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1. Introduction
The study of boundaries contributes to understanding 
species–environment relationships by investigating 
species’ and communities’ distributional limits [1-
4] as well as the effect of changing environmental 
conditions on those limits [5-8]. Ecological boundaries 
influence the structure and functions of landscapes, 
and their dynamics influence diverse populations, 
communities, and ecosystems by way of feedback 
effects [9]. Two main approaches in the research of 
ecological boundaries focus on those boundaries’ 
structural properties (pattern-based approach) and 
associated processes (process-based approach). 
Recently, relationships between patterns and processes 
have also been increasingly recognized [10-13]. Risser 

[14] divided ecological boundaries into two categories
– those caused by a steep gradient in environmental 
variables, and those caused by a threshold or nonlinear 
response to gradual environmental gradients. The latter 
are also known as metastable boundaries [9,15].

Strayer et al. [16] proposed the classification of 
boundaries on the basis of four main traits: origin and 
maintenance, spatial structure, functions, and temporal 
dynamics. On the basis of structural properties, we can 
distinguish between open or closed, straight or sinuous, 
crisp (sharp) or gradual (fuzzy) boundaries. The latter is 
a case of a phytogeographical boundary, as it reflects 
the natural variation of biota and thus forms rather 
broad ecotones with various types of non-equilibrium 
population dynamics (e.g. source-sink) [for further detail, 
see 17,18]. Fuzzy logic [19] has recently become an 
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Abstract:  We presented a methodology for drawing continuous boundaries in the landscape differentiating between regions with different 
floristic composition. A region in Central Slovakia covering 2,445 km2 was investigated. Ecological indicator values for temperature 
(EIT) in 1,978 grassland polygons were analysed. Ordinary kriging was used to interpolate EIT across the study region. 
Lattice wombling was used to identify the most intensive gradients in EIT and to draw boundaries, while ANOVA was used for 
post-classification analysis. A  strong pattern of spatial continuity was present in EIT assigned to species in grassland polygons 
allowing for drawing continuous boundaries in the landscape. The study region was divided into 15 districts using the proposed 
method. Post-classification analysis indicated that 17 out of 23 adjacent districts were found to differ significantly in term 
of mean value of source samples. The results implied the need for incorporating spatial autocorrelation in sample data into 
post-classification analysis; such factor is often neglected in ecological research. The presented findings suggested broader applicability 
of the proposed method for spatial modelling, as vegetation data is widely accessible in databases for many regions of Europe. 
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important concept in geosciences [20-24], and it may be 
used effectively for drawing ecotone-type boundaries. 
It enables consideration of uncertainty resulting from 
insufficient data and model deficiencies as well as 
uncertainty resulting from environmental processes that 
are indefinable and indeterminable [25].

The character of the underlying data is an important 
criterion indicating a proper method to select for 
boundaries delineation. These may be point versus grid 
data, regularly versus irregularly distributed, abundance 
versus presence-absence, etc. [26]. Edge detectors, 
lattice wombling, scale-space filters, and moment 
measures [4] are appropriate tools in the case of grid 
data. Fagan et al. [9] stated that tools for boundary 
detection on quantitative contiguous grid data include 
spatial clustering, fuzzy logic, kernel approaches, lattice 
wombling, and wavelet analysis.

Post-classification analysis is an important part 
of regionalization. Randomization procedures are 
frequently used to determine whether the identified 
boundaries differ significantly from boundaries produced 
by randomizing the data [9,26]. Emphasis may also be 
placed on differences between proposed regions, in 
terms of mean values or other statistics. Analysis of 
variance (ANOVA) and its variants that enable taking 
into account spatial autocorrelation, often present in 
ecological data, is suggested for this purpose [27-30].

The method proposed in this paper uses Ellenberg 
indicator values for temperature (EIT) assigned to taxa in 
a floristic grassland database. Despite many objections 
[e.g. 31-36], Ellenberg indicator values are widely used 
in botany and plant ecology [37]. Compared to physical 
and chemical measurements, indicator systems 
circumvent measuring those resource fractions actually 
accessible to plants and integrate across the spatial 
and temporal variability of sites [38]. The use of various 

cover-weighting schemes to calculate the average 
indicator value of vegetation relevés is common practice 
in ecological studies [39-41]. Recently, this concept has 
been thoroughly discussed by Käfer and Witte [42].

This paper strives to propose a methodology 
for definition of boundaries in the landscape that 
differentiate between regions with significantly different 
plant composition. We hypothesize that widely available 
floristic databases contain sufficient information for 
drawing such boundaries. We expect that EIT assigned 
to species in grassland polygons exhibit a sufficient 
pattern of spatial continuity to allow for drawing 
continuous boundaries. Such method is applicable, for 
example, in a broader surrounding of intra-Carpathians 
basins with intensive climatic gradients and mosaic 
occurrence of semi-natural grasslands, as presented in 
this study. In particular, we focused on (i) identification of 
a series of phytogeographical districts using grassland 
vegetation data in Central Slovakia, (ii) assessment of 
statistical significance of differences in EIT between the 
adjacent districts (post-classification analysis), and (iii) 
discussion of broader applicability and limits of such 
approach for phytogeographical regionalization. The 
presented results complement the work of Turisová and 
Hlásny [43].

2. Experimental Procedures
2.1 Data
A region in Central Slovakia (Central Europe) spanning 
2,445 km2 was investigated (Figure 1). Morphologic 
diversity (mountains vs. basins) is enhanced by the 
complex geological setting as well as by a broad 
spectrum of floristic taxa. Elevation ranges from 223 
to 1,750 m a.s.l. Mean annual air temperature ranges 

Figure 1.  Position of the study region. Generalized river network of Slovakia is presented. 
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between 7.7°C and 8°C, while  air temperature during 
the vegetation season (IV–IX) ranges between 10.9°C 
and 14.4°C. Annual precipitation ranges between 610 
and 797 mm (average data for the last 30-year period 
are presented). The units ranging from Potentillo 
albae-Quercion to Eu-Fagenion p.p.maj. represent the 
region’s potential vegetation. At present, agricultural 
land combined with fragments of grasslands (dominated 
by Festucion valesiacae, Bromion erecti, Arrhenatherion 
elatioris and Cynosurion cristati) occur in valleys. Higher 
elevations feature mostly secondary forests dominated 
by spruce (Picea abies), mountain meadows and 
pastures (Polygono bistortae-Trisetion flavescentis, 
Violion caninae, Nardo strictae-Agrostion tenuis). 

The data (taxa of vascular plants) was gathered 
within the cluster of projects focused on the 
establishment of the NATURA 2000 network in Slovakia. 
All grasslands were identified using aerial imagery and 
subsequently mapped in the field by 22 surveyors during 
1995–2005. Only semi-natural grasslands, not 
intensified and overgrown by trees and shrubs, were 
mapped. All taxa and their coverage on the Tansley 
scale [44] were recorded. Mapping methodology is 
described by Šeffer et al. [45].

EIT were assigned to species records using the 
JUICE 7.0 program [46]. Taxa recorded in the region 
take on EIT in a range of 1–8, which indicates species 
transition from thermophilous to psychrophilous. 
Indicator values have been assigned to 71% of 
determined taxa. Indicator values could not be assigned 
to infraspecific taxa (9%), taxa determined by tribe and 
genus (15%), Carpathian (sub)endemic species (3%), 
and (sub)Pannonian species (2%).

To facilitate geostatistical analysis, the arithmetic 
average of EIT in each polygon was assigned to the 
polygon’s centre point. As the mapping methodology 
implies that polygons are homogenous at the level of 
alliance and sub-alliance, and given that each polygon 
comprises 60 to 140 species, this number of species 
appears sufficient to provide an unbiased estimate 
for the mean value of EIT within polygons. Although 
species coverage was recorded on the Tansley scale 

(1 – <1%, 2 – 1-50%, 3 – 50-100%), we decided not to 
use a cover-weighted average of EIT, as such approach 
could allocate large weights to species that easily reach 
high abundance while solitarily growing and strongly 
indicative species could be underweighted [41]. In 
fact, differences in basic statistics between the outputs 
obtained using the cover-weighted approach versus 
the unweighted approach were minor. Table 1 presents 
descriptive statistics of the data used. 

2.2 Methods
The proposed methodology consists of spatial 
interpolation of EIT assigned to grassland polygons (as 
described above) throughout the study region using 
ordinary kriging. To draw a border, it is assumed that 
the steepest gradient in EIT between adjacent grid cells 
indicates the most radical changes in floristic composition, 
typical of border locations [47]. This method is also 
referred to as lattice wombling [9,26,48]. The relevance 
of the generated division was evaluated using adjusted 
ANOVA accounting for spatial autocorrelation [30]. 

A variogram is a geostatistical tool for investigating 
the spatial dependence (autocorrelation) of various 
phenomena [for detail, see 49-51]. Variograms are 
used in two ways in this study – as an input to ordinary 
kriging, and as an input to ANOVA to account for spatial 
autocorrelation in the investigated data (described in 
greater detail below).

Ordinary kriging is a stationary univariate technique 
for spatial interpolation, i.e. it provides estimates for 
unrecorded locations on the basis of measured samples. 
The spatial correlation between source data (expressed 
in terms of a variogram or covariance function) is a part 
of the kriging system. 

Wombling is a general method for identifying 
zones of abrupt change, and is named after Womble 
(1951), the author of the seminal article on the subject. 
This method has several forms, depending on the 
nature of the data (point referenced, areal, lattice, or 
transect). In addition, algorithms differ depending on 
whether categorical or numerical data are processed, 
or whether fuzzy or crisp boundaries are defined. It is 
a kernel-based technique, i.e. a kernel of specified size 
passes through the sampling and computes rates of 
change among neighbouring sampling units. These can 
be calculated as absolute differences, first or second 
partial derivatives of each of four quadrates forming a 
square [52]. While the first-order derivative indicates a 
boundary position, the second-order derivative identifies 
the inflection points where a boundary ends [53]. 
A boundary is identified by spatially adjacent locations 
characterized by high values of the rate of change. 
A more detailed description is given by Bocquet-Appel 

Number of grassland polygons 2,092

Number of valid taxa records 116,180

Number of taxa records with assigned 
Ellenberg indicator values of temperature 

56,134

Number of valid taxa 1,071

Number of taxa with assigned Ellenberg 
indicator values for temperature

736

Table 1. Source data description. 
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and Bacro [54], Fagan et al. [9] and Lu and Carlin [55].
ANOVA with autocorrelated data determines 

whether the identified units of spatial division are 
significantly different in terms of mean values of sample 
data. The problem implies using standard one-way 
ANOVA. However, spatial autocorrelation in source data 
disrupts standard tests of significance. This problem 
has long been discussed as it is common in many fields 
of research [27-29]. Positive autocorrelation causes 
differences between groups that are not truly different 
to be declared significant. Negative autocorrelation acts 
in the opposite manner. SAS PROC MIXED (version 8; 
http://support.sas.com) allows for using several 
variogram models to describe the positive spatial 
autocorrelation in analysed data, and thus to modify the 
ANOVA to account for spatial autocorrelation in sample 
data. Hong et al. [30] documented use of this technique 
on agricultural data. The authors also provided the 
program code which was used to run such analysis in 
this paper. 

3. Results
The variogram of EIT assigned to grassland polygons 
indicates that such data are spatially highly continuous 
and that spatial dependence between data disappears 
beyond a distance of 12 km. Two structures were used 
to fit the empirical values – a nugget effect component 
(discontinuity at variogram origin due to small-scale 
variability in the data) and isotropic spherical variogram 

(Figure 2). Such variogram was used in spatial 
interpolation using ordinary kriging. The resulting map is 
presented in Figure 3a. 

GIS techniques were used to calculate the 
gradients in the generated surface of EIT (Figure 3b). 
The boundaries were drawn by hand through local 
maximums of gradients, forming the ridgelines. The 
study region was divided in this way into 15 districts 
(Figure 4, Table 2). 

The proposed districts were analysed to ascertain 
whether they differ significantly in terms of mean 
values of EIT of source samples. The analysis aims 

Figure 2.  Isotropic variogram of Ellenberg indicator values for 
temperature assigned to grassland polygons.

Figure 3.  Map of Ellenberg indicator values for temperature produced using spatial interpolation of indicator values assigned to grassland 
vegetation polygons (a), and gradients calculated from the map thereof used to designate the boundaries between districts with 
different floristic composition (b). Respective isolines are displayed.
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Table 2.  Descriptive statistics of source samples (Ellenberg indicator values for temperature assigned to taxa in grassland polygons) in 12 districts 
with floristic composition differing in species demands on temperature.

District N Mean Median Min Max St. dev.

C1 87 5.054 5.077 4.429 5.432 0.191

C2 122 5.239 5.263 4.719 5.810 0.148

C3 139 5.322 5.347 4.231 5.656 0.195

T1 52 5.303 5.308 4.818 5.658 0.193

T2 264 5.473 5.500 3.000 6.067 0.295

T3 113 5.506 5.500 5.150 5.854 0.138

T4 105 5.501 5.500 5.000 5.818 0.132

T5 32 5.411 5.353 5.000 6.000 0.224

W1 286 5.710 5.722 5.167 6.174 0.151

W2 210 5.673 5.667 5.171 6.162 0.177

W3 431 5.626 5.622 5.100 6.136 0.159

W4 90 5.689 5.677 5.333 6.059 0.170

Figure 4.  The proposed division of the study region into 15 districts with floristic composition differing in species demands on temperature.

at adjacent districts only, and thus 23 tests have 
been conducted in total. An isotropic variogram was 
constructed for each couple of adjacent units to reduce 
the number of degrees of freedom proportionally to the 
spatial autocorrelation of sample data when using the 
modified ANOVA. 

Only 12 out of 15 designated units were analysed 
(Table 3). Units C4, C5 and W5 are only minor parts 

of more spacious units stretching into the study region 
from the outside. 

The adjusted ANOVA test revealed that the mean 
values of 17 out of 23 adjacent subdistricts differed 
significantly at 99% significance level. Another couple 
of districts were found to differ at 95% significance level. 

To investigate the effect of spatial autocorrelation 
on performed tests, we provide a comparison of 
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 C1 C2 C3 T1 T2 T3 T4 T5 W1 W2 W3 W4

C1 X - - - - - - - - - - -

C2 0.921 X - - - - - - - - - -

 0.000**     

C3 - - X - - - - - - - - -

T1 0.000** - - X  - - - - - - - -

 0.000**

T2 0.175 - - - X - - - - - - -

 0.000**

T3 - - 0.201 - - X - - - - - -

 0.000**

T4 - - - - - - X - - - - -

T5 - 0.799 - - - - - X - - - -

 0.000**

W1 - - 0.900 - 0.000** 0.001** - - X - - -

   0.000**  0.000** 0.000**

W2 0.000** 0.000** - 0.000** - - 0.113 0.000** - X - -

 0.000** 0.000**  0.000**   0.000** 0.000**

W3 - - 0.000** 0.000** 0.000** - 0.008** - 0.000** 0.011* X -

   0.000** 0.000** 0.000**  0.000**  0.000** 0.001** - -

W4 - 0.000** - - - - 0.628 0.074 - 0.660 - X

  0.000**    0.000** 0.000** 0.452

Table 3.  Post-classification analysis. Statistical significance of differences in mean values of source data between adjacent districts is investigated. 
X denotes the diagonal cells. The upper number denotes p-value produced using ANOVA adjusted for spatial autocorrelation, the lower 
number denotes p-value produced using standard ANOVA (** 99% significance level, * 95% significance level).

p-values produced by both standard and adjusted 
ANOVA (Table 3). It is apparent that adjusted ANOVA 
(accounting for spatial autocorrelation in source data) 
is a stricter test as compared with standard ANOVA. In 
total, the null hypothesis of no difference in mean values 
of source samples between adjacent subdistricts was 
rejected in 22 out of 23 tests performed using standard 
ANOVA, while the null hypotheses was rejected in 
only 17 tests performed using adjusted ANOVA (99% 
significance level). 

4. Discussion
In view of recently developed floristic and vegetation 
databases, it is a timely task to develop a data-driven 
approach to phytogeographical regionalization using 
such databases. We have proposed an approach 
based on the spatial modelling of Ellenberg indicator 
values and floristic data and demonstrated its use in a 
model region using records on floristic composition of 
grasslands.

We found that the species records in the database 
contained sufficient information to draw continuous 
boundaries in the landscape, or, more specifically, 
that there is a strong pattern of spatial continuity in 

Ellenberg indicator values assigned to species data 
and averaged in grassland polygons. As such database 
is publicly available and has national coverage, this 
finding allows for proposing a phytogeographical 
regionalization for all of Slovakia. Databases with 
similar content and national coverage (especially 
national vegetation databases) are available for many 
regions of Europe as well [56], and hence the proposed 
methodology, or variants thereof, can be thought of 
as widely applicable. Both floristic and vegetation 
databases can be used and/or combined using the 
system of ecological indicators. Wamelink et al. [57] 
suggest, however, that Ellenberg indicator values 
should not be combined between various vegetation 
types. The aforementioned combination of vegetation 
and floristic databases on the basis of ecological 
indicators should therefore be treated with care. The 
use of large databases also raises a question as to 
the effect of species which could not be assigned an 
indicator value or, more generally, as to the effect of 
the completeness of vegetation relevés. In the present 
study, 29% of all species determined could not be 
assigned an EIT. Ewald [58] suggests in this regard 
that the correlation of Ellenberg indicator values with 
environmental measurements is only weakly affected 
by leaving out low-abundance species. In the case of 
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temperature, the R2 decreased from 0.53 (full species 
matrix) to 0.37 when only 20% of the original species list 
remained. Finally, the author suggests that Ellenberg 
indicators can be thought of as relatively resilient to 
incomplete sampling.

The other critical finding is the need to take into 
account the spatial autocorrelation in the post-
classification analysis. This fact is often neglected in 
ecological studies. Positive autocorrelation causes 
differences between groups that are not truly different 
to be declared significant. This was the case in 7 out of 
23 tests performed. Such tests provide complementary 
information indicating the relevance (reliability) of 
proposed regionalization. Some boundaries drawn 
on the basis of gradients on the surface interpolated 
from ecological indicator values can be re-evaluated 
if no significant differences were found between the 
adjacent districts in terms of mean values of source 
samples.

Another question is whether the identified districts 
and subdistricts differ from each other in terms of 
characteristic and/or diagnostic species. Turisová 
and Hlásny [43] found, in a related study, that most 
designated districts were well separated in terms of the 
presence of a certain number of diagnostic species in 
each district. This lends support to the applicability of 
the proposed approach for designating regions with 
specific species composition.

Boundaries’ scale dependence was not discussed 
in this paper, although it is an integral concept of 
regionalization [56,59]. In this regard, Cadenasso 
et al. [13] stated that scientists must choose their grain 
size deliberately and specify it in their publications. 
However, the scale of delineated borders in this article 
is determined mainly by the structure of the surface 
produced by kriging. Therefore, not grain size but 
rather the range of the underlying variogram is a proper 
indicator of scale.

In this study, we focused our attention on ecological 
indicators of temperature, although other indicators 
(moisture, nutrients, light, continentality, soiltype, etc.) 

are also viable for phytogeographical regionalization 
[60-62]. Their use depends mainly on the leading 
processes that control vegetation distribution in a given 
region. Regionalization based on multiple indicators 
can be performed as well. Multivariate geostatistical 
techniques facilitate the combination of multiple factors 
in a straightforward manner using the method proposed 
in this paper. 

Unevenly distributed source data also raise a 
question with regard to the reliability of the boundaries 
generated, particularly at under-sampled locations. 
There are several aspects to this issue, for example: 
Does the boundary differ significantly from a boundary 
produced by randomizing the data? Do selected 
statistics differ significantly between neighbouring units? 
Does the uncertainty associated to a boundary segment/
single location exceed some threshold? Randomization 
procedures [9,26] and testing differences of mean values 
between neighbouring regions [27-29], as seen in this 
paper, are two possible methods. With regard to the 
geostatistical background of the proposed methodology, 
kriging variance [63], calculated along with kriging 
estimates, may be a proper measure to determine 
boundary uncertainty arising due to prediction errors. 
Conditional simulations [64,65] are an effective option 
as well
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