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Abstract: In eukaryotic cells, the mRNA-protein interplay can be dramatically influenced by non-coding RNAs
(ncRNAs). Although this new paradigm is now widely accepted, an understanding of the effect of ncRNAs
on complex genetic networks is lacking. To clarify what may happen in this case, we propose a mean-field
kinetic model describing the influence of ncRNA on a complex genetic network with a distributed archi-
tecture including mutual protein-mediated regulation of many genes transcribed into mRNAs. ncRNA is
considered to associate with mRNAs and inhibit their translation and/or facilitate degradation. Our results
are indicative of the richness of the kinetics under consideration. The main complex features are found
to be bistability and oscillations. One could expect to find kinetic chaos as well. The latter feature has
however not been observed in our calculations. In addition, we illustrate the difference in the regulation of
distributed networks by mRNA and ncRNA.
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1. Introduction

The function of genetic networks including many genescan be fairly complex. The understanding of such net-works is still limited despite a few decades of studies bybiologists, chemists, physicists and mathematicians [1–5].The main activity in this area has long been focused onthe interplay of mRNAs and proteins. In DNA of eukary-
∗E-mail: zhdanov@catalysis.ru

otic cells, the sequences or, in other words, genes tran-scribed into protein-coding RNAs are, however, rare. Dur-ing the past decade, it has been found that the other partsof DNA of such cells are often transcribed into ncRNAsforming the cornerstone of a regulatory network that op-erates in concert with the protein network (see recent re-views of long ncRNAs [6–8] and small RNAs obtained bycleavage of long ncRNAs [9–11]). The important role ofncRNAs has been tracked out in a wide variety of cel-lular processes. For example, thousands of mammalianmRNAs are highly expressed at developmental stages be-fore the expression of small ncRNAs and their levels tend
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to fall as the ncRNAs that target them begin to accumu-late [12]. Small RNAs are expressed at high level in thebrain and participate in normal and abnormal brain func-tions [13]. Abnormal levels of ncRNA expression were ob-served in many types of human cancer [14]. Misexpressionof ncRNAs occurs also in many other diseases includingdiabetes, obesity, heart disease and inflammation [15].Despite the current boom in experimental investigation ofncRNAs, detailed experimental measurements of the ki-netics of gene expression influenced by ncRNAs are stillrare. Theoretical studies of such kinetics are focused pri-marily on the simplest situations without protein-mediatedregulation [16–32] or with a single protein-mediated feed-back [33–42]. There are also first attempts to describethe kinetics of more complex genetic networks includingncRNAs [43–46]. The structures of the ncRNA-protein in-teraction networks in six specific systems have been dis-cussed Ref. [47]. The latter work does not, however, includekinetics.Depending on their structure, complex genetic networkscan qualitatively be classified as hierarchical (”auto-cratic”), intermediate, or distributed (”democratic”) [3]. Inthe first class, a small group of genes controls many othergenes. In the third class, all genes act as mutual regu-lators. The networks belonging to the intermediate classcontain both types of regulation. In our previous study[45], we have presented and comprehensively analyzed akinetic model describing the influence of ncRNAs on ahierarchical two-layer network of genes transcribed intomRNAs (more specific models are related to a cancer net-work [43] and transcriptional regulation activity of smallncRNAs in E. coli during the carbon source transition fromglucose to acetate [44]). The genes forming the bottomlayer were assumed to be regulated from the top and neg-atively self-regulated. If the former regulation is positive,the dependence of the RNA populations on the govern-ing parameters is often found to be nonmonotonous. Inparticular, the model predicts bistability. If the regula-tion is negative, the dependence of the RNA populationson the governing parameters is monotonous. In particular,the population of the mRNAs, corresponding to the genesforming the bottom layer, is nearly constant. Similar re-sults have been obtained for a hierarchical three-layernetwork [46].Our present study is focused on the likely effect of ncRNAon a complex distributed network of genes transcribed intomRNAs. In our analysis, ncRNA is considered to associatewith mRNAs and inhibit their translation and/or facilitatedegradation. This is one of the key functions of ncRNAsin general and of small ncRNAs in particular (for the otherabilities of ncRNAs, see Refs. [6–11]). This function allowsncRNAs to serve as global regulators. To illustrate the

corresponding kinetics occurring under steady-state con-ditions, we use the ncRNA synthesis rate as a governingparameter. In particular, we show the mean-field kineticsobserved with increasing and subsequent decreasing thisrate. Generally, in calculations of this type the kineticsare expected to exhibit a unique steady state, bistability,oscillations, and/or chaos (for the discussion of stochasticfeatures, e.g., ncRNA-related bursts, see Ref. [32]). Thequestions we address are: Does our model predict bista-bility, oscillations, and chaos? How often are these fea-tures observed? Is it likely to observe two features, e.g.,first bistability and then oscillations for a single set ofparameters?
2. Model
The concept of distributed genetic networks has only re-cently gained empirical support (see, e.g., studies fo-cused on transcriptional variability in clonally relatedmouse hematopoietic precursor cells [48] (reviewed inRef. [3]), regulatory networks for five diverse species, from
Escherichia coli to humans [49], and stem cell transcrip-tional networks [50]), because its characterization involvesgenome-wide studies [3]. The validation of any specificmodel of this category is usually open to debate espe-cially in the cases including ncRNAs. To avoid such de-bates, here we use a generic model implying a randomarchitecture of mutual protein-regulated regulation.The reaction scheme under consideration includes syn-thesis and conventional degradation of ncRNA, n differentmRNAs characterized by subscript i (1 6 i 6 n), and theircorresponding proteins (Pi),

Gene∗ → Gene∗ + ncRNA, (1)Genei → Genei + mRNAi, (2)mRNAi → mRNAi + Pi, (3)ncRNA→ Ø, (4)mRNAi → Ø, (5)Pi → Ø. (6)
In addition, ncRNA and mRNA can associate with subse-quent degradation of the ncRNA-mRNA complex,

ncRNA + mRNAi → ncRNA ∗ mRNAi → Ø. (7)
Concerning the latter step, we note that typically ncRNAhas many targets [28]. For this reason, we allow associa-tion of ncRNA with each mRNA.
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The corresponding mean-field kinetic equations for thencRNA, mRNA and protein populations, N∗, Ni, and ni,in a cell are as follows
dN∗
dt = w∗ − k∗N∗ −

∑
i
riN∗Ni, (8)

dNi

dt = wi − kiNi − riN∗Ni, (9)
dni
dt = υiNi − κini, (10)

where w∗, wi, υi, k∗, ki and κi are the rates or rate con-stants of the reactant synthesis and degradation, and riare the rate constants of step (7).To mimic a distributed network, we should specify theprotein-mediated regulation of the mRNA synthesis or,in other words, the dependence of the rates of the mRNAsynthesis on the protein populations (the other parame-ters are taken to be constant). In our model, we assumethat each gene transcribed into mRNA is governed by twoother randomly chosen genes (including self-regulation)via association of the corresponding proteins to the reg-ulatory sites. For simplicity, we consider that the reg-ulatory sites operate independently (for more complexschemes of the regulation of transcription, see, e.g., re-cent articles [51–54], review [55] and references therein).Each of two proteins governing the transcription of a givengene is assumed to be able to associate with one or twosites. If there are two sites for each protein, the sitesare considered to be equivalent. In particular, the mRNAsynthesis rate is represented as
wi = w◦i + wr

i Fi1(ni1)Fi2(ni2), (11)
where w◦i is the so-called basal synthesis rate, wr

i is themaximum value of the regulated rate, and Fi1(ni1) and
Fi2(ni2) are the dimensionless functions (6 1) dependenton the populations of proteins (ni1 and ni2) regulating agiven gene. The former function is defined for positiveregulation,

Fi1(ni1) = [ ni1
Ki1 + ni1

]m
, (12)

and for negative regulation,
Fi1(ni1) = [ Ki1

Ki1 + ni1
]m
, (13)

where Ki1 is the association constant, and m (1 or 2) isthe number of regulatory sites for a given protein. Fi2(ni2)is defined by analogy. Physically,
Ki1

Ki1 + ni1

and
ni1

Ki1 + ni1represent the probabilities that a regulatory site is free oroccupied by a protein, respectively.For example, let us consider that a gene has two regula-tory sites for each regulatory protein, and the regulationby one protein is positive while the regulation by anotherprotein is negative. In this case, the transcription rate isgiven by
wi = w◦i + wr

i n2
i1K 2

i2(Ki1 + ni1)2(Ki2 + ni2)2 . (14)
In combination, steps (1)-(7) and Eqs. (8)-(13) define ourmodel.
3. Details of calculations
To specify the model parameters, we take into accountthat mRNA and protein degradation usually occurs on thetime scale of a few minutes or somewhat longer [56–58],and choose ki and κi at random in the range between0.05 and 0.15 min−1. For ncRNA, by analogy, we employ
k∗ = 0.1 min−1.For mRNAs, the basal synthesis rates, w◦i , are selected atrandom in the range between 1 and 2 min−1. The rangeof the rates wr

i was slightly different in different sets ofcalculations (see Sec. 4 below). Basically, the latter rateswere selected to have biologically reasonable mRNA pop-ulations.For the protein synthesis, υi are chosen at random in therange between 0.1 and 0.3 min−1. With these parameters,under steady state conditions, the protein population isabout two times larger than the mRNA population. Todescribe association of proteins to the regulatory sites,
Kij are selected at random in the range between 100 and200.According to the theory of diffusion-limited reactions,the rate constants ri should be about or lower than3×10−3 min−1 [28]. Following this prescription, we choose
ri at random in the range between 0 and 10−3 min−1.The ncRNA synthesis rate, w∗, is used as a governingparameter.Concerning the number of mRNAs, n, we recall that incells the whole array of genes transcribed into mRNAs canbe divided into many groups so that the protein-mediatedinteractions inside groups are intensive while the inter-actions between groups are apparently sporadic. Suchgroups often contain from 20 to 40 genes. The connectiv-ity can only be appreciable, m > 1, inside these groups.Thus, n should be between 20 and 40. In our calculations
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presented below, we use n = 20 (the variation of n from10 to 40 does not add any new bright qualitative features).For each run of calculations, we choose all the param-eters. Then, Eqs. (8)-(10) are integrated (by using theconventional Runge-Kutta method) during relatively longsequential time intervals, ∆t (typically, ∆t = 1000 min).After each time interval, w∗ is incremented by ∆w∗ (typ-ically, ∆w∗ = 1-3 min−1). The reactant populations ob-tained at the end of a time interval are used as data pointsand also as the initial conditions for the subsequent timeinterval (for the first time interval, we set w∗ = 0 anddefine the initial conditions as described below). Afterreaching a desirable maximum value of w∗ (typically, 100-300 min−1), w∗ is decremented after each integration in-terval by ∆w∗ down to w∗ = 0. The duration of timeintervals was proved to be sufficient in order to reach asteady state corresponding to chosen parameters (if thisstate exists). The reactant populations obtained in theend of time intervals are shown below as a function of w∗.As already noted, each run of our calculations started with
w∗ = 0 and accordingly for the first time interval we used
N∗(0) = 0 as the initial condition for ncRNA and variousinitial conditions for mRNAs and proteins. All the resultspresented below were obtained for

Ni(0) = w◦i + wr
i

ki

and
ni(0) = υiNi(0)

κi
.

These values represent the maximum possiblesteady-state mRNA and protein populations. Alter-natively, we used Ni(0) = ni(0) = 0. The latter valuesobviously represent the minimum possible mRNA andprotein populations. Typically, the dependence of thedata points on w∗ was the same for both these initialconditions. In all the examples below where this is notthe case, this fact is explicitly noticed. In the case of acomplex dependence of the reactant populations on w∗,we employed additional initial conditions, and as a rulethis did not add any new features to the kinetics.The specification above corresponds to the situation wherethe ncRNA synthesis rate, w∗, is used as a governing pa-rameter. Our calculations are primarily focused on thiscase. For comparison, we have also analyzed the situa-tion when there is no ncRNA. In the latter case, the max-imum regulated rate of the synthesis of one of the mRNAswas employed as a governing parameter. For this mRNA,indicated by i = 1, k1 was set at 0.1 min−1, υ1 was alsoset at 0.1 min−1, and wr1 was increased step by step from0 to 300 min−1 and then decreased back in analogy with

the procedure specified in the two paragraphs above. Theother parameters were selected as described above.In experiments, the governing parameter (e.g., w∗ or wr1)can be systematically changed, for example, by employ-ing external signals. Although our integration strategiesmimic two possible scenarios of such changes, a detailedanalysis of the response of a cell to signals is beyondthe scope of this paper. In our calculations, the govern-ing parameters are varied in order to show the specificsof the kinetics of gene transcription under steady-stateconditions.
4. Results of calculations
4.1. With ncRNA
To illustrate the role of ncRNA in the kinetics under con-sideration, we show (Figs. 1-6) the average mRNA andprotein populations,

〈Ni〉 = n∑
i=1

Ni

n and 〈ni〉 = n∑
i=1

ni
n ,

and the ncRNA population, N∗, as a function of w∗. Themain reason for the use of the average populations is tech-nical. It allows us to reduce the number of figures (with thefigures exhibiting specific populations, the article lengthwould be far beyond the journal specification) and simul-taneously to illustrate the complexity of the kinetics (notethat bistability, oscillations and chaos are well manifestedin this case).In particular, Fig. 1 shows the typical kinetics in the situa-tion when each of two proteins governing the transcriptionof a gene is able to associate with one site (m = 1) andall these feedbacks are positive. In this case, the kineticsare either bistable (about 60% of runs) or exhibit a singlestable steady state (about 40% of runs).If the association with one site is replaced in the exam-ple above by association with two sites (m = 2), all thekinetics are already bistable at w∗ = 0 (Fig. 2). In thiscase, the results of the calculations depend on the initialconditions. If the initial conditions are chosen so that thesystem is in the low-active steady state at the beginningof a run, it remains in this state during a whole run (notshown).If all the feedbacks are negative, the kinetics exhibit asingle stable steady state with a monotonous dependenceon the reactant populations on w∗ (see Figs. 3 and 4 for
m = 1 and 2, respectively).Fig. 5 shows the kinetics in the situation where each oftwo proteins governing the transcription of a gene is able
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Figure 1. Three runs of the kinetics (two of them are bistable) in the
case when each of two proteins governing the transcrip-
tion of a gene is able to associate with one sites (m = 1)
and all these feedbacks are positive. The rates wr

i were
chosen at random in the range between 20 and 50 min−1.
For the other parameters, see Sec. 3.

to associate with one site (m = 1) and each feedback ischosen to be either positive or negative at random withequal probabilities (0.5). In this case, the negative feed-backs dominate, and in analogy with Figs. 3 and 4 thereis a single stable steady state.Fig. 6 exhibits kinetics in the case when each of two pro-teins governing the transcription of a gene is able to as-sociate with two sites (m = 2) and each feedback is eitherpositive or negative with probability 0.5. In this case, thepredictions of the model are much richer, and there are atleast nine types (Fig. 6a-6i) of kinetics. About 60% of runsexhibit a single steady state with various types of the de-pendence of the reactant populations on w∗ (Fig. 6a-6c).A smaller percentage (about 30%) of the kinetics show var-ious bistable regimes (Fig. 6d-6g). The remaining kinetics(about 10%) are either oscillatory (Fig. 6h) or exhibit os-cillations and bistability simultaneously (Fig. 6i). In prin-ciple, the kinetics shown in Figs. 6h, 6i could be chaotic.To identify the type of such kinetics, we scrutinized thecorresponding runs more explicitly by tracking the depen-dence of the reactant population on time as, for example,

Figure 2. As Fig. 1 form = 2 and wr
i selected at random in the range

between 50 and 100 min−1.

Figure 3. Three runs of the kinetics in the case when each of two
proteins governing the transcription of a gene is able to
associate with one sites (m = 1) and all these feedbacks
are negative. The rates wr

i were chosen at random in the
range between 50 and 100 min−1.

shown in Fig. 7 (note that these and other kinetics wereproved to remain invariable with decreasing the integra-tion time step). With an increasing fraction of positivefeedbacks, bistable and oscillatory kinetics are observedmore often. If for example this fraction is 0.7, the corre-
913
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Figure 4. As Fig. 3 form = 2 and wr
i selected at random in the range

between 100 and 200 min−1.

sponding percentages of the kinetics are ' 30, 35 and35%.

Figure 5. Three runs of the kinetics in the case when each of two
proteins governing the transcription of a gene is able to
associate with one sites (m = 1) and each feedback is
either positive or negative with probability 0.5. The rates
wr
i were chosen at random in the range between 50 and

100 min−1.

4.2. Without ncRNA
In the situation when there is no ncRNA, we have used
wr1 as a governing parameter. In this case, the kinetics areexpected to be of the same type as those with ncRNA, i.e.,one is expected to observe a unique steady state, bista-bility, and/or oscillations. In reality, there are, however,at least two qualitative distinctions.First of all, one should bear in mind that in the distributednetworks a change in the rate of transcription of one of thegenes does not globally influence the network behaviour.For this reason, the variation of wr1 for mRNA1 results inminor changes in the average population of other mRNAsand proteins with 2 6 i 6 n (see, e.g., Fig. 8). In contrast,ncRNA is a global regulator and the variation of w∗ re-sults in appreciable changes in the average population ofmRNAs and proteins (Figs. 1-6).The second and more subtle distinction is that withoutncRNA we have observed either a stable steady state(e.g., about 90% of runs with m = 2; Fig. 8) or oscillations(about 10% of runs), while bistability was practically neverobserved. In contrast, the kinetics with ncRNA exhibitbistability (e.g., Fig. 6). This distinction is also related tothe difference of the regulation of the network by ncRNAand mRNA. The variation of w∗ globally influences manygenes and bistability is usually manifested irrespective ofits origin, while the variation of wr1 effectively influencesonly a few specific genes and if the bistability originatesfrom other genes it may remain hidden with a high prob-ability.
5. Conclusion
We have shown the likely effect of ncRNA on genetic net-works with the distributed architecture. Our main findingsare as follows:

(i) Our results (e.g., Fig. 6) are indicative of richness ofthe kinetics of gene expression including ncRNAs es-pecially compared to the networks with a hierarchiallayered architecture [45]. Diverse kinetics are, how-ever, observed only provided that the network con-nectivity is appreciable.
(ii) The main complex features of the kinetics under con-sideration are found to be bistability and oscillations.These features are obviously to be expected in non-linear feedback systems. Our calculations, however,clarify how probable their observation is. If for exam-ple each of two proteins governing the transcriptionof a gene is able to associate with two sites (m = 2)and each feedback is either positive or negative witha probability of 0.5, our model predicts that about
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60% of runs exhibit a single steady state, a smallerpercentage (about 30%) of the kinetics show variousbistable regimes, and the remaining kinetics (about10%) are either oscillatory or exhibit oscillations andbistability simultaneously. Kinetics of the latter typeare rare.
(iii) Referring to studies of random Boolean networks[59, 60], one might expect to find kinetic chaos aswell. The latter feature, however, was not observed

in our calculations. (Concerning this aspect, see alsoRef. [61].)
(iv) Our calculations also explicitly show key distinctionsbetween the regulation of the networks by ncRNAand mRNA.
All these findings help us to understand what may happenin distributed genetic networks.

Figure 6. Continued on next page.
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Figure 6. mRNA and ncRNA populations as a function of w∗ during nine runs of the kinetics in the case when each of two proteins governing
the transcription of a gene is able to associate with two sites (m = 2) and each feedback is either positive or negative with probability
0.5. The rates wr

i were chosen at random in the range between 100 and 200 min−1. Note that the bistable kinetics exhibited in panels
(e) and (g) depend on the initial conditions in analogy with those shown in Fig. 2. In case (g), one can notice tiny irregular features at
w∗ ' 100 min−1. These features correspond to stable oscillations with a very small amplitude (this was verified by tracking the temporal
kinetics in detail). In addition, it is of interest to notice that in case (h) the oscillations in the mRNA populations are appreciable while
the oscillations in the ncRNA populations are nearly negligible. This means that ncRNA serves in this case as a trigger for oscillations.
[The protein population is not shown (except panels (a-c)), because its dependence on w∗ is similar to that of mRNA.]

Figure 7. Examples of oscillatory kinetics [for w∗ = 60 (a) and 100 min−1 (b)] corresponding to the diagram shown in Fig. 6i.
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Figure 8. Average populations of mRNA and proteins with 2 6 i 6 n
as a function of wr1 during three runs (one of them exhibits
oscillations) of the kinetics without ncRNA. Each of two
proteins governing the transcription of a gene is able to
associate with two sites (m = 2) and each feedback is ei-
ther positive or negative with probability 0.5. The rates wr

i
(with i > 1) were chosen at random in the range between
100 and 200 min−1. For the other parameters, see the
text.

References

[1] S. Bornholdt, Science 310, 449 (2005)[2] G. Karlebach, R. Shamir, Nat. Rev. Mol. Cell Bio. 9,771 (2008)[3] Y. Bar-Yam, D. Harmon, B. de Bivort, Science 323,1016 (2009)[4] M.C. Lagomarsino, B. Bassetti, G. Castellani, D. Re-mondini, Mol. Biosyst. 5, 335 (2009)[5] D.F.T. Veiga, B. Dutta, G. Balazsi, Mol. Biosyst. 6,469 (2010)[6] T.R. Mercer, M.E. Dinger, J.S. Mattick, Nat. Rev.Genet. 10, 155 (2009)[7] J. Whitehead, G.K. Pandey, C. Kanduri, Biochim. Bio-phys. Acta 1790, 936 (2009)[8] J.E. Wilusz, H. Sunwoo, D.L. Spector, Gene. Dev. 23,1494 (2009)[9] D.P. Bartel, Cell 136, 215 (2009)[10] M. Ghildiyal, P.D. Zamore, Nat. Rev. Genet. 10, 94(2009)[11] V.N. Kim, J. Han, M.C. Siomi, Nat. Rev. Mol. Cell Bio.10, 126 (2009)[12] K.K.H. Farh et al., Science 310, 1817 (2005)[13] J. Gao et al., Nature 466, 1105 (2010)[14] E. Barbarotto, T.G. Schmittgen, G.A. Calin, Int. J. Can-cer 122, 969 (2008)[15] F.C. Lynn, Trends Endocrin. Met. 20, 452 (2009)[16] D.H. Lenz et al., Cell 118, 69 (2004)

[17] S. Semsey et al., Nucleic Acids Res. 34, 4960 (2006)[18] E. Levine, E.B. Jacob, H. Levine, Biophys. J. 93, L52(2007)[19] E. Levine, P. McHale, H. Levine, PLOS Comput. Biol.3, e233 (2007)[20] E. Levine, Z. Zhang, T. Kuhlman, T. Hwa, PLOS Biol.5, e229 (2007)[21] N. Mitarai, A.M.C. Andersson, S. Krishna, S. Semsey,K. Sneppen, Phys. Biol. 4, 164 (2007)[22] Y. Shimoni et al., Mol. Syst. Biol. 3, 138 (2007)[23] S. Legewie, D. Dienst, A. Wilde, H. Herzel, I.M. Ax-mann, Biophys. J. 95, 3232 (2008)[24] E. Levine, T. Hwa, Curr. Opin. Microbiol. 11, 574(2008)[25] P. Mehta, S. Goyal, N.S. Wingreen, Mol. Syst. Biol.4, 221 (2008)[26] N. Mitarai et al., P. Natl Acad. Sci. USA 106, 10655(2009)[27] Y. Jia, W.H. Liu, A.B. Li, L.J. Yang, X. Zhan, Biophys.Chem. 143, 60 (2009)[28] V.P. Zhdanov, Mol. Biosyst. 5, 638 (2009)[29] V.P. Zhdanov, Biophys. Rev. Lett. 4, 267 (2009)[30] V. Elgart, T. Jia, R. Kulkarni, Biophys. J. 98, 2780(2010)[31] V. Elgart, T. Jia, R.V. Kulkarni, Phys. Rev. E 82, 021901(2010)[32] V.P. Zhdanov, JETP Lett. 92, 410 (2010)[33] Z.-R. Xie, H.-T. Yang, W.-C. Liu, M.-J. Hwang,Biochem. Bioph. Res. Co. 358, 722 (2007)[34] V.P. Zhdanov, Chem. Phys. Lett. 458, 359 (2008)[35] V.P. Zhdanov, J. Phys. A-Math. Theor. 41, 285101(2008)[36] V.P. Zhdanov, JETP Lett. 88, 466 (2008)[37] J.W. Shen, Z.R. Liu, W.X. Zheng, F.D. Xu, L.N. Chen,Physica A 388, 2995 (2009)[38] A. Nandi, C. Vaz, A. Bhattacharya, R. Ramaswamy,BMC Syst. Biol. 3, 45 (2009)[39] V.P. Zhdanov, Biosystems 95, 75 (2009)[40] L.P. Xiong, Y.-Q. Ma, L.H. Tang, Chinese Phys. Lett.27, 098701 (2010)[41] V.P. Zhdanov, Biophys. Rev. Lett. 5, 89 (2010)[42] V.P. Zhdanov, Physica A 389, 887 (2010)[43] B.D. Aguda, Y. Kim, M.G. Piper-Hunter, A. Friedman,C.B. Marsh, P. Natl Acad. Sci. USA 105, 19678 (2008)[44] R.S. Wang, G. Jin, X.S. Zhang, L.N. Chen, BMCBioinformatics 10, S6 (2009)[45] V.P. Zhdanov, Cent. Eur. J. Phys. 8, 864 (2010)[46] V.P. Zhdanov, Chaos (in press)[47] J.C. Nacher, N. Araki, Biosystems 101, 10 (2010)[48] H.H. Chang, M. Hemberg, M. Barahona, D.E. Ingber,S. Huang, Nature 453, 544 (2008)[49] N. Bhardwaj, K.K. Yan, M.B. Gerstein, P. Natl Acad.
917



Non-coding RNAs and complex distributed genetic networks

Sci. USA 107, 6841 (2010)[50] B.D. MacArthur, A. Ma’ayan, I.R. Lemischka, Nat. Rev.Mol. Cell Bio. 10, 672 (2009)[51] T. Gedeon, K. Mischaikow, K. Patterson, E. Traldid,B. Math. Biol. 70, 1660 (2008)[52] D. Müller, J. Stelling, PLOS Comput. Biol. 5,e1000279 (2009)[53] A. Coulon, O. Gandrillon, G. Beslon, BMC Syst. Biol.4, 2 (2010)[54] R. Murugan, J. Phys. A-Math. Theor. 43, 195003(2010)

[55] D. Michel, Prog. Biophys. Mol. Bio. 102, 16 (2010)[56] E. Yang et al., Genome Res. 13, 1863 (2003)[57] A. Beyer, J. Hollunder, H.-P. Nasheuer, T. Wilhelm,Mol. Cell. Proteomics 3, 1083 (2004)[58] R. de Sousa Abreu, L.O. Penalva, E.M. Marcotte,C. Vogel, Mol. Biosyst. 5, 1512 (2009)[59] B. Derrida, Y. Pomeau, Europhys. Lett. 1, 45 (1986)[60] M. Andrecut, S.A. Kauffman, Phys. Lett. A 372, 4757(2008)[61] V.P. Zhdanov, JETP Lett. (in press)

918


	Introduction
	Model
	Details of calculations
	Results of calculations
	Conclusion
	References



