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Abstract: While wormhole spacetimes are predictions of the general theory of relativity, specific solutions may not be
compatible with quantum field theory. This paper modifies the charged wormhole model of Kim and Lee with
the aim of satisfying an extended version of a quantum inequality due to Ford and Roman. The modified
metric may be viewed as a solution of the Einstein fields equations representing a charged wormhole that
is compatible with quantum field theory.
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1. Introduction

Wormholes are handles or tunnels in the geometry ofspacetime connecting two distinct regions of our Universeor of completely different universes. The pioneer work ofMorris and Thorne [1] has shown that, being solutions ofthe Einstein field equations, macroscopic wormholes maybe actual physical objects that could even be traversed byhumanoid travelers. Unlike black holes, which are alsopredictions of Einstein’s theory, wormholes can only beheld open by the use of “exotic” matter; such matter vio-lates the weak energy condition.
Because of the close connection between space and time,general relativity is able to tolerate science-fiction typephenomena such as wormholes and even time travel, asexemplified by the Gödel solution. Quantum field theory,
∗E-mail: kuhfitti@msoe.edu

on the other hand, is not so forgiving: it places severe re-strictions on the existence of traversable wormholes [2–5].In fact, according to Ford and Roman [4, 5], the worm-holes discussed in Ref. [1] could not exist on a macroscopicscale. Interesting exceptions are the wormholes discussedin Refs. [6] and [7], but they are subject to extreme fine-tuning. This fine-tuning became an issue in seeking com-patibility with quantum field theory by a suitable exten-sion of the quantum inequalities [8, 9]. Given that exoticmatter is rather problematical, the idea behind the exten-sion was to strike a balance between reducing the size ofthe exotic region and the concomitant fine-tuning of themetric coefficients. One can only be accomplished at theexpense of the other.
A particularly interesting generalization of the Morris-Thorne wormhole can be obtained by the addition of anelectric charge, as proposed by Kim and Lee [10, 11]. Theresulting spacetime is a combination of a Morris-Thornespherically symmetric static wormhole and a Reissner-Nördstrom spacetime.
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As in the case of black holes, wormholes with an electriccharge have been of interest for some time. For exam-ple, by adding an electric charge, Gonzales, Guzman, andSarbach [12] studied the possibility of stabilizing a worm-hole supported by a ghost scalar field, discussed in theirearlier papers [13, 14].Rotating and magnetized wormholes supported by phan-tom scalar fields are discussed in Ref. [15]. (A ghost scalarfield is often considered a simple example of phantom en-ergy, which is itself of interest in a wormhole setting sinceit leads to a violation of the weak energy condition.)The aim of this paper is to show that a relatively smallmodification of the metric describing a charged wormholesuffices to satisfy an extended version of the Ford-Romaninequality, thereby making such a wormhole compatiblewith quantum field theory. The modified model is also asolution of the Einstein field equations.
2. Traversable wormholes
The spacetime geometry of a traversable wormhole can bedescribed by the metric
ds2 = −e2β(r)dt2 + e2α(r)dr2 + r2(dθ2 + sin2θ dφ2), (1)

where β(r) → 0 and α(r) → 0 as r → ∞ and where α(r)has a continuous derivative. (We are using units in which
c = G = 1.) The function β = β(r) is called the redshift
function, which must be everywhere finite to prevent anevent horizon. The function α = α(r) is related to the
shape function b = b(r):

e2α(r) = 11− b(r)
r
.

So b(r) = r(1− e−2α(r)). (Observe that b′(r) is continuousand that b(r)
r → 0 as r → ∞.) The minimum radius r = r0is called the throat of the wormhole, where b(r0) = r0.Also, b′(r0) 6 1, referred to as the flare-out conditionin Ref. [1]. It follows that α has a vertical asymptote at

r = r0: lim
r→r0+α(r) = +∞.

To hold a wormhole open, the weak energy condition(WEC) must be violated. The WEC states that the stress-energy tensor Tαβ must obey
Tαβµαµβ > 0

for all time-like vectors and, by continuity, all null vectors.

3. The quantum inequalities
To make this paper reasonably self-contained, we need abrief discussion of the quantum inequalities due to Fordand Roman [5], slightly extended in [8, 9].In a series of papers, Ford and Roman (see Ref. [5] andreferences therein) discuss a type of constraint on the vi-olation of the weak energy condition by means of cer-tain quantum inequalities which limit the magnitude andtime duration of negative energy. These inequalities placesevere restrictions on the dimensions of Morris-Thornewormholes.One of these quantum inequalities, applied to different sit-uations, deals with an inertial Minkowski spacetime with-out boundaries. If uµ is the observer’s four-velocity, that is,the tangent vector to a timelike geodesic, then 〈Tµνuµuν〉is the expectation value of the local energy density in theobserver’s frame of reference. It is shown in Ref. [5] that

τ0
π

∫ ∞
−∞

〈Tµνuµuν〉dτ
τ2 + τ20 > − 332π2τ40 . (2)

Here τ is the observer’s proper time and τ0 the duration ofthe sampling time. More precisely, the energy density issampled in a time interval of duration τ0 which is centeredaround an arbitrary point on the observer’s worldline sochosen that τ = 0 at this point. (See Ref. [5] for details.)In a wormhole setting, a more convenient form is inequal-ity (7) below, as we will see. Applied to spherically sym-metric traversable wormholes in Ref. [1], it was found thatnone were able to meet this condition. As a result, thethroat sizes could only be slightly larger than Plancklength. The inequality was subsequently extended inRefs. [8, 9] to cover an entire region around the throat.It was then shown that it is possible to strike a balancebetween the size of the exotic region and the amount offine-tuning required to achieve this reduction.Before discussing the extended quantum inequality, weneed to introduce the following length scales, modeledafter the length scales in Ref. [5], which were introducedin Ref. [8]:
rm ≡ min [r, ∣∣∣∣ b(r)

b′(r)
∣∣∣∣ , 1
|β ′(r)| ,

∣∣∣∣ β ′(r)β ′′(r)
∣∣∣∣] . (3)

It is shown that if Rmax is the magnitude of the maximumcurvature, then
Rmax 6 1

r2
m
.

So the smallest radius of curvature rc is
rc ≈

1√
Rmax > rm.
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Working on this scale, the spacetime is approximatelyMinkowskian, so that inequality (2) can be applied withan appropriate τ0.According to Ref. [5], whenever the density ρ is positive orzero, one should Lorentz transform to a frame of a radiallymoving geodesic observer moving with velocity v relativeto the static frame. In this “boosted frame” the densityand maximum curvature are denoted by ρ′ and R ′max, re-spectively. We now have
r′c ≈

1√
R ′max >

rm
γ ,

where γ = (1 − v2)− 12 . The suggested sampling time is
τ0 = frm

γ , where f is a scale factor such that f � 1. It isshown in Ref. [8] that in this boosted frame,
T0̂′ 0̂′ = ρ′

= γ28πr2
[
b′(r)− v2 b(r)

r + 2v2rβ ′(r) (1− b(r)
r

)]
.(4)

In order for ρ′ to be negative, v has to be sufficiently large:
v2 > b′(r)

b(r)
r − 2rβ ′(r) (1− b(r)

r

) . (5)
Furthermore,

rm
r 6

 1
v2b(r)
r − b′(r)− 2v2rβ ′(r) (1− b(r)

r

) 14

×
√γ
f

(
lp
r

) 12
.

(6)

At the throat, where b(r0) = r0, inequality (6) reduces toEq. (95) in Ref. [5]:
rm
r0 6

( 1
v2 − b′(r0)

) 14 √γ
f

(
lp
r0
) 12

. (7)
Observe that inequality (7) is trivially satisfied if
b′(r0) = 1, but not necessarily if b′(r0) < 1. More for-mally, inequality (7) is satisfied whenever b′(r0) − ε < 1for ε sufficiently small. Since rm includes r0, the worm-hole can be macroscopic. Inequality (6) will be applied inSec. 6.

Remark 3.1.To avoid division by zero in Eq. (7), we actually assumethat b′(r0) is extremely close to 1 instead of exactly 1.This also guarantees that the flare-out condition is met atthe throat [1]:
b(r0)− rb′(r0)2[b(r0)]2 > 0.

Although retained here for convenience, the v2 in Eq. (6)could actually be omitted [8]. The reason is that, accordingto Ref. [2], the boosted frame may be replaced by a staticobserver.
4. The charged wormhole of Kim
and Lee
To study a wormhole with a constant electric charge Q, itwas proposed by Kim and Lee [10] that the Einstein fieldequations take on the form

G(0)
µν + G(1)

µν = 8π [T (0)
µν + T (1)

µν
]
.

In other words, the usual wormhole spacetime
G(0)
µν = 8πT (0)

µν is to be modified by adding the mat-ter term T (1)
µν to the right side and the corresponding backreaction G(1)
µν to the left side. The proposed metric is

ds2 =− (1 + Q2
r2
)
dt2 +(1− b(r)

r + Q2
r2
)−1

dr2
+ r2(dθ2 + sin2θ dφ2). (8)

Comparing metrics (1) and (8), since e2β(r) = 1 + Q2
r2 , wehave

β(r) = 12 ln(1 + Q2
r2
)

and since
e2α(r) = 11− b(r)

r

in (1), it follows that the effective shape function beff is
beff(r) = b(r)− Q2

r . (9)
Given the conversion factor c2

√
G , Q2 is likely to be smallin geometrized units. Accordingly, we will assume that

b(r)− Q2
r > 0 in the vicinity of the throat.
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5. The modified charged wormhole
For reasons discussed later in this section, we are goingto propose the following modified metric for a chargedwormhole:
ds2 =− (1 + R (r) + Q2

r2
)
dt2 +(1− b(r)

r + Q2
r2
)−1

dr2
+ r2(dθ2 + sin2 θ dφ2). (10)

It is assumed that R (r) > 0, thereby avoiding an eventhorizon, and that R (r) has a continuous derivative. As inmetric (8), beff(r) = b(r) − Q2
r . Observe that the effectiveredshift function is

β(r) = 12 ln(1 + R (r) + Q2
r2
)
.

In the discussion below, ρ is the density, τ the radialtension, and p the transverse pressure. Following Kimand Lee [10], we assume that the matter terms are
ρ(1) = τ (1) = p(1) = Q28πr4 . (11)

The components of the Einstein tensor in the orthonormalframe are 8π(ρ(0) + ρ(1)) = b′
r2 + Q2

r4 , (12)
8π (τ (0) + τ (1)) = b

r3 − Q2
r4

−
1− b

r + Q2
r2

r
(1 + R (r) + Q2

r2
) [R ′(r)− 2Q2

r3
]
,

(13)
and
8π (p(0) + p(1)) =(1− b

r + Q2
r2
)

×

β ′′(r)− rb′ − b+ 2Q2
r2r (r − b+ Q2
r

)β ′(r)
+[β ′(r)]2 + β ′(r)

r −
rb′ − b+ 2Q2

r2r2 (r − b+ Q2
r

) .
(14)

According to Ref. [10], employing the effective shape func-tion beff(r) = b(r) − Q2
r and assuming T eff

µν = T (0)
µν + T (1)

µν

(total matter) in the original Kim-Lee model, yields a self-consistent solution of a system of equations similar to thatof the scalar field case discussed earlier in Ref. [10]. Theinclusion of the smooth function R (r) does not alter thisconclusion. So the metric (10) may be viewed as a solutionof the Einstein field equations representing a wormholewith an electric charge.Returning to the WEC, if we use the radial outgoing nullvector µα̂ = (1, 1, 0, 0), then Tt̂ t̂ +Tr̂r̂ = ρ−τ > 0. For theabove components, since ρ(1) and τ (1) drop out, we have
ρ(0)−τ (0) < 0 whenever the condition is violated. (We willexamine this violation shortly.)Next, let us assume that b = b(r) is a typical shape func-tion in the sense of Morris and Thorne [1]: if the charge Qis zero, then the wormhole has a throat at r = r∗, where
b(r∗) = r∗. For r > r∗, we must have b(r) < r. It followsthat b′(r∗) 6 1. (See Fig. 1.) The new shape function
beff(r) [Eq. (9)] has analogous properties: in particular,there is a throat at r = r0, that is,

1− b(r0)
r0 + Q2

r20 = 0. (15)

Figure 1. The location of the throat r = r0.

Remark 5.1.Eq. (15) actually has two roots,
r0 = 12 (b(r0)±√[b(r0)]2 − 4Q2) .

In the special case Q = 0, we get two possibilities, r0 = 0and r0 = b(r0), showing that the smaller root is mean-ingless. We will therefore assume that there is only onethroat, corresponding to the larger root.
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For r > r0, 1− b(r)
r + Q2

r2 > 0, or b(r)
r −

Q2
r2 < 1. Hence

beff(r)
r < 1

for r > r0. So we have, once again, b′eff(r0) 6 1. Finally,the profile curve z = z(r) is such that
dz
dr = ±

√√√√ b(r)
r −

Q2
r21− b(r)

r + Q2
r2
, (16)

showing that there is a vertical tangent at the throat r = r0in the usual embedding diagram. As noted at the end ofSec. 4, the numerator is greater than zero.Returning to b = b(r), since b(r) < r for r > r∗, b(r) > rfor r < r∗, and b(r0)− r0 = Q2
r0 > 0 by Eq. (15), it followsthat r0 < r∗. (See Fig. 1. If b = b(r) is indeed a typicalshape function, then b(r) > r for r < r∗.) Since we areusing geometrized units, Q2 is likely to be small, so that

r0 is not much less than r∗.The need for b′eff(r0) 6 1 referred to above can be seenfrom the exoticity function in Ref. [1]:
beff(r0)− r0b′eff(r0)2[beff(r0)]2 > 0. (17)

In other words, the flare-out condition is met whenever
b(r0)
r0 − b′(r0) > 2Q2

r20 (18)
at the throat. This is consistent with the violation of theWEC, ρ(0) − τ (0) < 0:
8π (ρ(0) − τ (0)) =b′

r2 − b
r3 + 2Q2

r4
+ 1− b

r + Q2
r2

r
(1 + R (r) + Q2

r2
) [R ′(r)− 2Q2

r3
]
.

(19)
At the throat,

r0b′(r0)− b(r0) + 2Q2
r0

r30 + 0 < 0 (20)
by inequality (18).

6. Feasibility
In order to study the feasibility of the charged wormhole,let us denote the redshift function in the Kim and Leewormhole by β1(r). Thus

β1(r) = 12 ln(1 + Q2
r2
)
. (21)

Recall next that inequality (7) is trivially satisfied if b′ = 1at the throat. For either of the charged wormholes, if Q ischosen properly, the condition can be met: from Eq. (9),
b′eff(r0) = b′(r0) + Q2

r20 ;
so for a proper choice of Q, b′eff(r0) = 1, even if b′(r∗) isless than 1.To study the problem more closely, let us restate inequal-ities (5) and (6) for beff:

v2 > b′eff(r)
beff(r)
r − 2rβ ′(r) (1− beff(r)

r

) (22)
and
rm
r 6

 1
v2beff(r)

r − b′eff(r)− 2v2rβ ′(r) (1− beff(r)
r

) 14

×
√γ
f

(
lp
r

) 12
.

(23)

As before, at the throat, inequality (23) is trivially satis-fied.Problems arise when we move away from the throat. It isshown in Ref. [8] that for any of the typical shape functions(which would include beff), b(r)
r − b′(r) > 0. So for thewormhole in Sec. 4, the denominator on the right side ofinequality (23) is no longer 0, since

β ′1(r) = − Q2
r (r2 +Q2)

is negative. Furthermore, with Q fixed, β(r) cannot be al-tered. It is easy to demonstrate using specific shape func-tions that the quantum inequalities cannot be met awayfrom the throat.To salvage the charged wormhole, some modification isevidently needed. With the Reissner-Nördstrom metric inmind, Eq. (10) appears to be a natural generalization, aslong as R (r) is not equal to − b(r)
r . To distinguish this case
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from Eq. (21), let us denote the modified redshift functionby β2(r):
β2(r) = 12 ln(1 + R (r) + Q2

r2
)
. (24)

The situation regarding the quantum inequalities is nowquite different:
β ′2(r) = 12 11 + R (r) + Q2

r2
[
R ′(r)− 2Q2

r3
]
, (25)

which is positive for a proper choice of R (r). Also, β ′2(r) iscontinuous if, and only if, R ′(r) is continuous. The questionnow is whether β2(r) can be constructed or adjusted tomeet inequality (23) away from the throat. This amountsto asking whether for a proper choice of R (r),
beff(r)
r − b′eff(r)− 2rβ ′2(r) (1− beff(r)

r

) (26)
is 0 or close to 0. If such an adjustment can be made, then
v = 1 or close to 1, according to inequality (22). Conse-quently, inequality (23) is once again trivially satisfied.To fix ideas, suppose that for v = 1 or close to 1,

v2beff(r)
r − b′eff(r)− 2rv2β ′2(r) (1− beff(r)

r

)
indeed 0 or nearly 0. Then we must find a function
R = R (r) such that β ′2(r) is nearly equal to

v2beff(r)
r − b′eff(r)2rv2 (1− beff(r)

r

) ,
to be denoted by β ′(r), which is continuous for r > r0.Substituting in Eq. (25), we get after rearranging,

R ′(r)− 2β ′(r)R (r) = 2β ′(r) + 2β ′(r)Q2
r2 + 2Q2

r3 , (27)
where (nearly)

β ′(r) = v2beff(r)
r − b′eff(r)2rv2 (1− beff(r)

r

) . (28)
The solution of the differential equation is

R (r) = e2β(r) ∫ r

r0 e
−2β(r′) (2β ′(r′) + 2β ′(r′) Q2(r′)2

+2Q2(r′)3
)
dr′.

(29)

The continuity of β ′(r) is sufficient to guarantee that R (r)is a solution. Using integration by parts, the solution canbe written
R (r) = −1− Q2

r2 + e2β(r)e−2β(r0) (1 + Q2
r20
)
,

showing that R (r0) = 0. So it is in principle possible todetermine R (r) such that inequality (23) is satisfied. Theresulting wormhole is therefore compatible with quantumfield theory.Finally, it follows that
β2(r) = 12 ln [e2β(r)e−2β(r0) (1 + Q2

r20
)]

.

Particularly noteworthy is that β ′2(r) = β ′(r), which can beeasily computed from the shape function and helps deter-mine the tidal constraints when discussing traversability.
7. Assigning various parameters-
traversability
There are several parameters that come into play when de-scribing the wormhole geometry. In particular, beff(r0) = r0and b′eff(r0) = 1 lead to

b(r0)− Q2
r0 = r0 (30)

and
b′(r0) + Q2

r20 = 1. (31)
If b(r) and Q are known, we can determine r0. It is alsopossible to fix r0 at some desired (macroscopic) value anddetermine b(r) and Q. As a simple example, suppose b(r)has the form b(r) = ArB , B < 1. Then from Eqs. (30) and(31), we find that for nonzero Q,

A = 21 + B r
1−B0

and
Q2 = 1− B1 + B r

20 .
B can be so chosen that Q2 is relatively small, as desiredin our geometrized units. This also confirms our earlierassertion that r0 cannot be much smaller than r∗ withoutmaking Q2 unrealistically large.
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As a check on the traversability by humanoid travelers(as in Ref. [1]), consider the proper distance `(r) from thethroat to a point away from the throat:
`(r) = ∫ r

r0
dr′√1− b′eff(r′)

r′

.

For b(r) = ArB and Q2 > 0, this distance is finite. Forexample, if r0 = 5 m, and Q2 = 0.1, then `(6) ≈ 140 m.However, if Q → 0, then `(r) → ∞ for this particu-lar shape function, so that the wormhole would not betraversable.According to Ref. [1], the space station has to be far enoughaway from the throat so that |β ′2(r)| 6 (108 m)−2. Asnoted at the end of the previous section, the conditioncan be readily determined from β ′(r). The simple shapefunction b(r) = ArB being considered flares out too slowly,however, to satisfy this condition, unless r is excessivelylarge. As in Ref. [8], some distance away from the throatone must therefore join b = b(r) smoothly to a functionthat causes this constraint to be met.
Remark 7.1.Since R (r) depends only on Q and b(r), modifying b(r)away from the throat does not affect the conclusion. How-ever, as in most wormhole models, we are primarily inter-ested in the vicinity of the throat.
8. Conclusion
In this paper the charged wormhole described by the met-ric

ds2 =− (1 + Q2
r2
)
dt2 +(1− b(r)

r + Q2
r2
)−1

dr2
+ r2(dθ2 + sin2θ dφ2)

due to Kim and Lee is extended to
ds2 =− (1 + R (r) + Q2

r2
)
dt2

+(1− b(r)
r + Q2

r2
)−1

dr2 + r2(dθ2 + sin2θ dφ2),

where R (r) > 0 has a continuous derivative at the throat,and R (r0) = 0. The main objective was to show that
R (r) can be so chosen that the quantum inequality (23)is satisfied. The extended model is therefore compatiblewith quantum field theory.It is also shown that the flare-out condition has been sat-isfied and that an event horizon has been avoided. Vari-ous combinations of b(r), Q, and r = r0 are possible andmay be chosen to make the wormhole traversable by hu-manoid travelers; in particular, the tidal constraints can becomputed from the shape function. The particular modeldiscussed shows that Q may have to be nonzero for thewormhole to be traversable.
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