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Abstract: In eukaryotic cells, the mRNA-protein interplay can be dramatically influenced by non-coding RNAs
(ncRNAs). Although this new paradigm is now widely accepted, an understanding of the effect of ncRNAs
on complex genetic networks is lacking. To clarify what may happen in this case, we propose a mean-field
kinetic model describing the influence of ncRNA on a complex genetic network with a distributed archi-
tecture including mutual protein-mediated regulation of many genes transcribed into mMRNAs. ncRNA is
considered to associate with mRNAs and inhibit their translation and/or facilitate degradation. Our results
are indicative of the richness of the kinetics under consideration. The main complex features are found
to be bistability and oscillations. One could expect to find kinetic chaos as well. The latter feature has
however not been observed in our calculations. In addition, we illustrate the difference in the regulation of
distributed networks by mRNA and ncRNA.
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1. |ntl‘0ducti0n otic cells, the sequences or, in other words, genes tran-
scribed into protein-coding RNAs are, however, rare. Dur-
ing the past decade, it has been found that the other parts
of DNA of such cells are often transcribed into ncRNAs

The funcﬁ.on of genetic networks 1”ClUd..L”9 many genes  {orming the cornerstone of a requlatory network that op-
can be fairly complex. The understanding of such net- orates in concert with the protein network (see recent re-
works is still limited despite a few decades of studies by views of long ncRNAs [6-8] and small RNAs obtained by
biologists, chemists, physicists and mathematicians [1-5]. cleavage of long ncRNAs [9-11)). The important role of

The main activity in this area has long been focused on ncRNAs has been tracked out in a wide variety of cel-

the interplay of mRNAs and proteins. In DNA of eukary- lular processes. For example, thousands of mammalian

mRNAs are highly expressed at developmental stages be-

*E-mail: zhdanov@catalysis.ru fore the expression of small ncRNAs and their levels tend
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to fall as the ncRNAs that target them begin to accumu-
late [12]. Small RNAs are expressed at high level in the
brain and participate in normal and abnormal brain func-
tions [13]. Abnormal levels of ncRNA expression were ob-
served in many types of human cancer [14]. Misexpression
of ncRNAs occurs also in many other diseases including
diabetes, obesity, heart disease and inflammation [15].

Despite the current boom in experimental investigation of
ncRNAs, detailed experimental measurements of the ki-
netics of gene expression influenced by ncRNAs are still
rare. Theoretical studies of such kinetics are focused pri-
marily on the simplest situations without protein-mediated
regulation [16-32] or with a single protein-mediated feed-
back [33-42]. There are also first attempts to describe
the kinetics of more complex genetic networks including
ncRNAs [43-46]. The structures of the ncRNA-protein in-
teraction networks in six specific systems have been dis-
cussed Ref. [47]. The latter work does not, however, include
kinetics.

Depending on their structure, complex genetic networks
can qualitatively be classified as hierarchical ("auto-
cratic”), intermediate, or distributed ("democratic”) [3]. In
the first class, a small group of genes controls many other
genes. In the third class, all genes act as mutual requ-
lators. The networks belonging to the intermediate class
contain both types of requlation. In our previous study
[45], we have presented and comprehensively analyzed a
kinetic model describing the influence of ncRNAs on a
hierarchical two-layer network of genes transcribed into
mRNAs (more specific models are related to a cancer net-
work [43] and transcriptional requlation activity of small
ncRNAs in E. coli during the carbon source transition from
glucose to acetate [44]). The genes forming the bottom
layer were assumed to be regulated from the top and neg-
atively self-regulated. If the former requlation is positive,
the dependence of the RNA populations on the govern-
ing parameters is often found to be nonmonotonous. In
particular, the model predicts bistability. If the requla-
tion is negative, the dependence of the RNA populations
on the governing parameters is monotonous. In particular,
the population of the mRNAs, corresponding to the genes
forming the bottom layer, is nearly constant. Similar re-
sults have been obtained for a hierarchical three-layer
network [46].

Our present study is focused on the likely effect of ncRNA
on a complex distributed network of genes transcribed into
mRNAs. In our analysis, ncRNA is considered to associate
with mRNAs and inhibit their translation and/or facilitate
degradation. This is one of the key functions of ncRNAs
in general and of small ncRNAs in particular (for the other
abilities of ncRNAs, see Refs. [6~11]). This function allows
ncRNAs to serve as global regulators. To illustrate the

corresponding kinetics occurring under steady-state con-
ditions, we use the ncRNA synthesis rate as a governing
parameter. In particular, we show the mean-field kinetics
observed with increasing and subsequent decreasing this
rate. Generally, in calculations of this type the kinetics
are expected to exhibit a unique steady state, bistability,
oscillations, and/or chaos (for the discussion of stochastic
features, e.g., ncRNA-related bursts, see Ref. [32]). The
questions we address are: Does our model predict bista-
bility, oscillations, and chaos? How often are these fea-
tures observed? Is it likely to observe two features, e.g.,
first bistability and then oscillations for a single set of
parameters?

2. Model

The concept of distributed genetic networks has only re-
cently gained empirical support (see, e.g., studies fo-
cused on transcriptional variability in clonally related
mouse hematopoietic precursor cells [48] (reviewed in
Ref. [3]), requlatory networks for five diverse species, from
Escherichia coli to humans [49], and stem cell transcrip-
tional networks [50]), because its characterization involves
genome-wide studies [3]. The validation of any specific
model of this category is usually open to debate espe-
cially in the cases including ncRNAs. To avoid such de-
bates, here we use a generic model implying a random
architecture of mutual protein-regulated requlation.

The reaction scheme under consideration includes syn-
thesis and conventional degradation of ncRNA, n different
mRNAs characterized by subscript i (1 < i < n), and their
corresponding proteins (P;),

Gene, — Gene, + ncRNA, (1)

Gene; — Gene; + mRNA;, (2)

mRNA; - mRNA; + P;, (3)
ncRNA — @, 4)
mRNA; — @, (5)
Pi—@. (6)

In addition, ncRNA and mRNA can associate with subse-
quent degradation of the ncRNA-mRNA complex,

ncRNA + mRNA; — ncRNA x mRNA; — @. (7)

Concerning the latter step, we note that typically ncRNA
has many targets [28]. For this reason, we allow associa-
tion of ncRNA with each mRNA.
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The corresponding mean-field kinetic equations for the
ncRNA, mRNA and protein populations, N, N;, and n;,
in a cell are as follows

dN,

dt = W*—k*N*—ZFiN*NiV (8)
N

ddtl :Wi—kiN,'—f,'N*N[, (9)
C;r;i = U,‘N,’ — Kin;, (10)

where w,, w;, v;, ki, k; and «; are the rates or rate con-
stants of the reactant synthesis and degradation, and r;
are the rate constants of step (7).

To mimic a distributed network, we should specify the
protein-mediated regulation of the mRNA synthesis or,
in other words, the dependence of the rates of the mMRNA
synthesis on the protein populations (the other parame-
ters are taken to be constant). In our model, we assume
that each gene transcribed into mMRNA is governed by two
other randomly chosen genes (including self-requlation)
via association of the corresponding proteins to the reg-
ulatory sites. For simplicity, we consider that the reg-
ulatory sites operate independently (for more complex
schemes of the regulation of transcription, see, e.g., re-
cent articles [51-54], review [55] and references therein).
Each of two proteins governing the transcription of a given
gene is assumed to be able to associate with one or two
sites. If there are two sites for each protein, the sites
are considered to be equivalent. In particular, the mRNA
synthesis rate is represented as

w; = W? =+ W[Fﬂ(l’l“)Fiz(niz), (11)

where w? is the so-called basal synthesis rate, w/ is the
maximum value of the requlated rate, and F;(ns) and
Fia(niz) are the dimensionless functions (< 1) dependent
on the populations of proteins (n; and n;) requlating a
given gene. The former function is defined for positive

regulation,
Ni1 "
Fi i = — ) 12
o) =[] (12)
and for negative regulation,
K‘ m
Fa(na) = =——1 . 13
o) = | | (13)

where Kj; is the association constant, and m (1 or 2) is
the number of requlatory sites for a given protein. Fi(n;2)
is defined by analogy. Physically,

K
K + ni

and
i

Kia + ng

represent the probabilities that a requlatory site is free or
occupied by a protein, respectively.

For example, let us consider that a gene has two requla-
tory sites for each requlatory protein, and the requlation
by one protein is positive while the regulation by another
protein is negative. In this case, the transcription rate is
given by

oy wini K3
b (K 4 na)(Kiz + ni)?

w; = W,

(14)

In combination, steps (1)-(7) and Egs. (8)-(13) define our
model.

3. Details of calculations

To specify the model parameters, we take into account
that mRNA and protein degradation usually occurs on the
time scale of a few minutes or somewhat longer [56-58],
and choose k; and «; at random in the range between
0.05 and 0.15 min~". For ncRNA, by analogy, we employ
k. =0.1 min~".

For mRNAs, the basal synthesis rates, w?, are selected at
random in the range between 1 and 2 min~'. The range
of the rates w/ was slightly different in different sets of
calculations (see Sec. 4 below). Basically, the latter rates
were selected to have biologically reasonable mRNA pop-
ulations.

For the protein synthesis, v; are chosen at random in the
range between 0.1 and 0.3 min~'. With these parameters,
under steady state conditions, the protein population is
about two times larger than the mRNA population. To
describe association of proteins to the requlatory sites,
Kij are selected at random in the range between 100 and
200.

According to the theory of diffusion-limited reactions,
the rate constants r; should be about or lower than
3x 1073 min~" [28]. Following this prescription, we choose
r; at random in the range between 0 and 1073 min~".
The ncRNA synthesis rate, w,, is used as a governing
parameter.

Concerning the number of mRNAs, n, we recall that in
cells the whole array of genes transcribed into mRNAs can
be divided into many groups so that the protein-mediated
interactions inside groups are intensive while the inter-
actions between groups are apparently sporadic. Such
groups often contain from 20 to 40 genes. The connectiv-
ity can only be appreciable, m > 1, inside these groups.
Thus, n should be between 20 and 40. In our calculations
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presented below, we use n = 20 (the variation of n from
10 to 40 does not add any new bright qualitative features).

For each run of calculations, we choose all the param-
eters. Then, Egs. (8)-(10) are integrated (by using the
conventional Runge-Kutta method) during relatively long
sequential time intervals, At (typically, At = 1000 min).
After each time interval, w, is incremented by Aw, (typ-
ically, Aw, = 1-3 min™"). The reactant populations ob-
tained at the end of a time interval are used as data points
and also as the initial conditions for the subsequent time
interval (for the first time interval, we set w, = 0 and
define the initial conditions as described below). After
reaching a desirable maximum value of w, (typically, 100-
300 min~'), w, is decremented after each integration in-
terval by Aw, down to w, = 0. The duration of time
intervals was proved to be sufficient in order to reach a
steady state corresponding to chosen parameters (if this
state exists). The reactant populations obtained in the
end of time intervals are shown below as a function of w..

As already noted, each run of our calculations started with
w, = 0 and accordingly for the first time interval we used
N, (0) = 0 as the initial condition for ncRNA and various
initial conditions for MRNAs and proteins. All the results
presented below were obtained for

w? + w!
N_ — ] ]

(0=

and N
o) = 22,

Ki

These values represent the maximum possible
steady-state mRNA and protein populations.  Alter-
natively, we used N;(0) = n;(0) = 0. The latter values
obviously represent the minimum possible mRNA and
protein populations. Typically, the dependence of the
data points on w, was the same for both these initial
conditions. In all the examples below where this is not
the case, this fact is explicitly noticed. In the case of a
complex dependence of the reactant populations on w,,
we employed additional initial conditions, and as a rule
this did not add any new features to the kinetics.

The specification above corresponds to the situation where
the ncRNA synthesis rate, w,, is used as a governing pa-
rameter. Our calculations are primarily focused on this
case. For comparison, we have also analyzed the situa-
tion when there is no ncRNA. In the latter case, the max-
imum requlated rate of the synthesis of one of the mMRNAs
was employed as a governing parameter. For this mRNA,

1. vy was also

indicated by i = 1, ky was set at 0.1 min~
set at 0.1 min~", and w] was increased step by step from

0 to 300 min~" and then decreased back in analogy with

the procedure specified in the two paragraphs above. The
other parameters were selected as described above.

In experiments, the governing parameter (e.g., w, or wj)
can be systematically changed, for example, by employ-
ing external signals. Although our integration strategies
mimic two possible scenarios of such changes, a detailed
analysis of the response of a cell to signals is beyond
the scope of this paper. In our calculations, the govern-
ing parameters are varied in order to show the specifics
of the kinetics of gene transcription under steady-state
conditions.

4. Results of calculations

4.1. With ncRNA

To illustrate the role of ncRNA in the kinetics under con-
sideration, we show (Figs. 1-6) the average mRNA and
protein populations,

n n
n;

N; &
<N1>=27 and ()= -,
i=1 i=1

and the ncRNA population, N,, as a function of w,. The
main reason for the use of the average populations is tech-
nical. It allows us to reduce the number of figures (with the
figures exhibiting specific populations, the article length
would be far beyond the journal specification) and simul-
taneously to illustrate the complexity of the kinetics (note
that bistability, oscillations and chaos are well manifested
in this case).

In particular, Fig. 1 shows the typical kinetics in the situa-
tion when each of two proteins governing the transcription
of a gene is able to associate with one site (m = 1) and
all these feedbacks are positive. In this case, the kinetics
are either bistable (about 60% of runs) or exhibit a single
stable steady state (about 40% of runs).

If the association with one site is replaced in the exam-
ple above by association with two sites (m = 2), all the
kinetics are already bistable at w, = 0 (Fig. 2). In this
case, the results of the calculations depend on the initial
conditions. If the initial conditions are chosen so that the
system is in the low-active steady state at the beginning
of a run, it remains in this state during a whole run (not
shown).

If all the feedbacks are negative, the kinetics exhibit a
single stable steady state with a monotonous dependence
on the reactant populations on w, (see Figs. 3 and 4 for
m =1 and 2, respectively).

Fig. 5 shows the kinetics in the situation where each of
two proteins governing the transcription of a gene is able
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300

Figure 1. Three runs of the kinetics (two of them are bistable) in the
case when each of two proteins governing the transcrip-
tion of a gene is able to associate with one sites (m = 1)
and all these feedbacks are positive. The rates w; were
chosen at random in the range between 20 and 50 min—".
For the other parameters, see Sec. 3.

to associate with one site (m = 1) and each feedback is
chosen to be either positive or negative at random with
equal probabilities (0.5). In this case, the negative feed-
backs dominate, and in analogy with Figs. 3 and 4 there
is a single stable steady state.

Fig. 6 exhibits kinetics in the case when each of two pro-
teins governing the transcription of a gene is able to as-
sociate with two sites (m = 2) and each feedback is either
positive or negative with probability 0.5. In this case, the
predictions of the model are much richer, and there are at
least nine types (Fig. 6a-6i) of kinetics. About 60% of runs
exhibit a single steady state with various types of the de-
pendence of the reactant populations on w, (Fig. 6a-6c).
A smaller percentage (about 30%) of the kinetics show var-
ious bistable regimes (Fig. 6d-6g). The remaining kinetics
(about 10%) are either oscillatory (Fig. 6h) or exhibit os-
cillations and bistability simultaneously (Fig. 6i). In prin-
ciple, the kinetics shown in Figs. 6h, 6i could be chaotic.
To identify the type of such kinetics, we scrutinized the
corresponding runs more explicitly by tracking the depen-
dence of the reactant population on time as, for example,

400

200

1000

500

Population

1000

500

0 20 40 60 80 100 120

w, (min™)

Figure 2. AsFig. 1 for m = 2 and w/ selected at random in the range
between 50 and 100 min~".

300 Protein

(&)
=}
=]

Population

|

N . L 1 N
0 50 100 150 200

w. (min™)

Figure 3. Three runs of the kinetics in the case when each of two
proteins governing the transcription of a gene is able to
associate with one sites (m = 1) and all these feedbacks
are negative. The rates w/ were chosen at random in the
range between 50 and 100 min—'.

shown in Fig. 7 (note that these and other kinetics were
proved to remain invariable with decreasing the integra-
tion time step). With an increasing fraction of positive
feedbacks, bistable and oscillatory kinetics are observed
more often. If for example this fraction is 0.7, the corre-
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Figure 4. AsFig. 3 for m = 2and w/ selected at random in the range
between 100 and 200 min~".

sponding percentages of the kinetics are ~ 30, 35 and
35%.

500 . r T . T

Protein

Population

ncRNA
1 1
0 50 100 150 200

w, (min")

Figure 5. Three runs of the kinetics in the case when each of two
proteins governing the transcription of a gene is able to
associate with one sites (m = 1) and each feedback is
either positive or negative with probability 0.5. The rates
w/ were chosen at random in the range between 50 and
100 min~".

4.2. Without ncRNA

In the situation when there is no ncRNA, we have used
w{ as a governing parameter. In this case, the kinetics are
expected to be of the same type as those with ncRNA, i.e,,
one is expected to observe a unique steady state, bista-
bility, and/or oscillations. In reality, there are, however,
at least two qualitative distinctions.

First of all, one should bear in mind that in the distributed
networks a change in the rate of transcription of one of the
genes does not globally influence the network behaviour.
For this reason, the variation of w{ for mRNA; results in
minor changes in the average population of other mRNAs
and proteins with 2 < i < n (see, e.g., Fig. 8). In contrast,
ncRNA is a global requlator and the variation of w, re-
sults in appreciable changes in the average population of
mRNAs and proteins (Figs. 1-6).

The second and more subtle distinction is that without
ncRNA we have observed either a stable steady state
(e.g., about 90% of runs with m = 2; Fig. 8) or oscillations
(about 10% of runs), while bistability was practically never
observed. In contrast, the kinetics with ncRNA exhibit
bistability (e.g., Fig. 6). This distinction is also related to
the difference of the requlation of the network by ncRNA
and mRNA. The variation of w, globally influences many
genes and bistability is usually manifested irrespective of
its origin, while the variation of wj effectively influences
only a few specific genes and if the bistability originates
from other genes it may remain hidden with a high prob-
ability.

5. Conclusion

We have shown the likely effect of ncRNA on genetic net-
works with the distributed architecture. Our main findings
are as follows:

(1) Our results (e.g., Fig. 6) are indicative of richness of
the kinetics of gene expression including ncRNAs es-
pecially compared to the networks with a hierarchial
layered architecture [45]. Diverse kinetics are, how-
ever, observed only provided that the network con-
nectivity is appreciable.

(i) The main complex features of the kinetics under con-
sideration are found to be bistability and oscillations.
These features are obviously to be expected in non-
linear feedback systems. Our calculations, however,
clarify how probable their observation is. If for exam-
ple each of two proteins governing the transcription
of a gene is able to associate with two sites (m = 2)
and each feedback is either positive or negative with
a probability of 0.5, our model predicts that about
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60% of runs exhibit a single steady state, a smaller
percentage (about 30%) of the kinetics show various
bistable regimes, and the remaining kinetics (about
10%) are either oscillatory or exhibit oscillations and
bistability simultaneously. Kinetics of the latter type
are rare.

Referring to studies of random Boolean networks
[59, 60], one might expect to find kinetic chaos as
well. The latter feature, however, was not observed
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Figure 6. Continued on next page.
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in our calculations. (Concerning this aspect, see also
Ref. [61])

Our calculations also explicitly show key distinctions
between the regulation of the networks by ncRNA
and mRNA.

All these findings help us to understand what may happen
in distributed genetic networks.
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Figure 6. mRNA and ncRNA populations as a function of w, during nine runs of the kinetics in the case when each of two proteins governing
the transcription of a gene is able to associate with two sites (m = 2) and each feedback is either positive or negative with probability
0.5. The rates w! were chosen at random in the range between 100 and 200 min~". Note that the bistable kinetics exhibited in panels
(e) and (g) depend on the initial conditions in analogy with those shown in Fig. 2. In case (g), one can notice tiny irregular features at
w, =~ 100 min~'. These features correspond to stable oscillations with a very small amplitude (this was verified by tracking the temporal
kinetics in detail). In addition, it is of interest to notice that in case (h) the oscillations in the mRNA populations are appreciable while
the oscillations in the ncRNA populations are nearly negligible. This means that ncRNA serves in this case as a trigger for oscillations.
[The protein population is not shown (except panels (a-c)), because its dependence on w, is similar to that of mMRNA.]
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Figure 7. Examples of oscillatory kinetics [for w, = 60 (a) and 100 min~" (b)] corresponding to the diagram shown in Fig. 6i.
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Figure 8. Average populations of mRNA and proteins with 2 < i < n
as a function of wj during three runs (one of them exhibits
oscillations) of the kinetics without ncRNA. Each of two
proteins governing the transcription of a gene is able to
associate with two sites (m = 2) and each feedback is ei-
ther positive or negative with probability 0.5. The rates w/
(with i > 1) were chosen at random in the range between
100 and 200 min~". For the other parameters, see the
text.
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