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Abstract:

The spectral characterization of Coulomb systems confined by a homogeneous pseudo-Gaussian oscillator

is investigated. This is done using the efficient computational method of generating functionals. Also, this
method is used for the spectral characterization of homogeneous harmonic oscillator confinement, treated
as a particular case of pseudo-Gaussian oscillator confinement. Finally, confinement by an impenetrable
sphere of finite radius is considered by studying its conjugate effect along with a harmonic oscillator.
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1. Introduction

Coulomb systems are still of interest in literature and are
used as a model in many domains of applied physics.
Atomic physics is an extensive domain, where soft-core
(truncated) Coulomb systems are used to describe the in-
teraction of intense laser fields with atoms [1, 2]. Models
of hydrogen-Llike atoms in different confinement situations
are used to simulate the effect of high pressure on atomic
static dipole polarizability. One of these models, known
as hard confinement, is an impenetrable sphere of finite
radius confining the atom [3] Sommerfeld and Welkerto
obtained the wave function solution in terms of confluent
hypergeometric functions and emphasized that this model
can be used to predict the line spectrum of hydrogen-like

*E-mail: felix@physics.uvt.ro

atoms in the outer atmosphere [4]. Soft confinement of
Coulomb systems was introduced by superimposing De-
bye screening [5]. This leads to the idea of using the
harmonic oscillator (HO) for atom confinement, known as
the soft wall confinement (SWC) model. The asymptotic
iteration method (AIM) was used [6] for the spectral char-
acterization of a spherically confined —a/r 4+ br? poten-
tial. In one of his papers, studying the Zeeman effect,
Avron [7] considered a Hamiltonian in which the Zeeman
potential in a uniform magnetic field is replaced by the
rotationally symmetric one V o r?. Using WKB tech-
niques, he derived the large-order behavior of the per-
turbation series for all energy levels. The large-order
behavior of the SWC system was also studied by Janke
and Kleinert [8], exploiting the idea that the Coulomb sys-
tem in three dimensions can be mapped onto an oscillator
system in four dimensions, and this was done using the
Bender-Wu formulas. Recently, the physical model of the
pseudo-Gaussian oscillator (PGO) was introduced in [9]
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for Schrodinger and in [10] for Klein-Gordon systems, and
the energy levels were determined using the generating
functional method (GFM). The PGO potentials have HO
properties approaching zero and include the genuine HO
potential as a limit. It is well known that the HO poten-
tial has an infinite number of equidistant energy levels;
however, PGO potentials have a finite number of energy
levels and the interval between two consecutive levels in-
creases slightly on higher levels. The GFM is a computa-
tional method developed to solve the eigenvalue problem
by integration and to evaluate the expectation values for
energy levels of physical systems through successive dif-
ferentiation. This is an accurate method which works well
for systems with a finite number of energy levels.

One aspect we would like to present in this paper is the
spectral characterization of the atom spherically confined
by the pseudo-Gaussian oscillator, using the GFM. We
will say this is a finite soft wall confinement (FSWC)
model. Also, the energy spectra for SWC, found as a par-
ticular case of FSWC, is evaluated with the same tech-
nique, and the data values obtained are compared with
those in the literature. Another aspect we would like to
present is how the energy level values of the SWC system
vary when introducing confinement by an impenetrable
sphere of finite radius. We will show that the degeneracy
of energy states for a free atom are lifted in the case of
confinement.

The original inspiration for confinement came from atoms
under extreme pressure and heat. Another example is the
atom within a solid, where the idea is that an atom con-
fined in a Wigner-Seitz cell might develop a conduction
band. If we retain this idea, then the process by which the
electron becomes "free” should perhaps be described as
"delocalisation” rather than ionization. This arises when
the ground state energy of the confined atom rises above
the ionization threshold of the free atom. Considering
this, we propose this PGO confinement model for a bet-
ter understanding of both the atom under extreme pressure
and heat and metal-insulator transitions, by providing en-
ergy values for an electron in such perturbed atoms. PGO
can also be used as a confinement model in the behavior
of novel nano-structures such as quantum dots, quantum
wires and other micro-electronic devices [11]. As men-
tioned above, the PGO model admits a finite number of
energy levels. These levels can be manipulated by choos-
ing a numerical value for the reference energy A which sets
the depth of the potential well. From this point of view,
this PGO confined model is actually closer to reality for
these nano-devices.

Over time, other computational and approximate mathe-
matical methods have been developed and used to solve
the eigenvalue problem of the Schrodinger equation with

different types of potentials which cannot be analyti-
cally solved. Let us mention some of them: the varia-
tional method [12], the functional analysis method [13],
the supersymmetric approach [14], the asymptotic itera-
tion method [15], and the factorization method [16]. Also,
there are other known adapted methods to the various
cases of exact quantization [17, 18].

The paper is organized as follows: Section (2) is dedi-
cated to the physical model with a review of the pseudo-
Gaussian potential, Section (3) provides a brief exposure
to the standard GFM, Section (4) shows how the GFM
works for the physical model considered here and Sec-
tion (5) presents the calculated spectral characterization
results for atom confinement.

2. The physical model

Let us consider the radial part of the three-dimensional
Schrodinger time-independent equation HY = Ey. The
Hamiltonian H, given in atomic units,

H = —%A+ V(r), (1)

introduces the potential V/(r):

Vi) = 1+ W3, (), @)

where, for confinement, the pseudo-Gaussian potential,
W; ,(r) is added to the hydrogen atom potential

Wi, (r) =

A+ i Cerk) exp(—urz) , (3)

k=1
with the coefficients C; defined as

k
C = (A +kf<)u . (4)

The properties of these models are completely determined
by the dimensionless parameters p, A € R and the pos-
itive integer s = 1,2, ... which is called the order of the
PGO. We note that the genuine Gaussian potential cor-
responding to s = 0 is not included in this family. The
potentials defined by Egs. (3) and (4) have the remarkable
property that they approach the potential of the HO when
r — 0. Moreover, it can be proved that for each order s,
the Taylor expansion of these potentials,

Wi () = A+ pr? + 0(r**?), )

St=IS]
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Figure 1. The pseudo-Gaussian oscillator potential graph compared
with harmonic oscillator potential one.

does not include terms proportional to r, r®, ..., r%.

Therefore, when s increases, the potential (3) is approach-
ing that of the HO and the potential (2) becomes:

Vir)= —1; + %&)Zrz (6)

with centrifugal constant & = \/2p measuring the strength
of confinement. In Figure (1), the graphs of both the PGO
and HO are shown to illustrate their similar shapes in the
vicinity of the origin.

Taking into consideration that [({ + 1) represents the
eigenvalue of the square of the angular-momentum op-
erator, the radial part of H can be written explicitly as:

1(d* 2d I(l+1)

2\dr2 " rdr 212

+ V() /)

and with the potential (2) we can study the radial
three dimensional Schrodinger eigenvalue problem for the
pseudo-Gaussian potential confinement, i.e. the FSWC
model. In the particular case of SWC, the potential (6)
is used in the Hamiltonian (7), so we get the radial three
dimensional Schrodinger eigenvalue problem for HO con-
finement.

3. The
method

generating  functional

To apply the GFM to this model, it is necessary to spec-
ify a basis for the Hilbert space of states. Considering
hydrogen atoms in different confinement situations, it is
suitable to make use of their radial wave-functions as a
canonical basis for the Hilbert space. The radial functions,
solutions to the Schrodinger time-independent equation

for hydrogen-like atoms, are given in terms of Laguerre
polynomials by:

2 =1 ., f2r\! 2
Rou(r) = 3 7(’7(” oy ) e n (—nr) L2 (T:) )
(8)

The generalized Laguerre polynomials may be written
with the help of a generating function and according to
[24] are:

1 0

L) = i agn (1 = o) " ewt

’

0=0

where in our case x is replaced with (), p with n—[—1
and a with 2( + 1, with n and [ the well known principal
and orbital quantum numbers.

For any radial operator X, we can calculate the generating
functional as:

Z(t,0)X] = /000 dr r? Ry (r)[XR,/)(r), 9)

The matrix elements of the operator X, can be derived
from the generating functional (9) as follows:

('l X|nl)= oy, ﬁag’agzw, 7)[X] . (10)

o=1=0

For spectral characterization, X is replaced with the spe-
cific Hamiltonian operator.

The physical problem of studying the atom in different
confinement situations allows us to view the Hamilto-
nian (7) as made up by the part H, = —%A, - 17 de-
scribing the atom and the perturbative part H; = W} (r)
describing the confinement. This approach can be found
in the literature, for example in Ref. [22]. This justifies
the choice made at the beginning of this section to calcu-
late the generating functional (9) in the canonical basis
of atom (8) using Laguerre polynomials. The generating
functional is rewritten as:

Z(t, 0)[H] = Z(t, 0)[Hs] + Z(7, 0)[Hi), (11)

so the energy levels of the system are corrective to those
of the atom and follows from

(n"l|H|nl) =
1

81,1 —— |04 012(0, T Ho] + 05 012 (0, T H]
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In the computation process, N steps of differentiation have
been taken, so we obtain an (N x N) matrix which in gen-
eral is not a diagonal one, due to the perturbative term. To
obtain the values of the energy levels, the matrix (12) will
be subject to a diagonalization process. The effective cal-
culation of generating functional (11) is made by solving
the integrals appearing in the kinetic part Z(t, 0)[—31A]
as well as in the potential part Z(t, 0)[r~"] along with
Z(t,0)[W;,(r)]. This will be presented in the following
section.

4. The generating functional in the
case of hydrogen-like atom confine-
ment

In the case of potential (2), the GF (11) can be organized
as a sum of terms:

Z(t, 0)[H] =Z(t, 0) [—%A] +Z(t,0)[r] ")

+Z(t,0) [Wy,(n].

In the evaluation process, the advantage of this method
is that the integrals (13) reduce to known Gaussian ones.
To do so, we have to specify the shape of the potential,
i.e., to give the order s and the coefficients p and A. In
this paper, our computations are made with potentials of
order s = 3, a case in which the potential (5) expands as

Wi ) = At + (14)
(= —50)u'r+ (5= 5) w7 +
(=35 = 75) 1°r'* + (55 — 5t ) 1'r'" + -

Having the explicit form of potential ij(r), it is ob-
served that the GF (13) consists of a sum of terms con-
taining different powers of r,

Z(t,0)H =) _ Z(t,0)[r].
P (15)

k=1{-1,028,10,12,...}
with the calculated terms
Z(t, 0) [rk] = 221 ()lek
e o

QL+ k+2)! [(1 = o)1 — 1)
[(n+ (1 —a1) + (0" — n)(o — T)2i+k+3’

where k takes the value {0} for the kinetic part, the first
term in (13); {—1} for the atom part, the second term
in (13); {2} for the HO part from the pseudo-Gaussian
potential (14); and {8,10,12, ...} for the next terms with
higher power coming from the pseudo-Gaussian potential
expansion (14). In the case when s — oo, the potential
(2) tends to the potential (6) whereupon the GF (15) is
stripped of the higher power terms and becomes

Z(t,0)|H] = Z(7, 0) [—%A] +Z(t,0)[r]
(17)

JEEN

+ E(:)ZZ(T, o)[r].
the GF for the SWC.

5. Numerical results

The energy values €, are obtained using the matrix ele-
ments given by

1 . 0 an k
&, = 0,1 —;Diag [auar ;zu, 0)[r¥]

] . (18)
o=1=0

where Diag stands for the diagonalization procedure of
the matrix. First, the code was tested in the particular
case of the hydrogen atom where the generating functional
(15) is:

2
Z(t, 0)[Ha] = 2,17,2 (t‘r’) = [1 +

T+11+0
no1-— ‘r] )
(19)
The numerical values of energy, calculated with (18), re-
spect the known analytical relation ¢, = —% so E, =
enEo with Eg =13.6ev (n =1,2...). This confirms that
the code is working properly and the values have been ex-
actly retrieved, as they are known values. Next, we have
added the pseudo-Gaussian potential in the code to deter-
mine the energy spectrum for the FSWC. The calculated
numerical values of energy are presented in Figure (2).
The levels up to a critical number are negative, known as
bound states, and the rest are positive. In other words,
the energy spectrum of the confined atom does not be-
long entirely to the negative domain, as happens in the
case of the free atom. We can say that, after the ion-
ization of the atom, the electrons can take only a certain
amount of energy. This seems to be reasonable in the
case of confinement—discrete spectra with positive ener-
gies were also reported in the literature (one may consult
[3, 4]). Furthermore, an inflection point is observed at the
boundary between the negative and positive domains of
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Figure 2. The calculated energies ¢, of a PGO confined atom, with
s=3,p=2x10""and N = 20.

energy levels. This occurs because the first energy lev-
els are near the nucleus of the atom and are controlled
by the Coulomb part of the potential. Moving away from
the nucleus, the PGO potential becomes dominant and the
levels become more distant from each other. The number of
energetic values depends on the strength of confinement,
so changing p changes the number of negative energetic
values. Also, changing s changes the number of positive
energetic values.

The eigenstates with positive eigenvalues are meta-stable
states. A particle that is bound by some attractive force is
able to escape even if it lacks the energy to overcome the
attractive force. Classical physics predicts that such be-
havior is impossible. However, the fuzziness of nature at
the sub-atomic scale, inherent in quantum mechanics, im-
plies we cannot know precisely the trajectory of a particle;
this uncertainty means the particle has a small but non-
zero probability of suddenly finding itself outside. We say
it has tunneled through a potential energy barrier created
by the attractive force. The shape of the PGO potential,
Figure (1), appears like a well bordered by barriers. Thus,
this potential admits eigenstates with positive energies,
known as meta-stable states or resonances.

The transmission amplitude T of these meta-stable states
through the bordering barriers can be estimated with the
help of the transfer matrix M on a finite domain. An exten-
sive presentation of the transfer matrix method is provided
in [19]. Roughly speaking, the idea is that one can con-
sider a barrier potential made of successive narrow con-
stant barriers. In this way we express the transfer matrix
M as a product of matrices M;. Each M; characterizes the
effect of individual discontinuities of the “i-th” sector and
so the propagation through the entire discretized structure
is M =[], M; taken in the proper order. The transmission
amplitude expressed in terms of the transfer matrix can be

; AT
108 P

2

3 4 5 6 7 8
E(eV)

Figure 3. The calculated transmission amplitude of PGO [9].

written as [20]:
1

= — 20
|M11|2 ( )

A peak of the transmission amplitude corresponds to a
resonant eigenstate [21]. In accordance with [9], four res-
onant states are found for the potential shape (s = 3)
under consideration, corresponding to the four peaks as
shown in Figure (3). Thus, the positive spectrum of the
FSWC system consists of four resonant states overlapping
the continuous spectrum of energies. In an approach that
computes the wave functions, it is possible to predict the
resonances’ life time.

As the numerical data is not so accurate, by reading Fig-
ure (2), we give the values of the energy levels, expressed
in atomic units, in Table (1). We observe that the val-
ues for the first energy levels, closer to the nucleus, in
the case of confinement do not differ very much from the
first levels of the free atom. The difference between these
values becomes apparent only for levels distant from the
nucleus. As one can observe, by confinement, the outside
levels are energetically more affected.

Table (1) also presents the calculated numerical data for
HO confinement and PGO confinement with s = 18. As
we mentioned above, parameter s measures the closeness
of the PGO potential to the HO potential. As one can see,
the numerical data are closer to the HO data for s = 18
than for s = 3, but this trend is not very pronounced and
hardly visible. To see how the atom behaves in transi-
tion from the PGO to HO confinement, calculations were
made by taking higher orders of PGO. Because the val-
ues modify slightly with s, we will present directly the
numerical results for HO confinement as the limit of the
PGO confinement when s equals infinity by means of a
limit process. We will use the same technique to calcu-
late the energies g,, for this potential, having now & as a
measure of confinement strength. The behavior of energy
levels for some values of & are represented graphically
as a function of quantum number n in Figure (4). The
numerical data values in the case of @ = 107% are also
given in Table (1). We have compared these data with
those obtained by Janke and Kleinert; following the re-
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Table 1. The perturbed energy level corrections for a free atom with PGO and HO confinement, in (a.u.).

n Free atom PGO confinement PGO confinement HO confinement

s=3 s=18 w=10"5

1 -1.000000 -0.999994 -0.999994 -0.999997

2 -0.250000 -0.249916 -0.249916 -0.249958

3 -0.111111 -0.110697 -0.110697 -0.110904

4 -0.062500 -0.061204 -0.061204 -0.061852

5 -0.040000 -0.036850 -0.036850 -0.038425

6 -0.027778 -0.021262 -0.021262 -0.024520

7 -0.020408 -0.008354 -0.008354 -0.014381

8 -0.015625 0.004919 0.004919 -0.005353

9 -0.012346 0.020540 0.020540 0.004097

10 -0.010000 0.040100 0.040100 0.015050

11 -0.008264 0.065062 0.065062 0.028399

12 -0.006944 0.096880 0.096879 0.044968

13 -0.005917 0.137057 0.137056 0.065570

14 -0.005102 0.187174 0.187172 0.091036

15 -0.004444 0.248906 0.248897 0.122231

16 -0.003906 0.324030 0.323999 0.160062

17 -0.003460 0.414433 0.414335 0.205487

18 -0.003086 0.522114 0.521829 0.259516

19 -0.002770 0.649180 0.648406 0.323213

20 -0.002500 0.797828 0.795860 0.397700
T turbation series. In Figure (4), the energy levels for the
s ° atom are also represented by dashed lines. This is the
r . ¢ case of no confinement (@ = 0) and as it is observed, the

T ° ] values of energy levels remain below zero.

e “r L° ¢ ] Next we ask at what confinement strength magnitude the
Tk hes2 22l cszerrr ] negative energies disappear. It was found that for & = 1/3

Figure 4. The calculated energies ¢, for & = {0, 10~%, 10-°}.

lation (33) for the energy from their paper [8], we have
found that our work is the case p = 2 and D¢ = 3. The
calculated perturbation coefficients, Table (lll) from their
work, give energies with values comparable to those pre-
sented here in Table (1), HO column. However, a slight
difference between the values for higher levels is found.
We think this happens due to the evaluation process of
energies. We give the energies as calculated elements of
a diagonalized matrix while they give the energies from
a calculation based upon large order behavior of the per-

and above there are no negative energies. This case is
presented in Figure (5), and one may say there is a value
for @ above which the atom influence is missing. Let
us denote this with @, and consider this as the critical
value which accomplishes the condition of positive ener-
gies, € > 0 for all ® > @&.. The numerical values of &,
are found to be high for ground state, in comparison with
other energy levels. As mentioned above, for the lowest
orbital 1s (n = 1, [ = 0) the calculated critical value is
@, = 1/3. This result is in concordance with the one ob-
tained in Ref. [6] where an analogous value of &, denoted
by b, was calculated using an asymptotic iteration method
with the value b, = 0.32533. The calculated critical val-
ues for orbitals {1s,...4f} are presented in Table (2).
The range of the critical values is upper-bounded by the
one corresponding to orbital 1s and values decrease, as
calculations show, for higher orbitals.

In a confined system, it is interesting to investigate the
aspect of degeneracy of the energy. To do this, the in-
tensity of confinement is controlled by varying ®; starting
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Figure 5. & = 1/3 means positive energy only.

Table 2. Critical values for &. above which all energies are positive.

orbital 4 4d 4p 4s 3d
e 0.000173 0.000125 0.000105 0.000097 0.000882
b. 0.00015 0.00010 0.00008 0.00007 0.00079

orbital 3p 3s 2p 2s 1s
We 0.000618 0.000537 0.008334 0.005953  1/3
be 0.00051 0.00042 0.00771 0.004831 0.32533

A A

from the free atom (@ = 0), the effect of finite & is to
remove the accidental degeneracy and raise the energy
levels. The orbitals 4s4p 4d 4f were considered to see
how degeneracy is removed with @ and the results are
presented in Figure (6). At small values of @, the ener-
gies of the orbitals are almost identical—this is the free
atom case; further increase of @ by a small amount has
as consequences the separation of energy levels of or-

€(a.u.)

0.04 -

L L L L 1 L L
5e-05 0.0001 0.00015 0.0002
[

0.06
0

Figure 6. The degeneracy is removed as shown for the orbitals
4s4pAdaf.

T
®=7x10"

L orbital 1s 4
n=1, 1=0

05 ®@=5x10" |

®=4x10"

®=3x10"

@=2x10"

®=10"

®@=5x10"

e ®=10" N

Rau)

Figure 7. Energy dependence of orbital 1s with both types of con-
finement.

bitals. Thus for fixed n, the higher [ is, the smaller the
corresponding energy is. In other words, the states get
relatively less destabilized.

Let us consider the confinement of an impenetrable sphere
(hard confinement) of finite radius R of the system (1)
with the potential (6). Mathematically, hard confinement
means that the integrals from relation (16) will be made
on a domain bounded by a sphere with radius R, but
not smaller than one atomic radius, R > 1. To see how
hard confinement affects the states of atom confined by
the HO system, the radius R will range and @ will be
taken as a parameter. Our calculations have been per-
formed on the ground energy level, the orbital 1s and the
orbital 5g. The behavior of the energy of orbital 1s is
presented in Figure (7), with & taking values in the set
{1075, 5x 1072, 107", 2 x 107", 3 x 107", 4 x 107", 5 x
107", 7 x 10" } Let us notice that we can divide the
domain of values of R into three regions according to
how confinement affects energy. The first region, as R
increases, is in a vicinity of R = 1a.u. where the sphere
is very close to the atom. This annihilates the vibrational
movement due to HO confinement, so the energy levels do
not depend on @ and the value of energy is € = —%a.u.,
which represents the equivalent of the second energy level
(n = 2) for the free atom. The second region follows im-
mediately and ranges until a threshold value R, =5a.u..
This is the region where both types of confinement are ex-
plicit. The third region ranges beyond the threshold value
R > Ry. Here, the effect of hard confinement is weak, so
the energy remains almost constant. Let us discuss in de-
tail what occurs in the second region. For relatively small
& ~ 107>, this is a weak SWC, it is observed that as R
is increased the energy goes down and stabilizes around
the value of free atom, i.e. € & —1a.u.. This is quite well
because in this conditions the atom is almost free. It is
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Figure 8. Energy dependence of orbital 5g with both types of con-
finement.

interesting to see the effect of conjugate action for both
types of confinement for values of & =~ 10~". One can
see in figure (7) that the energy as function of radius of
sphere presents a minimum. This behavior does not exist
for the side values of @ ~ 10 and & ~ 7 x 107", so it
seems there is a resonant region, & € [5x107%, 5x107"],
where the two types of confinement, somehow, annihilate
each other and the energy tends to decrease towards the
free atom one.

The behavior of energy of orbital 5g is presented in Fig-
ure (8). At first glance, the results presented in Figures (7)
and (8) look similar: the shape of the energy as a func-
tion of sphere radius is preserved and we also have the
same three regions. A closer look indicates that the value
ranges of R, @ and the energy values € are different. The
first region is in a vicinity of R = 25a.u; this value is suf-
ficient for hard confinement to annthilate the SWC for this
external energy level. The resonant region of conjugate
action extends up to a threshold value of R, = 50a.u.
and the value for SWC falls to & ~ 107°. This is normal
because the exterior orbitals are supposed to be affected
much more by confinement than the inner ones.

It has been shown in the literature that, in a confined sys-
tem, a state with anqular momentum (/+1) is more strongly
bound than one with [, which is vice versa from the auf-
bau principle corresponding to a free atom. Taking into
consideration the property of monotonicity of the range
of energies, it is possible to give rise to crossing pairs of
states (n, l) and (n’, ') with n” > n,l' > [. Our computa-
tion, made in the resonant region of & =~ 107>, shows the
existence of crossing states and the results are presented
in Figure (9).

In this work, we have obtained novel results about
the spectral characterization of perturbed hydrogen-like
atoms. We have introduced the PGO as an oscillating

-0.02 T T T T T

-0.04 —

)

€@

-0.05

-006 —

2007 | | | |
Reu) )

Figure 9. Crossing energy states: The level 4d is observed crossing
3d and 3s. Also, 5g crosses 4f.

system to confine the atom. This allows the existence
of discrete positive energy spectra for the system. The
existence of an inflection point between the negative and
positive energy levels was indicated, and the critical value
&, was calculated for each orbital from 1s to 4f. It was
shown that in the case of confinement, the accidental de-
generacy of the free atom is removed and also the energy
increases as strength of confinement is increased. On the
other hand, orbitals with the same n are relatively less
destabilized as [ increases. The effects of conjugate action
of hard confinement together with HO upon the atom en-
ergy levels were studied. We found that the energy levels
as a function of sphere radius have a minimum given by a
resonant action of both types of confinement. Finally, the
crossing pair of energy states is calculated—they appear
due to confinement and apparently are in contrast with the
aufbau principle corresponding to the neutral free atom.

We consider this model to be useful in the explanation of
the metal-insulator transition (MIT), also called the Mott
transition. An atom in an insulator material is subjected to
external excitations which are modeled as an oscillating
system confinement and which may cause atom ionization
and raising of the electron to the conduction band. This
effect produces a spontaneous transition from insulator to
metal by means of the flow of an electrical current. The
electrical conductivity of FeO as a function of pressure
and temperature was recently measured ([23]). Although
insulating as expected under ambient conditions, it was
found that FeO metalizes at high temperatures. Electrical
conductivity of FeO was measured up to 141 GPa and
2480 K in a laser-heated diamond-anvil cell.
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