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Abstract: Polarization properties of electromagnetic waves, double-passed through magnetized plasma, are studied.
Analyses are performed in the case of non-interacting normal modes, propagating in homogeneous and
weakly inhomogeneous plasmas, and for three kinds of reflectors: metallic plane, 2D corner retro-reflector
(2D-CR), and cubic corner retro-reflector (CCR). It is shown that an electromagnetic wave, reflected from
a metallic plane and from a CCR, contains only “velocity-preserving” channels, whose phases are doubled
in comparison with those of a single-passage propagation. At the same time, an electromagnetic wave
reflected from a 2D-CR is shown to contain both “velocity-preserving” and “velocity-converting” channels,
the latter converting the fast wave into the slow one and vice-versa. One characteristic feature of “velocity-
converting” channels is that they reproduce the initial polarization state near the source, which might be of
practical interest for plasma interferometry. In the case of circularly polarized modes, “velocity-preserving”
channels completely disappear, and only “velocity-converting” channels are to be found.
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1. Introduction

The issue of a double-passage scheme of measurementsin plasma polarimetry arises from reducing the number ofwindows in the walls of large thermonuclear reactors, suchas ITER and W-7X. A two-passage scheme of polarimet-ric measurements, shown in Fig. 1, contains three basic
∗E-mail: bobi@am.szczecin.pl

elements: the source of electromagnetic waves in the farinfrared (FIR) or microwave band, a retro-reflector, whichreturns electromagnetic waves back to the source, and ananalyzer.

Figure 1. Scheme for double-passage measurements.
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Double passage of electromagnetic waves through magnetized plasma: approximation of independent normal waves

It is intuitively evident that in the case of non-interactingnormal modes, the double-passage regime should pro-vide twice as large phase shifts between normal modes inplasma, compared with the single-passage scheme. Thisfact can be readily proved for a pure Faraday effect, whichdeals with circularly polarized waves, and for pure aCotton-Mouton phenomenon, observed for linearly polar-ized waves. However, it is not an easy matter to derive thephase-doubling phenomenon for electromagnetic waves ofarbitrary polarization. To the best of the authors’ knowl-edge, a general analysis has not, so far, been publishedin the literature.

This paper studies polarization of the electromagneticbeam after double-passage through magnetized plasma.Our analysis is based on the quasi-isotropic approxima-tion (QIA) of the geometric optics method [1–5], which ad-equately describes electromagnetic waves’ propagation inweakly anisotropic media, primarily in plasma, which man-ifests properties of weakly anisotropic media in millimeter,submillimeter, and FIR ranges, which are used for plasmadiagnostics in modern thermonuclear reactors.

The materials of this paper are presented in the follow-ing order: Basic equations of quasi-isotropic approachare presented in Sec. 2. QIA equations are applied toanalyze forward and backward normal waves both in ho-mogeneous (Sec. 3) and in weakly inhomogeneous plasma(Sec. 4). Secs. 5-7 study polarization of waves, reflectedfrom three kinds of reflectors: a metallic plane, a 2D cornerretro-reflector (2D-CR), and a cubic corner retro-reflector(CCR). As will be shown, the slow (fast) incident elec-tromagnetic wave, being reflected from a metallic planeor a CCR, is transformed into a slow (fast) wave, forming“velocity-preserving” channels of reflection. These chan-nels are characterized by phase doubling for every normalmode, compared with the single-passage regime.

At the same time the wave reflected from a 2D cor-ner retro-reflector is shown to contain both “velocity-preserving” and “velocity-converting” channels. The lat-ter convert the slow wave into the fast one and vice-versa.These “velocity-converting” channels, which have not beendescribed so far, might be of practical interest for far in-frared (FIR) and microwave interferometers, because thesechannels reproduce the original polarization state whenthe wave returns back to the primary source.

2. Waves in weakly anisotropic
media: Quasi-isotropic approxima-
tion (QIA) of the geometrical optics
method
The dielectric permittivity tensor εαβ of weakly anisotropicmedia consists of two parts: a large isotropic component,where δαβ is a unit tensor, and a small anisotropic com-ponent ναβ :

εαβ = ε0δαβ + ναβ . (1)
Intending to emphasize weakness of the anisotropy tensor
ναβ compared with the isotropic part ε0, we involve an“anisotropic” small parameter µA as follows:

µA = max |ναβ |
ε0 � 1. (2)

The theory of electromagnetic wave propagation in weaklyanisotropic media is based on a quasi-isotropic approxi-mation (QIA) of the geometrical optics method [1–3]. Ashort outline of the QIA is presented in books [4, 5] andrecent papers [6, 7]. Along with the “anisotropic” small pa-rameter µA (Eq. (3)), QIA also uses a “geometrical” smallparameter
µGO = 1

k0L = λ02πL , (3)
where k0 and λ0 = 2π/k0 are, respectively, wave numberand wavelength in free space, and L is a characteristicscale of the medium’s inhomogeneity.In the lowest (zero) order in a combined small parameter

µ = max (µA, µGO) (4)
QIA provides an asymptotic solution to Maxwell’s equa-tions in the “quasi-isotropic” form:

E = ΓA (r) exp [ik0Ψ (r)] , (5)
where Ψ (r) and A (r) are the eikonal and amplitude ofthe geometrical optics (GO) wave field in the isotropic,inhomogeneous medium, with permittivity ε0 (r) (time de-pendence exp(−iωt) is omitted for brevity). Vector Γ (po-larization vector) describes the evolution of polarizationin a weakly anisotropic medium.The values Ψ (r) and A (r) obey the eikonal and transportequations, respectively [4, 5] and [8]:

(∇Ψ)2 = ε0, div (A2∇Ψ) = 0. (6)
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According to the eikonal equation, Ψ (r) can be found bythe integration of the refractive index n0 = √ε0 along theray:
Ψ = ∫ √ε0dσ = ∫ n0dσ, (7)

where dσ is an elementary arc length along the ray. Thephase factor exp [ik0Ψ (r)] can be represented as
exp [ik0Ψ (r)] = expi σ∫

0
N0 (r)dσ , (8)

where N0 = k0n0 is a local wave number. In turn theamplitude A obeys the energy conservation law in a raytube [4, 5, 8].In the lowest order in small parameter µ, the polarizationvector Γ is orthogonal to the ray and can be representedas
Γ = Γ1e1 + Γ2e2, e1⊥e2⊥l, (9)

where l = dr/dσ is a unit vector, tangent to the ray trajec-tory r (σ ), and e1 and e2 are the unit vectors, orthogonalto the ray trajectory.M. Popov has introduced an orthogonal, curvilinear coor-dinate system [9], which performs parallel transport of thevector wave field E along the ray. The parallel-transportcoordinate frame has been widely used in the theory ofopen resonators [10] and in applications. From previousstudies [9, 10], the unit vectors e1,2 satisfy the equations
ė1 = l (e1 · ∇ ln (n)) , ė2 = l (e2 · ∇ ln (n)) , (10)

where the dot over the vector means a derivative in thearc length σ : ė1,2 = de1,2/dσ .In this coordinate system, QIA equations for the polariza-tion vector α take the form [1–5]{ Γ̇1 = ik02√ε0 [ν11Γ1 + ν12Γ2] ,Γ̇2 = ik02√ε0 [ν21Γ1 + ν22Γ2] , (11)
where ναβ are the components of the anisotropy tensor.By choosing the isotropic permittivity of the collisionlessmagnetized plasma as

ε0 = 1− v, v = ω2
p

ω2 ≡ 4πe2Ne

mω2 , (12)
one can rewrite Eq. (11) as

Γ̇1 = −(i/2)(2Ω0 −Ω⊥ −Ω1)Γ1 + (1/2)(iΩ2 −Ω3)Γ2,Γ̇2 = (1/2)(iΩ2 + Ω3)Γ1 − (i/2)(2Ω0 −Ω⊥ + Ω1)Γ2. (13)

Here Ω1,2,3 are the components of vector Ω

Ω =
 Ω1Ω2Ω3

 = k02√1− v v1− u
 u sin2 α‖ cos 2α⊥
u sin2 α‖ sin 2α⊥2√u cos α‖

 ,

(14)used by Segre to describe the Stokes vector evolution inplasma [11]. In the frame of Stokes vector formalism, Ω⊥and Ω0 ≡ Ω⊥(α‖ = π/2) are auxiliary parameters
Ω⊥ = √Ω21 + Ω22 = k02√1− v uv1− u sin2 α‖ = Ω0 sin2 α‖.(15)Besides, u = (eB0/mcω)2 is the “magnetic” plasma pa-rameter [12, 13]. QIA Eqs. (13) slightly differ from QIAequations, derived in [7], because the isotropic part of thepermittivity tensor was chosen in Czyz et al. [7] to be
ε0 = 1 − v/(1 − u) ≈ 1 − v − vu, instead of ε0 = 1 − vhere.
3. Forward and backward normal
waves in homogeneous plasma
Let us apply QIA Eqs. (13) for the analysis of polarizationevolution along the ray in the homogeneous plasma. In or-der to discern parameters related to forward and backwardwaves, we supply them with subscripts f and b, respec-tively. Let us study first the forward normal waves, usingan orthogonal basis e1f , e2f , lf and longitudinal variable
σf , shown in Fig. 2.The solution of Eq. (13) for the components Γ1f and Γ2fof the polarization vector Γf = Γ1fe1f + Γ2fe2f in the ho-mogeneous plasma can be represented in the form of aharmonic wave
Γ1f = A1f exp [iNf (σf − σ0f )] ,Γ2f = A2f exp [iNf (σf − σ0f )] ,(16)where σ0f is a starting point, and Nf is a propagationconstant, answering to one of the normal modes in plasma:

Nf± = −Ω0 + 12
(Ω⊥ ±√Ω2

⊥ + Ω23f
)

= −Ω0 + 12 (Ω⊥ ±Ω) ,
Ω ≡ |Ω| = √Ω2

⊥ + Ω23f .
(17)

The values Ω2f and Ω3f have subscript f in order to discernthem from analogous values for backward waves, which
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Figure 2. Orientation of the static magnetic field B0 in the parallel
transport coordinate frame

(
ef1, ef2,lf), in the case of a for-

ward wave. Coordinate systems
(
eb1, eb2,lb), connected

with a backward wave is shown in the right part of this fig-
ure.

differ from Ω2f and Ω3f by opposite sign. At the same timethe signs of parameters Ω⊥ and Ω1 are the same both forforward and backward waves. Therefore these parametersdo not need any special subscripts.Total propagation constants Ntot
f± , uniting QIA con-stants (17) with the common geometrical optics propaga-tion constant N0 = k0n0, will be

Ntot
f± = N0 +Nf± = N0 −Ω0 + (1/2)(Ω⊥ ±Ω). (18)

The subscripts ± in this and the subsequent equationscorrespond simply to signs of the square root in Eq. (17).The minus sign in Eq. (17) corresponds to the “fast” wave,whose phase velocity vph− = ω/Ntot
f− exceeds the phasevelocity of the slow wave vph+ = ω/Ntot

f+ :
vph− = ω/ [N0 −Ω0 + (1/2)(Ω⊥ −Ω] > vph+= ω/ [N0 −Ω0 + (1/2)(Ω⊥ + Ω)] . (19)

In plasma, the electrical vector of the fast wave rotates inthe direction of the Larmour rotation of electrons, whereasthe slow wave’s electrical vector rotates in the oppositedirection.It follows from Eq. (13) that the complex amplitude ra-tio ζf± = (A2f /A1f )± of the electromagnetic wave can berepresented by two equivalent expressions:
ζf± = −Ω1 ±ΩΩ2f + iΩ3f = −Ω2f + iΩ3f

−Ω1 ∓Ω . (20)
It can be readily shown that the sign “–“ in Eq. (17) cor-responds to clockwise rotation of the electric vector Γf−

about the ray (right-hand polarization in optical defini-tion [8]), and sign “+” corresponds to counterclockwiserotation (left-hand rotation). The general criterion thatdifferentiates the right- from the left-hand rotation usesthe sign of the imaginary part of the complex amplituderatio ζf :
Im (ζf ) > 0⇔ right hand rotation, (21a)Im (ζf ) < 0⇔ left hand rotation. (21b)

As a simple example of these criteria, take circularly po-larized waves, corresponding to the pure Faraday effect,which takes place at |Ω3| � |Ω1|, |Ω2|, |Ω⊥|. Assumingthat Ω3 > 0 (corresponding to an acute angle α‖ < π/2)we have
ζf− = isgn (Ω3) = i ⇔ fast wave,right - hand polarization, (22a)
ζf+ = −isgn (Ω3) = −i ⇔ slow wave,left - hand polarization. (22b)

For an opposite sign of Ω3, the relation between fast/slowand right/left polarization will be opposite, too.In the case of a real-valued amplitude ratio, we deal withthe linear polarization of normal waves, characteristic forthe pure Cotton-Mouton effect, when Ω3 = 0:
ζf− = −ctg (α⊥)⇔ fast wave, (23a)
ζf+ = tg (α⊥)⇔ slow wave. (23b)

Involving complex eigenvectors of unit length
ef± = (e1 + ζf±e2)√1 + |ζf±|2 ≡ pf± (e1 + ζf±e2) ,
pf± = 1/√1 + |ζf±|2, |e±| = 1 (24)

we may represent the wave field Ef as a superposition ofindependent (non-interacting) normal modes:
Ef = af+ef+ exp(iNf+σf ) + af−ef− exp(iNf−σf ). (25)

The starting point σ0f in Eq. (25) is assumed to be zero:
σ0f = 0. Total phases Sf±tot = Nf±

totσf for slow and fastwaves are depicted in Fig. 3 by continuous lines.
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Figure 3. Total phases (continuous lines) for forward (Stotf± ) and
backward (Stotb± ) waves, forming “velocity-preserving”
channels of reflection from the metallic plane. Total
phases Stotf+⇒b− and Stotf−⇒b+ for “velocity-converting” chan-
nels f+⇒ b− and f− ⇒ b+, arising under wave reflection
from a 2D-CR, are shown by dashed lines.

According to Eq. (20), ζf+ = −1/ζ∗f− is equivalent to therelation
ζf+ζ∗f− = −1, (26)

worked out by Huard [14]. Normal waves in Eq. (25) areorthogonal, because ef+e∗f− = 1 + ζf+ζ∗f− = 1 − 1 = 0.Therefore we may treat Eq. (26) as the criterion of normalmodes’ orthogonality.Considering backward waves, it is convenient to use a”backward” right-handed coordinate system (e1b, e2b, lb),shown in Fig. 2:
e1b = e1f , e2b = −e2f , lb = −lf . (27)

The relationship between the arc length σb along thebackward ray and the arc length σf along the forwardray is:
σb = const. − σf . (28)

As said earlier, in the backward coordinate system theparameter Ω2b changes its sign compared with the “for-ward” value Ω2f (Ω2b = −Ω2f ), because e2b = −e2f and
α⊥b = −α⊥f (seen in Fig. 2). The parameter Ω3b alsochanges its sign in comparison with Ω3f , but for an-other reason: For a backward wave, the angle αb‖ be-tween the direction of propagation and the static mag-netic field is shifted by π from αf‖(αb‖ = π − αf‖), so that

cos αb‖ = − cos αf‖ and Ω3b = −Ω3f . It agrees with thefact from the electrodynamics of magnetic media [12, 14]that parameters, linear in magnetic field, change theirsigns when the wave propagates in the opposite direc-tion.As a result, the solution of Eq. (13) presented by superpo-sition of normal modes acquires a form similar to Eq. (16):
Γ1b = A1b exp [iNb (σb − σ0b)] ,Γ2b = A2b exp [iNb (σb − σ0b)] , (29)

with “backward” propagation constants identical to “for-ward” ones:
Nb± = −Ω0 + 12

(Ω⊥ ±√Ω2
⊥ + Ω23f

)
= −Ω0 + 12 (Ω⊥ ±Ω) = Nf±. (30)

The “backward” amplitude ratio ζb± = A2b/A1b has theopposite sign:
ζb± = Ω1 ∓ΩΩ2f + iΩ3f = −Ω2f + iΩ3fΩ1 ±Ω = −ζb±. (31)

Involving normalized complex eigenvectors
eb± = (e1 + ζb±e2)√1 + |ζb±|2 ≡ pb± (e1 + ζb±e2) ,
pb± = 1/√1 + |ζb±|2, |eb±| = 1, (32)

one can represent the backward wave field Eb in the formof a normal modes composition similar to Eq. (25):
Eb = ab+eb+ exp [iNb+(σb − σ0b)]+ ab−eb− exp [iNb−(σb − σ0b)] . (33)

4. Forward and backward normal
waves in weakly inhomogeneous
plasma
Inhomogeneous plasma polarization changes, describedby Eqs. (13), are usually studied numerically. An ana-lytic solution can only be found for a limited number ofpartial cases, such as circular-mode conversion near the
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orthogonality point [2] between the ray and magnetic field,or in a uniformly sheared plasma [11]. Here we explorea representation of the wave field in the inhomogeneousplasma in the form of independent (non-interacting) nor-mal waves. This representation is of practical interestfor many applications in plasma diagnostics. It can bereadily obtained by generalization of Eqs. (25) and (33)for a weakly inhomogeneous plasma. As is known, in-teractions between normal modes will be negligibly weakif the characteristic scale LP ∼ P/|∇‖P| = P/|∂P/∂σ|of the plasma parameter P, essential for electromagneticwave propagation, significantly exceeds the spatial “beat-ing” length lb ∼ 2π/(N+ − N−) = 2π/Ω between normalmodes [4, 5]:
LP � lb or |∇‖P| = |∂P/∂σ| � PΩ/2π. (34)

Assuming inequality (34) to be fulfilled and neglectingnormal waves’ interaction, we may substitute the phasefactors exp (iNf±σf ) and exp [iNb±(σ − σ0b)] with the fac-
tors exp [i σf∫0 Nf±dσf

] and exp [i σb∫
σ0b Nb±dσb

], containing
the integrals of varying wave numbers Nf± and Nb± alongthe ray. The amplitude ratios ζf and ζb, given for homo-geneous plasma by Equations (20) and (31), also preservetheir values for weakly inhomogeneous media, so that thepolarization of non-interacting normal waves in the weaklyinhomogeneous plasma will be given by the same formu-lae (20) and (31) as for the homogeneous plasma. As aresult, the wave, propagating in the weakly inhomoge-neous plasma in a forward direction, takes the followingform:

Ef = af+ef+ expi σf∫
0
Nf+dσf


+ af−ef− expi σf∫

0
Nf−dσf

 . (35)
Analogously, the backward wave can be given by

Eb = ab+eb+ expi σb∫
σ0b

Nb+dσb


+ ab−eb− expi σb∫
σ0b

Nb−dσb

 . (36)

5. “Velocity-preserving” reflection
from a metallic plane
Let us consider a reflection of a forward wave (26) fromthree kinds of reflectors: a metallic plane, a 2D-cornerretro-reflector (2D-CR), and a cubic corner retro-reflector(CCR). All three reflectors are placed at distance σf = Lfrom the starting point σ0f = 0.Requiring the tangent component of the total wave field
Etot = Einc + Erefl to be zero at the metallic surface,which we suppose to be a conductor with high electricconductivity, we have

E(tan)
tot = E(tan)

inc + E(tan)
refl = 0. (37)

Then the reflected wave can presented as
Erefl = 2E(n)

inc − Einc. (38)
At normal incidence of the transverse wave on a metallicplane, the normal component of the electromagnetic fieldhappens to be zero, E(n)

inc = 0. Therefore the incident planewave (26) produces the reflected wave (33) in such a waythat the summary wave field Etot = Einc +Erefl = Ef +Ebwould be zero at the reflecting plane σf = L:
(Ef + Eb)σf=L = 0. (39)

Assume that σ0b = 0 and that const in Eq. (28) equals L.Then the σb = L − σf boundary condition (39) takes thefollowing form:
af+ef+ exp(iNf+L) + af−ef− exp(iNf−L)+ ab+eb+ + ab−eb− = 0. (40)

Since
eb+ = ef+, eb− = ef−, (41)

Eq. (40) gives
ab+ = −af+ exp(iNf+L),
ab− = −af− exp(iNf−L). (42)

Taking into account that propagation constants Nf±(Eq. (17)) and Nb± (Eq. (30)) are equal to each other,and considering the backward wave at the starting point
σf = 0, we obtain the basic relation for the electromag-netic wave, double-passed through magnetized plasma:
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Eb|σf=0 = − [af+eb+ exp(2iNf+L)+af−eb− exp(2iNf−L)] . (43)
For weakly inhomogeneous plasma, satisfying condi-tion (34), Eq. (43) becomes

Eb|σf=0 = −af+eb+ exp2i L∫
0
Nf+dσf


+af−eb− exp(2i L∫

0
Nf−dσf )

 . (44)
According to Eqs. (43) and (44), the phases of reflectednormal waves are twice as big as those in the single-passage regime. The same is true for the phase difference:

∆Sdouble passage = 2 L∫
0

(Nf+ −Nf−)dσf
= 2 L∫

0
Ωdσf =2∆Ssingle passage. (45)

This fact was known earlier for pure Faraday and pureCotton-Mouton phenomena at a qualitative rather than atan analytical level. Eqs. (43) and (44) generalize thesepartial results for the general case of joint action of Fara-day and Cotton-Mouton phenomena, when normal modesare of arbitrary elliptical polarization.Dependence of the total phases
Stotb± = Ntot

b± (L − σf ) +Ntot
f± L (46)

of the backward wave on “forward” distance σf is pre-sented in Fig. 3 by solid lines.The total backward phase Stotb± has an initial value Stotb± =
Ntot
b±L at distance σf = L and achieves doubled value

Stotb± = 2Ntot
b±L near the origin σf = 0. Fig. 3 shows that aslow incident wave ef− gives rise to a slow reflected wave

eb−, and that the fast incident wave ef+ generates a fastreflected wave eb+. It is these channels of reflection thatwe identify with the “velocity-preserving” ones.It is important that “velocity-preserving” channels of re-flection demonstrate the opposite direction of electric vec-tor rotation on the polarization ellipse along the ray as

compared with the forward wave. In other words, the right-hand rotation of the forward wave produces the left-handrotation of the backward wave, following directly fromboundary condition (39). Therefore “velocity-preserving”reflection can be also treated as a “rotation-converting”one. Thus, both for forward and backward waves, the elec-trical vector of the fast wave rotates in the same directionas electrons, performing Larmour rotation. At the sametime the electric vector of the slow wave in both casesrotates in the opposite direction to electrons.
6. “Velocity-preserving” and
“velocity-converting” channels under
reflection from a 2D corner retro-
reflector
An analysis of electromagnetic wave reflection from a 2Dcorner retro-reflector can be performed on the basis ofboundary condition (38). Let us suppose that the edge ofa 2D corner retro-reflector is oriented along basis vec-tor e2f and perpendicular to unit vector e1f . Two planes,forming 2D-CR, are characterized by the unit vectors n1and n2, which are mutually orthogonal ((n1 · n2) = 0). Byapplying Eq. (38) to both planes of 2D-CR, we concludethat the vertical component e1f of the “forward” eigenvec-tor ef± = pf± (e1f + ζf±e2f ) changes its orientation afterreflection from a 2D–CR (e1f |refl = −e1f ). At the sametime the horizontal component e2f becomes unchanged(e2f |refl = −e2f ). As a result, being reflected from 2D–CR, the eigenvector ef± = pf± (e1f + ζf±e2f ) becomes

ef±|refl = −pf±e1f + pf±ζf±e2f . (47)
Writing down Eq. (47) in the “backward” basis [(e1b, e2b) =(e1f , −e2f )], and taking into account that ζf±e2f = ζb±e2b,we have

ef±|refl = −pb±e1b + pb±ζb±e2b. (48)
The reflected eigenvector (48) does not coincide with any“backward” eigenvectors eb±. Polarization state ef± af-ter reflection from a 2D-CR becomes transformed into asuperposition of polarization states eb+ and eb−,

ef±|refl = 〈f± | b+〉 eb+ + 〈f± | b−〉 eb−, (49)
where the matrix element coefficients 〈f± | b±〉 are givenby formulae
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〈f± | b+〉 = ef±|refl e∗b+ = −pb± (e1b − ζb±e2b) e∗b+= −pb±pb+ (e1b − ζb±e2b) (e1b + ζ∗b+e2b
) = −pb±pb+ (1− ζb±ζ∗b+) , (50)

〈f± | b−〉 = ef±|refl e∗b− = −pb± (e1b − ζb±e2b) e∗b− = −pb±pb− (1− ζb±ζ∗b−) . (51)
By virtue of Eq. (49) the backward wave becomes

Eb = a+ 〈f+ | b+〉 eb+ exp[iNb+(L − σf ) + iNb+L] + a+ 〈f+ | b−〉 eb− exp[iNb−(L − σf ) + iNb+L]+ a− 〈f+ | b−〉 eb+ exp[iNb+(L − σf ) + iNb−L] + a− 〈f− | b−〉 eb− exp[iNb−(L − σf ) + iNb−L]. (52)
At the initial point σf = 0, the reflected wave field Eb takes the form

Eb = a+ 〈f+ | b+〉 eb+ exp[i2Nb+L] + a+ 〈f+ | b−〉 eb− exp[i(Nb− +Nb+)L]+ a− 〈f− | b+〉 eb+ exp[i(Nb+ +Nb−)L] + a− 〈f− | b−〉 eb− exp[i2Nb−L]. (53)
The first and fourth terms in Eq. (53) describe “velocity-preserving” channels of reflection, which are accompanied bydoubled phase shifts, such as Eq. (43):

Eb|doubled phase = a+ 〈f+ | b+〉 eb+ exp[i2Nb+L] + a− 〈f− | b−〉 eb− exp[i2Nb−L]. (54)
In turn, the second and third terms relate to the “velocity-converting” regime, which transforms the slow wave into thefast one and vice versa. As a result both the fast and slow converted modes arrive at the origin σf = 0 with equal phasechanges [(Nb− +Nb+)L]:

Eb|converted = [a+ 〈f+ | b−〉 eb− + a− 〈f− | b+〉 eb+] exp[i(Nb− +Nb+)L]. (55)
Matrix elements 〈f± | b±〉 generally differ from zero andunity, except for cases when |Ω1| � |Ω2|, |Ω3| − for ex-ample, when the Faraday effect prevails, that is, when
|Ω3| � |Ω1|, |Ω2| ≈ 0. Then ζb±ζ∗b± = 1 and “velocity-preserving” channels completely disappear,

〈f+ | b+〉 = 〈f− | b−〉 = 0, (56)
whereas ζb±ζ∗b∓ = −1 and the ”velocity-converting” chan-nels acquire maximum (in module) values

〈f+ | b−〉 = 〈f− | b+〉 = −1. (57)
As a result the converted component of the reflected waveat the origin σf = 0 will be as follows:
Eb|converted = −[a+eb−+a−eb+] exp[i(Nb−+Nb+)L]. (58)

Remarkably, polarization of the converted wave (58) at
σf = 0 completely coincides with polarization of the initialwave (25), which is a kind of phase-conjugation phenom-ena in magnetoactive plasma. This property might be ofpractical interest for plasma interferometry.Summing the phase shift (Nb− +Nb+) L with the“isotropic” phase shift 2N0L, we obtain the total phaseof the converted component:
Stotconv (σf ) = 2N0L+ (Nb+ +Nb−)L = (2N0 + Ω⊥)L. (59)

The dependence of the total phases Stotb± |convert(σf ) of theconverted modes on “forward” distance σf is shown inFig. 3 by dashed lines.The phase (59) contains the term Ω⊥, which is quadraticin a magnetic field and is not sensitive to the Fara-day effect, so that the phase (59) can be treated as
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“Faraday-independent” one. Therefore, the “velocity-converted” components can be helpful for reducing theinfluence of the magnetic field on the wave’s phase andcan be recommended for interferometers in microwave andFIR bands. These components can be separated from“velocity-preserving” ones by means of a polarization filterhaving the same polarization as the primary wave.
7. Reflection from a cubic corner
retro-reflector
Let n1, n2, and n3 be the unit vectors perpendicular tothe facets of a CCR. In the orthogonal coordinate system,formed by mutually orthogonal vectors n1, n2, and n3, theincident wave Einc can be represented by the expansion

Einc = n1(n1Einc) + n2(n2Einc) + n3(n3Einc). (60)
Applying Eq. (38) sequentially to every facet of a CCR, forthe reflected wave field one has

Erefl = n1(n1Einc) + n2(n2Einc) + n3(n3Einc). (61)
According to Eq. (61), the electric vector of the re-flected wave coincides with that of the incident field,though both waves propagate in opposite directions. Itmeans that the forward wave Einc = af+ef+ exp(iNf+L) +
af−ef− exp(iNf−L) produces the backward wave

Eb = af+eb+ exp[iNf+(L − σf )] exp(iNf+L)+ af−eb− exp[iNf−(L − σf )] exp(iNf−L). (62)
This differs from the wave field (43), reflected from themetallic plane, only by sign. Thus, a CCR meets the “ve-locity preserving” regime, such as the metallic plane.
8. Conclusions
The properties of electromagnetic waves, reflected fromthe target of a magnetized plasma, are studied with aspecial emphasis on plasma polarimetry in thermonuclearreactors ITER and W-7X. An analysis is carried out forindependent normal modes, propagating both in homoge-neous and weakly inhomogeneous plasmas. Three kindsof reflectors are considered: metallic plane, 2D-cornerretro-reflector (2D-CR) and cubic corner retro-reflector(CCR). An electromagnetic wave, reflected from a metallicplane and from a CCR is shown to contain only “velocity-preserving” channels of scattering, when the fast (slow)

normal wave also reproduces, after reflection, the fast(slow) normal wave. As a result, the phases of the re-flected waves become doubled in comparison with thesingle-passage propagation. This fact, known earlier forthe pure Faraday effect (circularly polarized waves) andfor the pure Cotton-Mouton effect (linearly polarized nor-mal waves) is generalized now for elliptically polarized,non-interacting, normal waves of the general type.At the same time, the wave reflection from a 2D-corner retro-reflector (2D-CR) is characterized by theappearance of both “velocity-preserving” and “velocity-converting” channels, the latter transforming the fast waveinto the slow one and vice-versa. It is shown that inthe case of circularly polarized modes, the “velocity-preserving” channels completely disappear, and only“velocity-converting” channels exist. As shown above, forthese channels, the initial polarization state of the elec-tromagnetic wave is reconstructed after double passagethrough magnetized plasma.
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