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Abstract: Fracture patterns resulting from point-like impact acting perpendicularly on the plane of a commercial soda-
lime glass plate is modelled by a spring-block system. The characteristic patterns consist of crack lines that
are spreading radially from the impact point and concentric arcs intersecting these radial lines. Experimen-
tal results suggest that the number of radial crack lines is scaling linearly with the energy dissipated during
the crack formation process. The elaborated spring-block model reproduces with success the observed
fracture patterns and scaling law.
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1. Introduction

Glass is one of the oldest and most commonly used ma-terials in our everyday life and engineering [1]. For dif-ferent practical applications diverse geometrical forms areneeded, but the most widespread shapes are in the formof thin plates. Unfortunately for many engineering appli-cations soda-lime glass plates are quite brittle materials,rather sensitive to shocks acting perpendicularly on them[2]. In laymen terms this means they can easily break.
∗E-mail: agnes.horvat@iwr.uni-heidelberg.de
†E-mail: jferenc@phys.ubbcluj.ro
‡E-mail: yves.brechet@simap.grenoble-inp.fr
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When a projectile with enough momentum hits a glassplate, characteristic fracture patterns are generated (seeFig. 1). The crack structure which is observed under suchloading consists of a few concentric circles or arcs andmany radial crack lines initiating from the impact point.The number of radially spreading crack lines depends onthe strength of the impact, and the number of concen-tric circle shaped cracks depends both on the loading,thickness of the glass plate and fixing conditions for theplate [3]. By varying these parameters the crack patternscan slightly change, although the two characteristic cracktypes (circle and radial) are clearly visible. In Fig. 2 wepresent a small collection of crack patterns obtained bya point-like impact. Understanding such fracture or frag-mentation patterns and modelling them is a challenge formodern computational material science and physics [4–10].
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Figure 1. Characteristic fracture pattern on a glass plate produced
by a localized perpendicular shock. The radial and arc-like
crack lines are nicely observable.

Fracture and elasticity of soda-lime glass has been stud-ied and modelled for a long time [11–17]. Recently ithas been experimentally proven that fracture in glass isbrittle [18]. Engineering aspects (for a recent review see[19, 20]) were studied by indentation experiments quiteearly, starting with the pioneering work of Auerbach [21].Many simple and less sophisticated kitchen-type experi-ments were made by statistical physicists aiming to un-derstand the pattern formation phenomenon and collectivebehaviour of crack lines for various type of uniformly dis-tributed loading [22–24]. Simple models and theoreticalarguments were considered to describe the obtained struc-tures [25–28]. The present paper intends to contribute insuch sense as well. Our aim here is to show that a simplespring-block type model for fracture and fragmentation isappropriate for qualitatively describing the observed pat-terns and can also successfully reproduce some quantita-tive scaling laws revealed in experiments.
2. Spring-block models
A simple mechanical system of blocks interconnected un-der various topologies by springs and sliding on a fric-tional surface proved to be helpful for approaching manycomplex phenomena. As a first application of this system,one should mention Burridge and Knopoff [29], who firstused a dragged spring-block chain to successfully explainthe Guttenberg-Richter [30] scaling law for the earthquakemagnitudes. As a recognition of their results, nowadaysspring-block models are also labeled as Burridge-Knopofftype models. The model was generalized in two dimensionby Olami, Feder and Christensen [31]. Afterwards, due tothe spectacular evolution of computers and computer simu-lation methods, the spring-block model proved to be useful

in describing other phenomena as well. The model is es-pecially appropriate for those problems where avalanche-like dynamics or pattern formation is present. Knownexamples in this respect are the Portevin-Le Chatelierphenomena [32], the Barkhausen noise [33], formation oftraffic jams [34], structures formed by the capillary self-organization of nano particle systems [35, 36] or frag-mentation and fracture of various materials under differentloading [37].

The fascinating polygonal patterns obtained in dried mudare familiar to everyone. Such patterns hide also an inter-esting scaling law, which connects the average fragmentarea with the layer thickness. One success of the spring-block type models was the elegant reproduction of thesepatterns and scaling law. In this approach the grains ofthe material are modelled by blocks sliding on a two di-mensional substrate, while the capillarity effect of dryingwater which leads to fragmentation is modelled by springsinterconnecting the blocks [38, 39]. Initially, the blocks areplaced on the sites of an abstract triangular lattice andfirst neighbours are interconnected by springs. A smallamount of stochasticity is introduced by displacing ran-domly the blocks relative to their original position on thelattice. The springs are then stressed and a relaxationdynamics is imposed on the system. During this dynam-ics: (i) each block will slide to a new equilibrium positionwhen the total force acting on it is greater than the frictionforce and (ii) each spring is allowed to break whenever thetension in it exceeds a breaking threshold. Several layersof springs are considered in order to incorporate the thick-ness of the material in the model. Due to the competingeffects of the spring tensions and frictional forces, blockswill slide in avalanches leading finally to the breakage ofthe springs and thus to fragmentation of the system. Veryrealistic fracture lines and fragmentation topologies areobtained. By using this simple spring-block model onecould get precious information about the role of the maincontrollable physical parameters in the final crack pattern.A similar spring-block type model was used for explainingthe formation of fascinating spiral shaped fracture struc-tures in drying precipitates [40, 41]. To reproduce thesecontinuously bending crack lines an additional stress frontmoving towards the centre of the two dimensional systemwas used. This stress front modelled the advancing dryingfront in the fragment, which was believed to be responsiblefor the formation of the spiral shaped cracks. Motivatedby the successes of the spring-block type models in de-scribing fracture and fragmentation, we adapt this modelfor describing crack patterns in glass plates subjected tolocalized shocks acting perpendicularly to the plate.
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Figure 2. A collection of crack patterns induced by a localized perpendicular impact on glass plates.

3. A model for glass fracture

We will consider a two-dimensional spring-block ap-proach for describing fracture patterns in glass. A firstattempt to use such a model for a brittle fracture wasmade by Curtin and Scher as early as in 1990 [42]. Anatural question that one can immediately raise is howcan crack generation and propagation, which are typi-cally plastic behaviours, be approached with springs, thatare perfectly elastic elements. The answer to this is thatbesides the elastic spring forces we consider energy dis-sipating friction forces and spring breaking events. Ourfirst aim is to make realistic the spring-block model forglass-like systems by incorporating the following featuresof glasses: the amorphous structure, the elastic responseto small stresses by a local reorganization and the plas-ticity in case of high stresses. In order to match these re-quirements within the framework of the spring-block mod-els some changes have to be done relative to the modeloriginally used by us for fracture and fragmentation ofgranular materials.The elaborated model is two dimensional and its mainelements are blocks which can move hindered by frictionand springs connecting them. Disk shaped blocks, all withthe same radius r0 will model mesoscopic elements of the

glass while the cohesion forces between them are mod-elled by elastic springs. These springs have all of themthe same spring constant k , and their length is defined asthe distance between the centres of the connected blocks.The spring tension is Fk = k · r for lengths r between2r0 ≤ r ≤ rmax , where rmax is the breaking threshold(maximal allowed elongation) of the springs. In the springforce we also included a hard-core type repulsion whichforbids blocks to interpenetrate each other. This repulsionis described by the repulsive part of a Lenard-Jones-typepotential. The force profile of the forces acting in thesprings is sketched in Figure 3a.
The friction forces acting on the blocks models the pinningforces that are opposing the unrestricted rearrangementof the mesoscopic elements in a glass sample subjectedto stress. Within our spring-block approach the frictionacts between the blocks and the surface. It can equi-librate a net force less than Ffmax . Whenever the totalforce Ft(i) acting on a block i exceeds this Ffmax value theblock begins to slip with an over-damped motion. Thisforce profile is borrowed from classical mechanics, wherewe assumed that the static friction force is able to equi-librate a net force which is less than the static frictionforce value. Similar approach has been used with successto model pinning forces acting on nano scale objects [35].
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The characteristic profile of the friction forces is illustratedin Figure 3b. In order to incorporate in the model thequasi-disordered nature of glass at mesoscopic level the
Ffmax slipping threshold values are randomly distributedon the surface. For implementing this quenched disorder,we consider a cellular division of the surface. For the sakeof simplicity we construct uniform cells using a square lat-tice topology (Figure 4). In each cell a randomly chosen
Ffmax threshold force is assigned. In order to achieve this,we generate uniformly distributed random numbers be-tween two fixed limits: Ff1 and Ff2. The lattice constantof this auxiliary cellular structure is chosen to be of thesame order of magnitude as the value of r0.The blocks are initially placed on the sites of a triangularlattice. To introduce an isotropy in this symmetric struc-ture we randomize the initial distribution by displacingthe blocks randomly from their original site, and relax-ing the system so that the blocks should not overlap. Bythis step, a secondary disorder and an isotropy charac-teristic for amorphous systems are introduced. Due to therandom friction values this equilibrium state will have in-ternal stresses ”frozen” into the system. We now connectneighbouring blocks by considering springs between thoseblocks, for which the centres can be connected without in-tersecting another block and the distance is smaller than
rmax (these conditions will be referred later as the geo-
metric condition). In this way, an initially pre-stressedand isotropic spring-block network is built.The simulation has two main parts.In the first part of the simulation the initially constructedand pre-stressed spring-block system is relaxed to anequilibrium configuration where all spring tensions areless than the breaking threshold (springs with higher ten-sion are broken), the resulting forces acting on blocks areless than the friction thresholds and the blocks do notoverlap.In the second part of the simulation an external shock isapplied and the system is relaxed again. The impact isapplied by increasing the spring constants in the systemfollowing a reasonable stress profile. Our intention is tomodel the fracture of glass plates due to a point-like per-pendicular shock. A simple exponentially decaying stressprofile was chosen in the form of kextra = k0 · exp(−r/λ),where r is the distance from the impact point, λ is acharacteristic decay distance and k0 is the magnitude ofthe point-like perturbation. After applying this additionalloading, the system is relaxed again. During this relax-ation process cracks are nucleating and propagating inthe system. The time evolution of the systems is recordedand from this data the crack evolution process and thefinal crack structure is investigated.For both parts of the simulation the relaxation process is

realized in a similar manner, following the same relax-ation steps. Instead of a time-consuming rigorous clas-sical molecular dynamics simulation we have chosen tofollow a simpler method based on the assumption of anoverdamped dynamics of the blocks. The same approachwas used previously in simulating the fragmentation of adrying nano sphere system [35]. Due to the fact that weare not interested here in the real time-like dynamics, thetime length dt for each relaxation step is taken as unity(dt = 1) and the following moves are done:
1. Reorganization. At the beginning of a relaxationstep the spring system is reconstructed by respect-ing the geometric condition. By this the isotropy ofthe system is restored and the elasticity of glass isapproximated.
2. Recalculation of forces. The resultant force act-ing on each block i is computed as: ~Ft(i) =∑

p dip ~Fk (i, p), where the sum is over all the otherblocks p, and dip is 1 if the blocks are connected bya spring and 0 otherwise, and ~Fk (i, p) is the tensionin springs connecting blocks i and p.
3. Slipping of the blocks. The total force ~Ft(i) act-ing on each block i is analyzed. If its magnitude
Ft(i) = | ~Ft(i)| is bigger than the Ffmax threshold,the block will slip with an over-damped motion.Over-damped motion appears when the resistanceforces acting on behalf of a continuous medium ona moving body are increasing sharply with its ve-locity. Often in such cases a limit velocity is veryquickly reached. This limit velocity depends on theapplied force and it is governed by a viscous damp-ing coefficient η. The reciprocal value of this damp-ing coefficient is called mobility. During an over-damped motion we assume no acceleration, andconsider the velocity proportional with the actingforce and mobility. In a time interval dt the posi-tion of the block will change by: d~ri = ~Ft(i)dt/η.The repulsive interaction incorporated in the springforces forbids the blocks to slide on each other andthe presence of viscous damping eliminates unreal-istic oscillations.

The relaxation step consisting of the above presented con-secutive moves is repeated until a step is finished withouthaving any disk slipping event. Since a perfect relaxationis hard to achieve, a very small tolerance level is consid-ered and it is assumed that the relaxation is completedwhen the maximum slip in the system is smaller than thistolerance value.Before starting the simulations, however, the geometry ofthe simulated plates has to be fixed. Due to the rotational
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Figure 3. Force profiles for the spring forces (a) and friction forces (b).

Figure 4. Construction of the initial isotropically interconnected
spring-block network.

symmetric shock profile, we present the final results on adisk-like plate. Nevertheless, for the sake of computa-tional simplicity and for minimizing edge effects, simula-tions are done on a much larger square-like domain.Another crucial point of simulations is to define bound-ary conditions for the relaxing system. In principle sev-eral types of boundary conditions might be possible toimpose, but we will see that the majority of them willhave shortcomings. The problem of boundary conditionsin such systems were analyzed in detail in a previous workconsidering the capillary self-organization of nanospheres[35].A natural solution would be to use free boundary condi-tions which can be realized in a simple manner by po-sitioning initially the blocks inside the simulated area.After connecting the blocks by springs as described ear-lier, the blocks on the edges and corners will experiencea resultant net force in the direction of the centre. In thefirst part of the simulation the system would compact un-evenly due to this unbalanced net force and therefore a

non-homogeneously pre-stressed system would form. Us-ing thus free boundary conditions is not advisable.To eliminate the initial non-homogeneous contraction ofthe system one can consider periodic boundary conditions.Periodic boundary conditions are, however, not useful heresince they would lead to unrealistic crack lines that areleaving the system on one side and entering on the other.As a result the crack lines will possibly self-interact.The best solution is to use fixed boundary conditions. Thiscan be realized by positioning again the blocks inside asquare and considering a chain of fixed blocks on the cho-sen perimeter. These fixed blocks are connected betweentheir neighbours with geometrically allowed springs. Thesystem is stabilized, and the initial construction of theisotropically pre-stressed spring-block network is done.The fixed boundary conditions will have influence on thecrack propagation dynamics only in the later stages wherethe cracks are reaching the edges, decreasing the propa-gation speed of the radially oriented crack lines. In orderto diminish the influence of this unrealistic effect over themorphology of the final crack configurations, as we havealready stated previously, we will present results only foran inner disk shaped part of the simulated system.
4. Model parameters
At a first glance one might get concerned that the spring-block model presented in the previous section has toomany freely adjustable parameters. We will see howeverthat most of the parameters can be fixed by simple ar-guments and only a few controllable parameters are ofimportance for us.Let us discuss now the model parameters.

• The unit length in the system is defined by the size
of the disks. So it has been considered r0 = 1.

• Size of the simulated system. Evidently the best
930
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would be to have as large a system as possible inorder to minimize the effect of edges. Our com-putational resources allowed us to study systemsof sizes up to 600 × 600 blocks and the used diskshaped region had usually a radius of 200r0, con-taining around 125000 blocks.
• One of the parameters that will appear immediatelyat the initiation stage is the level of space filling

for the blocks related to r0 and the lattice constantof the used triangular lattice. This space-fillingparameter can be defined as ρ = S/(Nπr20 ), where
S is the simulation area and N is the number ofblocks in the system. Since we are simulating acontinuous media, one has to deal with high, almostclose-packing space filling. In order to allow alsofor slipping we have chosen a convenient ρ = 0.85value for most of our simulations.

• The force units are defined through the value of the
spring-breaking threshold. Accordingly, Fkmax = 1was imposed.

• An important parameter is the initial value of the
spring constants, k . It is desirable to choose thevalue of k so that only a small fraction of springsshould break initially, such that our model systemis as compact as possible. Combining with the otherchoices of the force-like parameters we have foundthat a value of 0.4 units yields a good initial struc-ture with enough frozen stresses and few bonds thatare broken.

• The parameter which governs the repulsive part of
the spring force. This can be chosen quite arbi-trarily, the only condition we have to respect is tohave no repulsion at the distance 2r0 and a stronghard-core type repulsion for smaller distances. Wehave chosen this force as the repulsive part of theLennard-Jones potential Fr(2r0 − r) = σ (2r0 − r)12with σ = 10, chosen arbitrarily. Other values for σwould not alter significantly our results.

• The viscous damping coefficient η. The model willonly work for values chosen between reasonablelimits, and for these viscous damping values thefinal patterns are rather similar. Choosing a toosmall value will result in unrealistic oscillations ofthe blocks, while a too high value will make theblock slip too small and increase considerably therelaxation time. In the present simulations we havechosen the η = 100 value.
• The parameters of the applied stress. As dis-cussed already the applied loading has a rotation-

ally symmetric and exponentially decaying form:
kextra = k0 · exp(−r/λ). The characteristic decaydistance was chosen as λ = 30 and the k0 parame-ter was the main parameter governing the strengthof the applied shock.

• The interval [Ff1, Ff2] from where the pinning force
values are randomly drawn. This is the second freeparameter set of the model, allowing the study ofthe effect of disorder in the system.

• The lattice constant of the underlying square lat-tice on which the disorder in the friction forces isrealized. Together with the Ff1 and Ff2 parametersthis can also influence the disorder level in the sys-tem. Since we have chosen to control the disorderlevel with Ff1 and Ff2, we have fixed this latticeconstant to the r0 value.
As detailed above only a few parameters of the model arenot fixed by simple conceptual considerations. We remainthus with the following parameters that will govern thegenerated patterns: the magnitude of the external shockloading and the Ff1 and Ff2 values governing the range ofthe disorder in the studied material. The influence of theseparameters on the final crack structure was investigatedby large-scale computer simulations.
5. Simulation results
Large-scale computer simulations were performed to ana-lyze the influence of the applied shock intensity and dis-order in the friction forces. To complete one simulationon a large S = 600 × 600 system several weeks of com-puting were necessary on the computer cluster availableto us. By using the parameter set specified in the pre-vious section the reproduction of the radially spreadingcrack lines was quite straightforward (Figures 5 and 6).The obtained time evolution of cracks and the final crackpatterns are quite realistic. A typical time-evolution se-quence is shown in Figure 5 for two applied shock in-tensities. In agreement with our expectations we got thatwith increasing shock intensity (governed by the k0 pa-rameter) the number of radially spreading crack lines arealso increasing. Besides the radially oriented crack linesa circle shape crack line is also observable at a distanceof the order of λ. The radius of this concentric crack lineis increasing with the intensity of the applied shock. Onecan also observe that the obtained patterns have an in-creased rotational symmetry relatively to those presentedin Figures 1 and 2. The explanation of this is simple: inour computer simulation experiments we have always useda completely rotationally symmetric stress profile, while
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in real life experimental situations rarely is this the case.
Another striking difference between the patterns in Fig-ure 5 and 2 is that the crack lines in our model are muchmore straight ones than in reality. We suspect that thereason for this is that the amount of disorder chosen inthe simulation from Figure 5 is not enough. Simulationsperformed with increased randomness (governed by theinterval in which the Ffmax forces are distributed) leads towiggling crack lines (Figure 6). We conclude thus that inorder to get more realistic radially spreading crack lines ahigher disorder level should be used. In Figure 6 the un-realistic bifurcation of cracks in the vicinity of the edges isdue to the fact that fixed boundary conditions were used,and thus the blocks on the edges are less movable.Finally, we have performed several simulations in orderto study the scaling of the number of radially spreadingcrack lines as a function of the impact strength, quanti-fied by the value of k0. Simulations on systems with sizes
S = 400 × 400 were done, with η = 100, ρ = 0.85,
k = 0.4 and Ffmax ∈ [0, 0.5]. The simulation results areplotted on Figure 7. Although the number of radial crackswere not strictly monotonically increasing with the ap-plied shock intensity, a linear approximation seems ac-ceptable for fitting the obtained data.
6. Experiments
The experiments were performed as part of a studentproject at the National Technical University of Greno-ble (France) [3]. The aim of these experiments is tostudy qualitatively the morphology of the fracture patternsinduced by a controlled perpendicular impact on glassplates. The experiments were designed as simple ”kitchenexperiments”, without the claim of a thorough and rigor-ous experimental investigation. The obtained results arethus only of qualitative nature. The experimental setupwas very simple. Glass plates with sizes of 40 cm×40 cmand thickness of 4 mm were covered from the bottom witha plastic sticker to prevent the spreading of glass afterthe impact. Preliminary experiments have shown that bychanging the thickness of the glass plates one can in-fluence the number of nucleated crack lines, since a partof the impact energy is used for the in-depth penetrationof cracks. Within this student project the thickness de-pendence was not thoroughly investigated and we haveused cheap commercial glass plates with the same 4 mmthickness.The glass plates were fixed on a surface and a stan-dard petanque ball (with mass of 0.73 kg and diameterof 0.075 m) was dropped on them from different heights,

guided by a plastic tube with adjustable length (h ∈[2, 10]m). The contact area (crushed region of the glassplate) was disc shaped with a radius of about 2 cm. Theexperiments were performed in the staircase of the labo-ratory, and we have to admit the students had a lot of fundoing them. For each height we have performed only oneexperiment due to the very limited budget of the project.The experiments were designed for a qualitative mapping,nevertheless ulteriorly we realized that the results couldbe useful for predicting or confirming simple trends, likethe scaling of the number of radially propagating cracklines with the dissipated energy. The lack of repeatedexperiments for the same height diminishes however thetrust in the quantitative data, since there is practically noway to add error bars. This setup is sketched in Figure 8.
After impact the obtained fracture patterns were recordedand analyzed in different aspects. One aim of the exper-iments was to elucidate how the number of radial cracklines are varying with the strength of the impact. It is awell-known fact that the growth of a crack requires thecreation of two new surfaces and hence an increase in thesurface energy. This energy comes from the impact, orin other words one can affirm that during crack propaga-tion the impact energy is dissipated in the newly createdsurfaces. In the experimental setup the amount of en-ergy dissipated in the impact is directly proportional tothe height of the petanque ball’s drop. Our modelling as-sumption is that in the spring-block approach this energyshould be transferred in the elastic energy of the springswhich in turn is directly proportional to the values fixedfor the spring constants. In such a view one might expectthat the height of the drop will be equivalent to the extra
k0 value used in the spring-block model.Plotting the experimentally obtained radial crack linesas a function of the drop height, an approximately lineartrend is obtained in good agreement with the predictionsof the simple spring-block approach (Fig. 7). We empha-size here again that due to the fact that no error bars aregiven for the data points, one can only qualitatively judgethe obtained trend.
7. Conclusion

A simple spring-block type model was considered for de-scribing the crack patterns obtained in the fracture of glassplates due to a point-like impact. Beside a qualitative re-production of the experimentally detected radial and cir-cular crack lines, the aim of the study was to get somequantitative results for the scaling of the number of radialcrack lines as a function of the strength of the impact. A
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Figure 5. Typical crack evolution patterns for two different impact intensities, quantified by the value of k0. The other parameters of the simulations
are: S = 600× 600, η = 100, ρ = 0.85, k = 0.4, Ffmax ∈ [0, 0.3].

Figure 6. Crack patterns obtained for two different disorder levels in
the Ffmax friction force values. The pattern presented in
the figure from left is for Ffmax ∈ [0, 0.2] and the pattern
presented in the figure from the right is for Ffmax ∈ [0, 0.5].
The other simulation parameters are: S = 400× 400, η =100, ρ = 0.85, k = 0.4.

previously performed student project suggested that thenumber of radial crack lines varies linearly as a functionof the mechanical energy dissipated in the impact.The specific plasticity and structure of glass was incor-porated in the spring-block system by considering anisotropic topology of the spring network and a disorderin the slipping thresholds of the blocks. The energy of theimpact was modelled by increasing instantaneously thespring-constant values in the system. The cracks wereobtained by relaxing the loaded spring-block system andby breaking all springs that exceeded a threshold ten-sion. Large scale computer simulations were performedfor investigating the effect of impact strength and amountof disorder quenched in the model. The computationallygenerated crack structures were realistic if enough disor-

Figure 7. The main figure shows simulation results when the impact
strength k0 is varied. The smaller inset figure presents the
experimental results obtained in [3]. The dropping height
h in the figure is given in cm. The parameters for the com-
puter simulations are: S = 400 × 400, η = 100, ρ = 0.85,
k = 0.4 and Ffmax ∈ [0, 0.5]

der was introduced in the system. In such cases the modelreproduced well the experimentally obtained scaling lawfor the number of radial crack lines as a function of theimpact energy.A secondary aim of the research was to prove once againthe usefulness and wide applicability of the simple spring-block type models. This model family seems especially
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Figure 8. Experimental setup.

useful for modelling mesoscopic or macroscopic scale col-lective phenomena or avalanche-like dynamics in complexsystems. As the present work exemplifies, it is easilyadaptable for various materials and problems, and carriesalso a pedagogical value since it offers a visual picture onmany complex phenomena based on elementary classicalmechanics knowledge.
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