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Abstract:

Fracture patterns resulting from point-like impact acting perpendicularly on the plane of a commercial soda-

lime glass plate is modelled by a spring-block system. The characteristic patterns consist of crack lines that
are spreading radially from the impact point and concentric arcs intersecting these radial lines. Experimen-
tal results suggest that the number of radial crack lines is scaling linearly with the energy dissipated during
the crack formation process. The elaborated spring-block model reproduces with success the observed

fracture patterns and scaling law.
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1. Introduction

Glass is one of the oldest and most commonly used ma-
terials in our everyday life and engineering [1]. For dif-
ferent practical applications diverse geometrical forms are
needed, but the most widespread shapes are in the form
of thin plates. Unfortunately for many engineering appli-
cations soda-lime glass plates are quite brittle materials,
rather sensitive to shocks acting perpendicularly on them
[2]. In laymen terms this means they can easily break.
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When a projectile with enough momentum hits a glass
plate, characteristic fracture patterns are generated (see
Fig. 1). The crack structure which is observed under such
loading consists of a few concentric circles or arcs and
many radial crack lines initiating from the impact point.
The number of radially spreading crack lines depends on
the strength of the impact, and the number of concen-
tric circle shaped cracks depends both on the loading,
thickness of the glass plate and fixing conditions for the
plate [3]. By varying these parameters the crack patterns
can slightly change, although the two characteristic crack
types (circle and radial) are clearly visible. In Fig. 2 we
present a small collection of crack patterns obtained by
a point-like impact. Understanding such fracture or frag-
mentation patterns and modelling them is a challenge for
modern computational material science and physics [4-10].
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Figure 1. Characteristic fracture pattern on a glass plate produced
by a localized perpendicular shock. The radial and arc-like
crack lines are nicely observable.

Fracture and elasticity of soda-lime glass has been stud-
ied and modelled for a long time [11-17]. Recently it
has been experimentally proven that fracture in glass is
brittle [18]. Engineering aspects (for a recent review see
[19, 20]) were studied by indentation experiments quite
early, starting with the pioneering work of Auerbach [21].
Many simple and less sophisticated kitchen-type experi-
ments were made by statistical physicists aiming to un-
derstand the pattern formation phenomenon and collective
behaviour of crack lines for various type of uniformly dis-
tributed loading [22-24]. Simple models and theoretical
arguments were considered to describe the obtained struc-
tures [25-28]. The present paper intends to contribute in
such sense as well. Our aim here is to show that a simple
spring-block type model for fracture and fragmentation is
appropriate for qualitatively describing the observed pat-
terns and can also successfully reproduce some quantita-
tive scaling laws revealed in experiments.

2. Spring-block models

A simple mechanical system of blocks interconnected un-
der various topologies by springs and sliding on a fric-
tional surface proved to be helpful for approaching many
complex phenomena. As a first application of this system,
one should mention Burridge and Knopoff [29], who first
used a dragged spring-block chain to successfully explain
the Guttenberg-Richter [30] scaling law for the earthquake
magnitudes. As a recognition of their results, nowadays
spring-block models are also labeled as Burridge-Knopoff
type models. The model was generalized in two dimension
by Olami, Feder and Christensen [31]. Afterwards, due to
the spectacular evolution of computers and computer simu-
lation methods, the spring-block model proved to be useful

in describing other phenomena as well. The model is es-
pecially appropriate for those problems where avalanche-
like dynamics or pattern formation is present. Known
examples in this respect are the Portevin-Le Chatelier
phenomena [32], the Barkhausen noise [33], formation of
traffic jams [34], structures formed by the capillary self-
organization of nano particle systems [35, 36] or frag-
mentation and fracture of various materials under different
loading [37].

The fascinating polygonal patterns obtained in dried mud
are familiar to everyone. Such patterns hide also an inter-
esting scaling law, which connects the average fragment
area with the layer thickness. One success of the spring-
block type models was the elegant reproduction of these
patterns and scaling law. In this approach the grains of
the material are modelled by blocks sliding on a two di-
mensional substrate, while the capillarity effect of drying
water which leads to fragmentation is modelled by springs
interconnecting the blocks [38, 39]. Initially, the blocks are
placed on the sites of an abstract triangular lattice and
first neighbours are interconnected by springs. A small
amount of stochasticity is introduced by displacing ran-
domly the blocks relative to their original position on the
lattice. The springs are then stressed and a relaxation
dynamics is imposed on the system. During this dynam-
ics: (i) each block will slide to a new equilibrium position
when the total force acting on it is greater than the friction
force and (it) each spring is allowed to break whenever the
tension in it exceeds a breaking threshold. Several layers
of springs are considered in order to incorporate the thick-
ness of the material in the model. Due to the competing
effects of the spring tensions and frictional forces, blocks
will slide in avalanches leading finally to the breakage of
the springs and thus to fragmentation of the system. Very
realistic fracture lines and fragmentation topologies are
obtained. By using this simple spring-block model one
could get precious information about the role of the main
controllable physical parameters in the final crack pattern.
A similar spring-block type model was used for explaining
the formation of fascinating spiral shaped fracture struc-
tures in drying precipitates [40, 41]. To reproduce these
continuously bending crack lines an additional stress front
moving towards the centre of the two dimensional system
was used. This stress front modelled the advancing drying
front in the fragment, which was believed to be responsible
for the formation of the spiral shaped cracks. Motivated
by the successes of the spring-block type models in de-
scribing fracture and fragmentation, we adapt this model
for describing crack patterns in glass plates subjected to
localized shocks acting perpendicularly to the plate.
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Figure 2. A collection of crack patterns induced by a localized perpendicular impact on glass plates.

3. A model for glass fracture

We will consider a two-dimensional spring-block ap-
proach for describing fracture patterns in glass. A first
attempt to use such a model for a brittle fracture was
made by Curtin and Scher as early as in 1990 [42]. A
natural question that one can immediately raise is how
can crack generation and propagation, which are typi-
cally plastic behaviours, be approached with springs, that
are perfectly elastic elements. The answer to this is that
besides the elastic spring forces we consider energy dis-
sipating friction forces and spring breaking events. Our
first aim is to make realistic the spring-block model for
glass-like systems by incorporating the following features
of glasses: the amorphous structure, the elastic response
to small stresses by a local reorganization and the plas-
ticity in case of high stresses. In order to match these re-
quirements within the framework of the spring-block mod-
els some changes have to be done relative to the model
originally used by us for fracture and fragmentation of
granular materials.

The elaborated model is two dimensional and its main
elements are blocks which can move hindered by friction
and springs connecting them. Disk shaped blocks, all with
the same radius ry will model mesoscopic elements of the

glass while the cohesion forces between them are mod-
elled by elastic springs. These springs have all of them
the same spring constant k, and their length is defined as
the distance between the centres of the connected blocks.
The spring tension is Fy = k - r for lengths r between
2rp < r < Ipax, Where rpay is the breaking threshold
(maximal allowed elongation) of the springs. In the spring
force we also included a hard-core type repulsion which
forbids blocks to interpenetrate each other. This repulsion
is described by the repulsive part of a Lenard-Jones-type
potential. The force profile of the forces acting in the
springs is sketched in Figure 3a.

The friction forces acting on the blocks models the pinning
forces that are opposing the unrestricted rearrangement
of the mesoscopic elements in a glass sample subjected
to stress. Within our spring-block approach the friction
acts between the blocks and the surface. It can equi-
librate a net force less than Fy,.. Whenever the total
force Fy(i) acting on a block i exceeds this Fy,qy value the
block begins to slip with an over-damped motion. This
force profile is borrowed from classical mechanics, where
we assumed that the static friction force is able to equi-
librate a net force which is less than the static friction
force value. Similar approach has been used with success
to model pinning forces acting on nano scale objects [35].
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The characteristic profile of the friction forces is illustrated
in Figure 3b. In order to incorporate in the model the
quasi-disordered nature of glass at mesoscopic level the
Fimax slipping threshold values are randomly distributed
on the surface. For implementing this quenched disorder,
we consider a cellular division of the surface. For the sake
of simplicity we construct uniform cells using a square lat-
tice topology (Figure 4). In each cell a randomly chosen
Fimax threshold force is assigned. In order to achieve this,
we generate uniformly distributed random numbers be-
tween two fixed limits: Fr; and Fy. The lattice constant
of this auxiliary cellular structure is chosen to be of the
same order of magnitude as the value of ry.

The blocks are initially placed on the sites of a triangular
lattice. To introduce an isotropy in this symmetric struc-
ture we randomize the initial distribution by displacing
the blocks randomly from their original site, and relax-
ing the system so that the blocks should not overlap. By
this step, a secondary disorder and an isotropy charac-
teristic for amorphous systems are introduced. Due to the
random friction values this equilibrium state will have in-
ternal stresses "frozen” into the system. We now connect
neighbouring blocks by considering springs between those
blocks, for which the centres can be connected without in-
tersecting another block and the distance is smaller than
I'max (these conditions will be referred later as the geo-
metric condition). In this way, an initially pre-stressed
and isotropic spring-block network is built.

The simulation has two main parts.

In the first part of the simulation the initially constructed
and pre-stressed spring-block system is relaxed to an
equilibrium configuration where all spring tensions are
less than the breaking threshold (springs with higher ten-
sion are broken), the resulting forces acting on blocks are
less than the friction thresholds and the blocks do not
overlap.

In the second part of the simulation an external shock is
applied and the system is relaxed again. The impact is
applied by increasing the spring constants in the system
following a reasonable stress profile. Our intention is to
model the fracture of glass plates due to a point-like per-
pendicular shock. A simple exponentially decaying stress
profile was chosen in the form of keyt,q = ko - exp(—r/A),
where r is the distance from the impact point, A is a
characteristic decay distance and kp is the magnitude of
the point-like perturbation. After applying this additional
loading, the system is relaxed again. During this relax-
ation process cracks are nucleating and propagating in
the system. The time evolution of the systems is recorded
and from this data the crack evolution process and the
final crack structure is investigated.

For both parts of the simulation the relaxation process is

realized in a similar manner, following the same relax-
ation steps. Instead of a time-consuming rigorous clas-
sical molecular dynamics simulation we have chosen to
follow a simpler method based on the assumption of an
overdamped dynamics of the blocks. The same approach
was used previously in simulating the fragmentation of a
drying nano sphere system [35]. Due to the fact that we
are not interested here in the real time-like dynamics, the
time length dt for each relaxation step is taken as unity
(dt = 1) and the following moves are done:

1. Reorganization. At the beginning of a relaxation
step the spring system is reconstructed by respect-
ing the geometric condition. By this the isotropy of
the system is restored and the elasticity of glass is
approximated.

2. Recalculation of forces. The resultant force act-
ing on each block i is computed as: /—i,(i) =
Zp dipﬁk(i,p), where the sum is over all the other
blocks p, and d;, is 1 if the blocks are connected by
a spring and 0 otherwise, and I?k(i, p) is the tension
in springs connecting blocks i and p.

3. Slipping of the blocks. The total force ﬁt(i) act-
ing on each block i is analyzed. If its magnitude
Fi(i) = |I-2t(i)| is bigger than the Fy,q threshold,
the block will slip with an over-damped motion.
Over-damped motion appears when the resistance
forces acting on behalf of a continuous medium on
a moving body are increasing sharply with its ve-
locity. Often in such cases a limit velocity is very
quickly reached. This limit velocity depends on the
applied force and it is governed by a viscous damp-
ing coefficient . The reciprocal value of this damp-
ing coefficient is called mobility. During an over-
damped motion we assume no acceleration, and
consider the velocity proportional with the acting
force and mobility. In a time interval dt the posi-
tion of the block will change by: d7 = F(i)dt/n.
The repulsive interaction incorporated in the spring
forces forbids the blocks to slide on each other and
the presence of viscous damping eliminates unreal-
istic oscillations.

The relaxation step consisting of the above presented con-
secutive moves is repeated until a step is finished without
having any disk slipping event. Since a perfect relaxation
is hard to achieve, a very small tolerance level is consid-
ered and it is assumed that the relaxation is completed
when the maximum slip in the system is smaller than this
tolerance value.

Before starting the simulations, however, the geometry of
the simulated plates has to be fixed. Due to the rotational
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Figure 3. Force profiles for the spring forces (a) and friction forces (b).
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Figure 4. Construction of the initial isotropically interconnected
spring-block network.

symmetric shock profile, we present the final results on a
disk-like plate. Nevertheless, for the sake of computa-
tional simplicity and for minimizing edge effects, simula-
tions are done on a much larger square-like domain.
Another crucial point of simulations is to define bound-
ary conditions for the relaxing system. In principle sev-
eral types of boundary conditions might be possible to
impose, but we will see that the majority of them will
have shortcomings. The problem of boundary conditions
in such systems were analyzed in detail in a previous work
considering the capillary self-organization of nanospheres
[35].

A natural solution would be to use free boundary condi-
tions which can be realized in a simple manner by po-
sitioning initially the blocks inside the simulated area.
After connecting the blocks by springs as described ear-
lier, the blocks on the edges and corners will experience
a resultant net force in the direction of the centre. In the
first part of the simulation the system would compact un-
evenly due to this unbalanced net force and therefore a

non-homogeneously pre-stressed system would form. Us-
ing thus free boundary conditions is not advisable.

To eliminate the initial non-homogeneous contraction of
the system one can consider periodic boundary conditions.
Periodic boundary conditions are, however, not useful here
since they would lead to unrealistic crack lines that are
leaving the system on one side and entering on the other.
As a result the crack lines will possibly self-interact.
The best solution is to use fixed boundary conditions. This
can be realized by positioning again the blocks inside a
square and considering a chain of fixed blocks on the cho-
sen perimeter. These fixed blocks are connected between
their neighbours with geometrically allowed springs. The
system is stabilized, and the initial construction of the
isotropically pre-stressed spring-block network is done.
The fixed boundary conditions will have influence on the
crack propagation dynamics only in the later stages where
the cracks are reaching the edges, decreasing the propa-
gation speed of the radially oriented crack lines. In order
to diminish the influence of this unrealistic effect over the
morphology of the final crack configurations, as we have
already stated previously, we will present results only for
an inner disk shaped part of the simulated system.

4. Model parameters

At a first glance one might get concerned that the spring-
block model presented in the previous section has too
many freely adjustable parameters. We will see however
that most of the parameters can be fixed by simple ar-
guments and only a few controllable parameters are of
importance for us.

Let us discuss now the model parameters.

e The unit length in the system is defined by the size
of the disks. So it has been considered rp = 1.

o Size of the simulated system. Evidently the best
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would be to have as large a system as possible in
order to minimize the effect of edges. Our com-
putational resources allowed us to study systems
of sizes up to 600 x 600 blocks and the used disk
shaped region had usually a radius of 200ry, con-
taining around 125000 blocks.

e One of the parameters that will appear immediately
at the initiation stage is the level of space filling
for the blocks related to ry and the lattice constant
of the used triangular lattice. This space-filling
parameter can be defined as p = S/(Nmr3), where
S is the simulation area and N is the number of
blocks in the system. Since we are simulating a
continuous media, one has to deal with high, almost
close-packing space filling. In order to allow also
for slipping we have chosen a convenient p = 0.85
value for most of our simulations.

e The force units are defined through the value of the
spring-breaking threshold. Accordingly, Fypax = 1
was imposed.

e An important parameter is the initial value of the
spring constants, k. It is desirable to choose the
value of k so that only a small fraction of springs
should break initially, such that our model system
is as compact as possible. Combining with the other
choices of the force-like parameters we have found
that a value of 0.4 units yields a good initial struc-
ture with enough frozen stresses and few bonds that
are broken.

e The parameter which governs the repulsive part of
the spring force. This can be chosen quite arbi-
trarily, the only condition we have to respect is to
have no repulsion at the distance 2ry and a strong
hard-core type repulsion for smaller distances. We
have chosen this force as the repulsive part of the
Lennard-Jones potential F,(2rg — r) = 0(2ry — r)'?

with o = 10, chosen arbitrarily. Other values for o

would not alter significantly our results.

e The viscous damping coefficient . The model will
only work for values chosen between reasonable
limits, and for these viscous damping values the
final patterns are rather similar. Choosing a too
small value will result in unrealistic oscillations of
the blocks, while a too high value will make the
block slip too small and increase considerably the
relaxation time. In the present simulations we have
chosen the n = 100 value.

e The parameters of the applied stress. As dis-
cussed already the applied loading has a rotation-

ally symmetric and exponentially decaying form:
Kextra = ko - exp(—r/A). The characteristic decay
distance was chosen as A = 30 and the ky parame-
ter was the main parameter governing the strength
of the applied shock.

e The interval [Fy, Fr2] from where the pinning force
values are randomly drawn. This is the second free
parameter set of the model, allowing the study of
the effect of disorder in the system.

e The lattice constant of the underlying square lat-
tice on which the disorder in the friction forces is
realized. Together with the Fy; and F;; parameters
this can also influence the disorder level in the sys-
tem. Since we have chosen to control the disorder
level with F;1 and Fyp, we have fixed this lattice
constant to the ry value.

As detailed above only a few parameters of the model are
not fixed by simple conceptual considerations. We remain
thus with the following parameters that will govern the
generated patterns: the magnitude of the external shock
loading and the F¢ and Fy; values governing the range of
the disorder in the studied material. The influence of these
parameters on the final crack structure was investigated
by large-scale computer simulations.

5. Simulation results

Large-scale computer simulations were performed to ana-
lyze the influence of the applied shock intensity and dis-
order in the friction forces. To complete one simulation
on a large S = 600 x 600 system several weeks of com-
puting were necessary on the computer cluster available
to us. By using the parameter set specified in the pre-
vious section the reproduction of the radially spreading
crack lines was quite straightforward (Figures 5 and 6).
The obtained time evolution of cracks and the final crack
patterns are quite realistic. A typical time-evolution se-
quence is shown in Figure 5 for two applied shock in-
tensities. In agreement with our expectations we got that
with increasing shock intensity (governed by the ko pa-
rameter) the number of radially spreading crack lines are
also increasing. Besides the radially oriented crack lines
a circle shape crack line is also observable at a distance
of the order of A. The radius of this concentric crack line
is increasing with the intensity of the applied shock. One
can also observe that the obtained patterns have an in-
creased rotational symmetry relatively to those presented
in Figures 1 and 2. The explanation of this is simple: in
our computer simulation experiments we have always used
a completely rotationally symmetric stress profile, while
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in real life experimental situations rarely is this the case.

Another striking difference between the patterns in Fig-
ure 5 and 2 is that the crack lines in our model are much
more straight ones than in reality. We suspect that the
reason for this is that the amount of disorder chosen in
the simulation from Figure 5 is not enough. Simulations
performed with increased randomness (governed by the
interval in which the Fy,qy forces are distributed) leads to
wiggling crack lines (Figure 6). We conclude thus that in
order to get more realistic radially spreading crack lines a
higher disorder level should be used. In Figure 6 the un-
realistic bifurcation of cracks in the vicinity of the edges is
due to the fact that fixed boundary conditions were used,
and thus the blocks on the edges are less movable.

Finally, we have performed several simulations in order
to study the scaling of the number of radially spreading
crack lines as a function of the impact strength, quanti-
fied by the value of ky. Simulations on systems with sizes
S = 400 x 400 were done, with n = 100, p = 0.85,
k = 0.4 and Frpox € 10,0.5]. The simulation results are
plotted on Figure 7. Although the number of radial cracks
were not strictly monotonically increasing with the ap-
plied shock intensity, a linear approximation seems ac-
ceptable for fitting the obtained data.

6. Experiments

The experiments were performed as part of a student
project at the National Technical University of Greno-
ble (France) [3] The aim of these experiments is to
study qualitatively the morphology of the fracture patterns
induced by a controlled perpendicular impact on glass
plates. The experiments were designed as simple "kitchen
experiments”, without the claim of a thorough and rigor-
ous experimental investigation. The obtained results are
thus only of qualitative nature. The experimental setup
was very simple. Glass plates with sizes of 40 cmx40cm
and thickness of 4 mm were covered from the bottom with
a plastic sticker to prevent the spreading of glass after
the impact. Preliminary experiments have shown that by
changing the thickness of the glass plates one can in-
fluence the number of nucleated crack lines, since a part
of the impact energy is used for the in-depth penetration
of cracks. Within this student project the thickness de-
pendence was not thoroughly investigated and we have
used cheap commercial glass plates with the same 4 mm
thickness.

The glass plates were fixed on a surface and a stan-
dard petanque ball (with mass of 0.73kg and diameter
of 0.075m) was dropped on them from different heights,

guided by a plastic tube with adjustable length (h €
[2,10]m). The contact area (crushed region of the glass
plate) was disc shaped with a radius of about 2cm. The
experiments were performed in the staircase of the labo-
ratory, and we have to admit the students had a lot of fun
doing them. For each height we have performed only one
experiment due to the very limited budget of the project.
The experiments were designed for a qualitative mapping,
nevertheless ulteriorly we realized that the results could
be useful for predicting or confirming simple trends, like
the scaling of the number of radially propagating crack
lines with the dissipated energy. The lack of repeated
experiments for the same height diminishes however the
trust in the quantitative data, since there is practically no
way to add error bars. This setup is sketched in Figure 8.

After impact the obtained fracture patterns were recorded
and analyzed in different aspects. One aim of the exper-
iments was to elucidate how the number of radial crack
lines are varying with the strength of the impact. It is a
well-known fact that the growth of a crack requires the
creation of two new surfaces and hence an increase in the
surface energy. This energy comes from the impact, or
in other words one can affirm that during crack propaga-
tion the impact energy is dissipated in the newly created
surfaces. In the experimental setup the amount of en-
ergy dissipated in the impact is directly proportional to
the height of the petanque ball's drop. Our modelling as-
sumption is that in the spring-block approach this energy
should be transferred in the elastic energy of the springs
which in turn is directly proportional to the values fixed
for the spring constants. In such a view one might expect
that the height of the drop will be equivalent to the extra
ko value used in the spring-block model.

Plotting the experimentally obtained radial crack lines
as a function of the drop height, an approximately linear
trend is obtained in good agreement with the predictions
of the simple spring-block approach (Fig. 7). We empha-
size here again that due to the fact that no error bars are
given for the data points, one can only qualitatively judge
the obtained trend.

7. Conclusion

A simple spring-block type model was considered for de-
scribing the crack patterns obtained in the fracture of glass
plates due to a point-like impact. Beside a qualitative re-
production of the experimentally detected radial and cir-
cular crack lines, the aim of the study was to get some
quantitative results for the scaling of the number of radial
crack lines as a function of the strength of the impact. A
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Figure 5. Typical crack evolution patterns for two different impact intensities, quantified by the value of ky. The other parameters of the simulations
are: S =600 x 600, n =100, p = 0.85, k = 0.4, Fmax €[0,0.3].

Figure 6. Crack patterns obtained for two different disorder levels in
the Finq friction force values. The pattern presented in
the figure from left is for Fy,q, € [0,0.2] and the pattern
presented in the figure from the right is for Fy,q € [0,0.5].
The other simulation parameters are: S = 400 x 400, n =
100, p = 0.85, k = 0.4.

previously performed student project suggested that the
number of radial crack lines varies linearly as a function
of the mechanical energy dissipated in the impact.

The specific plasticity and structure of glass was incor-
porated in the spring-block system by considering an
isotropic topology of the spring network and a disorder
in the slipping thresholds of the blocks. The energy of the
impact was modelled by increasing instantaneously the
spring-constant values in the system. The cracks were
obtained by relaxing the loaded spring-block system and
by breaking all springs that exceeded a threshold ten-
sion. Large scale computer simulations were performed
for investigating the effect of impact strength and amount
of disorder quenched in the model. The computationally
generated crack structures were realistic if enough disor-

15 T T T T T T T T
[ | ® Simulation results T
g [ — N=6+4076x 10" k_ fit ]
& 10F 7]
o L -
:g L 1000 1
E : Y : F:xperimsnl.al mu:.s 1 :
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= 5k 1 4
o
'E 3 15 - 94
E | -”_"_'_,.'”‘ 1]
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| g hlem] | ]
0 . 1 : ] . 1 , 1
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Figure 7. The main figure shows simulation results when the impact
strength ko is varied. The smaller inset figure presents the
experimental results obtained in [3]. The dropping height
h in the figure is given in ¢cm. The parameters for the com-
puter simulations are: S = 400 x 400, n = 100, p = 0.85,
k =0.4and Fypay €10,0.5]

der was introduced in the system. In such cases the model
reproduced well the experimentally obtained scaling law
for the number of radial crack lines as a function of the
impact energy.

A secondary aim of the research was to prove once again
the usefulness and wide applicability of the simple spring-
block type models. This model family seems especially
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Figure 8. Experimental setup.

useful for modelling mesoscopic or macroscopic scale col-
lective phenomena or avalanche-like dynamics in complex
systems. As the present work exemplifies, it is easily
adaptable for various materials and problems, and carries
also a pedagogical value since it offers a visual picture on
many complex phenomena based on elementary classical
mechanics knowledge.
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