

Central European Journal of Biology

A novel neuroprotectant PAN-811 protects neurons from oxidative stress

Research Article

Weiying Pan^{1&}, Chanteé M. Dancik^{2&}, Valery M. Nelson³, Zhi-Gang Jiang^{3*} Michael S. Lebowitz³, Hossein A. Ghanbari³⁺

¹Currently at Johns Hopkins University School of Medicine, MD 21205 Baltimore, USA

> ²Currently at GeneDx, MD 20877 Gaithersburg, USA

³Panacea Pharmaceuticals, Inc., MD 20877 Gaithersburg, USA

Received 26 November 2007; Accepted 11 December 2008

Abstract: Hydrogen peroxide (H₂O₂), a major non-radical reactive oxygen species (ROS) could elicit intracellular oxidative damage and/or cause extracellular free calcium influx by activating the NMDA receptor or through calcium channels. In the present study, NMDA receptor antagonist MK-801 fully blocked H₂O₂-induced neuronal cell death, whereas green tea (GT) extract containing-antioxidants only partially suppressed the neurotoxicity of H₂O₂. These suggest that majority of ROS overproduction is downstream of H₂O₂-induced calcium influx. A novel neuroprotectant PAN-811 was previously demonstrated to efficiently attenuate ischemic neurotoxicity. PAN-811 hereby fully blocks H₂O₂-elicited neuronal cell death with a more advanced neuroprotective profile than that of GT extract. PAN-811 was also shown to protect against CaCl₂-elicited neurotoxicity. Efficient protection against oxidative stress–induced neurotoxicity by PAN-811 indicates its potential application in treatment of ROS-mediated neurodegenerative diseases.

Keywords: PAN-811 • Hydrogen peroxide • Neuroprotection • Chelation • Antioxidant

© Versita Warsaw and Springer-Verlag Berlin Heidelberg.

1. Introduction

The reactive oxygen species (ROS) is implicated in aetiology of both acute and chronic neurodegenerative diseases. Various cell types including neurons produce large amounts of ROS under ischemia-reperfusion conditions, such as stroke [1,2]. Alzheimer's disease (AD) is a chronic neurodegenerative disease. The fact that AD occurs commonly in aged people indicates an important contribution of accumulated age-related risk factors to the initiation and development of the disease, although heritage could be an intrinsic determinant in familial AD. It has been well documented that the AD brain is characterized by significantly increased regional oxidative stress during AD [3-6]. Hydrogen peroxide (H_2O_2) is one of the major ROS that is overproduced

in neuronal disorders. H_2O_2 elicits its toxic effects through either the ferrous ion (Fe²⁺)-dependent (Fenton reaction) or superoxide-driven (Haber-Weiss reaction) formation of the highly reactive hydroxyl radical, which leads to alteration of lipids, proteins and DNA, and a change in the redox status of the cytosol [1]. In contrast, recent research efforts have demonstrated that an excessive intracellular free calcium ([Ca²⁺]_i) caused by either NMDA receptor [7,8] and/or non-selective cation channel [9,10] activations also actively mediates H_2O_2 -induced neurotoxicity.

PAN-811 (or triapine) was originally developed for cancer therapy due to its bioactivity in inhibiting ribonucleotide reductase (RNR), a key enzyme in DNA replication, through its intrinsic characteristic of Fe²⁺ chelation [11]. In addition to Fe²⁺, PAN-811 also binds

to Cu2+ and Zn2+, and thus suppresses the growth of a tumor [12]. Our previous results demonstrated that PAN-811 significantly reduces both ischemia-elicited excessive [Ca2+], and ROS possibly via dual individual mechanisms of Ca2+ chelation and free radical scavenging [13]. Therefore, we hypothesized that PAN-811 is able to block H₂O₂-induced neurotoxicity. The effect of PAN-811 was examined in H₂O₂-stressed cerebral neurons. Excitatory neurotoxicity seemed to dominate H₂O₂-induced neuronal cell death in our model since NMDA receptor antagonist MK-801 achieved more significant protection than green tea (GT) extract that contains antioxidants. In this system, PAN-811 fully blocked H2O2-induced neuronal cell death at concentrations of 5 - 10 μ M (EC₅₀: 0.55 μ M). PAN-811 was examined in CaCl2-treated neuronal cultures, using MK-801 as a positive control. PAN-811 at a concentration of 2 µM completely blocked CaCl₂-induced neuronal cell death. These results indicate a potent neuroprotective activity of PAN-811 and underlying mechanism for its neuroprotection.

2. Experimental Procedures

2.1 Embryonic cerebral neuronal culture, compound treatment and H₂O₂ stress

Mixed cortical and striatal neurons from embryonic 17-day Sprague-Dawley rats were seeded onto poly-D-lysine (50 µg/ml) coated 96-well plates at a density of 50,000 cells/well [13]. To facilitate the oxidative stress experiment, the neurons were originally cultured in Neurobasal medium (NB) with B27 supplement containing anti-oxidants (AO) for one week, followed by replacing 50% of the medium 2 or 3 times with NB containing B27 without AO (Invitrogen), resulting in medium containing 12.5-25% AO. The neurons were cultured for over 12 days at 37°C, 5% CO₂. The neurons were generally treated with vehicle, 7:3 polyethylene glycol 300:ethanol (PEG: EtOH), PAN-811 (Kimia), MK-801 or extract of GT [13] overnight and then stressed with H2O2. To determine the protective window of PAN-811, neurons were also treated simultaneously with PAN-811 and H₂O₂ for co-treatment experiments. Similarly, neurons were treated with PAN-811 and CaCl_a for the same time period in the Ca²⁺-elicited toxic model.

2.2 Photomicroscopy

At the end of experiment, the cultures were photographed under an inverted phase contrast microscope (IX 70, Olympus) at magnification of 300x.

2.3 Lactate dehydrogenase (LDH) Assay

An aliquot of 35 μ I of culture supernatant was incubated with 17.5 μ I mixed Substrate, Enzyme and Dye Solutions (Sigma) at room temperature (RT) for 30 minutes. The preparations were then measured by spectrophotometry at a wavelength of 490 nm using a 96-well plate reader (Model 550, Bio-Rad). Conditioned culture medium from medium replacements was used as blanks for background.

2.4 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4sulfophenyl)-2H-tetrazolium (MTS) Assay

Neurons in 50 μ l of culture medium were incubated with 10 μ l of MTS at 37°C for 90 minutes. The preparations were then measured by spectrophotometry at a wavelength of 490 nm using a 96-well plate reader (Mode 550, Bio-Rad). Conditioned culture medium from medium replacements was used as blanks for background.

2.5 Data Analysis

The data were expressed as a percentage of the mean \pm SD (n = 4-6) of the untreated and non-stressed control group. Statistical evaluation was performed using VassarStats with one- or two-factor ANOVA (significance level of 1%) followed by the Tukey HSD test. Pair comparison was carried out by t-test.

3. Results

3.1 PAN-811 provides potent neuroprotection against H₂O₂-elicited toxicity

Mixed cortical and striatal neurons were treated overnight with different concentrations of PAN-811 and then stressed with 35 µM H2O2 for 24 h. The neurons under non-stressed conditions showed phase-brilliant cell bodies (Figure 1A). In contrast, the neurons that received a stress with 35 µM H₂O₂ formed tiny fragments. Pretreatment with PAN-811 at all testing concentrations resulted in well-preserved neuronal morphology. H2O2 stress resulted in a 2.5-fold increase (with P<0.01, compared to untreated/ non-insulted group) in LDH release, which directly indicates cell membrane damage and indirectly shows neuronal cell death quantitatively (Figure 1B). PAN-811 at a concentration as low as 1 µM suppressed LDH release by 78% (with P<0.01, compared to untreated/H2O2-insulted group) and at a concentration of 10 µM achieved maximal protection (90% of that in untreated and H2O2-insulted group) with an EC50 of ~0.55 µM.

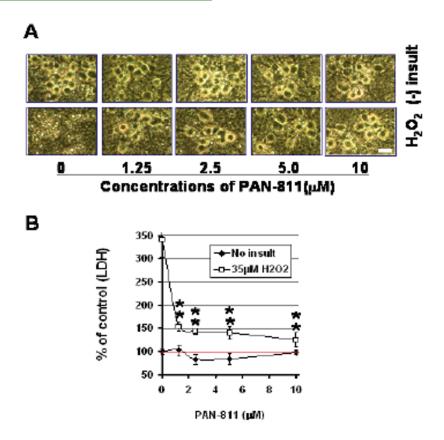


Figure 1. Neuroprotective activity of PAN-811. Neurons were cultured in NB medium containing 25% AO for 12 days, treated with different concentrations of PAN-811 overnight and then stressed with 35 μM H₂O₂ for 24 h by taking neurons under unstressed condition as control. (A) The cultures were photographed under an inverted phase-contrast microscope. Scale bar = 25 μm. (B) Cell death was quantified with LDH analysis and expressed as a percentage of mean ± SD of the no-insult and untreated control group. **P<0.01 compared with untreated and H₂O₂-insulted group by ANOVA.

3.2 A pretreatment, but not co-treatment, with PAN-811 is neuroprotective

To understand the neuroprotective window, the neurons were either treated with 10 µM PAN-811 24 h prior to, or treated simultaneously with, H₂O₂ stress. Twenty-four hour stress with H₂O₂ resulted in strong neuronal cell death (Figure 2A and 2D). Pretreatment with PAN-811 resulted in well-preserved neuronal morphology (Figure 2A). However, PAN-811 administered into the culture simultaneously with H₂O₂ did not show any protection against H₂O₂-induced neuronal cell death (Figure 2D). Identical with these data, LDH readings under H2O2 stress conditions alone were 23- and 13-fold of untreated/ non-stressed control group (P<0.01) in pretreatment (Figure 2B) and co-treatment (Figure 2E) experiments, respectively. Pretreatment with 10 µM PAN-811 reduced LDH release by 84% whereas a co-treatment with same concentration of PAN-811 only reduced LDH release by 28% with only a marginally statistical difference (P<0.05) from the untreated and H₂O₂ stressed group.

On the other hand, $\rm H_2O_2$ stress reduced MTS readings (indirect determination of cell viability by mitochondriabased color reaction) by 86% and 100% in pretreatment (Figure 2C) and co-treatment (Figure 2F) experiments, respectively. Pretreatment with PAN-811 increased the MTS reading by 38% with significant statistical difference (P<0.01) from the untreated and $\rm H_2O_2$ stressed group. In contrast, a co-treatment with PAN-811 did not show any significant preservation in the MTS reading (no significantly statistical difference from the untreated and $\rm H_2O_2$ stressed group).

3.3 NMDA receptor activation dominates H₂O₂-elicited neurotoxicity

To understand the underlying mechanism of neuroprotective activity provided by PAN-811, the toxic pathways of the $\rm H_2O_2$ stress were investigated by using NMDA receptor antagonist MK-801 and GT extract containing free radical scavengers. The neurons were pretreated overnight with 5000-fold diluted vehicle (for

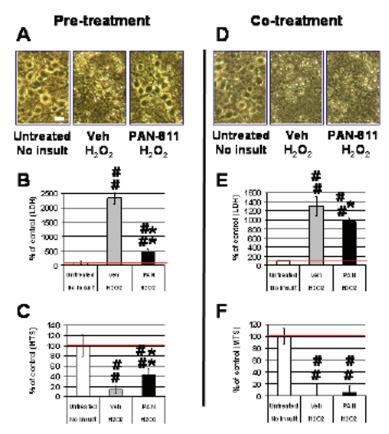


Figure 2. Neuroprotective window of PAN-811.

Mixed cortical and striatal neurons were cultured in NB medium containing 12.5% AO for 14 days, and treated for 1 day with 1:5,000 vehicle (Veh) or 10 μM PAN-811 either 1 day early (Pre-treatment) or at the same time (Co-treatment) with an insult of 35 μM H₂O₂. Photos (A and D) were taken 1 day post-insult. Scale bar = 25 μm. Neuronal cell death and survival were quantified with LDH (B and E) and MTS (C and F) analyses, respectively, and expressed as a percentage of mean ± SD of the no-insult and untreated control group. ##P<0.01 compared with untreated/non-insulted control group; *P<0.05 and **P<0.01 compared with untreated/hgo.group.

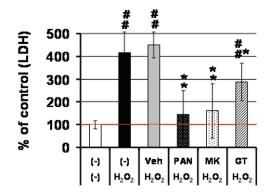


Figure 3. Comparison of PAN-811 with MK-801 and GT in neuroprotection.

Neurons were cultured in NB medium containing 25% AO for 12 days, treated overnight with 1:5,000 vehicle, 5 μM PAN-811, 5 μM MK-801 or 1:200 diluted GT extract, and then stressed with 70 μM H₂O₂. Neuronal cell death was quantitatively evaluated by LDH analysis and expressed as a percentage of mean \pm SD of the untreated and no-insult control group. ##P<0.01 compared with untreated/non-insulted control group; *P<0.05 and **P<0.01 compared with vehicle-treated/H₂O₂-stressed group.

PAN-811), 5 µM PAN-811, 5 µM MK-801 or 200-fold diluted GT extract and then stressed with 70 µM H₂O₂ (to facilitate mechanism study) for another day. LDH release in this experiment was examined (Figure 3). H₂O₂ stress resulted in 3.2 and 3.5 folds increase in LDH readings for untreated and vehicle-treated groups, respectively (P<0.01 compared to untreated and no stress group). A pretreatment with MK-801 brought LDH release down to about normal level with no significant difference from control. In contrast, a pretreatment with GT only achieved 41% protection with significant statistical difference from the H2O2 stressed group (P<0.05). These results indicate excitatory neurotoxicity elicited by H2O2 dominated neuronal cell death and intracellular ROS accumulation could be mainly Ca2+ influx-dependent. In comparison, a pretreatment with PAN-811 fully blocked H2O2 induced LDH release, showing no significant difference from the untreated/ non-stressed group. The full protection by PAN-811 implied that it predominantly suppresses [Ca2+], level.

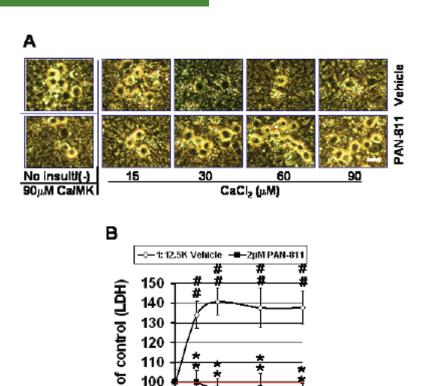


Figure 4. PAN-811 blocks CaCl, -induced neurotoxicity. Neurons were cultured in 12.5% AO and treated with different concentrations of CaCl $_{_{2}}$ and 2 μ M PAN-811. The cultures treated with 1:12,500 diluted vehicle and 10 μ M MK-801 were taken as the carrier and positive controls, respectively. (A) The cultures were photographed under an inverted phase-contrast microscope. Scale bar = $25 \mu m$. (B) The cell death was evaluated with LDH analysis and expressed as a percentage of mean ± SD of the no-insult and untreated control group. ##P<0.01 compared with untreated/no stress control group; **P<0.01 for pair comparison under a concentration of CaCl₂ by t-test.

110 100 90

0

20

3.4 PAN-811 blocks CaCl₂-induced neuronal cell death

Excessive extracellular free calcium ([Ca2+],) is able to elicit neuronal cell death [14]. To further confirm the effect of PAN-811 on Ca2+, neurons were cotreated with different concentrations of CaCl₂ and 2 µM PAN-811 for 10 days. A co-treatment with 90 µM CaCl and 10 µM MK-801 was used as a positive control. CaCl₃ stress resulted in dose-dependent neuronal cell death in vehicle-treated groups (Figure 4A). A treatment with 2 μM PAN-811 or 10 μM MK-801 during the CaCl₂ stress period resulted in well-preserved neuronal and neurite morphology and density. CaCl2 stress elicited a dosedependent LDH release (Figure 4B). MK-801 at 10 µM suppressed LDH release to control levels (data not shown). Co-treatment with 2 µM PAN-811 fully blocked the LDH release under each CaCl₂ concentration (without significant statistical difference from the untreated/no insult group).

4. Discussion

60

40

CaCl2 (µM)

80

H₂O₂ is a major non-radical ROS that is overproduced in different neurodegenerative diseases. H2O2 can inhibit the uptake of glutamate and enhances the release of glutamate, resulting in NMDA receptor overstimulation [7,15]. Consequently, H₂O₂ results in [Ca²⁺], increase [16]. Antagonists of the NMDA receptor show significant suppression of neurotoxic effects related to H2O2 [6]. Identical to these findings, our study demonstrates that NMDA receptor antagonist MK-801 protected well against H₂O₂-induced neuronal cell death. In contrast, GT containing free radical scavengers only partially suppressed the neurotoxicity. Thus, intracellular ROS accumulation could be predominantly downstream of Ca2+influx in our experimental condition.

Non-specific Ca²⁺ channel activations are also indicated to be involved in the H2O2 toxic mechanism since non-specific Ca2+ channel antagonists fangchinoline and

tetrandrine significantly block H₂O₂-induced neurotoxicity [17]. H2O2 stress also causes Ca2+ release from intracellular stores, resulting in its accumulation in the cytoplasm [18]. In these conditions where Ca2+ originates from other sources rather than through activated NMDA receptors, MK-801 will be not sufficient to block H2O2elicited toxicity. PAN-811 manifests a different mechanism from MK-801 in neuroprotection since PAN-811 directly chelates Ca2+ in a cell-free system [13]. To support this, PAN-811 in the present study protected neurons from CaCl_a-induced cell death no matter whether PAN-811 chelates Ca2+ extracellularly or intracellularly. In fact, PAN-811 is capable of entering the cell and nucleus since it has to bind to nucleus-located RNR to inhibit the bioactivity of this enzyme [11]. Thus the advantage of PAN-811 over MK-801 is to suppress [Ca2+], unrelated to the path from which it comes.

The underlying mechanism for the full neuroprotection provided by PAN-811 could be due to the antioxidative activity of PAN-811. Excitatory neurotoxicity-induced increase in $[Ca^{2+}]_i$ was found to be nontoxic in conditions preventing free radical generation [19,20]. Excessive ROS could be the executive factor for the cell toxicity of excessive $[Ca^{2+}]_i$. In contrast to these findings, in the present study, GT extract containing free radical scavengers could also partially suppress H_2O_2 -induced neurotoxicity. Thus ROS production should not be an exclusive downstream signal of intracellular Ca^{2+} accumulation. Our previous study showed that PAN-811 is able to scavenge stable free radical diphenylpicrylhydrazyl and this activity seemed to be independent from its chelation activity since the

experiment was carried out in a Ca²⁺-free and cell free system [13].

Neuroprotective agents have been developed to suppress the toxicity of ROS. Vitamin E (α -tocopheral), the major lipid-soluble antioxidant can act directly with a variety of oxy radicals, including the peroxy radical (ROO•), CCI₂•, HO• as well as the superoxide radical (O₂•) [21-24], and protects against lipid peroxidation [25]. Vitamin C is water soluble and, along with vitamin E, can quench free radicals as well as singlet oxygen. Vitamin C has been shown to react directly with O, •-[26,27], HO• [28] and singlet oxygen [29]. Ginkgo biloba protected neurons against Aβ-induced neuronal cell death [30]. On the other hand, the NMDA receptor antagonist memantine has been approved in phase III clinical trial in AD treatment [31]. However, each of the above reagents generally affects only one aspect of toxic pathways. PAN-811 has demonstrated dual independent functions in suppressing [Ca2+], and ROS. PAN-811 could be a potent drug candidate for neuroprotection.

Acknowledgements

We are grateful to Ms. Claudia Gerwin at National Institute of Neurological Disorders and Stroke for supplying us with embryonic rat brain tissue and Kimia Corporation, San Jose, CA for PAN-811 synthesis. H.A.G. was supported by National Institute of Aging grant 1 R43 AG024775-01 and Z.-G. J. was supported by National Heart, Lung, and Blood Institute grants 9 R44HL085043-02 and 5 R44HL085043-03.

References

- [1] Halliwell B., Reactive oxygen species in the central nervous system, J. Neurochem., 1992, 59, 1609-1623
- [2] Fatokun A.A., Stone T.W., Smith R.A., Oxidative stress in neurodegeneration and available means of protection, Front. Biosci., 2008, 13, 3288-3311
- [3] Perry G., Nunomura A., Cash A.D., Taddeo M.A., Hirai K., Aliev G., et al., Reactive oxygen: its sources and significance in Alzheimer disease, J. Neural. Transm. Suppl., 2002, 62, 69-75
- [4] Aliev G., Smith M.A., de la Torre J.C., Perry G., Mitochondria as a primary target for vascular hypoperfusion and oxidative stress in Alzheimer's disease, Mitochondrion, 2004, 4, 649-663
- [5] Ghanbari H.A., Ghanbari K., Harris P.L., Jones P.K., Kubat Z., Castellani R.J., et al., Oxidative damage in cultured human olfactory neurons from Alzheimer's disease patients, Aging Cell, 2004, 3, 41-44

- [6] Honda K., Casadesus G., Petersen R.B., Perry G., Smith M.A., Oxidative stress and redox-active iron in Alzheimer's disease, Ann. N.Y. Acad. Sci., 2004, 1012, 179-182
- [7] Mailly F., Marin P., Israël M., Glowinski J., Prémont J., Increase in external glutamate and NMDA receptor activation contribute to H₂O₂-induced neuronal apoptosis, J. Neurochem., 1999, 73, 1181-1188
- [8] Avshalumov M.V., Rice M.E., NMDA receptor activation mediates hydrogen peroxide-induced pathophysiology in rat hippocampal slices, J. Neurophysiol., 2002, 87, 2896-2903
- [9] Smith M.A., Herson P.S., Lee K., Pinnock R.D., Ashford M.L., Hydrogen-peroxide-induced toxicity of rat striatal neurones involves activation of a nonselective cation channel, J. Physiol., 2003, 547, 417-425

- [10] Kaneko S., Kawakami S., Hara Y., Wakamori M., Itoh E., Minami T., et al., A critical role of TRPM2 in neuronal cell death by hydrogen peroxide, J. Pharmacol. Sci., 2006, 101, 66-76
- [11] Liu M.C., Lin T.S., Sartorelli A.C., Synthesis and antitumor activity of amino derivatives of pyridine-2-carboxaldehyde thiosemicarbazone, J. Med. Chem., 1992, 35, 3672-3677
- [12] Richardson D.R., Iron chelators as therapeutic agents for the treatment of cancer, Crit. Rev. Oncol. Hematol., 2002, 42, 267-281
- [13] Jiang Z.G., Lu X.C., Nelson V., Yang X., Pan W., Chen R.W., et al., A multifunctional cytoprotective agent that reduces neurodegeneration after ischemia, Proc. Natl. Acad. Sci. USA, 2006, 103, 1581-1586
- [14] McGinnis K.M., Wang K.K., Gnegy M.E., Alterations of extracellular calcium elicit selective modes of cell death and protease activation in SH-SY5Y human neuroblastoma cells, J. Neurochem., 1999, 72, 1853-1863
- [15] Volterra A., Trotti D., Racagni G., Glutamate uptake is inhibited by arachidonic acid and oxygen radicals via two distinct and additive mechanism, Mol. Pharmacol., 1994, 46, 986-992
- [16] Whittemore E.R., Loo D.T., Watt J.A., Cotman C.W., A detailed analysis of hydrogen peroxide-induced cell death in primary neuronal culture, Neuroscience, 1995, 67, 921-932
- [17] Koh S.B., Ban J.Y., Lee B.Y., Seong Y.H., Protective effects of fangchinoline and tetrandrine on hydrogen peroxide-induced oxidative neuronal cell damage in cultured rat cerebellar granule cells, Planta Med., 2003, 69, 506-512
- [18] Kemmerling U., Muñoz P., Müller M., Sánchez G., Aylwin M.L., Klann E., et al., Calcium release by ryanodine receptors mediates hydrogen peroxide-induced activation of ERK and CREB phosphorylation in N2a cells and hippocampal neurons, Cell Calcium, 2007, 41, 491-502
- [19] Dubinsky J.M., Kristal B.S., Elizondo-Fournier M., An obligate role for oxygen in the early stages of glutamate-induced, delayed neuronal death, J. Neurosci., 1995, 15, 7071-7078
- [20] Patel M., Day B.J., Crapo J.D., Fridovich I., McNamara J.O., Requirement for superoxide in excitotoxic cell death, Neuron, 1996, 16, 345-355

- [21] Fukuzawa K., Gebicki J.M., Oxidation of alphatocopherol in micelles and liposomes by the hydroxyl, perhydroxyl, and superoxide free radicals, Arch. Biochem. Biophys., 1983, 226, 242-251
- [22] Ozawa T., Hanaki A., Matsuo M., Reactions of superoxide ion with tocopherol and its model compounds: correlation between the physiological activities of tocopherols and the concentration of chromanoxyl-type radicals, Biochem. Int., 1983, 6, 685-692
- [23] McCay P.B., Vitamin E: interactions with free radicals and ascorbate, Annu. Rev. Nutr., 1985, 5, 323-340
- [24] Burton G.W., Foster D.O., Perly B., Slater, T.F., Smith I.C., Ingold K.U., Biological antioxidants, Philos. Trans. R. Soc. Lond. B Biol. Sci., 1985, 311, 565-578
- [25] Atkinson J., Epand R.F., Epand R.M., Tocopherols and tocotrienols in membranes: a critical review, Free Radic. Biol. Med., 2008, 44, 739-764
- [26] Hemilä H., Roberts P., Wikström M., Activated polymorphonuclear leucocytes consume vitamin C, FEBS Lett., 1984, 178, 25-30
- [27] Nishikimi M., Oxidation of ascorbic acid with superoxide anion generated by the xanthinexanthine oxidase system, Biochem. Biophys. Res. Commun., 1975, 63, 463-468
- [28] Bielski B.H., Richter H.W., Chan P.C., Some properties of the ascorbate free radical, Ann. N.Y. Acad. Sci., 1975, 258, 231-237
- [29] Bodannes R.S., Chan P.C., Ascorbic acid as a scavenger of singlet oxygen, FEBS Lett., 1979, 105, 195-196
- [30] Bastianetto S., Ramassamy C., Doré S., Christen Y., Poirier J., Quirion R., The Ginkgo biloba extract (EGb 761) protects hippocampal neurons against cell death induced by beta-amyloid, Eur. J. Neurosci., 2000, 12, 1882-1890
- [31] Reisberg B., Doody R., Stöffler A., Schmitt F., Ferris S., Möbius H.J., Memantine in moderate-to-severe Alzheimer's disease, N. Engl. J. Med., 2003, 348, 1333-1341