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Abstract: The spectral characterization of Coulomb systems confined by a homogeneous pseudo-Gaussian oscillator
is investigated. This is done using the efficient computational method of generating functionals. Also, this
method is used for the spectral characterization of homogeneous harmonic oscillator confinement, treated
as a particular case of pseudo-Gaussian oscillator confinement. Finally, confinement by an impenetrable
sphere of finite radius is considered by studying its conjugate effect along with a harmonic oscillator.
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1. Introduction

Coulomb systems are still of interest in literature and areused as a model in many domains of applied physics.Atomic physics is an extensive domain, where soft-core(truncated) Coulomb systems are used to describe the in-teraction of intense laser fields with atoms [1, 2]. Modelsof hydrogen-like atoms in different confinement situationsare used to simulate the effect of high pressure on atomicstatic dipole polarizability. One of these models, knownas hard confinement, is an impenetrable sphere of finiteradius confining the atom [3]. Sommerfeld and Welkertoobtained the wave function solution in terms of confluenthypergeometric functions and emphasized that this modelcan be used to predict the line spectrum of hydrogen-like
∗E-mail: felix@physics.uvt.ro

atoms in the outer atmosphere [4]. Soft confinement ofCoulomb systems was introduced by superimposing De-bye screening [5]. This leads to the idea of using theharmonic oscillator (HO) for atom confinement, known asthe soft wall confinement (SWC) model. The asymptoticiteration method (AIM) was used [6] for the spectral char-acterization of a spherically confined −a/r + br2 poten-tial. In one of his papers, studying the Zeeman effect,Avron [7] considered a Hamiltonian in which the Zeemanpotential in a uniform magnetic field is replaced by therotationally symmetric one V ∝ r2. Using WKB tech-niques, he derived the large-order behavior of the per-turbation series for all energy levels. The large-orderbehavior of the SWC system was also studied by Jankeand Kleinert [8], exploiting the idea that the Coulomb sys-tem in three dimensions can be mapped onto an oscillatorsystem in four dimensions, and this was done using theBender-Wu formulas. Recently, the physical model of thepseudo-Gaussian oscillator (PGO) was introduced in [9]
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for Schrödinger and in [10] for Klein-Gordon systems, andthe energy levels were determined using the generatingfunctional method (GFM). The PGO potentials have HOproperties approaching zero and include the genuine HOpotential as a limit. It is well known that the HO poten-tial has an infinite number of equidistant energy levels;however, PGO potentials have a finite number of energylevels and the interval between two consecutive levels in-creases slightly on higher levels. The GFM is a computa-tional method developed to solve the eigenvalue problemby integration and to evaluate the expectation values forenergy levels of physical systems through successive dif-ferentiation. This is an accurate method which works wellfor systems with a finite number of energy levels.One aspect we would like to present in this paper is thespectral characterization of the atom spherically confinedby the pseudo-Gaussian oscillator, using the GFM. Wewill say this is a finite soft wall confinement (FSWC)model. Also, the energy spectra for SWC, found as a par-ticular case of FSWC, is evaluated with the same tech-nique, and the data values obtained are compared withthose in the literature. Another aspect we would like topresent is how the energy level values of the SWC systemvary when introducing confinement by an impenetrablesphere of finite radius. We will show that the degeneracyof energy states for a free atom are lifted in the case ofconfinement.The original inspiration for confinement came from atomsunder extreme pressure and heat. Another example is theatom within a solid, where the idea is that an atom con-fined in a Wigner-Seitz cell might develop a conductionband. If we retain this idea, then the process by which theelectron becomes ”free“ should perhaps be described as”delocalisation“ rather than ionization. This arises whenthe ground state energy of the confined atom rises abovethe ionization threshold of the free atom. Consideringthis, we propose this PGO confinement model for a bet-ter understanding of both the atom under extreme pressureand heat and metal-insulator transitions, by providing en-ergy values for an electron in such perturbed atoms. PGOcan also be used as a confinement model in the behaviorof novel nano-structures such as quantum dots, quantumwires and other micro-electronic devices [11]. As men-tioned above, the PGO model admits a finite number ofenergy levels. These levels can be manipulated by choos-ing a numerical value for the reference energy λ which setsthe depth of the potential well. From this point of view,this PGO confined model is actually closer to reality forthese nano-devices.Over time, other computational and approximate mathe-matical methods have been developed and used to solvethe eigenvalue problem of the Schrödinger equation with

different types of potentials which cannot be analyti-cally solved. Let us mention some of them: the varia-tional method [12], the functional analysis method [13],the supersymmetric approach [14], the asymptotic itera-tion method [15], and the factorization method [16]. Also,there are other known adapted methods to the variouscases of exact quantization [17, 18].The paper is organized as follows: Section (2) is dedi-cated to the physical model with a review of the pseudo-Gaussian potential, Section (3) provides a brief exposureto the standard GFM, Section (4) shows how the GFMworks for the physical model considered here and Sec-tion (5) presents the calculated spectral characterizationresults for atom confinement.
2. The physical model
Let us consider the radial part of the three-dimensionalSchrödinger time-independent equation Hψ = Eψ. TheHamiltonian H , given in atomic units,

H = −12∆ + V (r), (1)
introduces the potential V (r):

V (r) = −1
r +W s

λ,µ(r), (2)
where, for confinement, the pseudo-Gaussian potential,
W s

λ,µ(r) is added to the hydrogen atom potential
W s

λ,µ(r) = (λ+ s∑
k=1 Ckr

2k)exp(−µr2) , (3)
with the coefficients Ck defined as

Ck = (λ+ k)µk
k! . (4)

The properties of these models are completely determinedby the dimensionless parameters µ, λ ∈ R and the pos-itive integer s = 1, 2, ... which is called the order of thePGO. We note that the genuine Gaussian potential cor-responding to s = 0 is not included in this family. Thepotentials defined by Eqs. (3) and (4) have the remarkableproperty that they approach the potential of the HO when
r → 0. Moreover, it can be proved that for each order s,the Taylor expansion of these potentials,

W s
λ,µ(r) = λ+ µr2 +O(r2s+2) , (5)
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Figure 1. The pseudo-Gaussian oscillator potential graph compared
with harmonic oscillator potential one.

does not include terms proportional to r4, r6, ..., r2s.Therefore, when s increases, the potential (3) is approach-ing that of the HO and the potential (2) becomes:
V (r) = −1

r + 12 ω̂2r2 (6)
with centrifugal constant ω̂ = √2µ measuring the strengthof confinement. In Figure (1), the graphs of both the PGOand HO are shown to illustrate their similar shapes in thevicinity of the origin.Taking into consideration that l(l + 1) represents theeigenvalue of the square of the angular-momentum op-erator, the radial part of H can be written explicitly as:

− 12
(
d2
dr2 + 2

r
d
dr −

l(l+ 1)2r2
)+ V (r), (7)

and with the potential (2) we can study the radialthree dimensional Schrödinger eigenvalue problem for thepseudo-Gaussian potential confinement, i.e. the FSWCmodel. In the particular case of SWC, the potential (6)is used in the Hamiltonian (7), so we get the radial threedimensional Schrödinger eigenvalue problem for HO con-finement.
3. The generating functional
method
To apply the GFM to this model, it is necessary to spec-ify a basis for the Hilbert space of states. Consideringhydrogen atoms in different confinement situations, it issuitable to make use of their radial wave-functions as acanonical basis for the Hilbert space. The radial functions,solutions to the Schrödinger time-independent equation

for hydrogen-like atoms, are given in terms of Laguerrepolynomials by:
Rn,l(r) = − 2

n2
√(n − l − 1)!(n+ l)! e− r

n

(2r
n

)l
L2l+1
n−l−1

(2r
n

)
.(8)The generalized Laguerre polynomials may be writtenwith the help of a generating function and according to[24] are:

Lap(x) = 1
p! ∂p∂σp (1− σ )−a−1e xσ

σ−1
∣∣∣∣
σ=0 ,

where in our case x is replaced with ( 2r
n
), p with n−l−1and a with 2l+ 1, with n and l the well known principaland orbital quantum numbers.For any radial operator X , we can calculate the generatingfunctional as:

Z (τ, σ )[X ] = ∫ ∞0 dr r2 Rn′,l(r) [XRn,l] (r) , (9)
The matrix elements of the operator X , can be derivedfrom the generating functional (9) as follows:
〈n′ l′| X |n l〉 = δl′, l

1
n′!n!∂n′σ ∂nτZ (σ, τ)[X ]∣∣∣∣

σ=τ=0 . (10)
For spectral characterization, X is replaced with the spe-cific Hamiltonian operator.The physical problem of studying the atom in differentconfinement situations allows us to view the Hamilto-nian (7) as made up by the part Ha = − 12∆r − 1

r de-scribing the atom and the perturbative part Hi = W s
λ,µ(r)describing the confinement. This approach can be foundin the literature, for example in Ref. [22]. This justifiesthe choice made at the beginning of this section to calcu-late the generating functional (9) in the canonical basisof atom (8) using Laguerre polynomials. The generatingfunctional is rewritten as:

Z (τ, σ )[H ] = Z (τ, σ )[Ha] + Z (τ, σ )[Hi], (11)
so the energy levels of the system are corrective to thoseof the atom and follows from
〈n′ l′| H |n l〉 =
δl′, l

1
n′!n! [∂n′σ ∂nτZ (σ, τ)[Ha] + ∂n′σ ∂nτZ (σ, τ)[Hi]]∣∣∣∣

σ=τ=0 ,(12)
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In the computation process, N steps of differentiation havebeen taken, so we obtain an (N×N) matrix which in gen-eral is not a diagonal one, due to the perturbative term. Toobtain the values of the energy levels, the matrix (12) willbe subject to a diagonalization process. The effective cal-culation of generating functional (11) is made by solvingthe integrals appearing in the kinetic part Z (τ, σ )[− 12∆]as well as in the potential part Z (τ, σ )[r−1] along with
Z (τ, σ )[W s

λ,µ(r)]. This will be presented in the followingsection.
4. The generating functional in the
case of hydrogen-like atom confine-
ment
In the case of potential (2), the GF (11) can be organizedas a sum of terms:

Z (τ, σ )[H ] =Z (τ, σ ) [−12∆] + Z (τ, σ ) [r−1]
+ Z (τ, σ ) [W s

λ,µ(r)] . (13)
In the evaluation process, the advantage of this methodis that the integrals (13) reduce to known Gaussian ones.To do so, we have to specify the shape of the potential,
i.e., to give the order s and the coefficients µ and λ. Inthis paper, our computations are made with potentials oforder s = 3, a case in which the potential (5) expands as
W s=3

λ,µ (r) = λ+ µr2 + (14)(
− 16 − λ24) µ4r8 + ( 18 − λ30) µ5r10 +(
− 120 − 11 λ720 ) µ6r12 + ( 180 − λ360) µ7r14 + . . . .

Having the explicit form of potential W s=3
λ,µ (r), it is ob-served that the GF (13) consists of a sum of terms con-taining different powers of r,

Z (τ, σ )[H ] =∑
k

Zk (τ, σ ) [rk] ,
k = {−1, 0, 2, 8, 10, 12, ...} (15)

with the calculated terms
Z (τ, σ ) [rk] = 22l+1 (nn′)l+k+1
×

√(n − l − 1)!(n′ − l − 1)!(n+ l)!(n′ + l)! (16)
× (2l+ k + 2)! [(1− σ )(1− τ)]k+1[(n+ n′)(1− στ) + (n′ − n)(σ − τ)]2l+k+3 ,

where k takes the value {0} for the kinetic part, the firstterm in (13); {−1} for the atom part, the second termin (13); {2} for the HO part from the pseudo-Gaussianpotential (14); and {8, 10, 12, . . .} for the next terms withhigher power coming from the pseudo-Gaussian potentialexpansion (14). In the case when s → ∞, the potential(2) tends to the potential (6) whereupon the GF (15) isstripped of the higher power terms and becomes
Z (τ, σ )[H ] = Z (τ, σ ) [−12∆] + Z (τ, σ ) [r−1]

+ 12 ω̂2Z (τ, σ ) [r2] , (17)
the GF for the SWC.
5. Numerical results
The energy values εn are obtained using the matrix ele-ments given by
εn = δl′, l

1
n!2 D iag

[
∂nσ∂nτ

∑
k

Z (τ, σ )[rk ]∣∣∣∣∣
σ=τ=0

]
, (18)

where D iag stands for the diagonalization procedure ofthe matrix. First, the code was tested in the particularcase of the hydrogen atom where the generating functional(15) is:
Z (τ, σ )[Ha] = 12n′2

(1 + σ1− τ
)2
−
[1 + τ + 1

n′
1 + σ1− τ

]
.(19)The numerical values of energy, calculated with (18), re-spect the known analytical relation εn = − 1

n2 so En =
εnE0 with E0 = 13.6 ev (n = 1, 2 . . .). This confirms thatthe code is working properly and the values have been ex-actly retrieved, as they are known values. Next, we haveadded the pseudo-Gaussian potential in the code to deter-mine the energy spectrum for the FSWC. The calculatednumerical values of energy are presented in Figure (2).The levels up to a critical number are negative, known asbound states, and the rest are positive. In other words,the energy spectrum of the confined atom does not be-long entirely to the negative domain, as happens in thecase of the free atom. We can say that, after the ion-ization of the atom, the electrons can take only a certainamount of energy. This seems to be reasonable in thecase of confinement—discrete spectra with positive ener-gies were also reported in the literature (one may consult[3, 4]). Furthermore, an inflection point is observed at theboundary between the negative and positive domains of
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Figure 2. The calculated energies εn of a PGO confined atom, with
s = 3, µ = 2× 10−10 and N = 20.

energy levels. This occurs because the first energy lev-els are near the nucleus of the atom and are controlledby the Coulomb part of the potential. Moving away fromthe nucleus, the PGO potential becomes dominant and thelevels become more distant from each other. The number ofenergetic values depends on the strength of confinement,so changing µ changes the number of negative energeticvalues. Also, changing s changes the number of positiveenergetic values.The eigenstates with positive eigenvalues are meta-stablestates. A particle that is bound by some attractive force isable to escape even if it lacks the energy to overcome theattractive force. Classical physics predicts that such be-havior is impossible. However, the fuzziness of nature atthe sub-atomic scale, inherent in quantum mechanics, im-plies we cannot know precisely the trajectory of a particle;this uncertainty means the particle has a small but non-zero probability of suddenly finding itself outside. We sayit has tunneled through a potential energy barrier createdby the attractive force. The shape of the PGO potential,Figure (1), appears like a well bordered by barriers. Thus,this potential admits eigenstates with positive energies,known as meta-stable states or resonances.The transmission amplitude T of these meta-stable statesthrough the bordering barriers can be estimated with thehelp of the transfer matrix M on a finite domain. An exten-sive presentation of the transfer matrix method is providedin [19]. Roughly speaking, the idea is that one can con-sider a barrier potential made of successive narrow con-stant barriers. In this way we express the transfer matrix
M as a product of matrices Mi. Each Mi characterizes theeffect of individual discontinuities of the “i-th” sector andso the propagation through the entire discretized structureis M = ∏iMi taken in the proper order. The transmissionamplitude expressed in terms of the transfer matrix can be

Figure 3. The calculated transmission amplitude of PGO [9].

written as [20]:
T = 1

|M11|2 (20)
A peak of the transmission amplitude corresponds to aresonant eigenstate [21]. In accordance with [9], four res-onant states are found for the potential shape (s = 3)under consideration, corresponding to the four peaks asshown in Figure (3). Thus, the positive spectrum of theFSWC system consists of four resonant states overlappingthe continuous spectrum of energies. In an approach thatcomputes the wave functions, it is possible to predict theresonances’ life time.As the numerical data is not so accurate, by reading Fig-ure (2), we give the values of the energy levels, expressedin atomic units, in Table (1). We observe that the val-ues for the first energy levels, closer to the nucleus, inthe case of confinement do not differ very much from thefirst levels of the free atom. The difference between thesevalues becomes apparent only for levels distant from thenucleus. As one can observe, by confinement, the outsidelevels are energetically more affected.Table (1) also presents the calculated numerical data forHO confinement and PGO confinement with s = 18. Aswe mentioned above, parameter s measures the closenessof the PGO potential to the HO potential. As one can see,the numerical data are closer to the HO data for s = 18than for s = 3, but this trend is not very pronounced andhardly visible. To see how the atom behaves in transi-tion from the PGO to HO confinement, calculations weremade by taking higher orders of PGO. Because the val-ues modify slightly with s, we will present directly thenumerical results for HO confinement as the limit of thePGO confinement when s equals infinity by means of alimit process. We will use the same technique to calcu-late the energies εn, for this potential, having now ω̂ as ameasure of confinement strength. The behavior of energylevels for some values of ω̂ are represented graphicallyas a function of quantum number n in Figure (4). Thenumerical data values in the case of ω̂ = 10−6 are alsogiven in Table (1). We have compared these data withthose obtained by Janke and Kleinert; following the re-
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Table 1. The perturbed energy level corrections for a free atom with PGO and HO confinement, in (a.u.).

n Free atom PGO confinement PGO confinement HO confinements=3 s=18 ω = 10−6
1 -1.000000 -0.999994 -0.999994 -0.9999972 -0.250000 -0.249916 -0.249916 -0.2499583 -0.111111 -0.110697 -0.110697 -0.1109044 -0.062500 -0.061204 -0.061204 -0.0618525 -0.040000 -0.036850 -0.036850 -0.0384256 -0.027778 -0.021262 -0.021262 -0.0245207 -0.020408 -0.008354 -0.008354 -0.0143818 -0.015625 0.004919 0.004919 -0.0053539 -0.012346 0.020540 0.020540 0.00409710 -0.010000 0.040100 0.040100 0.01505011 -0.008264 0.065062 0.065062 0.02839912 -0.006944 0.096880 0.096879 0.04496813 -0.005917 0.137057 0.137056 0.06557014 -0.005102 0.187174 0.187172 0.09103615 -0.004444 0.248906 0.248897 0.12223116 -0.003906 0.324030 0.323999 0.16006217 -0.003460 0.414433 0.414335 0.20548718 -0.003086 0.522114 0.521829 0.25951619 -0.002770 0.649180 0.648406 0.32321320 -0.002500 0.797828 0.795860 0.397700
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Figure 4. The calculated energies εn for ω̂ = {0, 10−5, 10−6}.

lation (33) for the energy from their paper [8], we havefound that our work is the case p = 2 and DC = 3. Thecalculated perturbation coefficients, Table (III) from theirwork, give energies with values comparable to those pre-sented here in Table (1), HO column. However, a slightdifference between the values for higher levels is found.We think this happens due to the evaluation process ofenergies. We give the energies as calculated elements ofa diagonalized matrix while they give the energies froma calculation based upon large order behavior of the per-

turbation series. In Figure (4), the energy levels for theatom are also represented by dashed lines. This is thecase of no confinement (ω̂ = 0) and as it is observed, thevalues of energy levels remain below zero.Next we ask at what confinement strength magnitude thenegative energies disappear. It was found that for ω̂ = 1/3and above there are no negative energies. This case ispresented in Figure (5), and one may say there is a valuefor ω̂ above which the atom influence is missing. Letus denote this with ω̂c and consider this as the criticalvalue which accomplishes the condition of positive ener-gies, ε > 0 for all ω̂ > ω̂c . The numerical values of ω̂care found to be high for ground state, in comparison withother energy levels. As mentioned above, for the lowestorbital 1s (n = 1, l = 0) the calculated critical value is
ω̂c = 1/3. This result is in concordance with the one ob-tained in Ref. [6] where an analogous value of ω̂c , denotedby bc was calculated using an asymptotic iteration methodwith the value bc = 0.32533. The calculated critical val-ues for orbitals {1s, . . . 4f} are presented in Table (2).The range of the critical values is upper-bounded by theone corresponding to orbital 1s and values decrease, ascalculations show, for higher orbitals.In a confined system, it is interesting to investigate theaspect of degeneracy of the energy. To do this, the in-tensity of confinement is controlled by varying ω̂; starting
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Figure 5. ω̂ = 1/3 means positive energy only.

Table 2. Critical values for ω̂c above which all energies are positive.

orbital 4f 4d 4p 4s 3d
ω̂c 0.000173 0.000125 0.000105 0.000097 0.000882
bc 0.00015 0.00010 0.00008 0.00007 0.00079orbital 3p 3s 2p 2s 1s
ω̂c 0.000618 0.000537 0.008334 0.005953 1/3
bc 0.00051 0.00042 0.00771 0.004831 0.32533

from the free atom (ω̂ = 0), the effect of finite ω̂ is toremove the accidental degeneracy and raise the energylevels. The orbitals 4s 4p 4d 4f were considered to seehow degeneracy is removed with ω̂ and the results arepresented in Figure (6). At small values of ω̂, the ener-gies of the orbitals are almost identical—this is the freeatom case; further increase of ω̂ by a small amount hasas consequences the separation of energy levels of or-
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Figure 6. The degeneracy is removed as shown for the orbitals4s4p4d4f .
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Figure 7. Energy dependence of orbital 1s with both types of con-
finement.

bitals. Thus for fixed n, the higher l is, the smaller thecorresponding energy is. In other words, the states getrelatively less destabilized.Let us consider the confinement of an impenetrable sphere(hard confinement) of finite radius R of the system (1)with the potential (6). Mathematically, hard confinementmeans that the integrals from relation (16) will be madeon a domain bounded by a sphere with radius R , butnot smaller than one atomic radius, R > 1. To see howhard confinement affects the states of atom confined bythe HO system, the radius R will range and ω̂ will betaken as a parameter. Our calculations have been per-formed on the ground energy level, the orbital 1s and theorbital 5g. The behavior of the energy of orbital 1s ispresented in Figure (7), with ω̂ taking values in the set
{10−5, 5× 10−2, 10−1, 2× 10−1, 3× 10−1, 4× 10−1, 5×10−1, 7 × 10−1 }. Let us notice that we can divide thedomain of values of R into three regions according tohow confinement affects energy. The first region, as Rincreases, is in a vicinity of R = 1a.u. where the sphereis very close to the atom. This annihilates the vibrationalmovement due to HO confinement, so the energy levels donot depend on ω̂ and the value of energy is ε ≈ − 14a.u.,which represents the equivalent of the second energy level(n = 2) for the free atom. The second region follows im-mediately and ranges until a threshold value Rh = 5a.u..This is the region where both types of confinement are ex-plicit. The third region ranges beyond the threshold value
R > Rh. Here, the effect of hard confinement is weak, sothe energy remains almost constant. Let us discuss in de-tail what occurs in the second region. For relatively small
ω̂ ≈ 10−5, this is a weak SWC, it is observed that as Ris increased the energy goes down and stabilizes aroundthe value of free atom, i.e. ε ≈ −1a.u.. This is quite wellbecause in this conditions the atom is almost free. It is

634



Felix Iacob

0 50 100 150 200
R(a.u.)

-0.04

-0.02

0

0.02

0.04
ε

(a
.u

.)

n=5,  l=4
orbital 5g

ϖ=10
-5

ϖ=2x10
-5

ϖ=4x10
-5

ϖ=5x10
-5

ϖ=6x10
-5

ϖ=7x10
-5

ϖ=9x10
-5

Figure 8. Energy dependence of orbital 5g with both types of con-
finement.

interesting to see the effect of conjugate action for bothtypes of confinement for values of ω̂ ≈ 10−1. One cansee in figure (7) that the energy as function of radius ofsphere presents a minimum. This behavior does not existfor the side values of ω̂ ≈ 10−5 and ω̂ ≈ 7 × 10−1, so itseems there is a resonant region, ω̂ ∈ [5×10−2, 5×10−1],where the two types of confinement, somehow, annihilateeach other and the energy tends to decrease towards thefree atom one.The behavior of energy of orbital 5g is presented in Fig-ure (8). At first glance, the results presented in Figures (7)and (8) look similar: the shape of the energy as a func-tion of sphere radius is preserved and we also have thesame three regions. A closer look indicates that the valueranges of R , ω̂ and the energy values ε are different. Thefirst region is in a vicinity of R = 25a.u; this value is suf-ficient for hard confinement to annihilate the SWC for thisexternal energy level. The resonant region of conjugateaction extends up to a threshold value of Rh = 50a.u.and the value for SWC falls to ω̂ ≈ 10−5. This is normalbecause the exterior orbitals are supposed to be affectedmuch more by confinement than the inner ones.It has been shown in the literature that, in a confined sys-tem, a state with angular momentum (l+1) is more stronglybound than one with l, which is vice versa from the auf-bau principle corresponding to a free atom. Taking intoconsideration the property of monotonicity of the rangeof energies, it is possible to give rise to crossing pairs ofstates (n, l) and (n′, l′) with n′ > n , l′ > l. Our computa-tion, made in the resonant region of ω̂ ≈ 10−5, shows theexistence of crossing states and the results are presentedin Figure (9).In this work, we have obtained novel results aboutthe spectral characterization of perturbed hydrogen-likeatoms. We have introduced the PGO as an oscillating
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Figure 9. Crossing energy states: The level 4d is observed crossing3d and 3s. Also, 5g crosses 4f .

system to confine the atom. This allows the existenceof discrete positive energy spectra for the system. Theexistence of an inflection point between the negative andpositive energy levels was indicated, and the critical value
ω̂c was calculated for each orbital from 1s to 4f . It wasshown that in the case of confinement, the accidental de-generacy of the free atom is removed and also the energyincreases as strength of confinement is increased. On theother hand, orbitals with the same n are relatively lessdestabilized as l increases. The effects of conjugate actionof hard confinement together with HO upon the atom en-ergy levels were studied. We found that the energy levelsas a function of sphere radius have a minimum given by aresonant action of both types of confinement. Finally, thecrossing pair of energy states is calculated—they appeardue to confinement and apparently are in contrast with theaufbau principle corresponding to the neutral free atom.
We consider this model to be useful in the explanation ofthe metal-insulator transition (MIT), also called the Motttransition. An atom in an insulator material is subjected toexternal excitations which are modeled as an oscillatingsystem confinement and which may cause atom ionizationand raising of the electron to the conduction band. Thiseffect produces a spontaneous transition from insulator tometal by means of the flow of an electrical current. Theelectrical conductivity of FeO as a function of pressureand temperature was recently measured ([23]). Althoughinsulating as expected under ambient conditions, it wasfound that FeO metalizes at high temperatures. Electricalconductivity of FeO was measured up to 141GPa and2480K in a laser-heated diamond-anvil cell.
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