
Cent. Eur. J. Phys. • 11(1) • 2013 • 59-68
DOI: 10.2478/s11534-012-0141-9

Central European Journal of Physics

From massive self-dual p-forms towards gauge
p-forms

Research Article

Silviu-Constantin Sararu∗

Department of Physics, University of Craiova,
13 Al. I. Cuza Str., 200585 Craiova, Romania

Received 15 June 2012; accepted 21 September 2012

Abstract: Massive self-dual p-forms are quantized through the construction of an equivalent first-class system and
then quantizing the resulting first-class system. The construction of the equivalent first-class system is
achieved using the gauge unfixing and constraints conversion BF methods. The Hamiltonian path integral
of the first-class system takes a manifestly Lorentz-covariant form.

PACS (2008): 11.10.Ef, 11.15.-q

Keywords: quantization methods • constraints systems • second-class constraints • gauge theories
© Versita sp. z o.o.

1. Introduction

The quantization of Hamiltonian systems possessing onlysecond-class constraints using the Dirac method [1] is in-tricate because the Poisson brackets between the con-straints functions may contain canonical variables, and thequantum realization of the Dirac brackets that depend onthe canonical variables may be nontrivial and is by nomeans guaranteed [2]. This issue can be solved throughthe construction of an equivalent first-class system fol-lowed by quantization of the resulting first-class system.The construction of the equivalent first-class system canbe achieved using the gauge unfixing [2–6] or constraintsconversion [7–11] methods. This quantization procedurehas been applied to various models [12–29].
∗E-mail: scsararu@central.ucv.ro

The gauge unfixing (GU) method [3, 4] is based on thepossibility of interpreting a second-class constraint setas resulting from gauge-fixation of a first-class constraintset. The construction of the first-class theory using theGU approach involves the following steps: 1. the sep-aration of the original second-class constraints into twosubsets, one of them being first-class and the other pro-viding some canonical gauge conditions for the first-classsubset ("undo" gauge-fixing); 2. the construction of a first-class Hamiltonian with respect to first-class constraintsubset starting from the original canonical Hamiltonian.Step 2 is achieved by use of an operator that projects anysmooth function defined on the phase-space into an ap-plication that is in strong involution with the first-classsubset. A systematic BRST treatment of the gauge un-fixing method has been realized in [30, 31]. A constraintsconversion method is represented by the Batalin-Fradkin(BF) method [8–11]. The BF approach to the issue of con-verting a second-class system into a first-class one relies
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on an appropriate extension of the original phase-spacethrough the introduction of new variables. The first-classconstraint set and the first-class Hamiltonian are con-structed as a power series in the new variables, with theproperty that they coincide with the original second-classconstraints and with the starting canonical Hamiltonian ifone sets all the extravariables equal to zero. The terms ofthe series corresponding to the first-class constraints aredetermined by the requirement that the constraint func-tions must be in (strong) involution. The form of the first-class Hamiltonian results from the requirement for it to bein involution with the first-class constraint functions. Theadvantage of the BF method is that it involves the entiresecond-class constraint set, while the GU approach re-quires the separation of the second-class constraints intotwo subsets (one of them being first-class and the otherproviding some canonical gauge conditions for the first-class subset) which cannot always be achieved.The purpose of this paper is to quantize massive self-dual
p-forms [32]. Models with p-forms are interesting from thepoint of view of string and superstring theory, supergrav-ity, and the gauge theory of gravity [33–38]. Moreover,
p-forms have a special place in the theory of p-branes[37], where (p + 1)-forms couple naturally to p-branes.The quantization procedure is based on the constructionof an equivalent first-class system using the gauge unfix-ing and the Batalin–Fradkin methods, and then quantizingthe resulting first-class system.The paper is organized in six sections. In Section 2, start-ing from the massive self-dual p-forms we construct anequivalent first-class system using the GU approach. Sec-tion 3 is dedicated to the construction of the path integralscorresponding to the equivalent first-class system. In Sec-tion 4, we exemplify the BF method on massive self-dual
p-forms, and in the Section 5 we construct the path inte-grals associated with the resulting first-class system. Weaddress both the case p odd and the case p even. Inthe case p odd, based on some appropriate extensions ofthe phase-space, integrating out the auxiliary fields, andperforming some field redefinitions, we discover (for bothapproaches) the manifestly Lorentz-covariant path inte-gral corresponding to the Lagrangian formulation of thefirst-class systems. For different kinds of extensions ofthe phase-space, we identify the Lagrangian path integralfor (p−1)- and p-forms with Stückelberg-like coupling, orthe Lagrangian path integral for two types of p-forms withChern-Simons-like coupling. In the case p even, for bothapproaches the Hamiltonian path integral of the first-classsystem takes a manifestly Lorentz-covariant form – theLagrangian path integral for a topological Chern-Simons-like theory. Section 6 ends the paper with the main con-clusions.

2. The construction of the first-
class system – gauge unfixing ap-
proach
We start with a bosonic dynamic system with the phase-space locally parameterized by n canonical pairs za =(
qi, pi

), endowed with the canonical Hamiltonian Hc , andsubject to the second-class constraints
χα0 (za) ≈ 0, α0 = 1, 2M0. (1)

We assume that one can split the second-class constraintset (1) into two subsets
χα0 (za) ≡ (Gᾱ0 (za) , C β̄0 (za)) ≈ 0, ᾱ0, β̄0 = 1,M0, (2)

such that the subset Gᾱ0 (za) ≈ 0 to be first-class
[
Gᾱ0 , Gβ̄0

] = Dγ̄0
ᾱ0β̄0Gγ̄0 . (3)

The second-class behaviour of the overall constraint setensures that C ᾱ0 (za) ≈ 0 may be regarded as somegauge-fixing conditions for the first-class subset.We introduce an operator X̂ [12] that associates an appli-cation X̂F with every smooth function F on the originalphase-space
X̂F = F −C ᾱ0 [Gᾱ0 , F ] + 12C ᾱ0C β̄0 [Gᾱ0 ,

[
Gβ̄0 , F

]]
− · · · ,(4)such that it is in strong involution with the functions Gᾱ0[

X̂F , Gᾱ0
] = 0. (5)

With the help of this operator we construct a first-classHamiltonian HGU = X̂Hc with respect to the first-classconstraints subset.The original second-class theory and the GU system (sub-ject to the first-class constraints Gᾱ0 (za) ≈ 0 and en-dowed with the first-class Hamiltonian HGU ) are classi-cally equivalent since they possess the same number ofphysical degrees of freedom
NO = 12 (2n − 2M0) = NGU, (6)

and the corresponding algebras of classical observablesare isomorphic. Consequently, the two systems also be-come equivalent at the level of the path integral quanti-zation, and we can replace the Hamiltonian path integral
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of the original second-class theory with that associatedwith the GU first-class system.We next quantize the massive self-dual p-forms in theframework of the GU method. Self-dual p-forms in D =2p + 1 space-time dimensions are described by the La-grangian action [32]
S = ∫ d2p+1x (−αεµ1 ...µ2p+1F µ1...µp+1Aµp+2 ...µ2p+1−

m22p!Aµ1...µpAµ1...µp
)
, (7)

where α is a constant.The corresponding field equations are
− 2αεµ1...µpν1...νp+1F ν1 ...νp+1 − m2

p! Aµ1 ...µp = 0. (8)
Setting α = −m2p!(p+ 1)! the field equations (8) may bewritten as self-dual equations for p odd [32]

Aµ1...µp = 1
m(p+ 1)!εµ1 ...µpν1 ...νp+1F ν1...νp+1 . (9)

For p even, a factor "i" appears in the self-duality equa-tions
Aµ1...µp = i

m(p+ 1)!εµ1 ...µpν1 ...νp+1F ν1...νp+1 , (10)
with the antisymmetric tensor field complex. The corre-sponding Lagrangian action reads as
S = ∫ d2p+1x

(
− i
m(p+ 1)!εµ1...µ2p+1F µ1...µp+1A∗µp+2 ...µ2p+1+

Aµ1...µpA∗µ1...µp) . (11)
If we decompose Aµ1...µp into its real and imaginary partsit can be shown that the imaginary part is an auxiliaryfield. The elimination of the auxiliary field on its ownfield equation recovers the action (7) for the real part [32].In the above relations Fµ1...µp+1 (≡ ∂[µ1Aµ2...µp+1 ]) denotes thefield-strength of the p-forms. In what follows the nota-tion [µ . . . ν] signifies antisymmetry with respect to all theindices between brackets, without normalization factors(i.e. the independent terms appear only once and are notmultiplied by overall numerical factors). We work withthe Minkowski metric tensor of ‘mostly minus’ signature
σµν = σ µν = diag(+− . . .−).

2.1. The case p odd
The canonical analysis of the model described by the La-grangian action (7) displays the constraints [16]
χ (1)i1...ip−1 ≡ π0i1...ip−1 ≈ 0, (12)
χ (2)
i1...ip−1 ≡ 2p∂iπii1 ...ip−1 − m2(p − 1)!A0i1...ip−1 ≈ 0, (13)
χ i1 ...ip ≡ πi1...ip + α(p+ 1)ε0i1 ...ipj1...jpAj1...jp ≈ 0, (14)

and the canonical Hamiltonian
H (odd)
c =∫
d2px

(
−2pA0i1 ...ip−1∂iπii1...ip−1 + m22p!Aµ1...µpAµ1...µp

)
,(15)

where πµ1...µp are the canonical momenta conjugated tothe fields Aµ1...µp . Constraints (12)–(14) are second-classand irreducible [2].In order to separate the second-class constraint set (12)–(14) into two subsets, one being first-class and the otherproviding some canonical gauge conditions for the first-class subset, we write the constraints (13) in an equivalentform
χ (2)
i1...ip−1 ≡1
m2
[
−p!∂i (πii1...ip−1 − α (p+ 1) ε0ii1 ...ip−1j1 ...jpAj1 ...jp

)+
m2A0i1...ip−1

]
≈ 0, (16)

and we eliminate the second-class constraints (14) (thereduced phase-space is locally parameterized by Ai1...ip ,
A0i1 ...ip−1 and π0i1...ip−1 ). We are left with a system subjectto the second-class constraints
C i1...ip−1 ≡ π0i1...ip−1 ≈ 0, (17)
Gi1...ip−1 ≡ 1

m2
(2αp!ε0i1...ip−1j1...jp+1∂[j1Aj2...jp+1 ] +m2A0i1 ...ip−1

)
≈ 0, (18)

while the canonical Hamiltonian (15) takes the form
H̄ (odd)
c = ∫ d2px (2αpA0i1...ip−1ε0i1...ip−1j1...jp+1∂[j1Aj2...jp+1 ]+

m22p!Aµ1 ...µpAµ1...µp
)
. (19)
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Replacing the number of canonical variables 2n =(2p
p

)+2( 2p
p − 1

) and the number of independent second-
class constraints 2M0 = ( 2p

p − 1
) + ( 2p

p − 1
) in (6), thenumber of physical degrees of freedom per space point isfound to be equal to N (odd)

O = 12
(2p
p

).The matrix of the Poisson bracket between the constraintfunctions χα0 ≡
(
Gi1...ip−1 , C j1...jp−1) ≈ 0 becomes

([χα0 , χβ0 ]) = ( 0 1(p−1)!δ j1[i1 . . . δ jp−1
ip−1 ]

− 1(p−1)!δ i1[j1 . . . δ ip−1
jp−1 ] 0

)
.

(20)According to the GU method we will consider (18) as thefirst-class constraint set and the remaining constraints(17) as the corresponding canonical gauge conditions (theother choice, namely, (17) as the first-class constraint setand the remaining constraints (18) as the correspondingcanonical gauge conditions yields a path integral thatcannot be written (after integrating out auxiliary vari-ables) in a manifestly covariant form [17]).The first-class Hamiltonian with respect to (18) followsfrom the relation (4)
H (odd)
GU =H̄ (odd)

c − C i1...ip−1 [Gi1 ...ip−1 , H̄c

]+12C i1 ...ip−1C j1...jp−1 [Gi1 ...ip−1 ,
[
Gj1...jp−1 , H̄c

]]
− · · · .(21)

The concrete form of the first-class Hamiltonian H (odd)
GU isgiven by

H (odd)
GU =H̄ (odd)

c + ∫ d2px[1
p

(
Ai1...ip+ 1

m2 (p − 1)!2 ∂[i1πi2...ip ]0
)
∂[i1πi2 ...ip ]0] .(22)

Inserting the number of canonical variables and the num-ber of the independent first-class constraints M0 =( 2p
p − 1

) in (6), the number of physical degrees of freedom
is found to be equal to N (odd)

GU = 12
(2p
p

).
2.2. The case p even
The canonical analysis of the model described by the La-grangian action (7) in the case of p even displays theconstraints [16]
χ (1)i1...ip−1 ≡ π0i1...p−1 ≈ 0, (23)

χ (1)
i1...ip ≡ πi1...ip + α (p+ 1) ε0i1...ipj1 ...jpAj1 ...jp ≈ 0, (24)

χ (2)
i1...ip−1 ≡ − m2(p − 1)!A0i1 ...ip−1 ≈ 0, (25)
χ (2)
i1...ip ≡ πi1...ip − α (p+ 1) ε0i1...ipj1 ...jpAj1 ...jp ≈ 0, (26)

and the canonical Hamiltonian
H (even)
c =∫ d2px(

m22p!Ai1...ipAi1...ip + m22 (p − 1)!A0i1...ip−1A0i1...ip−1
)
.(27)

Constraints (23)–(26) are second-class and irreducible.The matrix of the Poisson bracket between the constraintfunctions becomes
([χα0 , χβ0 ]) =

0 0 X i1...ip−1
j1...jp−1 0

0 0 0 Y i1...ipj1 ...jp
−X j1 ...jp−1

i1...ip−1 0 0 0
0 −Yi1 ...ipj1...jp 0 0

 , (28)

where X i1...ip−1
j1 ...jp−1 = m2(p − 1)! 1(p − 1)!δ i1[j1 . . . δ ip−1

jp−1 ] and
Y i1...ipj1 ...jp = 2α (p+ 1) ε0i1...ipj1 ...jp . We observe that theconstraints (23) and (25) generate a second-class con-straints subset. Eliminating the second-class constraints(23) and (25) (the coordinates of the reduced phase-spaceare Ai1...ip and πi1...ip ) we are left with a system subjectto the second-class constraints (24) and (26) while thecanonical Hamiltonian takes the form

H̄ (even)
c = ∫ d2px

(
m22p!Ai1...ipAi1...ip

)
. (29)

Replacing the number of canonical variables 2n = 2(2p
p

)
and the number of independent second-class constraints2M0 = 2(2p

p

) in (6), one obtains that the number of
physical degrees of freedom is equal to N (even)

O = 0.According to the GU method we consider (24) as the first-class constraint set, the remaining constraints (26) as thecorresponding canonical gauge conditions, and redefinethe first-class constraints (24) as
Gi1 ...ip ≡ 12αp! (p+ 1)!ε0i1...ipj1 ...jp (πj1...jp+

α (p+ 1) ε0j1...jpk1...kpAk1...kp) ≈ 0. (30)
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The first-class Hamiltonian with respect to (30) followsfrom the relation
H (even)
GU =H̄ (even)

c − χ (2)i1...ip [Gi1 ...ip , H̄ (even)
c

]+12χ (2)i1 ...ipχ (2)j1...jp [Gi1 ...ip ,
[
Gj1 ...jp , H̄ (even)

c

]]
− · · · .(31)

The concrete form of the first-class Hamiltonian is givenby
H (even)
GU =∫
d2px

[
m28p!

(
Ai1...ip + 1

αp! (p+ 1)!ε0i1...ipj1...jpπj1 ...jp
)

×
(
Ai1...ip + 1

αp! (p+ 1)!ε0i1...ipk1...kpπk1...kp
)]

. (32)
Inserting the number of canonical variables and the num-ber of independent first-class constraints M0 = (2p

p

) in(6), the number of physical degrees of freedom is found tobe equal to N (even)
GU = 0.

3. Covariant path integral for the GU
system
3.1. The case p odd
In Ref. [39] the massive self-dual 3-forms in D = 7 wereanalyzed from the point of view of the Hamiltonian pathintegral quantization. The quantization procedure wasbased on the construction of a first-class system equiva-lent with the original second-class theory, and then quan-tizing the resulting first-class system. In the second sec-tion of Ref. [39] the equivalent first-class system was con-structed in the framework of the GU approach and it wasobtained the manifestly Lorentz-covariant path integralcorresponding to the Lagrangian formulation of the equiv-alent first-class system.In order to obtain a Lorentz-covariant path integral westart from first-class system derived in the above (sub-ject to the first-class constraints (18) and whose evolu-tion is governed by the first-class Hamiltonian (22)), andthen consider another first-class system (a reducible one)which is equivalent to the GU system at both classical andpath integral levels. After an appropriate extension of thephase-space (we enlarge the phase-space with the La-grange multipliers), some field redefinitions, and perform-ing some partial integrations over the auxiliary fields, wefind that the argument of the exponential from the Hamil-tonian path integral of the first-class system takes theform

S(odd)
GU = ∫ d2p+1x [−αεµ1 ...µ2p+1 F̄µ1...µp+1 Āµp+2 ...µ2p+1 −12p! (∂[µ1Bµ2...µp ] −mĀµ1...µp

)(
∂[µ1Bµ2...µp ] −mĀµ1...µp)] .(33)

The functional (33) describes a (Lagrangian) Stückelberg-like coupling between the (p − 1)-form Bµ1...µp−1 and the
p-form Āµ1 ...µp [40]. The (p − 1)-form Bµ1 ...µp−1 acts like theStückelberg field, thus ensuring the gauge invariance ofthe above functional.Starting from the GU system constructed in the above weconsider the following field combinations
Fi1...ip = Ai1...ip + (p − 1)!

m2 ∂[i1πi2...ip ]0, F0i1...ip−1 = A0i1 ...ip−1 .(34)which are in (strong) involution with first-class con-straints (18)[
Fi1...ip , Gj1...jp−1

] = [F0i1...ip−1 , Gj1...jp−1
] = 0. (35)

By direct computation we obtain that Fµ1...µp+1 ≡{
F0i1...ip−1 , Fi1...ip

} satisfy the equation
∂ν∂[νFµ1...µp ] = − m44α2 (p!)2 [(p+ 1)!]2Fµ1 ...µp+O(Gi1 ...ip−1

)
.(36)and it is divergenceless

∂νFνµ1...µp−1 = 0, (37)
on the first-class surface Gi1...ip−1 ≈ 0. Based on the gaugeinvariance and divergenceless of the Fµ1...µp we introducea p-form Vµ1...µp through the relation

Fµ1 ...µp = 1(p+ 1)!εµ1...µpν1...νp+1∂[ν1V ν2...νp+1 ]. (38)
Consequently, we enlarge the phase-space by adding thebosonic fields/momenta {V ν1...νp , Pν1...νp}. From the gaugetransformation of the quantity ∂[i1πi2...ip ]0 we obtain that

∂[i1πi2...ip ]0 = − 1(p − 1)!ε0i1 ...ipj1...jpP j1 ...jp . (39)
If we replace (38) in (18), then the constraint set takes theform
1
m2 ε0i1...ip−1j1...jp+1

(2αp!∂[j1Aj2...jp+1 ] + m2(p+ 1)!∂[j1V j2...jp+1 ])
≈ 0, (40)
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and remains first-class, and becomes reducible of order(p − 1). The number of physical degrees of freedom isconserved if we impose the supplementary constraints
P0i1...ip−1 ≈ 0, −p∂jPji1...ip−1 ≈ 0. (41)

The Hamiltonian path integral of the reducible first-classsystems reads

Z ′GU = ∫ D (Ai1...ip , Vµ1...µp , Pµ1 ...µp , λi1...ip−1 , λ(1)i1...ip−1 , λ(2)i1 ...ip−2) µ ([Ai1...ip ], [Vµ1...µp ]) exp (iS′(odd)GU
)
. (42)

where
S ′(odd)
GU = ∫ d2p+1x [−α (p+ 1) (∂0Ai1...ip) ε0i1...ipj1...j3Aj1 ...j3 + (∂0Vµ1...µp)Pµ1...µp −H′(odd)

GU

−λ(1)i1...ip−1P0i1...ip−1 + pλ(2)i1...ip−1∂jPji1...ip−1 − 1
m2 λi1...ip−1ε0i1...ip−1j1...jp+1

(2αp!∂[j1Aj2...jp+1 ] + m2(p+ 1)!∂[j1V j2...jp+1 ])] ,
(43)

and ’µ ([Ai1...ip ], [Vµ1...µp ])’ signifies the integration measureassociated with the model subject to the reducible first-class constraints (40) and (41). The first-class Hamilto-nian H′(odd)
GU is obtained from (22) using (34), (38) and (39).Proceeding further in a similar manner to Ref. [39] it canbe shown that the argument of the exponential from theHamiltonian path integral of the first class system takesthe form

S ′(odd)
GU = ∫ d2p+1x(
−αεµ1 ...µ2p+1F̄µ1...µp+1Āµp+2 ...µ2p+1+ 12 (p+ 1)! F̃µ1...µp+1F̃ µ1...µp+1

− m
p! (p+ 1)!εµ1...µ2p+1 F̃µ1...µp+1 Āµp+2 ...µ2p+1

) (44)
where F̃µ1 ...µp+1 = ∂[µ1 V̄µ2...µp+1 ]. This describes a Chern-Simons-like coupling between the p-forms Āµ1...µp and
V̄µ1...µp [41]. This result incorporates (for p = 1) the equiv-alence between the self-dual 1-form [32] and the gaugeinvariant topologically massive electrodynamics [42–44]proved in [45]. In [46], starting from a master Lagrangian(similar for p = 1 with (44)), the common origin of self-dual model and the Maxwell-Chern-Simons theory wasrevealed, and also was put into evidence the interplaybetween gauge invariance and self-duality.The two path integrals corresponding to (33) and (44) co-incide as both theories represent first-class extensions ofthe same second-class model. The aforementioned first-class theories correspond to different extensions of the

phase-space associated to the original second-class the-ory. In view of this the field spectra of the gauge theoriesare different.
3.2. The case p even
Based on the equivalence between the first-class sys-tem and the original second-class theory, we replace theHamiltonian path integral of self-dual p-forms with thatof the first-class system. Imposing some suitable gauge-fixing conditions Ci1 ...ip ≈ 0, the Hamiltonian path integralfor the above first-class system, subject to the first-classconstraints (30) and with evolution governed by the first-class Hamiltonian (32), takes the form

Z (even)
GU =∫ D (Ai1...ip , πi1...ip , λi1...ip) δ (Ci1...ip)(det ([Gj1...jp , Ck1...kp])) exp (iS(even)

GU

) (45)
with
S(even)
GU =∫ d2p+1x [∂0 (Ai1...ip)πi1...ip −H(even)

GU −

12λi1 ...ip
(
Ai1...ip + 1

αp! (p+ 1)!ε0i1...ipj1...jpπj1 ...jp
)]

.(46)
Performing partial integrations over the Lagrange mul-tipliers λi1...ip and the momenta πi1...ip , we discover the
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manifestly Lorentz covariant path integral correspondingto the Lagrangian formulation of the first-class system
S(even)
GU = ∫ d2p+1x (−αεµ1...µ2p+1F µ1 ...µp+1Aµp+2 ...µ2p+1) .(47)The functional (47) describes a topological Chern-Simons-like theory.

4. The construction of the first-
class system – BF method
Construction of a first-class system equivalent to the ini-tial second-class one (subject to the second-class con-straints (1)) using the BF method includes the followingthree steps: 1. we enlarge the original phase-space withthe variables (ζα )α=1,2M , (M ≥ M0) and extend the Pois-son bracket to the newly added variables; 2. we constructa set of independent, smooth, real functions defined on theextended phase-space, (GA (z, ζ))A=1,M0+M , such that
Gα0 (z, 0) ≡ χα0 (z) , GĀ (z, 0) ≡ 0, [GA, GB ] = 0, (48)

where Ā = 2M0 + 1,M0 +M; 3. we generate a smooth,real function HBF (z, ζ), defined on the extended phase-space, with the properties
HBF (z, 0) ≡ Hc (z) , [HBF , GA] = V B

A GB. (49)
These steps unravel a dynamic system subject to the first-class constraints GA (z, ζ) ≈ 0, whose evolution is gov-erned by the first-class Hamiltonian HBF (z, ζ). The first-class system constructed by the BF method is classicallyequivalent to the original second-class theory since bothdisplay the same number of physical degrees of freedom
NBF = 12 [2n+ 2M − 2 (M0 +M)] = 12 (2n − 2M0) = NO(50)and the corresponding algebras of classical observablesare isomorphic. Consequently, the two systems also be-come equivalent at the level of the path integral quantiza-tion, and we can to replace the Hamiltonian path integralof the original second-class theory with that of the BFfirst-class system.
4.1. The case p odd
In order to apply the BF method to the case of self-dual p-forms we consider the second-class system con-structed in the subsection (2.1) (with phase-space locally

parametrized by {Ai1 ...ip , A0i1...ip−1 , π0i1...ip−1} subject to thesecond-class constraints 17)–(18), and endowed with thecanonical Hamiltonian (19)) and we enlarge the phase-space by adding the bosonic fields/momenta {Bµ1...µp−1 ,Πµ1...µp−1}. The constraints GA (z, ζ) ≈ 0 gain in the caseof self-dual p-forms the concrete form
G(1)
i1 ...ip−1 ≡ χ (1)

i1 ...ip−1 +mBi1...ip−1 ≈ 0, (51)
G(2)
i1 ...ip−1 ≡ χ̄ (2)

i1 ...ip−1 − m(p − 1)!Πi1 ...ip−1 ≈ 0, (52)
Gi1 ...ip−2 ≡ Π0i1 ...ip−2 ≈ 0, (53)

where
χ̄ (2)
i1...ip−1 ≡ −2αpε0i1...ip−1j1...jp+1∂[j1Aj2...jp+1 ] − m2(p − 1)!A0i1...ip−1

≈ 0. (54)
Constraints (51)–(53) form an Abelian and irreduciblefirst-class constraint set. The first-class Hamiltonian com-plying with the general requirements (49) is expressed (interms of the first-class constraint functions) by
H (odd)
BF = H̄ (odd)

c + ∫ d2px
[
− 12 (p − 1)!Πi1 ...ip−1Πi1...ip−1−1

p

(
mAi1...ip − (p − 1)!2 ∂[i1Bi2 ...ip ]) ∂[i1Bi2 ...ip ]−1

mΠi1...ip−1G(2)
i1...ip−1 + (p − 1)!

m B0i1...ip−2∂jG(2)
ji1...ip−2

]
. (55)

We remark that in H (odd)
BF and in the first-class Hamilto-nian H (odd)

GU (22) appear the same terms, apart from thequadratic term in momenta and the terms proportional tothe first-class constraint functions, via the identification
Bi1...ip−1 = − 1

mπ0i1 ...ip−1 .The Hamiltonian gauge algebra relations (49) are givenby[
H (odd)
BF , G(1)

i1...ip−1
] = 0, [

H (odd)
BF , G(2)

i1...ip−1
] = 0,[

H (odd)
BF , Gi1...ip−2

] = (p − 1)!
m ∂jG(2)

ji1...ip−2 . (56)
Replacing the number of canonical variables 2n + 2M =(2p
p

) + 2( 2p
p − 1

) + 2(2p+ 1
p − 1

) and the number of in-
dependent first-class constraints M0 + M = ( 2p

p − 1
) +( 2p

p − 1
) + ( 2p

p − 2
) in (50), one obtains that the num-

ber of physical degrees of freedom is equal to N (odd)
BF =12

(2p
p

).
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4.2. The case p even
In this case, starting from the second-class system with thephase-space locally parameterized by {Ai1...ip , πi1...ip}, en-dowed with the canonical Hamiltonian (29) , and subjectto the second-class constraints (24) and (26), we constructan equivalent first-class system using the BF method. Inorder to construct the equivalent first-class system we en-large the phase-space with the variables {Bi1...ip , Πi1...ip}.In the case of self-dual p-forms with p even the constraints
GA (z, ζ) ≈ 0 take the form

G(1)
i1 ...ip ≡ πi1 ...ip + α (p+ 1) ε0i1...ipj1...jp (Aj1...jp + 2Bj1 ...jp)

≈ 0, (57)
G(2)
i1 ...ip ≡ πi1 ...ip − α (p+ 1) ε0i1...ipj1...jpAj1...jp − Πi1...ip ≈ 0.(58)

Constraints (57)–(58) form an Abelian and irreduciblefirst-class constraint set. The first-class Hamiltonian com-plying with the general requirements (49) is expressed by

H (even)
BF =∫ d2px

[
m22p!

(
Ai1...ip+Bi1...ip+ 12αp! (p+ 1)!ε0i1 ...ipj1...jpP j1 ...jp

)(
Ai1...ip+Bi1 ...ip+ 12αp! (p+ 1)!ε0i1...ipk1...kpPk1 ...kp

)]
.(59)

The Hamiltonian gauge algebra relations (49) are given by
[
H (even)
BF , G(1)

i1...ip
] = 0, [

H (even)
BF , G(2)

i1...ip
] = 0. (60)

Replacing the number of canonical variables 2n + 2M =2(2p
p

) + 2(2p
p

) and the number of independent first-
class constraints M0 + M = (2p

p

) + (2p
p

) in (50), oneobtains the number of physical degrees of freedom equalto N (even)
BF = 0.

5. Covariant path integral for the BF
system

5.1. The case p odd
In the third section of Ref. [39], starting from a second-class theory (the massive self-dual 3-forms in D = 7) anequivalent first-class system was constructed using theBF method, and the manifestly Lorentz-covariant path in-tegral corresponding to the Lagrangian formulation of theequivalent first-class system was obtained. Starting fromthe BF system constructed in the subsection 4.1, and pro-ceeding in a similar manner we discover the manifestlyLorentz-covariant path integral corresponding to the La-grangian formulation of the first-class system. This re-duces for different kinds of extensions of the phase-spaceto the Lagrangian path integral for (p − 1)- and p-formswith Stückelberg-like coupling (33), or the Lagrangian

path integral for two kinds of p-forms with Chern-Simons-like coupling (44).
5.2. The case p even
We finally consider the Hamiltonian path integral for theBF system constructed in the above, subject to the first-class constraints (57)–(58), whose evolution is governed bythe first-class Hamiltonian (59). Imposing some suitablegauge-fixing conditions

CA ≡
(
C (1)
i1...ip ≡ Ai1...ip , C (2)

i1...ip ≡ Bi1...ip
)
≈ 0, (61)

the Hamiltonian path integral takes the form
Z (even)
BF = ∫

D
(
Ai1 ...ip , Bi1...ip , πi1...ip ,Πi1 ...ip , λ(1)i1 ...ip , λ(2)i1...ip)

×
(∏

A
δ (CA)) (det ([GA′ , CB′ ])) exp (iS(even)

BF

)
, (62)

with
S(even)
BF =∫d2p+1x{(∂0Ai1...ip)πi1 ...ip+(∂0Bi1...ip)Πi1 ...ip−H(even)

BF

−λ(1)i1 ...ip [πi1...ip+α (p+ 1) ε0i1 ...ipj1...jp (Aj1...jp+2Bj1...jp)]
−λ(2)i1...ip (πi1...ip − α (p+ 1) ε0i1...ipj1 ...jpAj1 ...jp − Πi1...ip)} .(63)
Performing in the path integral partial integrations over
πi1 ...ip , Πi1...ip , λ(1)

i1...ip , λ(2)i1...ip and Bi1...ip the functional (63)
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associated with the first-class system takes a manifestlyLorentz-covariant form
S(even)
BF = ∫ d2p+1x (−αεµ1...µ2p+1Aµ1...µpFµp+1 ...µ2p+1

)
,(64)and describes a topological Chern-Simons-like theory.

6. Conclusion
In this paper the massive self-dual p-forms have been an-alyzed from the point of view of the Hamiltonian pathintegral quantization, in the framework of GU and BFmethods. The first step of this approaches is representedby the construction of an equivalent first-class system.The construction of the equivalent first-class system inthe GU approach does not require an extension of theoriginal phase-space, while the construction of the equiv-alent first-class system using the BF method demands anappropriate extension of the original phase-space. Thesecond step involves the construction of the Hamiltonianpath integral corresponding to the equivalent first-classsystem. The Hamiltonian path integral of the first-classsystem takes a manifestly Lorentz-covariant form after in-tegrating out the auxiliary fields and performing some fieldredefinitions. In the case p odd, we note that in orderto obtain a manifestly covariant path integral, both ap-proaches requires some extensions of the phase-space.For appropriate phase-space extensions we identify theLagrange path integral for (p − 1)- and p- forms withStückelberg-like coupling, or the Lagrangian path inte-gral for two kinds of p-forms with Chern-Simons-like cou-pling. In the case p even, it is not necessary to furtherenlarge the phase-space in order to obtain a manifestlycovariant path integral. Both methods finally output themanifestly Lorentz covariant path integral which describea topological Chern-Simons-like theory.
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