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Abstract:

Massive self-dual p-forms are quantized through the construction of an equivalent first-class system and

then quantizing the resulting first-class system. The construction of the equivalent first-class system is
achieved using the gauge unfixing and constraints conversion BF methods. The Hamiltonian path integral
of the first-class system takes a manifestly Lorentz-covariant form.
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1. Introduction

The quantization of Hamiltonian systems possessing only
second-class constraints using the Dirac method [1] is in-
tricate because the Poisson brackets between the con-
straints functions may contain canonical variables, and the
quantum realization of the Dirac brackets that depend on
the canonical variables may be nontrivial and is by no
means guaranteed [2]. This issue can be solved through
the construction of an equivalent first-class system fol-
lowed by quantization of the resulting first-class system.
The construction of the equivalent first-class system can
be achieved using the gauge unfixing [2-6] or constraints
conversion [7-11] methods. This quantization procedure
has been applied to various models [12-29].

*E-mail: scsararu@central.ucv.ro

The gauge unfixing (GU) method [3, 4] is based on the
possibility of interpreting a second-class constraint set
as resulting from gauge-fixation of a first-class constraint
set. The construction of the first-class theory using the
GU approach involves the following steps: 1. the sep-
aration of the original second-class constraints into two
subsets, one of them being first-class and the other pro-
viding some canonical gauge conditions for the first-class
subset ("undo" gauge-fixing); 2. the construction of a first-
class Hamiltonian with respect to first-class constraint
subset starting from the original canonical Hamiltonian.
Step 2 is achieved by use of an operator that projects any
smooth function defined on the phase-space into an ap-
plication that is in strong involution with the first-class
subset. A systematic BRST treatment of the gauge un-
fixing method has been realized in [30, 31]. A constraints
conversion method is represented by the Batalin-Fradkin
(BF) method [8-11]. The BF approach to the issue of con-
verting a second-class system into a first-class one relies
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on an appropriate extension of the original phase-space
through the introduction of new variables. The first-class
constraint set and the first-class Hamiltonian are con-
structed as a power series in the new variables, with the
property that they coincide with the original second-class
constraints and with the starting canonical Hamiltonian if
one sets all the extravariables equal to zero. The terms of
the series corresponding to the first-class constraints are
determined by the requirement that the constraint func-
tions must be in (strong) involution. The form of the first-
class Hamiltonian results from the requirement for it to be
in involution with the first-class constraint functions. The
advantage of the BF method is that it involves the entire
second-class constraint set, while the GU approach re-
quires the separation of the second-class constraints into
two subsets (one of them being first-class and the other
providing some canonical gauge conditions for the first-
class subset) which cannot always be achieved.

The purpose of this paper is to quantize massive self-dual
p-forms [32]. Models with p-forms are interesting from the
point of view of string and superstring theory, supergrav-
ity, and the gauge theory of gravity [33-38]. Moreover,
p-forms have a special place in the theory of p-branes
[37], where (p + 1)-forms couple naturally to p-branes.
The quantization procedure is based on the construction
of an equivalent first-class system using the gauge unfix-
ing and the Batalin—Fradkin methods, and then quantizing
the resulting first-class system.

The paper is organized in six sections. In Section 2, start-
ing from the massive self-dual p-forms we construct an
equivalent first-class system using the GU approach. Sec-
tion 3 is dedicated to the construction of the path integrals
corresponding to the equivalent first-class system. In Sec-
tion 4, we exemplify the BF method on massive self-dual
p-forms, and in the Section 5 we construct the path inte-
grals associated with the resulting first-class system. We
address both the case p odd and the case p even. In
the case p odd, based on some appropriate extensions of
the phase-space, integrating out the auxiliary fields, and
performing some field redefinitions, we discover (for both
approaches) the manifestly Lorentz-covariant path inte-
gral corresponding to the Lagrangian formulation of the
first-class systems. For different kinds of extensions of
the phase-space, we identify the Lagrangian path integral
for (p—1)- and p-forms with Stiickelberg-Llike coupling, or
the Lagrangian path integral for two types of p-forms with
Chern-Simons-like coupling. In the case p even, for both
approaches the Hamiltonian path integral of the first-class
system takes a manifestly Lorentz-covariant form — the
Lagrangian path integral for a topological Chern-Simons-
like theory. Section 6 ends the paper with the main con-
clusions.

2. The construction of the first-
class system - gauge unfixing ap-
proach

We start with a bosonic dynamic system with the phase-
space locally parameterized by n canonical pairs z% =
(g, pi), endowed with the canonical Hamiltonian H, and
subject to the second-class constraints

Xao (2°) =0, oo =1,2Mp. M

We assume that one can split the second-class constraint
set (1) into two subsets

Yoo (27) = Gy (2°), CF0 (2%)) % 0, 0, By = T, Mo, (2)
such that the subset Gg, (z°) =~ 0 to be first-class

[G&O, GBO] = D" G,. (3)

agBy V0

The second-class behaviour of the overall constraint set
ensures that C® (z%) ~ 0 may be regarded as some
gauge-fixing conditions for the first-class subset.

We introduce an operator X [12] that associates an appli-
cation XF with every smooth function F on the original
phase-space

XF = F = C[Gyy, F]+ %C"’OCBO |G [ Ga F]] -
(4)

such that it is in strong involution with the functions Gg,
[)”(F, cao] —0. (5)

With the help of this operator we construct a first-class
Hamiltonian Hgy = )A(Hc with respect to the first-class
constraints subset.

The original second-class theory and the GU system (sub-
ject to the first-class constraints Gg, (z°) = 0 and en-
dowed with the first-class Hamiltonian Hgy) are classi-
cally equivalent since they possess the same number of
physical degrees of freedom

No =3 (2n — 2My) = Nau, (6)

and the corresponding algebras of classical observables
are isomorphic. Consequently, the two systems also be-
come equivalent at the level of the path integral quanti-
zation, and we can replace the Hamiltonian path integral
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of the original second-class theory with that associated
with the GU first-class system.

We next quantize the massive self-dual p-forms in the
framework of the GU method. Self-dual p-forms in D =
2p + 1 space-time dimensions are described by the La-
grangian action [32]

S= /d2P+1X (—a5u1...uzp+1 [FH1-Hp 1 AHpt2-+-H2p+1 _

m2

—A

where « is a constant.
The corresponding field equations are

m2

— VieVpt
2a8”’|---“p"1~-"p+1 Frite p! A iy

=0. (8

Setting a = ' the field equations (8) may be

_-m
2pl(p +1)
written as self-dual equations for p odd [32]

Al—’1 <Hp T

1
V1 Vpiq
7 € bip v v Fevest, 9)

m(p+1)
For p even, a factor "i" appears in the self-duality equa-
tions

i

(p - A)] e Froveet,(10)

Auq lp =

with the antisymmetric tensor field complex. The corre-
sponding Lagrangian action reads as

2p+1 i RN *
S= /d P+l (_ PP it [FHHpt ARHp+2-Hop+1

AmmupA*m---l'p) . (1 1)

If we decompose A, into its real and imaginary parts
it can be shown that the imaginary part is an auxiliary
field. The elimination of the auxiliary field on its own
field equation recovers the action (7) for the real part [32].
In the above relations Fu«uup” (= 9, Auz...up+1]) denotes the
field-strength of the p-forms. In what follows the nota-
tion [u. .. v] signifies antisymmetry with respect to all the
indices between brackets, without normalization factors
(i.e. the independent terms appear only once and are not
multiplied by overall numerical factors). We work with
the Minkowski metric tensor of ‘mostly minus’ signature
o, = 0" =diag(+—...—).

2.1. The case p odd

The canonical analysis of the model described by the La-
grangian action (7) displays the constraints [16]

X(1)[1...ip,1 = ]TOH...ip,1 ~ O, (12)

2
2 _ i m ~
)(i(1 .)..ip—1 = 2p0 ﬂii1...ip,1 - (p — 1)!A0i1__.ip71 ~ 0, (13)

X =gt 4 oa(p + 1)k AL L 20, (14)

and the canonical Hamiltonian

Hlodd —
2

iy iy m
/dZPX (—Zpth__,,-pqa,-]T Tlp=1 TplAm”"’P

AH1--Hp
(1)

where s#1#» are the canonical momenta conjugated to
the fields A, _,,. Constraints (12)—(14) are second-class
and irreducible [2].

In order to separate the second-class constraint set (12)-
(14) into two subsets, one being first-class and the other
providing some canonical gauge conditions for the first-
class subset, we write the constraints (13) in an equivalent
form

@ —
Xijipg =

1 ; o
) [_P!a (JTii1...ip,1 —alp+ 1)801'[1...ip,1j1.__ij”"'/p) +
mZAOH_,,,-H] ~0, (16)

and we eliminate the second-class constraints (14) (the
reduced phase-space is locally parameterized by A,-1___zp,
Ao,-1___,-p71 and JTOH___,-H). We are left with a system subject
to the second-class constraints

Ci1...ip,1 = JT0i1...ip,1 ~ O, (17)

1 o
L = leoi o .o . oW ARl m2A
011...1,),1 =m (20P~5011...zp,1/1.../p+1 0iq...ip—q

~ 0, (18)

while the canonical Hamiltonian (15) takes the form

Hﬁadd) - /dsz (ZapAOH---ipq 001t pst aLh A[z~~~fp+1]+

2

Zm—mAMmupA“*“”P ) . (19)
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Replacing the number of canonical variables 2n =

2 2
( F;D) +2 (p _p1 ) and the number of independent second-

2 2
class constraints 2My = ( P ) + ( P ) in (6), the
p—1 p—1
number of physical degrees of freedom per space point is

2
found to be equal to NY?) = 2 ; .
The matrix of the Poisson bracket between the constraint

functions xq, = (G- Cht-Jp-

i1 1) ~ 0 becomes
p—1

1 - Jp—1
0 G O+ 0 .
. 0

[~ Jp—1]

([XGO'XBO]) = ( 1
(p=1)!
(20)

According to the GU method we will consider (18) as the
first-class constraint set and the remaining constraints
(17) as the corresponding canonical gauge conditions (the
other choice, namely, (17) as the first-class constraint set
and the remaining constraints (18) as the corresponding
canonical gauge conditions yields a path integral that
cannot be written (after integrating out auxiliary vari-
ables) in a manifestly covariant form [17]).

The first-class Hamiltonian with respect to (18) follows

]+

H
%Ci%ipq Chrdps [ ifeeip— 1'[ =1 ]] -
1)

from the relation (4)

Hg’j‘” — {044 _ Cirip-i [C

ioip_q

The concrete form of the first-class Hamiltonian H ”dd)

given by

Hg)zd) :Hgodd)_’_/deX

1 1T (p—=1)! i ip...ipl0
I:E (Alj...ip'i‘ﬁTa[i1 JT[Z---ip]O (9[17T2 ] .

(22)

Inserting the number of canonical variables and the num-
ber of the independent first-class constraints My =

(p2p1 ) in (6), the number of physical degrees of freedom

1(2
is found to be equal to N&J? = E( ;)

2.2. The case p even

The canonical analysis of the model described by the La-
grangian action (7) in the case of p even displays the
constraints [16]

X(1)i1...ip,1 = 7T0i1...p—1 ~ 0’ (23)

X = gy + alp+ 1) Eory gy AP 2 0, (24)
2
@ m -
Xijoipoy = _(,D — 1)!A0i1...ip,1 ~ 0, (25)

Xf) i = Tipiy —a(p+1) 5011,..1,,;‘1...ij]1"']" ~ 0, (26)

and the canonical Hamiltonian

Hieven) :/dZPX

2 2
m i m o
( 2p| AH“.‘_pAH...lp + ﬁA0i1---l’pf1A0[1“.1p4

(27)

Constraints (23)—(26) are second-class and irreducible.
The matrix of the Poisson bracket between the constraint
functions becomes

([XGO'XBO]) =
i1.0p_1
0 0 X/-%/-:i1 0
0 0 0 Yitipit-p
—X[h 0 0 0 129
i1.ip—1
0 —Yi1...ipj1...jp 0 0
2

0.y m 1 i1

where Xn ]:1 = (p—1) =) 61 ...5/.:71] and

Yiaiphb = 2a(p 4 1) +i-lo. We observe that the
constraints (23) and (25) generate a second-class con-
straints subset. Eliminating the second-class constraints
(23) and (25) (the coordinates of the reduced phase-space
are A, ;, and '"-) we are left with a system subject
to the second-class constraints (24) and (26) while the
canonical Hamiltonian takes the form

2
H(even): de m A. ,Ai1"".P (29)
¢ X\ 2pr e '

2
Replacing the number of canonical variables 2n = 2( pp)
and the number of independent second-class constraints

2
2My = 2( ;) in (6), one obtains that the number of

physical degrees of freedom is equal to N(()eve") =0.
According to the GU method we consider (24) as the first-
class constraint set, the remaining constraints (26) as the
corresponding canonical gauge conditions, and redefine
the first-class constraints (24) as

1 B .
Gicip Em6011...ipj1...jp (7t +

a(p+1)h-k-ba ) ~0. (30)
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The first-class Hamiltonian with respect to (30) follows
from the relation

ngéen) :F/i"‘/e") _X(Z)i1...ip [C H(even)] +

ig..ipr Il

%X‘Z’“ i Dt [Gz1 . [Gh " H£even)]i| _
(31

The concrete form of the first-class Hamiltonian is given
by

(even) __
HGU -

2p mZ 1 J1--dp
d¥x 8T7' Ai1,..ip+m60i1.,.ipj1.,.jpﬂ

1.0, 1 0iq...ipky ...k,
X (A1 p+mg RS |- (32)
Inserting the number of canonical variables and the num-
2
ber of independent first-class constraints My = P in

(6), the number of physical degrees of freedom is found to
be equal to N = 0.

3. Covariant path integral for the GU
system

3.1. The case p odd

In Ref. [39] the massive self-dual 3-forms in D = 7 were
analyzed from the point of view of the Hamiltonian path
integral quantization. The quantization procedure was
based on the construction of a first-class system equiva-
lent with the original second-class theory, and then quan-
tizing the resulting first-class system. In the second sec-
tion of Ref. [39] the equivalent first-class system was con-
structed in the framework of the GU approach and it was
obtained the manifestly Lorentz-covariant path integral
corresponding to the Lagrangian formulation of the equiv-
alent first-class system.

In order to obtain a Lorentz-covariant path integral we
start from first-class system derived in the above (sub-
ject to the first-class constraints (18) and whose evolu-
tion is governed by the first-class Hamiltonian (22)), and
then consider another first-class system (a reducible one)
which is equivalent to the GU system at both classical and
path integral levels. After an appropriate extension of the
phase-space (we enlarge the phase-space with the La-
grange multipliers), some field redefinitions, and perform-
ing some partial integrations over the auxiliary fields, we
find that the argument of the exponential from the Hamil-
tonian path integral of the first-class system takes the
form

1---up+1Aup+z---uzp+w -

S(Cogd) _ ]d2p+1x [_ael—’1---”2p+1 F,

a[m Bﬂz---up] _ mAu1---up) (0[#1 Br2-#pl _  AFHp )] )
(33)

i |

The functional (33) describes a (Lagrangian) Stiickelberg-
like coupling between the (p —1)-form By, , , and the
p-form /_4“1,“‘,‘7 [40]. The (p — 1)-form Bm_”“pq acts like the
Stiickelberg field, thus ensuring the gauge invariance of
the above functional.

Starting from the GU system constructed in the above we
consider the following field combinations

(p—1
Fiyoiy = Aiy iy + 2 Oliy Tiy...ipJ0s Foiy.ipy = Aou...ip,1-
(34)

which are in (strong) involution with first-class con-
straints (18)

[Fircipr it ] = [Foripr Gy | =0 39)

By direct computation we obtain that F, .., =
{.7-'01-1___,-‘,71 ,]-',-1___,-p} satisfy the equation

4

v — m P
AT ) = g oy TR O (Gt ) -
(36)
and it is divergenceless
0" Fupy.y 1 =0, (37)

on the first-class surface Giw---ipq ~ 0. Based on the gauge
invariance and divergenceless of the Fin.mp WE introduce

a p-form V, through the relation

H1---Hp

1

m5u1...uPV1mvp+1 V1 \/v2e vl (38)

fu1~-u;; =

Consequently, we enlarge the phase-space by adding the
bosonic fields/momenta {VV1-", P\,1___vp}. From the gauge
transformation of the quantity d;, 7, 4,0 we obtain that

1

Msoq..jph...jp P (39)

a[q Tiy.ipl0 = —

If we replace (38) in (18), then the constraint set takes the

form

1 18l Al2-Jp+1] m? i1 \/f2-Jp+1]
Weﬂiy..ip,qh.._jpﬂ 2ap6 A P14 ma V P+
~0, (40)
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and remains first-class, and becomes reducible of order
(p — 1). The number of physical degrees of freedom is
conserved if we impose the supplementary constraints

Poiyiy.y 20, —pdPj, i, % 0. (41

|

The Hamiltonian path integral of the reducible first-class
systems reads

Z,cu _ /D (Azq...z,,' meup’ Pu1,,.;,p’)\q,,,ip_1')\(1)1'1,..1’7_1I/\(z)h...zp_z) U ([Au,,,i,,],[Vm,..u,,]) exp ( S/(odd)) ‘ (42)

where

5 odd) — / 4Py [—(I (p +1) (aOA[1 ...ip) £O£1...i,,j1...j3Aj1mj3 + (60 Vu1..»up) Py H,g;jld)

—Aitip Poi, i _|_p)\(2)l1 p-19i P..
L ..,lp,

Jir-ip—1

and "pr ([Aq..i,]. [Vin..p))’ signifies the integration measure
associated with the model subject to the reducible first-
class constraints (40) and (41). The first-class Hamilto-
nian H5¢? is obtained from (22) using (34), (38) and (39).
Proceeding further in a similar manner to Ref. [39] it can
be shown that the argument of the exponential from the
Hamiltonian path integral of the first class system takes
the form

Sledd) _ / 42+

1 .
( agh UZPHFI»H IJp+1AUp+2 i’2p+1+2 ( + 1) n ---ﬂpMFm e
m -
- 1 6“1 Hapt FU1 Hp41 Alfp+2 -H2p+1 (44)
ptip+ 1)

where F‘,1 Hpar = 0[u1 -] This describes a Chern-
Simons-like coupling between the p-forms Am---up and
Vii..up [41]. This result incorporates (for p = 1) the equiv-
alence between the self-dual 1-form [32] and the gauge
invariant topologically massive electrodynamics [42-44]
proved in [45]. In [46] starting from a master Lagrangian
(similar for p = 1 with (44)), the common origin of self-
dual model and the Maxwell-Chern-Simons theory was
revealed, and also was put into evidence the interplay
between gauge invariance and self-duality.

The two path integrals corresponding to (33) and (44) co-
incide as both theories represent first-class extensions of
the same second-class model. The aforementioned first-
class theories correspond to different extensions of the

_ 1 AM.A.L'pq
m2

€001 ..eip_1f1 i1

U1 A1) m’
2ap! it Aor) 4
(p

i QUi Viz-dp+l )] ,
+ 1)

(43)

phase-space associated to the original second-class the-
ory. In view of this the field spectra of the gauge theories
are different.

3.2. The case p even

Based on the equivalence between the first-class sys-
tem and the original second-class theory, we replace the
Hamiltonian path integral of self-dual p-forms with that
of the first-class system. Imposing some suitable gauge-
fixing conditions C,~1___ip = 0, the Hamiltonian path integral
for the above first-class system, subject to the first-class
constraints (30) and with evolution governed by the first-
class Hamiltonian (32), takes the form

Z(GeL\;en) :/D (A”m[_p,ﬂ,i1,,,ip’)\i1.“ip) ) (Ci1,..ip)
(det ([Gyjpr Gy, ])) exp (iSEL™)  (45)
with
Sleven) — / d*+x ao (Aiy.i,) 7ir-te — HE —

i 1
5/\1 P (Aiw...ip + 7%0'( ) €0iy..ipjr . lp”” /p)] :
(46)

Performing partial integrations over the Lagrange mul-
tipliers A“% and the momenta s, we discover the
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manifestly Lorentz covariant path integral corresponding
to the Lagrangian formulation of the first-class system

S(C?tvfn) = /d2p+1x (—a€u1...uzp+1 [FH-Hpt AUp+2"'u2p+1) )
(47)
The functional (47) describes a topological Chern-Simons-
like theory.

4. The construction of the first-
class system - BF method

Construction of a first-class system equivalent to the ini-
tial second-class one (subject to the second-class con-
straints (1)) using the BF method includes the following
three steps: 1. we enlarge the original phase-space with
the variables (%) _7z31, (M > M) and extend the Pois-
son bracket to the newly added variables; 2. we construct
a set of independent, smooth, real functions defined on the
extended phase-space, (Ga (2, {))a—tasar Such that
Goy (2,0) = xo (2), G4(2,0) =0, [Ga, Gg] =0, (48)
where A = 2My + 1, My + M; 3. we generate a smooth,
real function Hgg (z, {), defined on the extended phase-
space, with the properties
Hgr (z,0) = Hc (2), [Hgr, Ga] = V2 G. (49)
These steps unravel a dynamic system subject to the first-
class constraints Ga(z,{) =~ 0, whose evolution is gov-
erned by the first-class Hamiltonian Hgr (z, {). The first-
class system constructed by the BF method is classically

equivalent to the original second-class theory since both
display the same number of physical degrees of freedom

Ngr = %[2n+2/\/l—2(/\/lo+/\/l)]: 1i(Zn—Z/\/Io) =No

(50)
and the corresponding algebras of classical observables
are isomorphic. Consequently, the two systems also be-
come equivalent at the level of the path integral quantiza-
tion, and we can to replace the Hamiltonian path integral
of the original second-class theory with that of the BF
first-class system.

4.1. The case p odd

In order to apply the BF method to the case of self-
dual p-forms we consider the second-class system con-
structed in the subsection (2.1) (with phase-space locally

parametrized by {A;,_i,, Aoiy i, ., 7% -1} subject to the
second-class constraints 17)—(18), and endowed with the
canonical Hamiltonian (19)) and we enlarge the phase-
space by adding the bosonic fields/momenta {B#1#r-1,
I_Im___uk1 }. The constraints Ga (z, {) =~ 0 gain in the case
of self-dual p-forms the concrete form

1 1
Gyt = Xy +mBi g, R0, (57)
@ — S0 m ~
Gi1...ip,1 = Xieip g — 1) M.y =0, (52)
Gm...zp,z = |_|011...ip,2 ~0, (53)
where
2
_@ _ i1 Ajedins m
Xiyoip = _zap50i1---fp—wf1---fp+1 ARl — (p— 1)!A°i1~~~1p—1
~ 0. (54)

Constraints (51)—(53) form an Abelian and irreducible
first-class constraint set. The first-class Hamiltonian com-
plying with the general requirements (49) is expressed (in
terms of the first-class constraint functions) by

_ 1 -
(odd) _ [y(odd) 2 Hedpamy. .
Hige ™ = H +/dpx[_z(p—1)!”1 L
1 i (P =D i, iy
; ( mat-in - L= g giil) 9y, B, -
1 ity A0 (P =N Soiyi) 5 2j ~2)
Er“ PG, +TB 120l Gl g, |- (99)

We remark that in H,(;,gd)

nian H(Gogd) (22) appear the same terms, apart from the

and in the first-class Hamilto-

quadratic term in momenta and the terms proportional to
the first-class constraint functions, via the identification
Bq...i,H
The Hamiltonian gauge algebra relations (49) are given
by

= = TM0iy...ip_4 -

(odd)  ~(1) _ (odd)  ~(2) _
[HBOF qu...iH] =0, [HBDF rGu...iH] =0,

o ( _1)' i
[Hg;’d),cqm,ﬁ,z] = pTa'G‘?’ . (56)

Jigip—2"

Replacing the number of canonical variables 2n + 2M =
(Zp) + 2( 2p ) + 2(2p+ 1) and the number of in-

p p—1 p—1 ,
dependent first-class constraints My + M = ) 'D1) +
2 2
( P ) + ( P ) in (50), one obtains that the num-
p—1 p—2

ber of physical degrees of freedom is equal to Ngfd) =

(7)
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4.2. The case p even

In this case, starting from the second-class system with the
phase-space locally parameterized by {Ai1~~~1p’ sit-ip}, en-
dowed with the canonical Hamiltonian (29) , and subject
to the second-class constraints (24) and (26), we construct
an equivalent first-class system using the BF method. In
order to construct the equivalent first-class system we en-
iy M-}
In the case of self-dual p-forms with p even the constraints
Ga(z, ) =~ 0 take the form

large the phase-space with the variables {B

1

2
(even) m i) i i1..0
HBF :/dszI:TP! (A51~~-ip +Bf1-~ip +m60i1~--5m---1p pr-te ) (A1 P+BT

The Hamiltonian gauge algebra relations (49) are given by

g

iq...ip

=0 [Hg.6l, =0 (60

Replacing the number of canonical variables 2n + 2M =

2 2
2( ;) + 2( pp) and the number of independent first-

2 2
class constraints My + M = [f) + ( pP) in (50), one
obtains the number of physical degrees of freedom equal

o NG — 0,

5. Covariant path integral for the BF
system

5.1. The case p odd

In the third section of Ref. [39] starting from a second-
class theory (the massive self-dual 3-forms in D = 7) an
equivalent first-class system was constructed using the
BF method, and the manifestly Lorentz-covariant path in-
tegral corresponding to the Lagrangian formulation of the
equivalent first-class system was obtained. Starting from
the BF system constructed in the subsection 4.1, and pro-
ceeding in a similar manner we discover the manifestly
Lorentz-covariant path integral corresponding to the La-
grangian formulation of the first-class system. This re-
duces for different kinds of extensions of the phase-space
to the Lagrangian path integral for (p — 1)- and p-forms
with Stiickelberg-like coupling (33), or the Lagrangian

GV, = Tiyiy + @ (p+1) €01y.ipjy.gp (AN + 2B )
0, (57)

2
G =i,

Q

—a(p+1) €oiyipjyp AT =iy i, = 0.
(58)

Constraints (57)—(58) form an Abelian and irreducible
first-class constraint set. The first-class Hamiltonian com-
plying with the general requirements (49) is expressed by

£0ir-ipkr-kp Pk, )] )
(59)

2ap! (p +1)!

(

path integral for two kinds of p-forms with Chern-Simons-
like coupling (44).

5.2. The case p even

We finally consider the Hamiltonian path integral for the
BF system constructed in the above, subject to the first-
class constraints (57)—(58), whose evolution is governed by
the first-class Hamiltonian (59). Imposing some suitable
gauge-fixing conditions

a= (A, = A ¢

i1..0p idpr =iy ip

B,-1__,,-p) ~0, (61)
the Hamiltonian path integral takes the form

Z,(gi“/en): J’D (Ai1,..ip: Bi1,,.ip: ﬂ'h"'ip, |—|i1...ip’ )\(1)[1...1‘7' )\(2)11...1;7)

< (119160 et (G, Cayenp (155:7) (62
A
with

Sl(;;en):/dzpﬁx{(aoAhmip )Jr"""ip+(60811 L ) |—|i1...[p_H(Be;en)

_AMireip [7T11...ip +a(p+1) €0 ipjy iy (Ah---/p 4+ 2B/ )]

=X (= a(p 4 1) €oiyipy AV =T, ) T
(63)

Performing in the path integral partial integrations over
grit-tp, [1i1-0p, )\g?“ip, A4 and By, ;, the functional (63)
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associated with the first-class system takes a manifestly
Lorentz-covariant form

(even) 2p+1
SBF = /d P x (_a“:u1 uszAm---l’p Fﬂp+1---ﬂ2p+1) '
(64)

and describes a topological Chern-Simons-Llike theory.

6. Conclusion

In this paper the massive self-dual p-forms have been an-
alyzed from the point of view of the Hamiltonian path
integral quantization, in the framework of GU and BF
methods. The first step of this approaches is represented
by the construction of an equivalent first-class system.
The construction of the equivalent first-class system in
the GU approach does not require an extension of the
original phase-space, while the construction of the equiv-
alent first-class system using the BF method demands an
appropriate extension of the original phase-space. The
second step involves the construction of the Hamiltonian
path integral corresponding to the equivalent first-class
system. The Hamiltonian path integral of the first-class
system takes a manifestly Lorentz-covariant form after in-
tegrating out the auxiliary fields and performing some field
redefinitions. In the case p odd, we note that in order
to obtain a manifestly covariant path integral, both ap-
proaches requires some extensions of the phase-space.
For appropriate phase-space extensions we identify the
Lagrange path integral for (p — 1)- and p- forms with
Stiickelberg-like coupling, or the Lagrangian path inte-
gral for two kinds of p-forms with Chern-Simons-like cou-
pling. In the case p even, it is not necessary to further
enlarge the phase-space in order to obtain a manifestly
covariant path integral. Both methods finally output the
manifestly Lorentz covariant path integral which describe
a topological Chern-Simons-like theory.
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