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Abstract: In this communication we study a class of one parameter dependent auto-Bäcklund transformations for the
first flow of the relativistic Toda lattice and also a variant of the usual Toda lattice equation. It is shown that
starting from the Hamiltonian formalism such transformations are canonical in nature with a well defined
generating function. The notion of spectrality is also analyzed and the separation variables are explicitly
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1. Introduction

Bäcklund transformations (BT) have played a central rolein the study of integrable systems both continuous as wellas semi-discrete.At the classical level the study of Bäcklund transforma-tions is motivated by the possibility of being able to obtaina wide class of solutions starting from a fairly simple orin some cases even a trivial solution.More recently in order to arrive at a fully quantized mech-anism for quantum nonlinear integrable systems attemptshave been made to derive BT’s which can be derived froma suitable generating function, so that they may be viewedas a kind of canonical transformation, in order to subse-quently quantize them. This has helped to achieve an in-
∗E-mail: aghosechoudhury@gmail.com

tegral representation of Baxter’s Q-operator [1]. Quantumanalogs of the relativistic Toda lattice were also consid-ered by the authors of [2].In our previous works we have pursued the issue of BT’sfor the standard Toda lattice and derived the correspond-ing integral representation of its associated Q-operatorfollowing the procedure devised by Sklyanin in [3, 4]. Wehave also studied the dimer self-trapping (DST) and the
Dn-type Toda lattices under open and dynamical bound-ary conditions respectively [5, 6]. The former system isoften used for studying quasi particle motion on a dimer.Therefore in continuation of the programme in this commu-nication we address the issue of deriving canonical BT’sfor a family of semi-discrete integrable lattices related tothe relativistic Toda hierarchy, which were first introducedby Suris in a series of papers dealing with the flows of therelativistic Toda hierarchy which appeared in connectionwith the discretization of continuous integrable systems[7–9].

49



Bäcklund transformation for the first flows of the relativistic Toda hierarchy and associated properties

In case of semi-discrete flows it usually involves a trans-formation of the space part of the corresponding Lax pairwhile retaining the zero-curvature condition. Startingwith the linear system
Ψn+1 = `n(λ)Ψn, Ψ̇n = Mn(λ)Ψn, (1)

with n being the lattice index and the over dot denotingderivative with respect to the continuous temporal variable
t; their consistency yields the following zero-curvatureequation for a semi-discrete system, viz

˙̀n(λ) = Mn+1(λ)`n(λ)− `n(λ)Mn(λ), (2)
from which the equation of motion is assumed to follow.As an example for the standard Toda lattice [10] which hasthe following equation of motion

q̈n = eqn+1−qn − eqn−qn−1 , n = 1, ..., N, (3)
it may be verified that this follows from (2) when the Laxpair is given by,
`n(λ) = ( λ+ pn eqn

−e−qn 0
)
, Mn(λ) = ( −λ −eqn

e−qn−1 0
)
.

(4)We begin by briefly introducing the relativistic Toda hi-erarchy.
1.1. First flow of the relativistic Toda hierar-
chy
The simplest flow of the relativistic Toda hierarchy(RTH) [7, 8] is given by
ḋk = dk (ck−ck−1), ċk = ck (dk+1+ck+1−dk−ck−1). (5)

It can be derived from the Hamiltonian
H (1)+ = 12 ∑

k

(dk + ck−1)2 +∑
k

(dk + ck−1)ck (6)
with the following Poisson structure:
{ck , dk+1}1 = −ck , {ck , dk}1 = ck , {dk , dk+1}1 = ck ,(7)as can be easily verified. On the other hand when theHamiltonian is taken as

H (2)+ = N∑
k=1 (dk + ck ), (8)

along with the quadratic Poisson brackets
{ck , ck+1}2 = −ckck+1, {ck , dk+1}2 = −ckdk+1,

{ck , dk}2 = ckdk (9)
one is again led to equations (5). Thus we conclude thatit possesses a bi-Hamiltonian structure.Under the following transformation

dk = pk − eqk−qk−1 , ck = eqk+1−qk , (10)
the Hamiltonian (6), i.e., H (1)+ is mapped, in terms of thecanonical variables (qk , pk )Nk=1, to
H = 12 N∑

k=1 p
2
k + N∑

k=1 pke
qk−qk−1 with {pn, qm} = δnm.(11)The Hamiltons equations of motion are then given by

q̇n = ∂H
∂pn

= pn + eqn−qn−1 , (12)
ṗn = − ∂H∂qn = pn+1eqn+1−qn − pneqn−qn−1 , (13)

so that the corresponding Newtonian equation of motionappears as
q̈n = q̇n+1eqn+1−qn−q̇n−1eqn−qn−1−e2(qn+1−qn)+e2(qn−qn−1).(14)
1.2. Second flow of the RTH
The second flow of the RTH is given by
ḋk = dk

(
ck

dkdk+1 −
ck−1
dk−1dk

)
, ċk = ck

( 1
dk
− 1
dk−1

)
.(15)This also possess a bi-Hamiltonian structure with theHamiltonians being

H (1)
− = − N∑

k=1 logdk , H (2)
− = N∑

k=1
dk + ck
dkdk+1 , (16)

corresponding to the two Poisson structures (7) and (9)respectively. The transformation (10) causes the Hamil-tonian H (1)
− to appear as

H (1)
− = − N∑

k=1 log(pk − eqk−qk−1 ), (17)
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and in turn leads to the following Hamiltons equations ofmotion,
q̇n = ∂H (1)

−

∂pn
= − 1

pn − eqn−qn−1 , (18)
ṗn = −∂H (1)

−

∂qn
= eqn+1−qn
pn+1 − eqn+1−qn −

eqn−qn−1
pn − eqn−qn−1 . (19)

Solving for pn from the first of these equations and using itin the second leads to the following Newtonian equationof motion,
q̈n = q̇2

n
(
q̇n+1eqn+1−qn − q̇n−1eqn−qn−1) . (20)

2. Lax formulation of first RTH flow
Recall that the first Newtonian equation belonging to theRTH is given by (14) and is equivalent to the followingsemi-discrete system (time being the continuous variable)

q̇n = pn + eqn−qn−1 , (21)
ṗn = pn+1eqn+1−qn − pneqn−qn−1 . (22)

It may be derived from the zero-curvature condition (2)with the spectral parameter, λ, dependent local Lax pair
`n(λ)=(λ+ pn −pneqn

e−qn −1
)
, Mn(λ) =( 0 pneqn

−e−qn−1 λ

)
,

n = 1, . . . , N. (23)
2.1. The classical r-matrix algebra of first RTH
flow
It is easy to verify that `n(λ) given in (23) satisfies theSklyanin quadratic algebra

{`1
n (λ), `2

m(µ)} = [r(λ − µ), `1
n (λ)`2

m(µ)]δnm, (24)
where `1

n (λ) = `n(λ) ⊗ I and `2
n (µ) = I ⊗ `n(µ) are thestandard tensor products of `n(λ) with the 2×2 unit matrix

I and

r(λ − µ) = P
λ − µ := 1

λ − µ


1 0 0 00 0 1 00 1 0 00 0 0 1

 , (25)

where P denotes the permutation matrix. One defines themonodromy matrix in the usual manner as
TN (λ) := ←

N∏
n=1 `n(λ) = `N (λ)`N−1(λ) . . . `1(λ)

:= (
AN (λ) BN (λ)
CN (λ) DN (λ)

)
. (26)

It is well known that the trace of the monodromy matrix isa generator of the conserved quantities. Let
t(λ) = tr(TN (λ)) = AN (λ) +DN (λ). (27)

A direct calculation then shows that the elements of themonodromy matrix are polynomials in λ having the generalform
TN (λ)=(λN + λN−1P +O(λN−2) −λN−1p1eq1 +O(λN−2)

λN−1e−qN +O(λN−2) O(λN−2)
)
,

(28)where P = ∑N
k=1 pk represents the total momentum of thesystem. Hence

t(λ) = AN (λ) +DN (λ)
= λN+λN−1P+λN−2 N∑

k=1
(
pk+1pk − pkeqk−qk−1)+ · · · .(29)

Since t(λ) is a constant of motion it follows that the coeffi-cients of the different powers of λ are conserved. Denotingthese by Ci(i = 1, ...) we have
C1 = P, (30)

C2 = N∑
k=1
(
pk+1pk − pkeqk−qk−1) , (31)

and so on. It is easy to check that the Hamiltonian H isa combination of the Ci’s, namely
H = 12C 21 − C2. (32)

It may be mentioned that it is also possible to obtain theequation of motion for the first relativistic Toda hierar-chy from an Euler-Lagrange perspective with Lagrangiangiven by
L = 12 N∑

k=1
(
q̇k − eqk−qk−1)2 . (33)
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3. Canonical Bäcklund transforma-
tion for first RTL flow
In this section we will construct a Bäcklund transformation(BT) for the system given by (21) and (22) based uponthe Hamiltonian approach. The method proposed in [1, 4]relies firstly on the ability to find an invertible matrix
Gn(λ, ξ) satisfying the following gauge transformation:

Gn+1(λ, ξ)`n(λ;qn, pn) = `n(λ; q̃n, p̃n)Gn(λ, ξ), (34)
which serves as an auxiliary matrix for the purpose.Eqn. (34) serves as a similarity transformation for the lo-cal Lax operator `n(λ, qn, pn) and hence of the monodromymatrix TN (λ) as defined in (26). This local transformation
b(n)
ξ : `n(λ, qn, pn) −→ `n(λ, q̃n, p̃n), n = 1, ..., N, (35)

depends on the parameter ξ , while the auxiliary matrix
Gn(λ, ξ) which induces the BT is assumed to be a non-singular matrix obeying the quadratic algebra (24). In thefollowing we employ the local Lax operator of the DSTmodel as the auxiliary matrix Gn(λ, ξ) in order to inducethe BT as it satisfies the algebra (24).
3.1. With the DST model as auxiliary matrix
The Lax operator for the DST model [11] has the followingform

Gn(λ, ξ) = ( λ − ξ + snSn sn
Sn 1

)
. (36)

We assume that the BT is formally defined by(
λ − ξ + snSn sn

Sn 1
)(

λ+ pn −pneqn
e−qn −1

)

= ( λ+ p̃n −p̃neq̃n
e−q̃n −1

)(
λ − ξ + tnTn tn

Tn 1
)
. (37)

Upon equating the coefficients of the different powers of
λ we arrive at the following set of relations:

pn(snSn − ξ) + sne−qn= p̃n(tnTn − ξ)− Tnp̃neq̃n ,(38)
pn + snSn = tnTn + p̃n, (39)

pneqn = −tn, (40)(snSn − ξ)pneqn + sn = p̃n(eq̃n − tn), (41)
Sn = e−q̃n , (42)

Snpn + e−qn = e−q̃n (tnTn − ξ)− Tn, (43)
Snpneqn = −tne−q̃n , (44)

which yield the following solutions:
p̃n = − (eq̃n−qn + Tneq̃n + ξ

) + e−q̃nsn, (45)
pn = −(eq̃n−qn + Tneq̃n + ξ

)
1 + Tneqn

, (46)
tn = eq̃n + ξ

Tn + e−qn , (47)
along with Sn which is already given by (42). These rela-tions may be derived from a local generating function f (n)

ξsuch that
pn = ∂f (n)

ξ

∂qn
, p̃n = −∂f (n)

ξ

∂q̃n
, Sn = ∂f (n)

ξ

∂sn
, tn = ∂f (n)

ξ

∂Tn
, (48)

where
f (n)
ξ (qn, q̃n, Tn, sn) = eq̃n−qn + Tneq̃n+ξq̃n + e−q̃nsn + ξ log(Tn + e−qn ). (49)

In order to be consistent with (34) we now impose theconditions that
Tn = Sn−1, sn = tn+1. (50)

This causes the elimination of the auxiliary variables from(45) and (46) which are then given by
p̃n = eq̃n+1−q̃n − eq̃n−q̃n−1 −

[
e−qn+q̃n + ξe−qn+1

e−q̃n + e−qn+1
]
,(51)

pn = − [e−qn+q̃n + ξe−qn
e−q̃n−1 + e−qn

]
. (52)

Eqs. (51) and (52) define the required one parameterauto-Bäcklund transformations and it may be checked thattheir generating function is given by
Fξ= N∑

n=1
[
ξ log(eq̃n−qn + eq̃n−q̃n−1 ) + eq̃n

(
e−qn + e−q̃n−1)]

+const., (53)
with

pn = ∂Fξ
∂qn

, p̃n = −∂Fξ∂q̃n
.

Note that we may assume without loss of generality thatthe constant of integration depends on the parameter ξ .
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3.2. With a different auxiliary matrix
It is quite obvious that there is a certain amount of free-dom in the choice of the auxiliary matrix used to inducethe Bäcklund transformations as defined in (34). One re-quirement is that the auxiliary matrix used must have thesame r-matrix algebra as the Lax operator of the modelwhose BT is being studied [4]. For instance if we wereto choose a different auxiliary matrix then the formal ap-pearance of the BT may differ significantly as is illustratedbelow. We assume that the matrix Gi(λ, ξ) to be given by

Gi(λ, ξ) = ( λ − ξ + siSi s2
iSi − 2ξsi

Si −(λ+ ξ) + siSi

)
. (54)

Substituting the expressions for `i(λ, qi, pi) and Gi(λ, ξ)from (24) and (54) respectively into (34) we have afterequating the different coefficients of powers of λ the fol-lowing expressions:
pi = (2ξsi − s2

iSi) + si+1eq̄i (e−qi + e−q̄i )(eqi + eq̄i ) , (55)
p̄i = (2ξsi − s2

iSi)− si+1eqi (e−qi + e−q̄i )(eqi + eq̄i ) , (56)
Si+1 = e−qi + e−q̄i , (57)
si+1 = {( ξ

e−qi + e−q̄i

)
−
(
eq̄i+1 − eqi+12

)}
±
[(

ξ
e−qi+e−q̄i

)2+(eq̄i+1 − eqi+12
)2+ eqi+1+q̄i+1

]1/2
.

(58)
It is clear that by using the expressions for si and Si asobtained from the last two equations by the replacement(i → i − 1), in the first two equations, we obtain thevalues of pi and p̄i entirely in terms of the set {qi} andthe parameter ξ . This gives another set of one-parameterauto-Bäcklund transformation relations.
4. A variant of the Toda lattice model
In this section we will consider a model which is closelyrelated to the standard Toda lattice. It was introduced bySuris in [12] and has the following equation of motion:

q̈n = q̇n(eqn+1−qn − eqn−qn−1 ). (59)
It may be written as the following equivalent system, viz

q̇n = pn, ṗn = pn(eqn+1−qn − eqn−qn−1 ), (60)

and can be derived from the zero curvature condition (2)with the following Lax pair
`n(λ) = ( λ+ pn −eqn

−λe−qn 1
)
, Mn(λ) = ( eqn−qn−1 eqn

λe−qn−1 λ

)
.

(61)Note that the system of equations (60) can also be derivedfrom (2) using an alternate form of the Lax pair given by:
`n(λ) = (

λepn − λ−1 eqn
−e−qn λ

)
,

Mn(λ) = (
λ−2 + eqn−qn−1 −λ−1eqn
λ−1e−qn−1 0

)
. (62)

This indicates the non uniqueness of the Lax pair for theequation of motion (59). In the latter case the equationsof motion are given by
ṗn = eqn+1−qn − eqn−qn−1 , (63)
q̇n = epn , (64)

and one can easily verify that elimination of pn leads onceagain to (59), which incidentally is closest to the standardToda lattice equation. The Hamiltonian of (59) is givenby
H = N∑

n=1(epn + eqn−qn−1 ). (65)
The corresponding Lagrangian being

L = N∑
n=1 [q̇n log q̇n − q̇n − eqn−qn−1 ]. (66)

Proposition 4.1.The Lax pair given in (62) admits the following quadratic
r-matrix algebra

{`1
n (λ), `2

m(µ)} = [r(λ, µ), `1
n (λ)`2

m(µ)] δnm (67)
with

r(λ, µ) =

a 0 0 00 (a − λ2

λ2−µ2 ) λµ
λ2−µ2 00 λµ

λ2−µ2 (a − µ2
λ2−µ2 ) 00 0 0 a

 .
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Proof : By direct calculation.Setting a = (λ2 + µ2)/2(λ2 − µ2) this r-matrix may bewritten as

r(λ, µ) =


λ2+µ22(λ2−µ2) 0 0 00 − 12 λµ
λ2−µ2 00 λµ

λ2−µ2 12 00 0 0 λ2+µ22(λ2−µ2)

 . (68)

In [13] a version of the relativistic Toda lattice having thefollowing Lax matrix was analyzed in the context of Bäck-lund transformation, namely;
`k (λ) = (

λeαpk − λ−1 αeqk
−αe−qk+αpk 0

)
,

Mk (λ) = ( 0 −λeqk+1−αpk
λe−qk λ2−1

α + αeqk+1−qk−αpk+1
)
. (69)

This Lax matrix also satisfies the r-matrix algebra (67)with an r-matrix given by (68). This makes it a potentialcandidate for inducing the BT of the Lax matrix given in(62). Indeed it follows from the defining relation of theBT, namely
(

λ
ξ e

αSk+1 − ξ
λ αesk+1

−αe−sk+1+αSk+1 0
)(

λepk − λ−1 eqk
−e−qk λ

)

= ( λep̃k − λ−1 eq̃k
−e−q̃k λ

)(
λ
ξ e

αSk − ξ
λ αesk

−αe−sk+αSk 0
)
, (70)

(where ξ is the Backlund parameter) that the BT is nowgiven by
epn = 1

α2 eqn−q̃n−1 + eq̃n−q̃n−1 , (71)
ep̃n = 1

α2 eqn+1−q̃n + eqn+1−qn . (72)
It may be verified that the above BT is derivable from thegenerating function
F = N∑

n=1
[12q2

n + 12 q̃2
n − qnq̃n−1 + 2(q̃n − qn) logα

−
∫ log(1 + α2ex )dx)∣∣∣

x=q̃n−qn
]
, (73)

that is
pn = ∂F

∂qn
, p̃n = − ∂F∂q̃n .

Interestingly although the auxiliary matrix used here de-pended explicitly on the parameter ξ , the latter does notappear in the BT given by (71) and (72) and thereforealso in the expression for the corresponding generatingfunction.It is pertinent to mention here that the Lax pair (62) isactually a reduced form of the Lax pair of the system givenbelow, obtained by setting the parameter α = 0. For thismodel the equation of motion is given by
ẍk = ẋk

[(exk+1−xk − exk−xk−1 + αexk+1−xk1 + αexk+1−xk ẋk+1
− αexk−xk−11 + αexk−xk−1 ẋk−1], (74)

and is derivable from the following Lax pair
`n(λ) = (

λepn − λ−1 eqn
−(1 + αepn )e−qn λ

)
,

Mn(λ) = (
λ−2 + (1 + αepn−1 )eqn−qn−1 −λ−1eqn

λ−1(1 + αepn )e−qn−1 0
)
.(75)

Clearly setting α = 0 causes it to reduce to (62).
Proposition 4.2.The above Lax pair satisfies the algebra

{`1
n (λ), `2

m(µ)} = [r(λ, µ), `1
n (λ)`2

m(µ)]δnm,
where the classical r-matrix is given by (68).
Proof : By a direct calculation.
5. Spectrality
An integrable Hamiltonian system with a Lax pair is saidto be separable if it possesses a suitable set of Darbouxcoordinates (λj , µj ), j = 1, ..., N satisfying, in most cases,a common associated spectral curve Γ(λ, µ, I1, ..., IN ) = 0where I1, ..., IN are conserved quantities in involution.Given a Lax pair with the monodromy matrix having theform stated in (26) the affine part of the spectral curve isdefined by det(µ − TN (λ)) = 0. (76)
It will be recalled that the defining relation for the BT isof the form

Gi+1(λ, ξ)`i(p, q; λ) = `i(p̃, q̃, λ)Gi(λ, ξ) (77)
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From the definition of the monodromy matrix it is now easyto see that
G1TN (p, q, λ) = T̃N (p̃, q̃, λ)G1. (78)

Furthermore one can verify that as detG(λ = ξ) = 0,there exists a vector wi such that
Gi(λ, ξ)∣∣∣

λ=ξwi = 0 ∀ i = 1, ..., N, (79)
which in turn implies
G1TN (p, q, λ)∣∣∣

λ=ξw1 = T̃N (p̃, q̃, λ)∣∣∣
λ=ξG1w1 = 0, (80)

so that
G1
[
TN (p, q, λ)∣∣∣

λ=ξw1
] = 0. (81)

A comparison with G1w1 = 0, then clearly indicates thatwe must have
TN (p, q, λ)∣∣∣

λ=ξw1 = Λw1. (82)
But it also follows from (77) that

`i(p, q, λ)∣∣∣
λ=ξwi = giwi+1, (83)

so that
TN (p, q, λ)∣∣∣

λ=ξw1 = ( N∏
i=1 gi

)
wN+1 = ( N∏

i=1 gi
)
w1, (84)

where we have assumed periodicity wk+N = wk . Conse-quently from (82) and (84) it follows that
Λ = N∏

i=1 gi. (85)
In case of the first flow of the RTL the auxiliary matrix Gnwhen evaluated at λ = ξ is given by

Gn(λ, ξ)∣∣∣
λ=ξ = ( Tntn tn

Tn 1
)
, (86)

where
Tn = e−q̃n−1 , tn = (eq̃n + ξeq̃n−11 + eq̃n−1−qn

)
. (87)

Since det[Gn(λ, ξ)|λ=ξ ] = 0 we have upon setting
Gn(λ, ξ)|λ=ξwn = 0

wn = ( eq̃n−1
−1

)
. (88)

It now follows from (83) that
gn = −(1 + e−qn+q̃n−1 )

and pn = −e−qn
[
eq̃n + ξ

e−q̃n−1 + e−qn

]
, (89)

the expression for pn being the same as obtained earlierin (52). Hence from (84) we find that the eigenvalue ofthe monodromy matrix is given by
Λ = (−1)N N∏

n=1(1 + e−qn+q̃n−1 ). (90)
Recalling that the generating function of the BT for thefirst flow of the RTH is given by (53) it immediately followsupon setting the constant of integration to be iNπξ that

µ = ∂Fξ
∂ξ =∑

n
log(eq̃n−qn + eq̃n−q̃n−1 ) + iNπ, (91)

so that
eµ = (−1)N N∏

n=1(1 + e−qn+q̃n−1 ) = Λ. (92)
6. Separation of variables for the
first RTH flow
It will be recalled that the Lax pair for the first flow of theRTH as given in (23) satisfies the r-matrix algebra (24)with the r− matrix having the form stated in (25).Introducing the shifting λ → λ−cn where cn are parame-ters at each of the lattice sites our Lax operator assumesthe form

`n(λ) = ( λ − cn + pn −pneqn
e−qn −1

)
. (93)

The monodromy matrix now depends on the parameters
{cn}Nn=1 and is defined in the usual way by

TN (λ) := ←
N∏
n=1 `n(λ, cn). (94)
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It satisfies the following algebra
{T 1

N (λ), T 2
N (µ)} = [r(λ − µ), T 1

N (λ)T 2
N (µ)], (95)

where T 1
N (λ) = TN (λ)⊗ I and T 2

N (µ) = I ⊗ TN (µ). Writingthe monodromy matrix as a 2× 2 matrix as stated in (2.6)it follows from (94) that its elements have the followingexpansions:
AN (λ) = λN + N∑

i=1 (pi − ci)λN−1 +O(λN−2), (96)
BN (λ) = λN−1(−p1eq1 ) +O(λN−2), (97)
CN (λ) = λN−1e−qN +O(λN−2), (98)
DN (λ) = O(λN−2). (99)

The determinant of the monodromy matrix is given by
detTN (λ) = N∏

i=1 det `i(λ, ci) = (−1)N N∏
i=1 (λ − ci). (100)

In the separation representation of the quadratic algebra(95) we look for N canonical pairs of variables (λi, µi) i =1, ..., N having standard Poisson brackets
{λi, λj} = {µi, µj} = 0, {λi, µj} = δij . (101)

The precise choices of the pairs (λi, µi), i = 1, ..., N willnow be made. As CN (λ) is a polynomial of degree (N− 1)if we denote the zeros of CN (λ) by λi, i.e.,
CN (λi) = 0, ∀ i = 1, ..., N − 1

then the monodromy matrix when evaluated at the zerosof CN (λ) reduces to
TN (λ = λi) = ( AN (λi) BN (λi)0 DN (λi)

)
, (102)

and its eigenvalues are obviously given by the diagonalelements. As mentioned earlier one can associate with themonodromy matrix the following spectral curve defined by
det(µI − TN (λ)) = µ2 − P(λ)µ +Q(λ) = 0, (103)

where I denotes the 2 × 2 unit matrix. Clearly it followsthat

Q(λ) = detTN (λ) = AN (λ)DN (λ)− BN (λ)CN (λ),
P(λ) = tr TN (λ). (104)

Let us introduce a new variable vi i = 1, ..., n which isdefined by
µi := e−vi := DN (λi), i = 1, ..., N − 1. (105)

This provides a set of N − 1 pairs of variables. As forthe remaining pair we define the variables µN and λN asfollows:
µN := qN , λN := N∑

n=1(pn − cn). (106)
Clearly it follows that their Poisson bracket {λN , µN} = 1.Then from (98) we have

CN (λ) = e−vN
N−1∏
i=1 (λ − λi), (107)

and from (96) and (99) the ratios
AN (λ)
CN (λ) = G1(λ) + N−1∑

i=1
AN (λi)

C ′N (λi)(λ − λi) , (108)

DN (λ)
CN (λ) = N−1∑

i=1
DN (λi)

C ′N (λi)(λ − λi) , (109)
where G1(λ) is linear in λ. Here C ′N (λi) represents thederivative of CN (λ) with respect to λ evaluated at λ = λi.Let G1(λ) = aλ+ b, then it follows that
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AN (λ) = (aλ+ b)e−vN N−1∏
i=1 (λ − λi) + e−vN

N−1∏
j=1 (λ − λj )∑

i

AN (λi)
C ′N (λi)(λ − λi) ,

= e−vN
[
aλN − (a N−1∑

i=1 λi)λN−1 + bλN−1 +O(λN−2)] . (110)

Next comparing (110) and (96) we immediately see that
a = evN , b = evN

 N∑
j=1 (pj − cj ) + N−1∑

i=1 λi
 := evNS.

(111)Therefore we have finally
AN (λ)
CN (λ) = evN (λ+ S) + N−1∑

i=1
AN (λi)

C ′N (λi)(λ − λi) . (112)
It follows from (100) and (104) that

BN (λ) = AN (λ)DN (λ)− (−1)N∏N
i=1(λ − ci)

CN (λ) , (113)
while

CN (λ) = e−vN
N−1∏
i=1 (λ − λi). (114)

Thus (109) together with (112)-(114) complete the deter-mination of the elements of the monodromy matrix in termsof the separation variables.It may be proved that the representation of these elementsin terms of the separation variables is a faithful represen-tation of the algebra (95). We illustrate this below for theparticular case of the Poisson bracket {CN (λ), AN (µ)} andshow explicitly that
{CN (λ), AN (µ)} = 1

λ − µ [AN (λ)CN (µ)− AN (µ)CN (λ)] .(115)Using (112) it follows that the left hand side is
{CN (λ), CN (µ)evN (µ + S)}

+ {
CN (λ), CN (µ) N−1∑

i=1
AN (λi)

C ′N (λi)(µ − λi)
}
.

Denoting the first Poisson bracket by t1 we have usingthe expression for CN (λ) as given in (114)

t1 =
e−vN N−1∏

i=1 (λ − λi), e−vN N−1∏
j=1 (µ − λj )evN (µ + S)


= N−1∏

i=1 (λ − λi){e−vN , N∑
k=1 (pk − ck )

}
e−vN

N−1∏
j=1 (µ − λj )evN

= −e−vN
N−1∏
i=1 (λ − λi).{vN , uN}.e−vN N−1∏

j=1 (µ − λj )evN
= e−vN

N−1∏
i=1 (λ − λi).e−vN N−1∏

j=1 (µ − λj ).evN
= CN (λ)CN (µ)evN . (116)

In arriving at this relation we have made use of the factthat from (111), S = ∑N
j=1(pj − cj ) + ∑N−1

i=1 λi while
λN = ∑N

j=1(pj − cj ), together with the Poisson bracket
{λN , µN} = 1 which follows from (106).
Next consider the term

t2 = {CN (λ), CN (µ) N−1∑
i=1

AN (λi)
C ′N (λi)(µ − λi)

}
. (117)

Note that from (104) we have setting λ = λi

AN (λi)e−vi = det(TN (λi)) = (−1)N N∏
j=1(λj − cj ), (118)

which implies
AN (λi) = (−1)Nevi N∏

k=1(λk − ck ). (119)
Using (114) and (119) the right hand side may be writtenas
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t2 = e−2vN k−1∏
i=1

N−1∑
k=1
{
λ − λk , (−1)Nevk ∏N

i=1(λk − ci)
C ′N (λk )(µ − λk )

} N−1∏
i=1 (µ − λi)

= CN (λ)CN (µ) N−1∑
k=1{vk , λk}

AN (λk )
C ′N (λk )(λ − λk )(µ − λk )

= CN (λ)CN (µ)(µ − λ) N−1∑
k=1 (−1)( AN (λk )

C ′N (λk )(λ − λk ) − AN (λk )
C ′N (λk )(µ − λk )

)
, (120)

where it has been assumed that {vk , λj} = −δkj . Usingnow the expression for AN (λ) as given by (112) we findthat t2 may be simplified to yield
t2 = 1

λ − µ
(AN (λ)CN (µ)− AN (µ)CN (λ))− evNCN (λ)CN (µ).(121)Hence finally we arrive at (115), namely

{CN (λ), AN (µ)} = t1 + t2 = 1
λ − µ (AN (λ)CN (µ)

− AN (µ)CN (λ)).
Thus we have at our disposal two sets of N pairs of canon-ical variables, namely (pi, qi) with i = 1, ..., N and a sec-ond set defined by the zeros of CN (λ), viz λi and vi andhence µi defined by e−vi = DN (λi), i = 1, ..., N , togetherwith µN = qn and λN = ∑N

n=1(pn − cn) both of whichreproduce the r matrix algebra. In the second case thevariables have the Poisson brackets {λN , µN} = 1 and
{λk , vk} = 1, with k = 1, ..., N − 1.
7. Conclusion
In this article we have focussed on a class of semi-discreteintegrable systems related to the relativistic Toda hier-archy and have explicitly obtained a canonical Bäcklundtransformation (BT) for the first flow of the relativistic Todahierarchy. We have also investigated the property of spec-trality for this particular flow, since it is closely relatedto the issue of its separability. We have therefore derivedthe separation variables explicitly. In addition we havestudied a variant of the standard Toda lattice and havederived a set of BT’s for it. This model is characterizedby a different r−matrix algebra and it would be interest-ing to analyze the problem of deriving the correspondingseparation representation for it.
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