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Abstract: We show how to simulate the equatorial section of the Schwarzschild metric through a flowing liquid crystal
in its nematic phase. Inside a liquid crystal in the nematic phase, a traveling light ray feels an effective
metric, whose properties are linked to perpendicular and parallel refractive indexes, n, and n, respectively,
of the rod-like molecule of the liquid crystal. As these indexes depend on the scalar order parameter of
the liquid crystal, the Beris-Edwards hydrodynamic theory is used to connect the order parameter with the
velocity of a liquid crystal flow at each point. This way we calculate a radial velocity profile that simulates
the equatorial section of the Schwarzschild metric, in the region outside of Schwarzschild’s radius, in the
nematic phase of the liquid crystal. In our model, the higher flow velocity can be on the order of some
meters per second.
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1. Introduction many analogue models for different aspects of black holes
have appeared in the literature [5]. These procedures ad-
mit not only new understanding on the subjects involved,

Research in analogue models explores the similarities but the possibility of making well controlled experiments

among areas of physics as different among themselves as
general relativity and condensed matter [1]. It maps the
main characteristics from one subject to another, bringing

with systems like dielectric fluids or liquid crystals. In
this paper we are particularly interested in these latter.

) . o i . Liquid crystals are materials composed of anisotropic
in phenomenological insights even if there is not an ob- . . .
. . . molecules, like rods, having different phases between the
vious connection between them. For example, defects in

crystals can be described by an effective Riemann-Cartan
spacetime [2, 3]. In fluid systems, Unruh’s effect [4] shows

the similarity between phonon creation in a radial flow-

liquid and crystalline one. In one of these, the nematic
phase, the rod-like molecules on average point in a spe-
cific direction, represented by the vector i [6, 7]. As shown
ing fluid and Hawking's effect around a black hole. Also, by Kline z?nd ’Kag .[8]' F.erm-at's principle can be. used t.o

calculate light's trajectories in inhomogeneous anisotropic
media like liquid-crystalline materials. This says that,

*E-mail: moraes@fisica.ufpb.br (Corresponding author) among all the possible paths linking the points A and B,
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the light will choose the one that minimizes the integral
fAB N(P)dl, where N(F) is the refractive index of light at the
position indicated by the vector 7 and [ is a parameter with
the dimension of length. This computation of light’s path
can be substituted by a geometric approach [9, 10] and it is
equivalent to saying that the light, within a liquid crystal
in the nematic phase, does not feel the geometric proper-
ties of the laboratory, but feels the properties of an effec-
tive space, of an effective metric. In this geometric point
of view, the light trajectories are geodesics in the effective
geometry. This makes a connection between nematic lig-
uid crystals and space-time. For example, hedgehog-Llike
defects in the nematic phase simulate the global monopole
space-time [9, 10], while the disclination-like defects sim-
ulate the metric of a cosmic string [9-11].

The geometric properties of the “space-times” correspond-
ing to the defects in liquid crystals depend on the perpen-
dicular and parallel refractive indexes of the liquid crystal
molecule in use, n, and n, respectively. As these indexes
are temperature dependent, it is possible to describe them
in terms of a scalar function that measures how ordered
is the nematic phase: the scalar order parameter g. If, for
different points of the liquid crystalline material, there are
different values of local velocity, then the Beris-Edwards
hydrodynamic theory [12] can relate the local velocity of
the liquid crystalline bulk to the order parameter g. This
way, different velocity profiles generate different refractive
index dependent functions and, thus, new effective metrics.
With these ideas in mind, we study the case where light
is propagating in the plane z = cte. of a configuration
like a (k = 1,c¢ = 0) disclination defect. This defect is
a cylindrically symmetric linear one generated as follows.
We assume that the liquid crystal flows radially inwards
on a flat surface with a drain as in a sink. This tends
to align the molecules radially in the configuration known
as radial disclination with unit topological charge [7, 9,
10]. Far from this configuration, the disordered phase is
recovered. When a velocity field is applied in the bulk,
the molecules orient according to the velocity gradient,
generating an orientational order and a non-null value of
the scalar order parameter g, that measures the strength
of the ordering. Therefore, we calculate the velocity profile
v(r), that is the velocity of the liquid crystalline bulk at
the distance r from the core of the configuration. By doing

this we simulate the equatorial section, 68 = % of the
Schwarzschild metric:
2M dr?
o (1 M) gy
r (1= (1)

+r? (d6” +sin* 0d¢?) .

This work is presented in the following way. First, we
show the effective metric that describes the light propa-

gation around a (k = 1,¢c = 0) disclination defect and
how this propagation can be described by the order pa-
rameter g of the liquid crystalline material. Afterwards,
we consider the liquid crystal flowing radially and we use
the Beris-Edwards theory to analyze the dependence of
the order parameter of the material with the flowing ve-
locity module. In these two cases we consider the more
general situation of three space dimensions. Finally, we
employ the result from the second part in the first and we
compare with the Schwarzschild metric written in isotropic
coordinates [13].

2. Geometric model

The analogy between Fermat’s principle and the calcu-
lus of null geodesics in a Riemannian manifold has been
known for a long time [14]. This relationship can be rep-
resented [9, 10] by the following equation when we treat
the extraordinary light' paths:

NZdP =) gijdx‘dx,
i

where N,(F) is the refractive index of the extraordinary
light. In the (k =1, ¢ = 0) disclination case, the effective
metric is [9, 10]

ds® = b?di* + F*d¢® + dz%, )
where
b="0
Ne

and 7 = n.r, and remembering that n, and n, are respec-
tively the refractive indexes of the liquid crystal molecule.
These indexes can be written as temperature functions [15]

B
n, (T) = A— BT — Ao (1—%) ,

3
3)

B

ne(T):A—BT—i—Z(A;)O (1 —TI) .

Here, A, B, B, (An), and T, are constants that charac-
terize the material, where (An), is the birefringence of
the liquid crystal in the crystalline phase and T, is the

T An extraordinary light ray is the second kind of light ray
that arises from the propagation in an anisotropic media -
like a liquid crystal in its nematic phase - and it indicates
the direction of the Poynting vector S.
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transition temperature between the nematic and isotropic
phases. Considering the thermal dependence of the order
parameter g through Haller’s approximation [16]

T B
q(T)=(1—f) .

Equation (3) changes to

_(An)yq
3
ne(q)=A-BT (1—q"%) + %,

no(q)=A—BT.(1—q"")

and thus Equation (2) becomes

2
A— BT, (1—q"#) — (An)g
2= U=a")= 521 i s Pag 1 a2

ds® =
2(An)
A—BT.(1— q1/3) + foq

The theory developed in [9, 10] does not take into ac-
count the time coordinate but this coordinate must be
In fact, the
time coordinate enters the equation above in the sim-

taken into account in further calculations.

plest way, since the geodesic equations of a manifold with
the metric ds? = A(r)dr? + r? [B(r)d6? + C(r) sin® 0d¢?]
are the null geodesics of the manifold with the metric
d3? = —dt* + A(r)dr® + r* [ B(r)d6* + C(r) sin? 0d¢?], re-
sulting in

n 2
A_BTC(»]_qHB)_ (A;oq ,
A— BT, (1 — q'lF) 4 225ha (4)

+ Pd¢? + d72.

ds’ = —dt* +

We will back at Equation (4) later.

3. The Beris-Edwards theory

The relationship between the scalar order parameter g
and the velocity V() of the liquid crystalline bulk at the

- .

position 7 is expressed by the Beris-Edwards equation
[12]
(0:+7V-V)Q—-S(W,Q) =TH, (5)

where Q is the order parameter tensor and I' is a collective
rotational diffusion constant. The tensor S (W,Q) depends
on the gradient velocity tensor W,z = dgv, as

swQ) =0 +0) (Q+ ) + [0+ 3] -0

—25(Q+%)Tr{QW},
(6)

where & is the aspect ratio of the liquid crystal molecule,

W+ W’
D‘T
and
w-—w’"
Q= 5

the symmetric and antisymmetric parts, respectively, of
the tensor W. The molecular field H on the right-hand
side of Equation (5) depends on the derivative of the free
energy F according to [17, 18]

0
=—aQ+b(Q2— (%) Tr[QZ]) —nr[@] @)

In this section, we apply the Beris-Edwards equation (5)
in the case where the liquid crystal bulk is moving radi-
ally towards a cylinder with radius ry # 0 (in microscopic
scale) and the initial director is 7 = 7, in cylindrical coor-
dinates. This setup has the purpose of mimicking the di-
rector field of the (k = 1, ¢ = 0) disclination, whose effec-
tive metric we already know. Moreover, as the bulk flows
continually inward, it is important that at r = ry there are
sinks that remove the liquid crystal from the bulk, avoiding
the violation of the continuity law. Thus, we use @ = 7
to describe the order parameter tensor (Q;; = n;n; — %5,—,-)
with the velocity dependence

o o

Q((R) = q(v(7)

wi=

O O win
|

W=

where v = |V] = |V(7)]. As shown in [6], g(v) o< |V V(F)| and
the cylindrical symmetry of our setup says that the veloc-
ity v does not depend on the ¢ and z coordinates, allowing
one to write g(v(r)) = q(r). Therefore the flow's direction
determines just where the maximum and the minimum of
q occur. Expressing V(r) = v(r)f, the tensor S (W,Q) be-
comes
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Recalling that g(v) = q(r) and substituting (8) in (7), we
obtain the molecular field H

b - 2aq(n) 2¢°(nb _ 4hg’(r)
T3 9 9
N 2kr=19,[ro, [q(r)]],
3
ag(r)  qAnb . 2hg*(r) 1)
H99 = sz = q3 - 9 9 + qg
kr='9,[ra, [q(r)]
3

The remaining terms are null.

Substituting (8), (9) and (10) in (5), we get a matrix equa-
tion, whose solution rules the relationship between the
scalar order parameter and the modulus of the velocity

3
r=——s~, "
=3 ()

where C is a constant defined by boundary conditions.

4. The effective Schwarzschild met-
ric

When a metric is described by isotropic coordinates, the
spatial section of the new metric is flat and all of it is
multiplied by a function. Following the steps presented
in [13], we rewrite a metric similar to (4) in the plane
z = const,,

ds’ = —dt* + p*(F)dF* + F*d¢’, (12)
in terms of isotropic coordinates. So (12) becomes
ds? = —dt* + X* (p) (dp* + p*d¢?) (13)

where A(p) is a function to be determined and p is a new
radial coordinate. Comparing the radial and angular terms
from the last two equations we get

p(F)dF = A(p) dp, (14)
F=Ap)p-
For the metric (13) to have null geodesics that coincide
with the null geodesics of the Schwarzschild one (1), i.e.,
for the metric (13) to be conformally related or conformal
to (1), we find in [5, 13] that

3
A(p) = (Hip) (15)

(1-3%)

where M, in terms of the liquid crystal, represents the
strength of the cylinder, that creates the disclination-like
director, to divert the light. Substituting (15) in (14) and
considering M? « 1, since we are dealing with micro-
scopic ro, we obtain expressions for p(¥) and p that allow
(12) to have the same geodesics as the null geodesics of
the Schwarzschild metric. We get

-2
ds® = —dt* + (1 - %) di* +d¢?,  (16)

where

7

2 _ M
873 — 54F2M + 2F — 3M 6(@—7)
6 873 — 5472M’

p=

The last result has the following interpretation. For the
Schwarzschild metric to be represented by Equation (4),
the square root of the function associated with the radial
coordinate on Equations (16) and (4) must be equal. Set-
ting this equality and noticing that q% < 1 (for ordinary
values of B [15]), we find the radial dependence of g to be

o 48M7? (A + BT,)
9l = [ (An)g

— 82M7 + 27 — 9M] ",

] x [32F° — 432MF* + 87

(17)

where again we considered M? « 1. This is the necessary
scalar order parameter that must exist in a (k =1,¢c =0)
disclination-like configuration in order to the metric (4) to
have geodesics that coincide with the Schwarzschild null
geodesics for the consideration M? « 1, that is equivalent
to the regime of weak-field approximation. Notice that, up
to now, we have obtained the most general expression for
the scalar order parameter g, since no consideration was
made on what is creating this specific order parameter
(flowing bulk, temperature and/or electric field gradient,
etc.). Now, considering that we are dealing with a flow-
ing liquid crystal, described by the case in the previous
section, and substituting Equation (17) into (11), we find
the velocity profile that creates the order parameter (17)
to be

v(7) :{[144CMF2 (A+ BT,)] x [(67° — 1296MF"*
+24F° — 246M# + 67 — 27M) (An), (18)

1
— 96MP (A+ BT,)] ™ } .

However, when this bulk’s velocity is close to light's ve-
locity, drag effects must be considered [5].
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It is important to note that we could use the Gordon
metric [5] to determine a velocity profile that simulates
Schwarzschild’'s metric, since we are dealing with a flow-
ing medium and using the refractive index to calculate the
behavior of light. However, the Gordon metric is used only
when the refractive index of the medium is constant and
here we are dealing with a varying refractive index, since
(7,9, 10]

NA(7) = n?cos® a + n? sin’a, (19)

where a is the angle between the propagation of light
and the director i, and n, and n, are no longer constant,
because they depend on the scalar order parameter g.
Summarizing, every time we have a liquid crystal flowing
toward a disclination, as described in the previous sec-
tion, and the bulk velocity is given by (18), any light ray
traveling in this background will behave as in the pres-
ence of the Schwarzschild metric (1). But the key point is
Equation (17), that shows how the order parameter must
be, on the conditions above cited, for the Schwarzschild
metric to be simulated.

Example 4.1.

Let us use the information about the 5CB liquid crystal
[15, 19] and apply it in Equation (18) to obtain the velocity
profile that simulates the Schwarzschild geometry.

We consider the case where the liquid crystal system has
a disclination-like configuration with a finite sized, yet mi-
croscopic core, and the liquid crystal flows inward toward
this core. Using the possible values of order parameter
when the temperature of the liquid crystal varies in the
nematic phase [7], we found that the maximum value of the
order parameter g(r) is 0.5. Remembering this, we feed
Equation (17) with the 5CB data and, considering that the
maximum value for the order parameter is reached on the
surface of the defect (in this example, the core measures
ro=3-1075m = Fy x~ 5.12-1075), Equation (17) provides
us M~ 1.13-107°.

It is important to mention that M is related to the
Schwarzschild's radius, rs = 2M ~ 2.26-10° m < ry =
3-107° m, and how the light travels outside this radius,
following an open path. Also, we notice that increasing ry
or the value of the order parameter on the core’s surface,
makes M increase.

With M on hand, the substitution of (17) into (11) gives
C. However, this constant has an arbitrariness in its de-
termination because C depends on the boundary condi-
tions. Assuming the bulk's velocity as the fluid reaches
the drain to be 1 m/s, we get C =~ 0.334. Finally, using
all the constants found up to now in (18), we generate
Fig. 1 which represents the velocity profile that simulates
Schwarzschild’'s metric. Because of the arbitrariness of C,
any other value of this constant just shifts up or down the
points in this graph, holding the behavior of the velocity's
gradients.

0,40
0384 |
0,36 4 \

0,34 4

v (m/s)

0,32 o \

0,30 \

0,28 - \

0,26

T T T T T T T T
310°  4x10°  5x10°  6x10°  7x10°  8x10°  9x10°  1x10*
r(m)

Figure 1. Velocity profile that simulates the Schwarzschild’s metric
around a disclination-like configuration with radius ry =
310 m.

Now, let us evaluate the value of the fluid’s velocity on
the cylinder’s surface that simulates the Schwarzschild
metric obtained through the Gordon metric. The algebraic
expression for the flow velocity at a distance r is [20]

C

T+ (n?2=1) % (20

VGordon (r) =

where n is the refractive index of the medium. The latter
quantity should be N, since we are dealing with an ex-
traordinary light ray. Thus, equating n to (19) for 5CB
on the cylinder’s surface and for an inward light ray
(0 = 0), we have n = 1.54. Substituting this value,
M =1.13-10and r = ry = 3-10> m into (20), we obtain
VGordon = 1.79-108 m/s, a value 108 times higher than one
we obtained with C = 0.334, v = 1 m/s. Therefore, the
use of the Gordon metric in this problem is experimentally
infeasible.

It is worth noting that the light in this flowing system de-
scribes open paths. Following the steps to calculate the
light path as shown in most standard General Relativity
books [13, 21], the values of ry and M generate open tra-
jectories. Thus, we are not concerned with investigating
the existence of a horizon.

5. Conclusion

We have presented how a light beam in a special config-
uration of a flowing nematic liquid crystal can effectively
behave as if in the presence of a Schwarzschild space-
time. Using the equivalence of Fermat's principle and
the existence of an effective metric [9, 10], Haller's ap-
proximation allows us to use the Beris-Edwards’ theory



Erms R. Pereira, Fernando Moraes

[12] to relate the properties of the effective metric to the
local velocity of the liquid crystalline bulk. After that,
Schwarzschild’s metric described in terms of isotropic co-
ordinates [5, 13] permits us to use a cylindrically sym-
metric configuration of the nematic liquid crystal and to
obtain the appropriate radial velocity profile around this
configuration that gives us Schwarzschild's metric.
Remembering that we are dealing with velocities much
lower than that of light, the distinguishing mark is the
behavior of the bulk’s velocity and not its absolute values.
Thus, we could set velocity more appropriately within ex-
perimental possibilities.

As a complement to this research, the study of interac-
tive forces between the configurations here analyzed with-
out the restriction of a total topological charge (otherwise
known as the dipole-dipole attractive force [22]) can be
realized, as well as the theoretical study of some classi-
cal tests of general relativity [13] applied to this flowing
system.
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