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Abstract:

In this communication we study a class of one parameter dependent auto-Backlund transformations for the

first flow of the relativistic Toda lattice and also a variant of the usual Toda lattice equation. It is shown that
starting from the Hamiltonian formalism such transformations are canonical in nature with a well defined
generating function. The notion of spectrality is also analyzed and the separation variables are explicitly

constructed.
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1. Introduction

Béacklund transformations (BT) have played a central role
in the study of integrable systems both continuous as well
as semi-discrete.

At the classical level the study of Backlund transforma-
tions is motivated by the possibility of being able to obtain
a wide class of solutions starting from a fairly simple or
in some cases even a trivial solution.

More recently in order to arrive at a fully quantized mech-
anism for quantum nonlinear integrable systems attempts
have been made to derive BT's which can be derived from
a suitable generating function, so that they may be viewed
as a kind of canonical transformation, in order to subse-
quently quantize them. This has helped to achieve an in-
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tegral representation of Baxter's Q-operator [1]. Quantum
analogs of the relativistic Toda lattice were also consid-
ered by the authors of [2].

In our previous works we have pursued the issue of BT's
for the standard Toda lattice and derived the correspond-
ing integral representation of its associated Q-operator
following the procedure devised by Sklyanin in [3, 4. We
have also studied the dimer self-trapping (DST) and the
D,-type Toda lattices under open and dynamical bound-
ary conditions respectively [5, 6] The former system is
often used for studying quasi particle motion on a dimer.
Therefore in continuation of the programme in this commu-
nication we address the issue of deriving canonical BT's
for a family of semi-discrete integrable lattices related to
the relativistic Toda hierarchy, which were first introduced
by Suris in a series of papers dealing with the flows of the
relativistic Toda hierarchy which appeared in connection
with the discretization of continuous integrable systems
[7-9].
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In case of semi-discrete flows it usually involves a trans-
formation of the space part of the corresponding Lax pair

while retaining the zero-curvature condition. Starting
with the linear system
Woir = LA, W, =M (AW, M

with n being the lattice index and the over dot denoting
derivative with respect to the continuous temporal variable
t; their consistency yields the following zero-curvature
equation for a semi-discrete system, viz

gn()‘) = M1 (/\)gn()‘) -4, ()‘)Mn()‘)r (2)

from which the equation of motion is assumed to follow.
As an example for the standard Toda lattice [10] which has
the following equation of motion

qn — eQn+1_qn — eqn_q"’1, n = 1, ceey Nr (3)

it may be verified that this follows from (2) when the Lax
pair is given by,

A+p, e —A  —e®
enu)=(_e_’;n A ) Mn(A)=(e_qM 0 )

4)
We begin by briefly introducing the relativistic Toda hi-
erarchy.

1.1. First flow of the relativistic Toda hierar-
chy

The simplest flow of the relativistic Toda hierarchy
(RTH) [7, 8] is given by
di = di(ck—ck-1),

'Ck = Ck(dk+1+Ck+1—dk—Ck_1). (5)

It can be derived from the Hamiltonian
1
HY = 3 ;(dk + ) + g(dk +ca)ee (6)

with the following Poisson structure:

{dv. dirih = a,

(7)
as can be easily verified. On the other hand when the
Hamiltonian is taken as

{akdiiit = —c, {er, dih =

N

H_(E) = Z(dk + ), (8)

k=1

along with the quadratic Poisson brackets

{ck, cks1}r = —ckcrr, {ck dis}r = —crdia,

{Ck,dk}z = dek (9)

one is again led to equations (5). Thus we conclude that
it possesses a bi-Hamiltonian structure.
Under the following transformation

di = pi — eI=k=1 ¢ = @Ik+179k, (10)

the Hamiltonian (6), L.e., H(j) is mapped, in terms of the
canonical variables (g, px)i_;, to

N N
Z Zpke‘”’qH with {pn, g} = Opm-
k=1

k=1
(1)
The Hamiltons equations of motion are then given by

l\)\—\

40 = ng = py eI, (12)
H
pn — _37 = P edn+1=qn _ pneQn—Qn—1 , (']3)

so that the corresponding Newtonian equation of motion
appears as

Gn = Gnorelmt1790 —g,_qe9n=0n-1 _ @2dns1=4n) L @2Gn=Gn-1)
(14)

1.2. Second flow of the RTH

The second flow of the RTH is given by

de = di | % S P
FT dedir  diade ] T M d T dey |
(15)

This also possess a bi-Hamiltonian structure with the
Hamiltonians being

di + ¢
HY — H@ — k k 1
Zlog d, Z a1

corresponding to the two Poisson structures (7) and (9)
respectively. The transformation (10) causes the Hamil-
tonian H" to appear as

N
_ Z log(pi — e9k~9k-1), (17)

k=1
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and in turn leads to the following Hamiltons equations of
motion,

. oHY 1
= = (18)
Pn pn — edn—qn—
X aHEI) eldn+1=Aqn edn—qn-1
pr=-2T = o 19
qn p”+1 — e9n+1—9n ,Dn — @9n—qn—1

Solving for p,, from the first of these equations and using it
in the second leads to the following Newtonian equation
of motion,

G, = q% (an elnt1=an _ o1 edn=4n-1 ) . (20)

2. Lax formulation of first RTH flow

Recall that the first Newtonian equation belonging to the
RTH is given by (14) and is equivalent to the following
semi-discrete system (time being the continuous variable)

Gn = pp + €971, (21)
(22)

,bn = Pnt1 edn+1=qn p"e‘h—q"—1'

It may be derived from the zero-curvature condition (2)
with the spectral parameter, A, dependent local Lax pair

A+ pn —pae _ 0 pnetn
()= e dn -1 ) M (4) _(_9%1 A )
n=1,...,N. (23)
2.1. Theclassical r-matrix algebra of first RTH

flow

It is easy to verify that ¢,(A) given in (23) satisfies the
Sklyanin quadratic algebra

{6, €} = [r(A— ), G A )]0m,  (24)

where 2/(A) = £,(A) ® | and €(y) = | ® &,(u) are the
standard tensor products of ,(A) with the 2 x 2 unit matrix
I and

1000
P 1 0010
=== lo100 | &

0001

where P denotes the permutation matrix. One defines the
monodromy matrix in the usual manner as

.

N
[ 16:(0) = ex(Aen-r(A)... a1(2)
n=1
An(A) Bn(A)
Cn(A) Dn(A)

Tn(A) -

. (26)

It is well known that the trace of the monodromy matrix is
a generator of the conserved quantities. Let

t(A) = tr(Tn(A) = An(A) + Dn(A). (27)

A direct calculation then shows that the elements of the
monodromy matrix are polynomials in A having the general
form

T [ VTP OO et + 0N
ANTemav + O(AN=2) O(AN2)
(28)
where P =Y ¥ . p, represents the total momentum of the
system. Hence

t(A) = An(4) + Dn(4)
N

= )\N+)\N_1 P+)\N_2 Z(pk+1pk - pké‘q}(_qkf1 )+ s (29)
k=1

Since t(A) is a constant of motion it follows that the coeffi-
cients of the different powers of A are conserved. Denoting
these by Gi(i =1, ...) we have

(30)

N

G = Z (Prsapx — preft= 1), (31)
k=1

and so on. It is easy to check that the Hamiltonian H is

a combination of the C's, namely

1
H= icf - G. (32)

It may be mentioned that it is also possible to obtain the
equation of motion for the first relativistic Toda hierar-
chy from an Euler-Lagrange perspective with Lagrangian

given by
L= (33)

N
Z (Qk — ek Tk-1 )2 )
k=1

N —

’
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3. Canonical Backlund transforma-
tion for first RTL flow

In this section we will construct a Backlund transformation
(BT) for the system given by (21) and (22) based upon
the Hamiltonian approach. The method proposed in [1, 4]
relies firstly on the ability to find an invertible matrix
Gn(A, &) satisfying the following gauge transformation:

Grs1(A ) (A Gnu pa) = (A Gn, Pa)Ga(A, &), (34)

which serves as an auxiliary matrix for the purpose.
Eqn. (34) serves as a similarity transformation for the lo-
cal Lax operator ¢,(A, g, ps) and hence of the monodromy
matrix Tn(A) as defined in (26). This local transformation

b 8,(A qn p) — €A G p), n=1,.,N, (35)

depends on the parameter &, while the auxiliary matrix
Gn(A, &) which induces the BT is assumed to be a non-
singular matrix obeying the quadratic algebra (24). In the
following we employ the local Lax operator of the DST
model as the auxiliary matrix G,(A, &) in order to induce
the BT as it satisfies the algebra (24).

3.1.  With the DST model as auxiliary matrix

The Lax operator for the DST model [11] has the following
form

A—E&+5,S, s,

Gy(A &) = . 36
.8 ( S ) (36)

We assume that the BT is formally defined by

A—&+5,5, s, A+p, —ppel”

S, 1 e" —1

)\‘f‘ﬁn _[")nef]n A— E'f‘ tn 7_n tn
= kK . (37
( eiqn _1 ) ( 7—’7 1 ( )

Upon equating the coefficients of the different powers of
A we arrive at the following set of relations:

(38)

Po+50Ss = taTy + o, (39)

ppe? = —t,, (40)

(50Sy — Epret" +5s, = pale" —t,), (41)
S, = ein, (42)

Sopn+ e = 7 (t, T, -8 —T,, (43)
Sappe? = —t,e (44)

which yield the following solutions:

po=— (e + T, + &) + e s, (45)
(e‘?n*‘]n + Tne[?” + 6)
n=— , 46
P 14+ T,edr (46)
; ¢
t,=e" + ——, 47
e’ + T, e (47)

along with S, which is already given by (42). These rela-
tions may be derived from a local generating function fiz")
such that

oy oy oy ory

= , n= " "%3= nzirtnziy
aq, ' P g, ds, aT,

Pn (48)

where

fén)(qn’ an Tn.Sn) — eén*qn + T,,ef’"
+&G, +e s, + &log(T, +e7 ).  (49)

In order to be consistent with (34) we now impose the
conditions that

T, = 5,771, Sp = thyt. (50)

This causes the elimination of the auxiliary variables from
(45) and (46) which are then given by

ﬁn = en+1=Gn _ ef]n—f]n—W _ I:e—Qn‘*'ﬁn + ge*qnﬂ ] ’
e qn + e=qn+
(51)
_ . Ee_qn
—_ qn+qn
Pn = [e + e vl £ (52)

Egs. (51) and (52) define the required one parameter
auto-Backlund transformations and it may be checked that
their generating function is given by

N
FEZZ[E log(efln*‘h + eq"*[]nq) + ei]n (e*Qn + e*‘?n—1 )]
n=1

+const., (53)

with
dF;: . 0F;
aqn ’ n — aqn .

Pn

Note that we may assume without loss of generality that
the constant of integration depends on the parameter &.
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3.2. With a different auxiliary matrix

It is quite obvious that there is a certain amount of free-
dom in the choice of the auxiliary matrix used to induce
the Backlund transformations as defined in (34). One re-
quirement is that the auxiliary matrix used must have the
same r-matrix algebra as the Lax operator of the model
whose BT is being studied [4]. For instance if we were
to choose a different auxiliary matrix then the formal ap-
pearance of the BT may differ significantly as is illustrated
below. We assume that the matrix G;(A, &) to be given by

)\—54‘5[5[ S%S[—Z(-,(Si

Ci(/\' E) - S,‘ —()\+E)+555[ ’

(54)

Substituting the expressions for €(A, g;, p;) and Gi(A, &)
from (24) and (54) respectively into (34) we have after
equating the different coefficients of powers of A the fol-
lowing expressions:

(2€Si — S?Si) + Sip ef“(e‘qf + e_[?i)

pi= Eary . (55)

o (285 - $25)) — sipqedi(e 9 4 e7d0)

pi= (e% + edi) ’ (56)
Sipr = e 4 77, (57)

c"( elit1 — a9+
o=l ) - ()

E 2 e@i+1 — @i+ 2 _ 12
+ _ + + edi+11div1 i
e Yi4-e—Gi 2

(58)

It is clear that by using the expressions for s; and S; as
obtained from the last two equations by the replacement
(i = i—1), in the first two equations, we obtain the
values of p; and p; entirely in terms of the set {q;} and
the parameter &. This gives another set of one-parameter
auto-Backlund transformation relations.

4. Avariant of the Toda lattice model

In this section we will consider a model which is closely
related to the standard Toda lattice. It was introduced by
Suris in [12] and has the following equation of motion:

G = Gp(e9r+17 9 — @an=0n-1) (59)

It may be written as the following equivalent system, viz

Gn = Pn, pn = pn(e‘7n+1_l7n — QQn—Qn—1)’ (60)

and can be derived from the zero curvature condition (2)
with the following Lax pair

—de~in 1 de—n—1 A
(61)

Note that the system of equations (60) can also be derived

from (2) using an alternate form of the Lax pair given by:

—@ln Gn—qn— qn
Zn()\):(/\-f-pn e ),MH(A):(E’ e )

AePr — ) 71 eln
A2 4 edn=dn-1 )1 aln
T E TSR I

This indicates the non uniqueness of the Lax pair for the
equation of motion (59). In the latter case the equations
of motion are given by

pn — eQn+1*QN _ eQN*an' (63)

gn = e, (64)

and one can easily verify that elimination of p, leads once
again to (59), which incidentally is closest to the standard
Toda lattice equation. The Hamiltonian of (59) is given
by
N
H=> (e + e n1), (65)

n=1

The corresponding Lagrangian being

N
L= [gnlogg,— g, — e 1], (66)

n=1

Proposition 4.1.
The Lax pair given in (62) admits the following quadratic
r-matrix algebra

{6, G} = [r(d 0, G W)] 8om (67)

with
a 0 0 0
2
0 (a-%%) 2 0
(A, p) = "
0 27 (a m) 0
0 0 0 a
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Proof: By direct calculation.
Setting a = (A2 + p?)/2(A> — p?) this r-matrix may be
written as

2R —4?) ; .
0 -1 4 0
r(/\’ IJ) = 0 2).;122 /\Zzuz 0 (68)
Ac—, 2
2 2
0 0 0 723;_2 5

In [13] a version of the relativistic Toda lattice having the
following Lax matrix was analyzed in the context of Back-
lund transformation, namely;

Ae®Pk — )71 qelk
%N = (—ae‘?k””k 0 )
_ \eTki1— Pk

0
e~k 21 + qeTk+1 =Tk —aPk+1
a

Mi(d) = ) (69)

This Lax matrix also satisfies the r-matrix algebra (67)
with an r-matrix given by (68). This makes it a potential
candidate for inducing the BT of the Lax matrix given in
(62). Indeed it follows from the defining relation of the
BT, namely

%easlwﬂ — % o e’k+1 AePk — )\*1 ek
e Sk+1+aSki 0 —e 9k A
AePk — )71 ek 4o — S ae
B —e 0k A —qe "tk

) » (70)

(where & is the Backlund parameter) that the BT is now
given by
1 s -
ePr — Ee‘hr qn—1 + edn Qn—1, (7'])
i 1 .
ePn — ﬁeqnﬂﬂlu + @dn+1—an (72)

It may be verified that the above BT is derivable from the
generating function

N
1 1. ~ ;
F=Z[§qf, t 5 2 — qudn-1 +2(Gn — qu) log @

n=1

— /log(1 + a?e*) dx)

S

that is

Interestingly although the auxiliary matrix used here de-
pended explicitly on the parameter &, the latter does not
appear in the BT given by (71) and (72) and therefore
also in the expression for the corresponding generating
function.

It is pertinent to mention here that the Lax pair (62) is
actually a reduced form of the Lax pair of the system given
below, obtained by setting the parameter a = 0. For this
model the equation of motion is given by

. . _ _ QeXk+1 "Xk .
Xk = Xk [(E'Xk+1 o T gy
1+ aeXk+1—*
ek Xk=1 .
— X1 | (74)
1+ aeXk—Xk-1

and is derivable from the following Lax pair

(14 aePr)e=i A

pn =1 qn
gn()‘):(_)\e A e )

M =10 001 4 aernjeant 0

22 1 Pn-1)@dn—dn-1 _)\~1@ln
+ (14 aePr-1)e e ).(75)

Clearly setting @ = 0 causes it to reduce to (62).

Proposition 4.2.
The above Lax pair satisfies the algebra

{60, €5} = [r(A, 1), €3N ()]0,
where the classical r-matrix is given by (68).

Proof: By a direct calculation.

5. Spectrality

An integrable Hamiltonian system with a Lax pair is said
to be separable if it possesses a suitable set of Darboux
coordinates (A;, ), j=1,... N satisfying, in most cases,
a common associated spectral curve ['(A, p, h,...,In) =0
where Iy, ..., Iy are conserved quantities in involution.
Given a Lax pair with the monodromy matrix having the
form stated in (26) the affine part of the spectral curve is
defined by

det(p — Tn(A)) = 0. (76)

It will be recalled that the defining relation for the BT is
of the form

Gipa (A Q)i(p, q; A) = €i(p, §, A Gi(A, <) (77)
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From the definition of the monodromy matrix it is now easy
to see that

GiTn(p g, 2) = Tn(p, G, )G (78)

Furthermore one can verify that as detG(A = &) = 0,
there exists a vector w; such that

G, ﬂ‘,\:gwi =0V i=1,..N, (79)

which in turn implies
GiTulp a. W] wi = Tulp .| Giwi =0, (80)

so that
Gr [TN(P,Q,A)‘HM] =0. (81)

A comparison with Gyw; = 0, then clearly indicates that
we must have

Tn(p, q,A)‘Hm = Aw;. (82)

But it also follows from (77) that
bp.q.2)|_ wi =g, (83)

=&

so that

N N
TN(P:QI)\)‘A:EM = (l_lgz) WN+1 = (l_lgi) wy, (84)
i=1 i=1

where we have assumed periodicity wy,n = wi. Conse-
quently from (82) and (84) it follows that

A= |—| gi. (85)

In case of the first flow of the RTL the auxiliary matrix G,
when evaluated at A = £ is given by

Tntn tn
Cn()\: E)‘)‘:g - ( Tn 1 ) ' (86)
where
N [7/7—1
T,=e, t,= (é‘q” + 567) . (87)
1 4 eln—1—qn

Since det[G,(A, &)|i=e] =
Gn()\r 5)|A=5W/7 =0

0 we have upon setting

wn = ( o ) . 88)

It now follows from (83) that

g, = _(1 +e*qn+f?n_1)
S

and p, = —e el 4 —
e 9n-1 + e~ qn

] . (89)
the expression for p, being the same as obtained earlier

in (52). Hence from (84) we find that the eigenvalue of
the monodromy matrix is given by

N
A= (=DN[ ] + ean+in), (90)

n=1

Recalling that the generating function of the BT for the
first flow of the RTH is given by (53) it immediately follows
upon setting the constant of integration to be iNx& that

— % — Gn—qn Gn—qn—1 [
=9 = ;log(e +e )+ iNm, (91)
so that
N
e’ = (=DON[ |01 + e7antir) = A (92)
n=1

6. Separation of variables for the
first RTH flow

It will be recalled that the Lax pair for the first flow of the
RTH as given in (23) satisfies the r-matrix algebra (24)
with the r— matrix having the form stated in (25).
Introducing the shifting A — A — ¢, where ¢, are parame-
ters at each of the lattice sites our Lax operator assumes
the form

A—ch+pn —pne?

=T

(93)

The monodromy matrix now depends on the parameters
{c,}™.; and is defined in the usual way by

e

Tn(A) == | 4n(A cn). (94)

n
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It satisfies the following algebra

{TYA, TR} = [r(A = u), VA TR (99)
where T}(A) = Tn(A) ® | and T3 (y) = | ® Tn(u). Writing
the monodromy matrix as a 2 x 2 matrix as stated in (2.6)
it follows from (94) that its elements have the following

expansions:
An(d) -AN+-§: =)o), (96)
i=1
Bn(A) = AN (=pre®) + O(AN72), (97)
Cn(A) = AN Tem v  O(AV72), (98)
Dn(A) = O(A"72). (99)

The determinant of the monodromy matrix is given by

N N
det Ty(4) = [ ]det (A, ci) = ()] |(A— ). (100)
i=1 i=1

In the separation representation of the quadratic algebra
(95) we look for N canonical pairs of variables (A;, ;) i =
1, ..., N having standard Poisson brackets

{)\ir)‘j} = {Hhﬂj} =0, {/\z,U/} = 5ij~ (101)

N will
now be made. As Cy(A) is a polynomial of degree (N —1)
if we denote the zeros of Cn(A) by A, ie,

The precise choices of the pairs (A, i), i =1, ...,

Cv(A) =0, Vi=1,.,N—1

then the monodromy matrix when evaluated at the zeros
of Cn(A) reduces to

An(Ai) Bn(Ai)
0

TnA=A) = ( Dn(k) ) , (102)

and its eigenvalues are obviously given by the diagonal
elements. As mentioned earlier one can associate with the
monodromy matrix the following spectral curve defined by

det(ul — Tn(A) = p* = P(AYp + Q(A) =0, (103)

where | denotes the 2 x 2 unit matrix. Clearly it follows
that

Q(A) = det Ty(A) = An(A)Dn(A) — Bn(A)Cn(4),

P(A) =tr Tn(A). (104)

Let us introduce a new variable v; i =1,...,n which is

defined by

= e = Dy(A), i=1,..,N—1. (105)

This provides a set of N — 1 pairs of variables. As for
the remaining pair we define the variables py and Ay as
follows:

N
N =g, A=) (pe = G- (106)

n=1

Clearly it follows that their Poisson bracket {An, un} = 1.
Then from (98) we have

N—1

O = e [](a= ), (107)

i=1
and from (96) and (99) the ratios

N—1

An(A) An(A)

o) = Gi(}) +§C’()\ TreL (108)
Dv(d) & Dn(A)
Cnl(A) = o= ChA) (A=)’ (109)

where Gj(A) is linear in A. Here CJ/(A;) represents the
derivative of Cy(A) with respect to A evaluated at A = A;.
Let Gi(A) = aA + b, then it follows that
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An(A) = (ak + b) ‘VNl_l(A /\)+e“’N|_|()\ X)) Zic, Anld)

i=1

N-1
=e W [aAN —(a) AT bV 4

i=1

Next comparing (110) and (96) we immediately see that

N
a=¢eN, b=eN |:Z

—c,)+ZA]
j=1

(111
Therefore we have finally

N-1 AN()\)

A eNA+S)+ ) m (112)
i=1 ! !

Cn(A)

It follows from (100) and (104) that

N
B = MARAZLEETISE,
while
N-1
Oy = e [ (A=) (114)

i=1

Thus (109) together with (112)-(114) complete the deter-
mination of the elements of the monodromy matrix in terms
of the separation variables.

It may be proved that the representation of these elements
in terms of the separation variables is a faithful represen-
tation of the algebra (95). We illustrate this below for the
particular case of the Poisson bracket {Cn(A), An(p)} and
show explicitly that

An () Cn(A)]-
(115)

{CN (A), An H)} = [AN()\)CN(H)

Using (112) it follows that the left hand side is
{Cn(A), Cnv(p)e™(u + S)}

N-1
¥ {CN(/\) Calo) ZC,AT((:)M}.

Denoting the first Poisson bracket by t; we have using
the expression for Cy(A) as given in (114)

A)’

O(ANZ)] . (110)

N—1 N—1
o= Jde[]r=a) e[ -4

i=1 j=1

eN(p + 5)}

N N-1
= |_|()\ —A) {ew, Z(pk - Ck)} e |_|(N —Aj)e
i k=1 j=1

N-1 N-1

= —e N |_|()\ —A){vn, un}e™™N |_|(ll —Aj)e™

i=1 j=1

N—1 N-1
= e[ = A)e™™ [ |- A).e™
i=1 j=1
= Cn(A)Cn(p)e™. (116)

In arriving at this relation we have made use of the fact
that from (111), S = Y X (p; — ;) + Y_t;' A while
AN = Z//L (pj — ¢j), together with the Poisson bracket
{An. tin} = 1 which follows from (106).

Next consider the term

N—1
_ An(h)
6= {CN(A),CN(IJ)EM IR M}. (117)

Note that from (104) we have setting A = A;

N
Av(h)e™ = det(Ty() = ()N |4 =), (118)

j=

which implies
N
An(d) = (=)Ve' [ |k — ). (119)
k=1

Using (114) and (119) the right hand side may be written
as
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CR(Ae) (= Ak

N
l‘z=e‘2”N {A A (=1)Ne w'w}ﬂu A)

N-=1

An(A)

Cn(A)Cn(p Z {vi, A} C,’V()\k)(/\ A — Ak)

:CN)\)CN )N1 (

(b —4A) k=1

where it has been assumed that {v, A;} = —0;. Using

now the expression for An(A) as given by (112) we find

that t, may be simplified to yield

t = )\17;1 (An(A) Cn (1) — An(p) Cn(A)) — e™ Cn(A) Cn(p).-
(121)

Hence finally we arrive at (115), namely

{CVA) AN} =t + 12 = %H(AN(A)CN(;J)

A
— An(p)En(A)).

Thus we have at our disposal two sets of N pairs of canon-
ical variables, namely (p;, g;) with i =1, ..., N and a sec-
ond set defined by the zeros of Cy(A), viz A; and v; and
hence p; defined by e™ = Dn(4;), i=1,.... N, together
with uy = g, and Ay = Z,LL (pn — ca) both of which
reproduce the r matrix algebra. In the second case the
variables have the Poisson brackets {Ay,pn} = 1 and
{M,w} =1, withk=1,. ,N-1

7. Conclusion

In this article we have focussed on a class of semi-discrete
integrable systems related to the relativistic Toda hier-
archy and have explicitly obtained a canonical Backlund
transformation (BT) for the first flow of the relativistic Toda
hierarchy. We have also investigated the property of spec-
trality for this particular flow, since it is closely related
to the issue of its separability. We have therefore derived
the separation variables explicitly. In addition we have
studied a variant of the standard Toda lattice and have
derived a set of BT's for it. This model is characterized
by a different r—matrix algebra and it would be interest-
ing to analyze the problem of deriving the corresponding
separation representation for it.

An(Ak) An(Ak) )
CL(A) A — )\k)

G — ) (120)

(
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