	alues	
	to the reactor cfu ml-1	ofu mg dm ⁻¹	Outflow from the reactor cfu ml-1	Removal in the process %	Inflow to the reactor cfu ml ⁻¹	Activated sludge cfu ml ⁻¹ cfu mg dm. ⁻¹	Outflow from the reactor cfu ml-1	Removal in the process %
360 460 460 7 000 7 000 15 000 17 000 40 000	က	4	5	9	7	ω	6	10
520 350 7 000 7 000 15 000 40 000	360	570·10² 138·10²	40	68		302·10²		
460 350 7 000 5 000 17 000 40 000	564	35·10² 849	20	96	462 2	73·10²	30	7.7 6
520 350 7 000 5 000 17 000 30 000	460	370·10² 98·10²	06	80	Ç	470.10²	7	ō
350 400 7 000 5 000 17 000 30 000 40 000	520	570·10² 151·10²	09	88	1 0	124·10²	0	0 4
400 7 000 5 000 15 000 17 000 40 000	350	122·10² 34·10²	40	88	L	123·10²	L	ć
7 000 5 000 15 000 17 000 30 000	400	124·10² 35·10²	30	92	3/5	34·10²	SS SS	0
5 000 15 000 30 000 40 000	7 000	180·10² 51·10²	306	96	9	161·10²	007	S
15 000 17 000 30 000 40 000	2 000	143·10² 40·10²	560	88		45·10²) t	7
17 000 30 000 40 000	15 000	700·10² 217·10²	1 100	86		780.10²	<u>!</u>	ì
30 000	17 000	860·10² 267·10²	1 720	06	16 000	242·10²	1410	0 1
40 000	30 000	2 000·10²	20 000		ج 000	1 800·10²	00	
	40 000	1 600·10² 512·10²	70 000	-		576·10²		

Table 1. Microscopic fungi in the inflow, outflow and in activated studge in the leachate pretreatment process in an SBR depending on the studge load (Bx).

Sample type	Dominant species	Accompanying species
	Bx=0.45 mg COD mg ⁻¹ d ⁻¹	
Inflow	Aspergillus fumigatus Fresen. Candida utilis (Henneberg) Lodder & Kreger-Van Rij [anamorphic state of Cyberlindnera jadinii (Sartory, R. Sartory, Weill & J. Mey.) Minter] Yeast not identified	Trichoderma viride Pers. Geotrichum fermentans (Diddens & Lodder) Arx
Activated sludge	Aspergillus fumigatus Fresen. Candida utilis (Henneberg) Lodder & Kreger-Van Rij [anamorphic state of Cyberlindnera jadinii (Sartory, R. Sartory, Weill & J. Mey.) Minter] Cyberlindnera jadinii (Sartory, R. Sartory, Weill & J. Mey.) Minter (Pichia jadinii (Sartory, R. Sartory, Weill & J. Mey.) Kurtzman) Trichoderma viride Pers. Yeast not identified	Colletotrichum dematium (Pers.) Grove Fusarium sp. Geotrichum candidum Link Geotrichum fermentans (Diddens & Lodder) Arx Mucor plumbeus Bonord. Guehomyces pullulans (Lindner) Fell & Scorzetti (Trichosporon pullulans (Lindner) Diddens & Lodder)
Outflow	Candida utilis (Henneberg) Lodder & Kreger-Van Rij [anamorphic state of Cyberlindnera jadinii (Sartory, R. Sartory, Weill & J. Mey.) Minter] Geotrichum fermentans (Diddens & Lodder) Arx Yeast not identified	Guehomyces pullulans (Lindner) Fell & Scorzetti (<i>Trichosporon pullulans</i> (Lindner) Diddens & Lodder)
	Bx=0.96 mg COD mg ⁻¹ d ⁻¹	
Inflow	Geotrichum fermentans (Diddens & Lodder) Arx Guehomyces pullulans (Lindner) Fell & Scorzetti (Trichosporon pullulans (Lindner) Diddens & Lodder) Yeast not identified	Trichoderma viride Pers. Geotrichum fermentans (Diddens & Lodder) Arx
Activated sludge	Geotrichum fermentans (Diddens & Lodder) Arx Aspergillus niger Tiegh. Guehomyces pullulans (Lindner) Fell & Scorzetti (<i>Trichosporon pullulans</i> (Lindner) Diddens & Lodder) Yeast not identified	
Outflow	Geotrichum fermentans (Diddens & Lodder) Arx Yeast not identified	Aspergillus niger Tiegh.
	Bx=1.64 mg COD mg ⁻¹ d ⁻¹	
Inflow	Purpureocillium lilacinum (Thom) Luangsa-ard, Hywel-Jones & Samson (Paecillomyces lilacinus (Thom) Samson) Cyberlindnera jadinii (Sartory, R. Sartory, Weill & J. Mey.) Minter (Pichia jadinii (Sartory, R. Sartory, Weill & J. Mey.) Kurtzman) Trichoderma viride Pers. Yeast not identified	Geotrichum candidum Link Geotrichum fermentans (Diddens & Lodder) Arx Geotrichum fragrans Morenz Saccharomyces cerevisiae Meyen ex E.C. Hansen Guehomyces pullulans (Lindner) Fell & Scorzetti (Trichosporon pullulans (Lindner) Diddens & Lodder)
Activated sludge	Aspergillus fumigatus Fresen. Candida utilis (Henneberg) Lodder & Kreger-Van Rij [anamorphic state of Cyberlindnera jadinii (Sartory, R. Sartory, Weill & J. Mey.) Minter] Cyberlindnera jadinii (Sartory, R. Sartory, Weill & J. Mey.) Minter (Pichia jadinii (Sartory, R. Sartory, Weill & J. Mey.) Kurtzman) Trichoderma viride Pers. Yeast not identified	Geotrichum candidum Link
Outflow	Candida utilis (Henneberg) Lodder & Kreger-Van Rij [anamorphic state of Cyberlindnera jadinii (Sartory, R. Sartory, Weill & J. Mey.) Minter] Purpureocillium lilacinum (Thom) Luangsa-ard, Hywel-Jones & Samson (Paecilomyces lilacinus (Thom) Samson) Yeast not identified	Dipodascus armillariae W. Gams Geotrichum candidum Link Geotrichum fermentans (Diddens & Lodder) Arx Sorocybe resinae (Fr.) Fr. Guehomyces pullulans (Lindner) Fell & Scorzetti (Trichosporon pullulans (Lindner) Diddens & Lodder)

Table 2. Species of microscopic fungi occurring in the SBR inflow and outflow and in the activated sludge in the treatment process at Bx=0.23-1.64 mg COD mg⁻¹ d⁻¹.

for homeothermic animals and humans in the activated sludge, such as Aspergillus fumigatus, Purpureocillium lilacinum, Cyberlindnera jadinii (C. utilis), Geotrichum candidum and G. fragrans.

Aspergillus fumigatus is a thermotolerant species which produces carcinogenic mycotixins and fumigacin, an antibacterial antibiotic. It has been repeatedly isolated from the wounds of birds and mammals. It

Species name	Habitats (1) and pathogenicity (2)
Aspergillus fumigatus	(1) soil, municipal waste, compost, guano, nests of birds (2) opportunistic pathogen
Aspergillus niger	(1) soil, water, air, municipal waste, compost (2) saprotroph, occasionally infections in human and animals
Purpureocillium lilacinum (syn. Paecilomyces lilacinus)	(1) soil, water, bottom sediments, plumage of birds (2) opportunistic pathogen
Mucor plumbeus	(1) soil, water, guano (2) saprotroph, occasionally may be pathogenic (especially in the warm climate)
Sorocybe resinae (syn. Cladosporium resinae)	(1) soil and environments contaminated with petroleum product (2) saprotroph
Colletotrichum dematium	(1) dead plant residues (2) saprotroph, occasionally may be phytopathogenic
Trichoderma viride	(1) soil, plant debris (2) saprotroph
Guehomyces pullulans (syn. Trichosporon pullulans)	(1) human respiratory system, water, bottom sediments (2) opportunistic pathogen
Candida utilis [anamorphic state of Cyberlindnera jadinii]	(1) human respiratory system (2) opportunistic pathogen
Geotrichum candidum	(1) soil, water, sewage, milk (2) opportunistic pathogen
Geotrichum fermentans	(1) human respiratory system (2) pathogenic to humans
Dipodascus armillariae	(1) dead plant debris and mushrooms (2) saprotroph
Geotrichum fragrans (syn. Geotrichum fici)	(1) human respiratory system (2) pathogenic to humans

Table 3. Selected features of the main species of microscopic fungi isolated from leachate inflow, outflow and from the activated sludge in the SBR [16,17, 23-36].

causes tuberculosis-like diseases in the respiratory organs of poultry (*i.e.* pulmonary aspergillosis). It produces mycotoxins such as fumigatin and gliotoxin and causes lung mycosis in humans and mycotoxicosis in cattle [17]. The effect of gliotoxin which is an epipolytidioxopiperazine on the electron transport chain can change according to gliotoxin lateral chains [20].

Purpureocillium lilacinum (syn. Paecilomyces lilacinus) is a saprotrophic species but it can also be an insect parasite. It is an opportunistic pathogen and can infect homeothermic animals and humans in special cases.

Geotrichum sp. is commonly found in dairy products in which it can eliminate beneficial microorganisms. It is a common saprotroph but it can infect the oral cavity or the respiratory tract as a pathogen [17].

While landfill leachate studies are conducted worldwide, physico-chemical properties and toxicity are mostly analyzed, thus there is a lack of detailed data on microbiological contaminants in leachates [21]. Leachate composition and the unfavorable impact of municipal solid waste dumps on the quality of groundwater are usually examined to determine the amount of leachate

produced and its physico-chemical profile as well as to develop leachate treatment methods [8]. Matejczyk et al. have isolated small counts of filamentous microscopic fungi from municipal solid waste landfill sites in southern Poland (0-13 cfu ml-1). They found that Penicillium simplicissimum was the predominating species (73.2%), followed by Trichoderma viride (17.9%). Other species, e.g. P. citrinum, P. purpurogenum and Cladosporium sphaerospermum, occurred less abundantly (from 1.8% to 3.6%) [21]. Kulig et al. have proved that leachates from a Polish municipal landfill in Wołomin contain six fungal species: Aspergillus fumigatus, Penicillium expansum, P. simplicissimum (syn. P. janthinellum), P. verrucosum, Trichoderma viride and Botryosphaeria stevensii (syn. Diplodia mutila) [8]. Their counts ranged from 50 to 70 cfu ml-1. Grabińska-Łoniewska et al. have isolated 13 filamentous species from leachates from a municipal landfill in Otwock. Trichoderma viride, Clonostachys rosea f. catenulata (syn. Gliocladium catenulatum) and Mariannea elegans predominated and ranged between 0-99 cfu ml⁻¹ depending on the season [22]. MF count in leachates from the Wola Suchożebrska, Dębe Wielkie and Jaskółowo landfills examined by GrabińskaŁoniewska *et al.* was 14-20 cfu ml⁻¹, 22-590 cfu ml⁻¹ and 465 cfu ml⁻¹, respectively although fungi were not analyzed taxonomically [22].

4. Conclusions

The results lead to the following conclusions:

The MF accumulation increase in the sludge flocs occurred at Bx values ranging from 0.23 to 0.45 mg COD mg⁻¹ d⁻¹;

References

- [1] Szyłak-Szydłowski M., Grabińska-Łoniewska A., Main microbiological contaminants of landfill leachates, Gaz, Woda i Technika Sanitarna, 2010, 9, 15-17 (in Polish)
- [2] Byeon J.H., Park C.W., Yoon K.Y., Park J.H., Hwang J., Size distributions of total airborne particles and bioaerosols in a municipal composting facility, Bioresource Technology, 2008, 99, 5150-5154
- [3] Nadal M., Inza I., Schuhmacher M., Figueras M.J., Domingo J.L., Health risks of the occupational exposure to microbiological and chemical pollutants in a municipal waste organic fraction treatment plant, Int J Hyg Environ Health, 2009, 212, 661-669
- [4] Deportes I., Benoit-Guyod J., Zmirou D., Hazard to man and the environment posed by the use of urban waste compost: a review, Sci Total Environ, 1995, 172, 197-222
- [5] Albrecht A., Fischer G., Brunnemann-Stubbe G., Jackel U., Kampfer, P., Recommendations for study design and sampling strategies for airborne microorganisms, MVOC and odours in the surrounding of composting facilities, Int J Hyg Environ Health, 2008, 211, 121-131
- [6] Herr C.E.W., Nieden A.Z., Bodeker R.H., Gieler U., Eikmann T.F., Ranking and frequency of somatic symptoms in residents near composting sites with odor annoyance, Int J Hyg Environ Health, 2003, 206, 1, 61-64
- [7] Kummer V, Thiel W.R., Bioaerosols Sources and control measures, Int J Hyg Environ Health, 2008, 211, 299-307
- [8] Kulig A., Grabińska-Łoniewska A., Pajor E., Szyłak-Szydłowski M., Listeria monocytogenes and chemical pollutants migration with landfill leachates, In: Pawłowski L., Dudzińska, M.R., Pawłowski A. (Eds.), Environmental Engineering, Taylor & Francis Group, London, New York, Singapore, 2010

The MF growth was stable in the activated sludge and MF were eluted at the maximal Bx value of 1.64 mg COD mg⁻¹ d⁻¹;

Both the activated sludge and the SBR outflow leachate are a sanitary hazard for the environment due to the presence of MF species such as Aspergillus fumigatus, Purpureocillium lilacinum, Cyberlindnera jadinii (C. utilis), Geotrichum candidum and G. fragrans. The MF count is sufficient to cause multi-organ infections in homeothermic animals and in humans.

- [9] Poputnikova T.O., Terekhova V.A., Establishment of a landfill impact zone on soils using structural and functional modifications of microbial communities, Moscow University Soil Science Bulletin, 2010, 65, 2. 94-97
- [10] Grabińska-Łoniewska A., Siński E., Pathogenic and potentially pathogenic microorganisms in aquatic ecosystems and water supply networks, Seidel Przywecki, Warsaw, 2009 (in Polish)
- [11] Szyłak-Szydłowski M., Removal efficiency of selected groups of potentially pathogenic microorganisms in the landfill leachates treatment process [Efektywność usuwania wybranych grup mikroorganizmów potencjalnie chorobotwórczych w procesie oczyszczania odcieków ze składowiska odpadów.], In: Scientific Papers of WUoT: Environmental Engineering, Warsaw University of Technology Publishing, Warsaw, 2008 (in Polish)
- [12] Szyłak-Szydłowski M., Grabińska-Łoniewska A., Formation of the activated sludge biocenosis during landfill leachate pre-treatment in SBR, Archives Env. Protection, 2009, 35, 53-66
- [13] Bieleń R., Połujan M., The waste management plan for the town of Otwock for the years 2004-2011 [Plan gospodarki odpadami dla miasta Otwocka na lata 2004-2011], Otwock, 2004 (in Polish)
- [14] Klimiuk E., Wojnowska-Baryła I.,The influence of hydraulic retention time on the effectiveness of phosphate compound removal in the Phoredox System, Acta Acad Agric Tech Olsten Vet, 1996, 21, 21-40
- [15] Grabińska-Łoniewska A., Korniłłowicz-Kowalska T., Wardzyńska G., Boryń K., Occurrence of fungi in water distribution system, Polish J. Env. Stud., 2007, 16, 539-547
- [16] Domsch K. H., Gams W., Traute-Heidi A., Compedium of Soil Fungi, Acad. Press, London, 1980

- [17] Fassatiova O., Microscopic fungi in technical microbiology [Grzyby mikroskopowe w mikrobiologii technicznej], Scientific and Technical Publishing, Warsaw, 1983 (in Polish)
- [18] Kreger-van Rij N.J., The yeasts. A taxonomic study, Elsevier Sci. Publ. B.V., Amsterdam, 1984
- [19] Kurtzman C.P., Fell J.W., The yeasts. A taxonomic study. Forth Ed. Elsevier, Amsterdam, 2000.
- [20] Muller E., Loeffler W., Outline of mycology for naturalists and physicians, The State Agricultural and Forestry Publisher, Warsaw, 1987
- [21] Matejczyk M., Płaza A., Nałęcz-Jawecki G., Ulfig K., Markowska-Szczupak A., Estimation of the environmental risk posed by landfills using chemical, microbiological and ecotoxicological testing of leachates, Chemosphere, 2011, 82, 1017-1023
- [22] Grabińska-Łoniewska A., Kulig A., Pajor E., Skalmowski A., Rzemek W., Szyłak-Szydłowski M., Physico-chemical and microbiological characteristics of leachates from Polish municipal landfills. In: Pawłowski L., Dudzińska, M.R., Pawłowski A. (Eds.), Environmental Engineering, Taylor & Francis Group, London, New York, Singapore, 2007
- [23] Bougnoux M-E., Gueho E., Potocka A-Ch., Resolutive Candida utilis fungemia in a nonneutropenic patient, J. Clin. Microbiol., 1993, 31, 1644-1645
- [24] Dynowska M., Yeasts and yeasts-like fungi as pathogenic agents and bioindicators of aquatic ecosystems [Drożdże i grzyby drożdżopodobne jako czynniki patogenne oraz bioindykatory ekosystemów wodnych.], Studies and Materials of WSP, Olsztyn, 1995 (in Polish)
- [25] Dynowska M., Trichosporon species isolated from human respiratory system., Acta Mycol. 1996, 31, 137-141
- [26] Niczyporuk W., Krajewska-Kułak E., Fungal infections in patients with compromised immune

- systems [Zakażenia grzybicze u chorych z obniżoną odpornością], In: Baran E., Zarys mikologii lekarskiej, Wrocław, 1998 (in Polish)
- [27] Alsina A., Mason J., Uphoff R.A., Rhigsby W.S., Murphy D., Catheter associated Candida utilis fungemia In patent with acuired immunodeficiency syndrom: species verification with a molecular probe, J. Clin. Microbiol., 1998, 26, 621-624
- [28] Hazen K., Theisz G.W., Howell S.A., Chronic urinary tract infection due to Candida utilis, J. Clin. Microbiol., 1999, 37, 824-827
- [29] De Hoog G.S., Guarro J., Gene J., Figureas M.J., Atlas of chemical fungi, Utrecht, 2000
- [30] Korniłłowicz-Kowalska T., The impact of soil fungi (micromycetes) to pathogens and pests of plants and its practical aspect [Oddziaływanie grzybów glebowych (micromycetes) na patogenny oraz szkodniki roślin i jego praktyczny aspekt,], Fragmenta Agronom., 2000, 2000, 135-155 (in Polish)
- [31] Otcenasek M., Dvorak J., Pictorial dictionary of medical mycology, Akademia, Prague, 1973
- [32] Wójcik A., Tarczyńska M., Detection of potentially pathogenic yeast-like fungi in the waters of Sulejow Reservoir, In Lisiewska M., Ławrynowicz J. (Eds.), Monitoring of fungi, Poznań, Łódź, 2000, 189-195, (in Polish)
- [33] Freydiere A.M., Guinet R., Boiron P., Yeast identification in the clinical microbiology: phenotypical methods, Med. Mycol., 2001, 39, 9-33
- [34] Hubalek Z., An annotated checklist of pathogenic microorganisms associated with migratory birds, J. Wild. Diseas., 2004, 40, 639-659
- [35] Spellberg B.J., Filer S.G., Edwards J.E., Current treatment strategy for disseminated candidiasis, Clin. Infect. Dis., 2006, 42, 244-251
- [36] Kuratowska K., Kuratowski P., Medical mycology, Łódź, 2006 (in Polish)