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Abstract: We presented a methodology for drawing continuous boundaries in the landscape differentiating between regions with different

floristic composition. A region in Central Slovakia covering 2,445 km? was investigated. Ecological indicator values for temperature
(EIT) in 1,978 grassland polygons were analysed. Ordinary kriging was used to interpolate EIT across the study region.
Lattice wombling was used to identify the most intensive gradients in EIT and to draw boundaries, while ANOVA was used for
post-classification analysis. A strong pattern of spatial continuity was present in EIT assigned to species in grassland polygons
allowing for drawing continuous boundaries in the landscape. The study region was divided into 15 districts using the proposed
method. Post-classification analysis indicated that 17 out of 23 adjacent districts were found to differ significantly in term
of mean value of source samples. The results implied the need for incorporating spatial autocorrelation in sample data into
post-classification analysis; such factor is often neglected in ecological research. The presented findings suggested broader applicability
of the proposed method for spatial modelling, as vegetation data is widely accessible in databases for many regions of Europe.
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1. Introduction

The study of boundaries contributes to understanding
species—environment relationships by investigating
species’ and communities’ distributional limits [1-
4] as well as the effect of changing environmental
conditions on those limits [5-8]. Ecological boundaries
influence the structure and functions of landscapes,
and their dynamics influence diverse populations,
communities, and ecosystems by way of feedback
effects [9]. Two main approaches in the research of
ecological boundaries focus on those boundaries’
structural properties (pattern-based approach) and
associated processes (process-based approach).
Recently, relationships between patterns and processes
have also been increasingly recognized [10-13]. Risser

[14] divided ecological boundaries into two categories
— those caused by a steep gradient in environmental
variables, and those caused by a threshold or nonlinear
response to gradual environmental gradients. The latter
are also known as metastable boundaries [9,15].
Strayer et al. [16] proposed the classification of
boundaries on the basis of four main traits: origin and
maintenance, spatial structure, functions, and temporal
dynamics. On the basis of structural properties, we can
distinguish between open or closed, straight or sinuous,
crisp (sharp) or gradual (fuzzy) boundaries. The latter is
a case of a phytogeographical boundary, as it reflects
the natural variation of biota and thus forms rather
broad ecotones with various types of non-equilibrium
population dynamics (e.g. source-sink) [for further detail,
see 17,18]. Fuzzy logic [19] has recently become an

* E-mail: hlasny@nicsk.org



T. Hlasny, I. Turisova

important concept in geosciences [20-24], and it may be
used effectively for drawing ecotone-type boundaries.
It enables consideration of uncertainty resulting from
insufficient data and model deficiencies as well as
uncertainty resulting from environmental processes that
are indefinable and indeterminable [25].

The character of the underlying data is an important
criterion indicating a proper method to select for
boundaries delineation. These may be point versus grid
data, regularly versus irregularly distributed, abundance
versus presence-absence, efc. [26]. Edge detectors,
lattice wombling, scale-space filters, and moment
measures [4] are appropriate tools in the case of grid
data. Fagan et al. [9] stated that tools for boundary
detection on quantitative contiguous grid data include
spatial clustering, fuzzy logic, kernel approaches, lattice
wombling, and wavelet analysis.

Post-classification analysis is an important part
of regionalization. Randomization procedures are
frequently used to determine whether the identified
boundaries differ significantly from boundaries produced
by randomizing the data [9,26]. Emphasis may also be
placed on differences between proposed regions, in
terms of mean values or other statistics. Analysis of
variance (ANOVA) and its variants that enable taking
into account spatial autocorrelation, often present in
ecological data, is suggested for this purpose [27-30].

The method proposed in this paper uses Ellenberg
indicator values for temperature (EIT) assigned to taxa in
a floristic grassland database. Despite many objections
[e.g. 31-36], Ellenberg indicator values are widely used
in botany and plant ecology [37]. Compared to physical
and chemical measurements, indicator systems
circumvent measuring those resource fractions actually
accessible to plants and integrate across the spatial
and temporal variability of sites [38]. The use of various
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cover-weighting schemes to calculate the average
indicator value of vegetation relevés is common practice
in ecological studies [39-41]. Recently, this concept has
been thoroughly discussed by Kafer and Witte [42].

This paper strives to propose a methodology
for definition of boundaries in the landscape that
differentiate between regions with significantly different
plant composition. We hypothesize that widely available
floristic databases contain sufficient information for
drawing such boundaries. We expect that EIT assigned
to species in grassland polygons exhibit a sufficient
pattern of spatial continuity to allow for drawing
continuous boundaries. Such method is applicable, for
example, in a broader surrounding of intra-Carpathians
basins with intensive climatic gradients and mosaic
occurrence of semi-natural grasslands, as presented in
this study. In particular, we focused on (i) identification of
a series of phytogeographical districts using grassland
vegetation data in Central Slovakia, (ii) assessment of
statistical significance of differences in EIT between the
adjacent districts (post-classification analysis), and (iii)
discussion of broader applicability and limits of such
approach for phytogeographical regionalization. The
presented results complement the work of Turisova and
Hlasny [43].

2. Experimental Procedures
2.1 Data

A region in Central Slovakia (Central Europe) spanning
2,445 km? was investigated (Figure 1). Morphologic
diversity (mountains vs. basins) is enhanced by the
complex geological setting as well as by a broad
spectrum of floristic taxa. Elevation ranges from 223
to 1,750 m a.s.l. Mean annual air temperature ranges

Poland

Ukraine

Figure 1. Position of the study region. Generalized river network of Slovakia is presented.

318




Spatial modelling-based approach to phytogeographical regionalization

using grassland vegetation data

320

between 7.7°C and 8°C, while air temperature during
the vegetation season (IV-IX) ranges between 10.9°C
and 14.4°C. Annual precipitation ranges between 610
and 797 mm (average data for the last 30-year period
are presented). The units ranging from Potentillo
albae-Quercion to Eu-Fagenion p.p.maj. represent the
region’s potential vegetation. At present, agricultural
land combined with fragments of grasslands (dominated
by Festucion valesiacae, Bromion erecti, Arrhenatherion
elatioris and Cynosurion cristati) occur in valleys. Higher
elevations feature mostly secondary forests dominated
by spruce (Picea abies), mountain meadows and
pastures (Polygono bistortae-Trisetion flavescentis,
Violion caninae, Nardo strictae-Agrostion tenuis).

The data (taxa of vascular plants) was gathered
within the cluster of projects focused on the
establishment of the NATURA 2000 network in Slovakia.
All grasslands were identified using aerial imagery and
subsequently mapped in the field by 22 surveyors during
1995-2005. Only semi-natural grasslands, not
intensified and overgrown by trees and shrubs, were
mapped. All taxa and their coverage on the Tansley
scale [44] were recorded. Mapping methodology is
described by Seffer et al. [45].

EIT were assigned to species records using the
JUICE 7.0 program [46]. Taxa recorded in the region
take on EIT in a range of 1-8, which indicates species
transition from thermophilous to psychrophilous.
Indicator values have been assigned to 71% of
determined taxa. Indicator values could not be assigned
to infraspecific taxa (9%), taxa determined by tribe and
genus (15%), Carpathian (sub)endemic species (3%),
and (sub)Pannonian species (2%).

To facilitate geostatistical analysis, the arithmetic
average of EIT in each polygon was assigned to the
polygon’s centre point. As the mapping methodology
implies that polygons are homogenous at the level of
alliance and sub-alliance, and given that each polygon
comprises 60 to 140 species, this number of species
appears sufficient to provide an unbiased estimate
for the mean value of EIT within polygons. Although
species coverage was recorded on the Tansley scale

Number of grassland polygons 2,092
Number of valid taxa records 116,180
Number of taxa records with assigned 56,134
Ellenberg indicator values of temperature

Number of valid taxa 1,071
Number of taxa with assigned Ellenberg 736
indicator values for temperature

Table 1. Source data description.

(1 =<1%, 2 — 1-50%, 3 — 50-100%), we decided not to
use a cover-weighted average of EIT, as such approach
could allocate large weights to species that easily reach
high abundance while solitarily growing and strongly
indicative species could be underweighted [41]. In
fact, differences in basic statistics between the outputs
obtained using the cover-weighted approach versus
the unweighted approach were minor. Table 1 presents
descriptive statistics of the data used.

2.2 Methods

The proposed methodology consists of spatial
interpolation of EIT assigned to grassland polygons (as
described above) throughout the study region using
ordinary kriging. To draw a border, it is assumed that
the steepest gradient in EIT between adjacent grid cells
indicates the most radical changes in floristic composition,
typical of border locations [47]. This method is also
referred to as lattice wombling [9,26,48]. The relevance
of the generated division was evaluated using adjusted
ANOVA accounting for spatial autocorrelation [30].

A variogram is a geostatistical tool for investigating
the spatial dependence (autocorrelation) of various
phenomena [for detail, see 49-51]. Variograms are
used in two ways in this study — as an input to ordinary
kriging, and as an input to ANOVA to account for spatial
autocorrelation in the investigated data (described in
greater detail below).

Ordinary kriging is a stationary univariate technique
for spatial interpolation, i.e. it provides estimates for
unrecorded locations on the basis of measured samples.
The spatial correlation between source data (expressed
in terms of a variogram or covariance function) is a part
of the kriging system.

Wombling is a general method for identifying
zones of abrupt change, and is named after Womble
(1951), the author of the seminal article on the subject.
This method has several forms, depending on the
nature of the data (point referenced, areal, lattice, or
transect). In addition, algorithms differ depending on
whether categorical or numerical data are processed,
or whether fuzzy or crisp boundaries are defined. It is
a kernel-based technique, i.e. a kernel of specified size
passes through the sampling and computes rates of
change among neighbouring sampling units. These can
be calculated as absolute differences, first or second
partial derivatives of each of four quadrates forming a
square [52]. While the first-order derivative indicates a
boundary position, the second-order derivative identifies
the inflection points where a boundary ends [53].
A boundary is identified by spatially adjacent locations
characterized by high values of the rate of change.
A more detailed description is given by Bocquet-Appel
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and Bacro [54], Fagan et al. [9] and Lu and Carlin [55].

ANOVA with autocorrelated data determines
whether the identified units of spatial division are
significantly different in terms of mean values of sample
data. The problem implies using standard one-way
ANOVA. However, spatial autocorrelation in source data
disrupts standard tests of significance. This problem
has long been discussed as it is common in many fields
of research [27-29]. Positive autocorrelation causes
differences between groups that are not truly different
to be declared significant. Negative autocorrelation acts
in the opposite manner. SAS PROC MIXED (version 8;
http://support.sas.com) allows for using several
variogram models to describe the positive spatial
autocorrelation in analysed data, and thus to modify the
ANOVA to account for spatial autocorrelation in sample
data. Hong et al. [30] documented use of this technique
on agricultural data. The authors also provided the
program code which was used to run such analysis in
this paper.

3. Results

The variogram of EIT assigned to grassland polygons
indicates that such data are spatially highly continuous
and that spatial dependence between data disappears
beyond a distance of 12 km. Two structures were used
to fit the empirical values — a nugget effect component
(discontinuity at variogram origin due to small-scale
variability in the data) and isotropic spherical variogram

—— contours of Ellenberg indicator
value for temperature

« source data

(Figure 2). Such variogram was used in spatial
interpolation using ordinary kriging. The resulting map is
presented in Figure 3a.

GIS techniques were used to calculate the
gradients in the generated surface of EIT (Figure 3b).
The boundaries were drawn by hand through local
maximums of gradients, forming the ridgelines. The
study region was divided in this way into 15 districts
(Figure 4, Table 2).

The proposed districts were analysed to ascertain
whether they differ significantly in terms of mean
values of EIT of source samples. The analysis aims

distance (m)
) )

2IUBLIEA

—e— empirical variogram

variogram model

I number of pairs

e

0 5000 10000 15000 20000

Figure 2. Isotropic variogram of Ellenberg indicator values for
temperature assigned to grassland polygons.

— contours of gradient in Ellenberg indicator
value for temperature

Figure 3. Map of Ellenberg indicator values for temperature produced using spatial interpolation of indicator values assigned to grassland
vegetation polygons (a), and gradients calculated from the map thereof used to designate the boundaries between districts with
different floristic composition (b). Respective isolines are displayed.
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District N Mean Median Min Max St. dev.
Ci1 87 5.054 5.077 4.429 5.432 0.191
c2 122 5.239 5.263 4.719 5.810 0.148
C3 139 5.322 5.347 4.231 5.656 0.195
T 52 5.303 5.308 4.818 5.658 0.193
T2 264 5.473 5.500 3.000 6.067 0.295
T3 113 5.506 5.500 5.150 5.854 0.138
T4 105 5.501 5.500 5.000 5.818 0.132
5 32 5.411 5.353 5.000 6.000 0.224
W1 286 5.710 5.722 5.167 6.174 0.151
W2 210 5.673 5.667 5171 6.162 0.177
W3 431 5.626 5.622 5.100 6.136 0.159
w4 90 5.689 5.677 5.333 6.059 0.170

Table 2. Descriptive statistics of source samples (Ellenberg indicator values for temperature assigned to taxa in grassland polygons) in 12 districts
with floristic composition differing in species demands on temperature.

D Cold regions
Transitional regions

- Warm regions

30 km

Figure 4. The proposed division of the study region into 15 districts with floristic composition differing in species demands on temperature.

at adjacent districts only, and thus 23 tests have
been conducted in total. An isotropic variogram was
constructed for each couple of adjacent units to reduce
the number of degrees of freedom proportionally to the
spatial autocorrelation of sample data when using the
modified ANOVA.

Only 12 out of 15 designated units were analysed
(Table 3). Units C4, C5 and W5 are only minor parts

of more spacious units stretching into the study region
from the outside.

The adjusted ANOVA test revealed that the mean
values of 17 out of 23 adjacent subdistricts differed
significantly at 99% significance level. Another couple
of districts were found to differ at 95% significance level.

To investigate the effect of spatial autocorrelation
on performed tests, we provide a comparison of
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ci c2 c3 T T2 3 T4 5 W1 W2 W3 W4
ci X
c2 0.921 X
0.000"
cs3 - - X
ial 0000" - - X
0.000"
T2 0175 - - - X
0.000"
3 - - 0.201 - - X
0.000"
T4 X
5 - 0.799 X
0.000"
W1 - - 0.900 0000"  0.001" - - X
0.000" 0.000"  0.000"
W2 0.000"  0.000" 0.000" 0113 0000" - X
0000  0.000" 0.000" 0000  0.000"
W3 - - 0000"  0.000°  0.000" 0.008" 0000"  0011° X
0000"  0.000°  0.000" 0.000" 0.000"  0.001"
w4 - 0.000" 0628 0.074 0.660 - X
0.000" 0.000"  0.000°  0.452

Table 3. Post-classification analysis. Statistical significance of differences in mean values of source data between adjacent districts is investigated.
X denotes the diagonal cells. The upper number denotes p-value produced using ANOVA adjusted for spatial autocorrelation, the lower
number denotes p-value produced using standard ANOVA (** 99% significance level, * 95% significance level).

p-values produced by both standard and adjusted
ANOVA (Table 3). It is apparent that adjusted ANOVA
(accounting for spatial autocorrelation in source data)
is a stricter test as compared with standard ANOVA. In
total, the null hypothesis of no difference in mean values
of source samples between adjacent subdistricts was
rejected in 22 out of 23 tests performed using standard
ANOVA, while the null hypotheses was rejected in
only 17 tests performed using adjusted ANOVA (99%
significance level).

4. Discussion

In view of recently developed floristic and vegetation
databases, it is a timely task to develop a data-driven
approach to phytogeographical regionalization using
such databases. We have proposed an approach
based on the spatial modelling of Ellenberg indicator
values and floristic data and demonstrated its use in a
model region using records on floristic composition of
grasslands.

We found that the species records in the database
contained sufficient information to draw continuous
boundaries in the landscape, or, more specifically,
that there is a strong pattern of spatial continuity in

Ellenberg indicator values assigned to species data
and averaged in grassland polygons. As such database
is publicly available and has national coverage, this
finding allows for proposing a phytogeographical
regionalization for all of Slovakia. Databases with
similar content and national coverage (especially
national vegetation databases) are available for many
regions of Europe as well [56], and hence the proposed
methodology, or variants thereof, can be thought of
as widely applicable. Both floristic and vegetation
databases can be used and/or combined using the
system of ecological indicators. Wamelink et al. [57]
suggest, however, that Ellenberg indicator values
should not be combined between various vegetation
types. The aforementioned combination of vegetation
and floristic databases on the basis of ecological
indicators should therefore be treated with care. The
use of large databases also raises a question as to
the effect of species which could not be assigned an
indicator value or, more generally, as to the effect of
the completeness of vegetation relevés. In the present
study, 29% of all species determined could not be
assigned an EIT. Ewald [58] suggests in this regard
that the correlation of Ellenberg indicator values with
environmental measurements is only weakly affected
by leaving out low-abundance species. In the case of
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temperature, the R? decreased from 0.53 (full species
matrix) to 0.37 when only 20% of the original species list
remained. Finally, the author suggests that Ellenberg
indicators can be thought of as relatively resilient to
incomplete sampling.

The other critical finding is the need to take into
account the spatial autocorrelation in the post-
classification analysis. This fact is often neglected in
ecological studies. Positive autocorrelation causes
differences between groups that are not truly different
to be declared significant. This was the case in 7 out of
23 tests performed. Such tests provide complementary
information indicating the relevance (reliability) of
proposed regionalization. Some boundaries drawn
on the basis of gradients on the surface interpolated
from ecological indicator values can be re-evaluated
if no significant differences were found between the
adjacent districts in terms of mean values of source
samples.

Another question is whether the identified districts
and subdistricts differ from each other in terms of
characteristic and/or diagnostic species. Turisova
and Hlasny [43] found, in a related study, that most
designated districts were well separated in terms of the
presence of a certain number of diagnostic species in
each district. This lends support to the applicability of
the proposed approach for designating regions with
specific species composition.

Boundaries’ scale dependence was not discussed
in this paper, although it is an integral concept of
regionalization [56,59]. In this regard, Cadenasso
et al. [13] stated that scientists must choose their grain
size deliberately and specify it in their publications.
However, the scale of delineated borders in this article
is determined mainly by the structure of the surface
produced by kriging. Therefore, not grain size but
rather the range of the underlying variogram is a proper
indicator of scale.

In this study, we focused our attention on ecological
indicators of temperature, although other indicators
(moisture, nutrients, light, continentality, soiltype, etc.)
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