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1. Introduction

In quantum information theory distinguishing two quantumstates is a fundamental task. One of the main tools used indistinguishability theory is a trace metric; another closelyrelated tool is quantum fidelity [1–4]. Both are widelyused by the quantum information science community andhave found applications in a number of problems such asquantifying entanglement [5, 6], quantum error correction[7], quantum chaos [8], and quantum phase transitions [9,10].
∗E-mail: ma9452316@gmail.com (Corresponding author)
†E-mail: chenjl@nankai.edu.cn

Suppose ρ and σ are two quantum states, then theUhlmann-Jozsa fidelity [1–4] between ρ and σ is givenby
F (ρ, σ ) = [Tr√ρ 12 σρ 12

]2
. (1)

We know that for the case of qubits, the Uhlmann-Jozsafidelity has a simple form. From the Bloch sphere rep-resentation of quantum states, a qubit is described by adensity matrix as:
ρ(u) = 1

2 (I + σ · u), (2)
where I is the 2 × 2 unit matrix and σ = (σ1, σ2, σ3) arethe Pauli matrices. Assume ρ(u) and ρ(v) are two statesof one qubit, then they can be represented by two vectors
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u and v in the Bloch sphere. The Uhlmann-Jozsa fidelityfor qubits has an elegant form:
F (ρ(u), ρ(v)) = 1

2

[
1 + u · v +√1− |u|2

√
1− |v|2

]
, (3)

where u · v is the inner product of u and v, and |u| is themagnitude of u.We know that for general quantum states, unlike the casefor qubits, the Uhlmann-Jozsa fidelity has no simple form.To use the simple form of fidelity, we note that in [11], theauthors introduced a new fidelity, called super-fidelity,defined as
G(ρ1, ρ2) := Trρ1ρ2 +√(1− Trρ21)(1− Trρ22). (4)

This quantity is called super-fidelity, since it is alwayslarger than, or equal to, the Uhlmann-Jozsa fidelity. It wasproved that when ρ1 and ρ2 are two qubits, super-fidelity
G(ρ1, ρ2) coincides with Uhlmann-Jozsa fidelity F (ρ1, ρ2).The super-fidelity G(ρ1, ρ2) has some appealing proper-ties [11–13]. Let

ρu = 1
N

(
I +√N(N − 1)2 −→

λ .u
)

be the density matrix of a qunit (N × N quantum state),where I is theN×N unit matrix, −→λ = (λ1, λ2, . . . λN2−1) arethe generators of SU(N), and u is the (N2−1)-dimensionalBloch vector. Then super-fidelity can be rewritten as
G(ρu, ρv ) = 1

N

[1 + (N − 1)× u.v + (N− 1)
×
√(1− |u|2)(1− |v|2)].

This shows that super-fidelity only depends on the mag-nitudes of u, v and the angle between them (that is, u.v).This property makes super-fidelity easy to calculate, andhas a clear geometrical interpretation.Moreover, very recently, it was found that super-fidelityplays an important role in quantifying entanglement [14].So it is natural to study the property of super-fidelity infurther step.Recall that super-fidelity by itself is not a metric. It isa measure of the “closeness” of two states. If we say afunction d(x, y) defined on the set of quantum states is ametric, it should satisfy the following four axioms:
Axiom 1.1.
d(x, y) > 0 for all states x and y;

Axiom 1.2.
d(x, y) = 0 if and only if x = y;
Axiom 1.3.
d(x, y) = d(y, x) for all states x and y;
Axiom 1.4.The triangle inequality: d(x, y) 6 d(x, z) + d(y, z) for allstates x, y and z.
For super-fidelity, the following three functions were in-troduced in [13]:

A(ρ, σ ) := arccos√G(ρ, σ ), (5)
B(ρ, σ ) := √2− 2√G(ρ, σ ), (6)
C (ρ, σ ) := √1−G(ρ, σ ). (7)

It was proved in [13] that C (ρ, σ ) is a genuine metric, thatis, it satisfies the axioms 1.1-1.4, while A(ρ, σ ) and B(ρ, σ )do not preserve the metric properties.The purpose of this paper is to introduce a novel method todefine a metric of quantum states based on super-fidelity.Surprisingly, we find the metric induced by the newmethod coincides with the metric introduced in [13] for thequbits case, and the new metrics have deep connectionswith the spectral metric. Also we find that the new met-rics possess some appealing properties which make thesemetrics very useful in quantum information theory. Thepaper is organized as follows: In Sec. 2, two new metricsare defined, and the metric character of the metrics is es-tablished. In Sec. 3, intrinsic properties of the two metricsare discussed. Conclusions and discussion are presentedin the last section.
2. Metric induced by super-fidelity
The most widely used metric is the trace metric, which isdefined as

Dtr(ρ, σ ) = 12Tr|ρ − σ|. (8)
Alternatively, one can define other types of distance mea-sures for quantum states, and these also have their ownadvantages, see [1, 11, 13–20].Let us define a new metric of states as follows:

DG(ρ, σ ) = max
τ
|G(ρ, τ)−G(σ, τ)|, (9)

where the maximization is obtained by taking all quan-tum states, τ, (mixed or pure). We will call DG(ρ, σ )
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the G-metric, and the state τ which attained the maximalwill be called the optimal state for the metric DG(ρ, σ ).The above definition of this metric may be not easy tocalculate, so we can change its definition slightly. If τis a pure state, then super-fidelity can be simplified as
G(ρ, τ) = Tr(ρτ), hence one can define another version ofthe metric as follows:

DPG(ρ, σ ) = max
τ
|G(ρ, τ)−G(σ, τ)|, (10)

where the maximization is found by taking all pure statesof τ. We will call this metric (DPG(ρ, σ )) the PG-metric,and the pure state τ that attained the maximal value willbe called the optimal pure state.First we consider the case of qubits.
Proposition 2.1 ([20]).For the qubit case, DPG(ρ, σ ) is equal to the trace metric,namely DPG(ρ, σ ) = Dtr(ρ, σ ) = 12Tr|ρ − σ|.
We can connect our metric with the metric introduced in[13] as follows:
Proposition 2.2 ([20]).For the qubit case, DG(ρ, σ ) = C (ρ, σ ) = √1−G(ρ, σ ).
Now we come to discuss the case of qunits (i.e., N × Nquantum states). In this case, if τ is a pure state, then thesuper-fidelity has a simple form: G(ρ, τ) = Tr(ρτ); thismakes the PG-metric easy to study. So we first show themetric character of DPG(ρ, σ ), where the optimal state τis restricted to the pure state, and then turn to show themetric character of DG(ρ, σ ).We need the following concepts: For two quantum states ρand σ , let λi (i = 1, 2, 3, . . . , n) be all eigenvalues of ρ−σ ,arranged as λ1 > λ2 > . . . > λn. Define E(ρ, σ ) := max λi.We can give an interpretation of E(ρ, σ ) as follows: Let ρand σ be two quantum states, then the following is wellknown (see, for example, [23]):

E(ρ, σ ) = max
τ

Tr[τ(ρ − σ )], (11)
where the maximization is obtained by taking over all purestates τ.Note that generally E(ρ, σ ) is not a metric, since E(ρ, σ )may not be equal to E(σ, ρ), but we can symmetrize it as:

DS(ρ, σ ) := max[E(ρ, σ ), E(σ, ρ)] = max |λi|, (12)
where |λi| is the absolute value of λi. From matrix anal-ysis, we get that DS(ρ, σ ) is equal to the spectral metric

between ρ and σ , which is defined as the largest singularvalue of ρ− σ , hence we know that DS(ρ, σ ) is in fact thespectral metric. Moreover, we have the following:
Proposition 2.3 ([20]).For quantum states ρ and σ , DPG(ρ, σ ) = DS(ρ, σ ), thatis, the PG-metric is nothing but the spectral metric.
Now we know that the PG-metric is in fact the spectralmetric, so it is a true metric. In the following we shallprove that the G-metric is also a true metric.
Theorem 2.1.The G-metric DG(ρ, σ ) as shown in Eq. (9) is truly a metric,i.e., it satisfies conditions 1.1-1.4.
Proof. From the definition, it is easy to prove condi-tions 1.1 and 1.3 hold. What we need to do is to prove con-ditions 1.2 and 1.4. If ρ = σ , then of course DG(ρ, σ ) = 0.If DG(ρ, σ ) = 0, we will prove ρ = σ . From the def-inition, we know that DG(ρ, σ ) > DPG(ρ, σ ), so we get
DPG(ρ, σ ) = 0. Since DPG(ρ, σ ) is a true metric, we get
ρ = σ .Now we come to prove 1.4, the triangle inequality
DG(ρ, σ ) 6 DG(ρ, τ)+DG(σ, τ). DG(ρ, σ ) = max

τ
|G(ρ, τ)−

G(σ, τ)|, and suppose τ is the optimal state that attainsthe maximal, so DG(ρ, σ ) = |G(ρ, τ) − G(σ, τ)|. Assumethat |G(ρ, τ) − G(σ, τ)| = G(ρ, τ) − G(σ, τ), then weget G(ρ, τ) − G(σ, τ) = G(ρ, τ) − G(w, τ) + G(w, τ) −
G(σ, τ) 6 |G(ρ, τ) − G(w, τ)| + |G(w, τ) − G(σ, τ)| 6
DG(ρ, w) + DG(w, σ ). Thus one finally has DG(ρ, σ ) 6
DG(ρ, w) +DG(σ, w). Theorem is proved.
3. Properties of DG and DPG

We know that for qubits, DG has a clear form: DG(ρ, σ ) =√1−G(ρ, σ ). What about higher dimensions?For the qunit case, the relation DG(ρ, σ ) = √1−G(ρ, σ )(from Proposition 2.2) does not hold.However, for qunits ρ and σ , the following relation re-mains:
DG(ρ, σ ) 6

√2× (N − 1)
N ×

√1−G(ρ, σ ). (13)
Proof. Let ρ = ρ(u), σ = σ (v) and τ = τ(w), where
u, v,w are the corresponding Bloch vectors of the states
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ρ, σ, τ , then one obtains
|G(ρ, τ)−G(σ, τ)| × N

N − 1=∣∣∣∣(u− v) · w +√1− |w|2
(√

1− |u|2 −
√

1− |v|2
)∣∣∣∣

6 |u− v||w|+√1− |w|2
∣∣∣√1− |u|2 −

√
1− |v|2

∣∣∣
6

√
|u− v|2 + ∣∣∣√1− |u|2 −

√
1− |v|2

∣∣∣2
= √[2− 2u.v − 2

√
1− |u|2

√
1− |v|2

]
= √2×N

N − 1 ×√1−G(ρ(u), σ (v)). (14)
Now we will discuss the inequality (13) in more detail.When N = 2, i.e. in the case of qubits, we find thatthe inequality (13) in fact becomes an equality, that is,
DG(ρ, σ ) = √1−G(ρ, σ ).When the equality sign holds, i.e.,

DG(ρ(u), σ (v)) = √2× (N− 1)
N

√
1−G(ρ(u), σ (v)),

then the inequality (14) needs to be quality, that meansthe optimal state τ := τ(w0) is always attained, where
w0 is a vector parallel to u − v, and the modulus of w0satisfies

|w0| = √
N− 1|u− v|√

2×N
√

1−G(ρ(u), ρ(v)) .
We can always find such an optimal state for cases ofqubits and qunits. For qubits we know that every 2 × 2density matrix has one-to-one correspondence to a Blochvector [1, 21]. From the above formula we can see that τ isa density matrix. So for the qunit case, we conclude that:

DG(ρ(u), σ (v)) = √2× (N− 1)
N

√
1−G(ρ(u), σ (v)).

Now we will study the intrinsic properties of the G-metric
DG and PG-metric DPG . We are interested in the follow-ing properties:
Property 3.1 (contractive under quantum oper-
ation).Suppose T is a quantum operation (i.e. a completely posi-tive trace preserving (CPT) map), and ρ and σ are densityoperators; we say a metric D(ρ, σ ) is contractive underquantum operation if the following holds:

D(T (ρ), T (σ )) 6 D(ρ, σ ). (15)

This property has a physical interpretation [17]: a quan-tum process acting on two quantum states can not increasetheir distinguishability.
Property 3.2 (jointly convex property).We say that the metric D(ρ, σ ) has the jointly convex prop-erty. If pj are probabilities then

D
(∑

j
pjρj ,

∑
j
pjσj

)
6
∑
j
pjD(ρj , σj ). (16)

The jointly convex property also has a physical inter-pretation [17]: the distinguishability between the states∑
j pjρj and ∑j pjσj , where pj is not known, can neverbe greater than the average distinguishability when pj isknown.We know that the Uhlmann-Jozsa fidelity F (ρ, σ ) has theCPT expansive property:

Property 3.3 (CPT expansive property).If ρ and σ are density operators, Φ is a CPT map, then
F (Φ(ρ),Φ(σ )) > F (ρ, σ ). (17)

We may guess that the super-fidelity G(ρ, σ ) also has theCPT expansive property. The following counterexampleshows that this property actually does not hold.
Example 3.1 ([13]).Let

A =


0 0 0 01 0 0 00 0 0 00 0 1 0
 , B =


0 0 0 00 1 0 00 0 0 00 0 0 1

 .

Define Φ(γ) = AγA+ + BγB+, where γ is an arbitrarydensity operator, then we defined a completely positivetrace preserving map.
Let ρ and σ be the density operators defined by

ρ =


12 0 0 00 12 0 00 0 0 00 0 0 0
 , σ =


0 0 0 00 0 0 00 0 12 00 0 0 12

 .

Then
Φ(ρ) =


0 0 0 00 1 0 00 0 0 00 0 0 0

 , Φ(σ ) =


0 0 0 00 0 0 00 0 0 00 0 0 1
 .
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One then easily obtains G(ρ, σ ) > G(Φ(ρ),Φ(σ )), whichshows that the CP expansive property does not hold forsuper-fidelity.So we get that the metric C (ρ, σ ) := √1−G(ρ, σ ) intro-duced in [13] is not contractive under quantum operation.However, we can prove the following:
Theorem 3.1.The PG-metric DPG(ρ, σ ) is contractive under quantumoperation, that is, DPG(φ(ρ), φ(σ )) 6 DPG(ρ, σ ).
Proof. Suppose γ is the optimal pure state for quan-tum states φ(ρ), φ(σ ), so we get DPG(φ(ρ), φ(σ )) =
|G(φ(ρ), γ)−G(φ(σ ), γ)| = |(Trφ(ρ)γ)− (Trφ(σ )γ)|.Let φ be a quantum operation, and denote γ ′ := φ∗(γ).Then we have

DPG(φ(ρ), φ(σ )) =|(Trφ(ρ)γ)− (Trφ(σ )γ)|=|(Trρφ∗(γ))− (Trσφ∗(γ))|=|(Trργ ′ )− (Trσγ ′ )|
6 DPG(ρ, σ ).

Theorem is proved.
Note that the PG-metric is, in fact, the spectral metric, andit was proved in [25] that the spectral metric is contrac-tive under quantum operation; here we give an elementaryproof, our method is quite different from that of [25].How about the G-metric? Numerical experiment showsthat the G-metric DG(ρ, σ ) is not contractive under quan-tum operation.Now we discuss the jointly convex property.
Proposition 3.1 (joint convexity of the PG-met-
ric).Let {pi} be probability distributions over an index set, andlet ρi and σi be density operators with the indices fromthe same index set. Then

DPG

(∑
i
piρi,

∑
i
piσi

)
6
∑
i
piDPG (ρi, σi) . (18)

We know that
DPG(ρ, σ ) = DS(ρ, σ ) = max(E(ρ, σ ), E(σ, ρ)),

so we only need to prove that the following holds:
E
(∑

i
piρi,

∑
i
piσi

)
6
∑
i
piE(ρi, σi),

since E(ρ, σ ) = max
γ

Tr(γ(ρ − σ )), where the maximizationin the right-hand side is taken over all pure states γ, thenthere exists a pure state γ such that
E
(∑

i
piρi,

∑
i
piσi

) =∑
i
piTr(γ(ρi − σi))

6
∑
i
piE(ρi, σi).

The proof is complete.
Note that the PG-metric is a kind of partitioned tracedistance, and in [30] the author proved that the partitionedtrace distance shows strong convexity, which leads to jointconvexity.We also find that the metric DG is not jointly convex. How-ever, numerical experiment shows that the square of DGis jointly convex.Now we discuss some physical interpretations of theG-metric and PG-metric. For the PG-metric, we knowthat it is really the doubled 1-partitioned trace distance,and we can estimate it using a positive operator valuedmeasure (POVM). A POVM is a set of positive operators
Mm satisfying ∑

m
Mm = I, where I is the identity operator.For two density operators, the traces Tr(Mmρ) := pm andTr(Mmσ ) := qm are the probabilities of obtaining a mea-surement outcome labeled by m [1, 30]. For partitionedtrace distances, the following holds [30]:

Dk (ρ, σ ) = max{D↓k (pm, qm) : Tr(Mm) 6 1}. (19)
Formula (19) gives a nice interpretation of the PG-metric.For the G-metric, we know that super-fidelity G(ρ, σ ) canbe measured with the help of a single setup, namely theone that measures observable V [11]:
G(ρ, σ ) = Tr(Vρ⊗σ )+√1− Tr(Vρ ⊗ ρ)√1− Tr(Vσ ⊗ σ ).
So we get the following representation of G-metric:

DG(ρ, σ ) =max |G(ρ, τ)−G(σ, τ)|= max∣∣Tr(V1ρ ⊗ τ)+√1− Tr(V1ρ ⊗ ρ)√1− Tr(V1τ ⊗ τ)
− Tr(V2σ ⊗ τ)
−
√1− Tr(V2σ ⊗ σ )√1− Tr(V2τ ⊗ τ)∣∣.

It is worthwhile to notice that super-fidelity can be ob-tained from directly measurable quantities, i.e. proba-bilities. Given three density operators ρ1, ρ2, ρ3, we can
1040
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introduce the probabilities of the projection onto the an-tisymmetric subspace of H ⊗H (see [11] for details):
pij := Tr(P−ρi ⊗ ρj), i, j = 1, 2, 3. (20)

Then, the super-fidelity has a nice form [11]:
G(ρ1, ρ2) = 1− 2(p12 −√p11p22). (21)

The probabilities pij can be experimentally measured [31,32].Now, we can get another representation of the G-metric:
DG(ρ1, ρ2) = max 2 |p13 − p23 −√p11p33 +√p22p33| .(22)We will try to give the geometric interpretation of

DG(ρ, σ ). From [21], we know that the G-metric has aclear geometric interpretation as follows:
DG(ρ, σ ) = 21 + r max

v

∣∣∣∣∣∣
cosh ( φw12

)
cosh(φu1 ) cosh ( φw12

)
cosh(φv )

−
cosh ( φw22

)
cosh(φu2 ) cosh ( φw22

)
cosh(φv )

∣∣∣∣∣∣ ,
where r = 1

N−1 , φu1 , φu2 , φv are the hyperbolic trianglesfor states ρ, σ, τ, w1 is the Einstein sum of u1 and v, w2 isthe Einstein sum of u2 and v , see Figure 1.

Figure 1. Geometric interpretation of DG .

We know that DG(ρ, σ ) > DPG(ρ, σ ), since DPG(ρ, σ ) isin fact the spectral metric, so we get the following lowerbound of the G-metric: DG(ρ, σ ) > Ds(ρ, σ ).Now if we get the lower bound and the upper bound ofthe G-metric, we will see that, from the two bounds wecan give a good approximation of the G-metric.Numerical simulations have been carried out. Thousandsof pairs of random quantum states ρ and σ have been ob-tained by Mathematica. Every DG(ρ, σ ) has been obtainedthrough choosing 104 random quantum states τ, so theresult should be very close to the real value of DG(ρ, σ ).Numerical experiment shows that DG(ρ, σ ), Ds(ρ, σ ), andour upper bound√2× (N − 1)
N ×

√1−G(ρ, σ )
are very close, so DG(ρ, σ ) can be approximately com-puted through the lower bound Ds(ρ, σ ) and upper boundof DG(ρ, σ ).The DG(ρ, σ ), upper bound of DG(ρ, σ ) and Ds(ρ, σ ) arelisted in Figure 2. DG(ρ, σ ) are represented by ‘·’, Ds(ρ, σ )are represented by ‘o’, and upper bounds of DG(ρ, σ ) aredenoted by ‘4’.

Figure 2. DG (ρ, σ ), upper bound of DG (ρ, σ ) and Ds(ρ, σ ).

4. Conclusion
In summary, we have introduced a new way to define met-rics of quantum states from super-fidelity. We find that,for the qubit case, our metric DG coincides with the metric
C (ρ, σ ) introduced in [13]. We proved that the metric DPGis contractive under quantum operation, while the metric
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DG does not behave monotonically under quantum opera-tion. Also, we rigorously proved that DPG is jointly convex,and numerically proved that the square of DG is jointlyconvex. The new metric may be used to tasks in quantuminformation theory, such as the geometrical entanglementmeasure [26], finding the bound of entanglement measure[14, 27, 28], characterizing the quantum phase transitions[29]. All these show that the metric DG is worthwhilestudying.
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