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Abstract: Using the extended Poincaré–Lighthill–Kuo (EPLK) method, the interaction between two ion acoustic soli-
tary waves (IASWs) in a multicomponent magnetized plasma (including Tsallis nonextensive electrons) has
been theoretically investigated. The analytical phase shifts of the two solitary waves after interaction are es-
timated. The proposed model leads to rarefactive solitons only. The effects of colliding angle, ratio of num-
ber densities of (positive/negative) ions species to the density of nonextensive electrons, ion-to-electron
temperature ratio, mass ratio of the negative-to-positive ions and the electron nonextensive parameter on
the phase shifts are investigated numerically. The present results show that these parameters have strong
effects on the phase shifts and trajectories of the two IASWs after collision. Evidently, this model is helpful
for interpreting the propagation and the oblique collision of IASWs in magnetized multicomponent plasma
experiments and space observations.
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1. Introduction

Ion acoustic solitary waves (IASWs) have been studiedfor several decades both theoretically and experimen-tally. They have been first considered in [1] where their
∗E-mail: emadel_shamy@hotmail.com (Corresponding author)
†E-mail: mtribeche@usthb.dz
‡E-mail: eltaibany@hotmail.com; eltaibany@du.edu.eg

fully nonlinear features were studied using a mechani-cal analogy. Later on, these nonlinear waves have re-ceived considerable attention both theoretically and ex-perimentally [2]. It has been reported that only compres-sive IASWs involving density humps exist in unmagnetizedtwo-component plasmas. Plasmas containing an appre-ciable amount of negative ions (the so- called multicompo-nent plasmas) have been the subject of intense investiga-tions [3–13]. This interest is mainly due to their wide tech-nological applications [14–17] and role in astrophysical
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plasmas. Negative ions have been detected in the Earth’sionosphere [18], cometary comae [19], and the upper re-gions of Titan [20]. Moreover, multicomponent plasmas,such as Ar/SF6 and K/SF6 plasmas, are generally used toperform basic research on IASWs in dc discharge devicesand Q-machines [21–28]. Since the early space obser-vations [29], it has been admitted that the Maxwelliandistribution is not always a realistic distribution [30–32].Due to a variety of different process, a plasma may de-viate from its thermodynamic equilibrium state to evolveinto a nonequilibrium stationary state. For instance, abackground turbulence may contribute to the appearanceof new distribution functions that deviate noticeably fromMaxwellian [33]. Most of the natural space plasma distri-bution functions exhibit non-Maxwellian high-energy tailsor flat tops with pronounced shoulders. Recently, a greatdeal of attention has been devoted to an appropriate gen-eralization of the Boltzmann–Gibbs–Shannon (BGS) en-tropy [34]. The later is considered valid universally formacroscopic ergodic equilibrium systems. It also seemsto be inadequate to describe systems with long-rangeoblique collisions, such as plasma and gravitational sys-tems . A nonextensive generalization of the BGS entropyfor statistical mechanics was first proposed by Rényi [35]and, later on, constructed by Tsallis [36]. This extendsthe standard additivity of the entropies to the nonlinear,nonextensive case where one particular parameter, the en-tropic index q, characterizes the strength of nonextensiv-ity. This new nonadditive entropy has been successfullyapplied to a wide range of phenomena (self-gravitatingsystems, some kinds of plasma turbulence etc.) [37, 38].Recent evidences suggest that q-entropy would be usedto establish a suitable frame for investigating many astro-physical phenomena; in stellar polytropes, solar neutrinoproblem, and peculiar velocity distribution of galaxy clus-ters. In addition, the experimental results of electrostaticplane-wave propagation in a collisionless thermal plasmayield to a class of Tsallis’s velocity distribution describedby a nonextensive q parameter less than unity [37–48].
Additionally, the excitation, propagation, stability andoblique collision of solitary waves in plasmas still de-serve to be carefully perused and examined. The inter-esting features of the collision between solitary wavesare now well known: when two solitary waves approachclosely, they interact, exchange their energies and po-sitions with each other and then scatter, regaining theiroriginal wave forms [50, 51]. During the oblique collisionprocess, the solitary waves are remarkably stable enti-ties, preserving their identities; the collision changes thephase shift only. We will focus our attention studying theoblique collision of two IASWs based on evaluating theirphase shifts and trajectories after an oblique collision oc-

curs. It may be worth mentioning that in one-dimensionalsystems there are two distinct types of the solitary wavecollisions; overtaking and head-on [49–51]. The overtak-ing collision of solitary waves (where the angle betweenthe two solitary waves propagation directions δ, vanishes)can be studied by the inverse scattering transformationmethod [52]. In the head-on collision, this angle δ is π.The latter type have been investigated using the extendedPoincaré- Lighthill–Kuo (EPLK) method [50, 51, 53–56].Indeed, what cannot be ignored is, the one-dimensionalgeometry may not be the realistic situation in laboratorydevices and/or in space. However, the oblique collision(i.e., 0 < δ < π) of solitary waves in a three-dimensionalgeometry is more realistic in magnetized multicomponentplasma. Therefore, the main purpose of this manuscriptis to investigate the oblique collision of two IASWs ina three-dimensional magnetized multicomponent plasmausing the EPLK method. Recently, some authors [57–61] have focused on the interaction of two solitary wavestaking into account arbitrary collision angles in differ-ent plasma models. Xue [57] discussed how the magneticfield significantly modifies the solitons collision proper-ties. The influence of the colliding angle for two dustacoustic waves oblique collision has been investigated ina three-dimensional magnetized plasma model, Liang et
al. [58]. Accordingly, we are interested in investigatingthe effects of the external magnetic field, colliding an-gle, number densities of (positive/negative) ions species,temperature ratio of the plasma species and the electronnonextensive parameter on the main characteristics of thetwo IASWs oblique collision in a multicomponent mag-netized plasma including Tsallis nonextensive distributedelectrons.
2. Governing equations and oblique
collision of two IASWs
We consider a multicomponent magnetized plasma modelwhose constituents are singly charged cold positive ions(subscript i), singly charged hot negative ions (subscript
n), and nonextensive electrons (subscript e). The dy-namics of nonlinear IASWs in this proposed plasma sys-tem is governed by the following normalized equations[11, 12, 48],

∂nn
∂t +−→∇ · (nn~u) = 0, (1)

∂~u
∂t +(~u · −→∇) ~u+µ(− −→∇φ + 53 θn

n1/3
n

−→∇nn
)+Ω ~u×ẑ = 0,(2)the nonextensive electron number density is

ne = [1 + (q − 1)φ](q+1)/[2(q−1)] , (3)
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the ions are assumed to be Boltzmann species
ni = β exp (−θi φ) , (4)

the system is closed by Poisson equation which is,
∇2φ = ne − ni + nn. (5)

In Eqs. (1)-(5), nj is the j− species number density (j = nfor negative ion, i for positive ion, and e for electrons),
~u is the negative ion fluid velocity with the components(v, w, ψ), and φ is the electrostatic wave potential. Thesystem is exposed to an external magnetic field, ~B = Boẑ.The variables appearing in Eqs. (1)-(4) have been scaledby appropriate quantities. Thus, nj is normalized by theunperturbed electron number density neo, ~u is scaled bythe ion sound speed Cs = (kBTe/mi)1/2 and the poten-tial φ by (kBTe/e). The time by the ion plasma period
ω−1
pi = (4πe2neo/mi)−1/2, and the space variables (x, y, z)are in units of the Debye radius λD = (kBTe/4πe2neo)1/2,where Te is the electron temperature and kB is the Boltz-mann constant. We have defined β = nio/neo, θi = Te/Ti,

µ = mi /mn and θn = Tn/Te where mj
(
Tj
) is the j-speciesmass (temperature) and Ω = (eBo/mnc) /ωpi. Note, we re-strict the study for µ < 1, i.e. heavy negative ion fluid.Therefore, it is reasonable to consider Boltzmann posi-tive ion species due to (positive/negative) mass order. Theneutrality condition implies β = 1+α , where α = nno/neo.

In Eq. (3), the parameter q is the strength of nonexten-sivity. For q < −1, the nonextensive electron distribution(not given here) is unnormalizable. In the extensive limit-ing case q → 1, the electron density, (3), reduces to thewell-known Maxwell–Boltzmann counterpart.To investigate the oblique collision of two IASWs, we fol-low the procedures presented in Refs. [50, 51]. Let usstudy the effects of quasielastic oblique collision of twosolitons S1 and S2 in the present multicomponent magne-tized plasma. We also assume that they are, asymptoti-cally, far apart in the initial state and travel toward eachother. After some time they interact, and the amplitude ofthe overlapping waves is greater than the algebraic sumof the individual solitons before collision. Furthermore,the amplitude slightly dips immediately after the collisionand returns to its value before next collision occurring at alater time. In order to analyze the effects of this collision,we employ an EPLK method. According to this method,the dependent variables are expanded in power of ε as,
nn = α + ε2nn1 + ε3nn2 + ε4nn3 + ...,
v = ε3v1 + ε4v2 + ε5v3 + ...,
w = ε3w1 + ε4w2 + ε5w3 + ...,
ψ = ε2ψ1 + ε3ψ2 + ε4ψ3 + ...,
φ = ε2φ1 + ε3φ2 + ε4φ3 + ....


(6)

However, the independent variables are presented as [55,59],

ξ = ε(κ1x + `1y+ χ1z − c1t) + ε2Po (η, τ) + ε3P1 (ξ, η, τ) + ...,
η = ε(κ2x + `2y+ χ2z + c2t) + ε2Qo (ξ, τ) + ε3Q1 (ξ, η, τ) + ...,
τ = ε3t.

 (7)

where ξ [η] denotes the trajectory of two solitarywaves propagating respectively in different direc-tions; −→R 1 = (κ1 + `1 + χ1) [−→R 2 = (κ2 + `2 + χ2)] at
Po(η, τ) = Qo(ξ, τ) = 0. Furthermore, if two wavesinteract, their trajectories will change and accordingly
Po(η, τ) 6= 0 and Qo(ξ, τ) 6= 0. Here, c1 and c2 arethe unknown phase velocities of two IASWs (to bedetermined later). Before going into details, let usdetermine the angle δ between the two waves propa-

gation directions, which can be calculated from cos δ =(κ1κ2 + `1`2 + χ1χ2) / [(κ21 + `21 + χ21 )(κ22 + `22 + χ22 )]1/2,where κ1, `1, χ1 (κ2, `2, χ2) are the directional cosines ofthe first (second) wave vector along the x−, y−, and
z−axes, respectively.
Substituting Eqs. (6) and (7) into the basic equations;Eqs. (1)-(5) and collecting terms of the same powers of ε.For the first-order perturbed quantities, we have
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(
−c1 ∂

∂ξ + c2 ∂
∂η

)
nn1 + α

(
−χ1 ∂

∂ξ + χ2 ∂
∂η

)
ψ1 = 0,

−µ
(
κ1 ∂

∂ξ + κ2 ∂
∂η

)
φ1 + γ

(
κ1 ∂

∂ξ + κ2 ∂
∂η

)
nn1 + Ωw1 = 0,

−µ
(
`1 ∂

∂ξ + `2 ∂
∂η

)
φ1 + γ

(
`1 ∂

∂ξ + `2 ∂
∂η

)
nn1 −Ωv1 = 0,(

−c1 ∂
∂ξ + c2 ∂

∂η

)
ψ1 − µ (χ1 ∂

∂ξ + χ2 ∂
∂η

)
φ1 + γ

(
χ1 ∂

∂ξ + χ2 ∂
∂η

)
nn1 = 0,[ 12 (q1 + 1) + β θi

]
φ1 + nn1 = 0,


(8)

where γ = 53α−1/3µ θn. Solving Eq. (8), we obtain explicitexpressions for these first-order perturbed quantities as,
φ1 (ξ, η , τ) = φ11 (ξ, τ) + φ12 (η, τ) ,
nn1 (ξ, η , τ) = nn11 (ξ, τ) + nn12 (η, τ)= αµ

(
χ21
T1 φ11 (ξ, τ) + χ22

T2 φ12 (η, τ)) ,
v1 (ξ, η , τ) = v11 (ξ, τ) + v12 (η, τ)= µΩ

(
`1c21
T1 ∂φ11(ξ,τ)

∂ξ + `2c22
T2 ∂φ12(η,τ)

∂η

)
,

w1 (ξ, η , τ) = w11 (ξ, τ) + w12 (η, τ)= − µΩ
(
κ1c21
T1 ∂φ11(ξ,τ)

∂ξ + κ2c22
T2 ∂φ12(η,τ)

∂η

)
,

ψ1 (ξ, η , τ) = ψ11 (ξ, τ)− ψ12 (η, τ)= µ
(
c1χ1
T1 φ11 (ξ, τ)− c2χ2

T2 φ12 (η, τ)) ,

(9)

with T1 = αγχ21 − c21 and T2 = αγχ22 − c22 . Moreover,the phase velocities; c1 and c2 are determined to have theforms,
c1 = χ1

√
α
(
γ + µ12 (q+1)+βθi

)
,

c2 = χ2
√
α
(
γ + µ12 (q+1)+βθi

)
,

 (10)

It is remarked here that the unknown functions φ11 (ξ, τ)and φ12 (η, τ) will be determined at higher orders of ε.Therefore, at the next-order of ε, we have a system ofequations whose solutions are

φ2 (ξ, η , τ) = φ21 (ξ, τ) + φ22 (η, τ) ,
nn2 (ξ, η , τ) = nn21 (ξ, τ) + nn22 (η, τ) = αµ

(
χ21
T1 φ21 (ξ, τ) + χ22

T2 φ22 (η, τ)) ,
v2 (ξ, η , τ) = v21 (ξ, τ) + v22 (η, τ)= µΩ

[ 1Ω
(
κ1c31
T1

∂2φ11 (ξ, τ)
∂ξ2 − κ2c32

T2
∂2φ12 (η, τ)

∂η2
)+ `1c21

T1
∂φ21 (ξ, τ)

∂ξ + `2c22
T2

∂φ22 (η, τ)
∂η

]
,

w2 (ξ, η , τ) = w11 (ξ, τ) + w12 (η, τ)= µΩ
[ 1Ω

(
`1c31
T1

∂2φ11 (ξ, τ)
∂ξ2 − `2c32

T2
∂2φ12 (η, τ)

∂η2
)
−
(
κ1c21
T1

∂φ21 (ξ, τ)
∂ξ + κ2c22

T2
∂φ22 (η, τ)

∂η

)]
,

ψ2 (ξ, η , τ) = ψ21 (ξ, τ) + ψ22 (η, τ) = µ
(
c1χ1
T1 φ21 (ξ, τ) + c2χ2

T2 φ22 (η, τ)) ,



(11)

Going further to the next higher-order in perturbation theory, we obtain
−2 (c1χ2 + c2χ1)ψ3 = 2c1µχ21

T1
∫ [∂φ11

∂τ + A1φ11 ∂φ11
∂ξ + B1 ∂3φ1

∂ξ3
]
dη + 2c2µχ22

T2
∫ [∂φ12

∂τ − A2φ12 ∂φ12
∂η − B2 ∂3φ12

∂η3
]
dξ

+ ∫ ∫ [(C1 ∂Po∂η +D1φ12
)
∂2φ11
∂ξ2 +(C2 ∂Qo

∂ξ +D2φ11
)
∂2φ12
∂η2

]
dηdξ, (12)
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where
A1 = T12c1µ

[2a+ ( µχ1
T1
)2 (3c21 − 13αγχ21 )] ,

A2 = T22c2µ
[2a+ ( µχ2

T2
)2 (3c22 − 13αγχ22 )] ,

B1 = 12c1
[
− T112 (q+1)+βθi + ( c21

χ1Ω
)2 (

`21 + κ21)] ,
B2 = 12c2

[
− T212 (q+1)+βθi + ( c22

χ2Ω
)2 (

`22 + κ22)] ,
C1 = 4µχ1χ2c21

T1 ,
C2 = − 4µχ1χ2c22

T2 ,
D1 = χ21

[2a+ µ2χ2
T1T2

(
χ2c21 − χ1F)] ,

D2 = −χ22
[2a+ µ2χ1

T1T2
(
χ1c22 − χ2F)] ,

a = µ4(q+1+2βθi) [(q+ 1) (3− q)− 4β θ2
i
]
,

F = 2c1c2 + 13αγχ1χ2.



(13)

The first- (second-) term on the right hand side of Eq. (12)is proportional to η (ξ) because the integrated functionis independent of η (ξ) . Thus, the first two terms ofEq.(12) are secular terms, which must be eliminated toavoid spurious resonances [50, 51]. Hence we have
∂φ11
∂τ + A1φ11 ∂φ11

∂ξ + B1 ∂3φ11
∂ξ3 = 0

∂φ12
∂τ − A2φ12 ∂φ12

∂ξ − B2 ∂3φ12
∂ξ3 = 0

 (14)

Equation (14) represents two–side travelling Korteweg deVries (KdV) wave equations in the reference frames of ξand η, respectively, where their solutions are
φ11 (ξ, τ) = φA sech2 [√A1φA12B1

(
ξ − 13A1φAτ

)]
,

φ12 (η, τ) = φB sech2 [√A2φB12B2
(
η + 13A2φBτ

)]
,

(15)
φA = 3UA/A1 and φB = 3UB/A2 are the amplitudes of thetwo solitons S1 and S2 in their initial positions. UA (UB)is the initial velocity of soliton S1 (S2).It is clear that the third-and fourth- terms in Eq. (12) arenot secular terms in this order, but they would generatesecular behaviours in the next orders [50, 51]. Therefore,they must vanish to control the equations of the phaseshifts

∂Po
∂η = −D1

C1 φ12,
∂Qo

∂ξ = −D2
C2 φ11.

 (16)

Hence, up to O
(
ε2), the trajectories of the two IASWs,for weak oblique collision, are,

ξ = ε (κ1x + `1y+ χ1z − c1t)− ε2D1
C1
√12B2φB

A2
{

tanh
[√

A2φB12B2
(
η + 13A2φBτ

)] + 1}+ ...,

η = ε(κ2x + `2y+ χ2z − c2t)− ε2D2
C2
√12B1φA

A1
{

tanh
[√

A1φA12B1
(
ξ − 13A1φAτ

)]
− 1} + ...

 (17)

Now, to obtain the actual phase shifts after the obliquecollision of the two solitons, we suppose that the two soli-tons S1 and S2 are far from each other at an initial time(τ = −∞), i.e., soliton S1 is at ξ = 0, η = −∞ and theother soliton, S2 is at η = 0, ξ = +∞, respectively. Aftera collision (τ = +∞), the soliton S1 is propagating to theright of the second soliton S2 , i.e., soliton S1 becomes at
ξ = 0, η = +∞ and S2 is at η = 0, ξ = −∞. Using Eqs.(15)-(17), we can calculate the phase shift changes; ∆Poand ∆Qo, [50, 51] as,

∆Po = −2ε2D1
C1

√12φBB2
A2 ,

∆Qo = 2ε2D2
C2

√12φAB1
A1 .

 (18)

3. Discussions and conclusion

In this section, we present a number of numerical illus-trations to show the dependence of the calculated colli-sion phase shift on the plasma parameter variations. Theselected parameters values are inspired by the recordedrecent experimental data of multicomponent plasma ex-periments [21–24, 28], though we focus on the case ofheavier negative ion magnetized multicomponent plasmaAr+-SF−6 and Xe+-SF−6 (µ < 1). The selected physicalparameters are taken as ε = 0.1, µ = 0.1, θn = 0.02,
θi = 10, β = 1.5, Ω = 0.4 and δ = π/2.55 (with
κ1 = `1 = χ1 = −κ2 = `2 = χ2 = 1/√3). Any changesin these parameters will be stated in the figure caption.First, let us examine the polarity of the IASWs. Since
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Figure 1. The colliding process of two IASWs. The solitons have
negative polarity and are rarefactive in negative ion num-
ber density, nn.

Figure 2. Space-time plots of two colliding IASWs for (a) δ = π/2.55
(with κ1 = `1 = χ1 = −κ2 = `2 = χ2 = 1/√3) (b) δ = π/2
(with κ1 = −κ2 = 1, `1 = χ1 = `2 = χ2 = 1/√2), and (d)
δ = π (with κ1 = `1 = χ1 = −κ2 = −`2 = −χ2 = 1/√3).

B1and B2 are always positive, the IASWs are compres-sive if A1 and A2 > 0 and rarefactive if A1 and A2 < 0.For the case at hand, it is found that both A1 and A2 arealways negative. Therefore, in the system under consid-eration, there are only rarefactive IASWs. Figure 1 showsthe oblique collision of two nonlinear IASWs which resultsas rarefaction of negative ion number density. It is shownthat when two IASWs obliquely collide, a new nonlin-ear wave is formed during their collision (i.e., blue region)which moves ahead of the colliding IASWs; both its ampli-tude and width are larger than those of colliding IASWs,as depicted in Fig. 1. Owing to the formation of this newnonlinear wave, the IASWs after the oblique collision aredelayed. Thus, the phase shift depends directly on a new

formed nonlinear wave structure. It is remarked that thephase shifts within the range 0 < δ < π/2 are larger andnoticeable than that of π/2 < δ < π. Space-time contourplots of two colliding IASWs are presented in Fig 2 fordifferent angles δ . They show that increasing δ results inincreasing the width of the produced IASW at the pointof collision for 0 < δ < π/2. However, the opposite re-sponse is occurred against increasing δ for π/2 < δ < π.These features can be recognized by comparing the blueregion in the center of each panel (the region where col-lision occurs; a new wave is created) with other panels.We note that, during the oblique collision an essentiallymotionless composite structure is created for some time.Figure 3 show contour plots of ∆Qo variations in µ − βplan in panel (a), in q−θn plan in panel (b) and in panel(c) in Ω − α plan. It reveals that ∆Qo increases as ei-ther µ, β or q increases, though it decreases as θn, α orΩ increases. In other words, introducing either heavieror hotter negative ions results in a smaller phase shift.Moreover, increasing the number density of negative ionspecies results in a decline of phase shifts. The influenceof stronger magnetic field is to reduce the phase shift. Oncontrary, including more nonextensive electrons increasesthe collision phase shifts.To conclude, we have presented a study of the oblique col-lision of two nonlinear IASWs in a hot magnetized multi-component plasma consisting of heavy negative ions fluid,positive ions and nonextensive electrons. The presentmodel supports rarefactive solitons only. The phase shiftsand the trajectories describing the collision of two IASWsare calculated using the EPLK method. The analyticalfindings are numerically investigated revealing that themagnitude of the phase shift depends directly on the elec-tron nonextensive parameter. However, it is revisal propor-tional to their number density and mass and the strengthof the applied magnetic field.Finally, it may be pointed out that the present results arevery useful in explaining the oblique collision of IASWswaves in multicomponent plasma experiments with nonex-tensive electrons. The proposed theoretical model wouldbe applied to other astrophysical situations where nonex-tensive electrons are present by appropriate choices of thephysical parameter numerical values.
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Figure 3. The variation of ∆Qo are plotted for δ = π/2.55 (with
κ1 = `1 = χ1 = −κ2 = `2 = χ2 = 1/√3) and for dif-
ferent plans; in (a) for µ − β plan, with q = 2, in (b) in the
q − θn plan, and in (c) in the Ω − α plan. The number
appeared besides each contour indicates the value of the
corresponding phase shift ∆Q.
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