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Abstract: Polarization properties of electromagnetic waves, double-passed through magnetized plasma, are studied.
Analyses are performed in the case of non-interacting normal modes, propagating in homogeneous and
weakly inhomogeneous plasmas, and for three kinds of reflectors: metallic plane, 2D corner retro-reflector
(2D-CR), and cubic corner retro-reflector (CCR). It is shown that an electromagnetic wave, reflected from
a metallic plane and from a CCR, contains only “velocity-preserving” channels, whose phases are doubled
in comparison with those of a single-passage propagation. At the same time, an electromagnetic wave
reflected from a 2D-CR is shown to contain both “velocity-preserving” and “velocity-converting” channels,
the latter converting the fast wave into the slow one and vice-versa. One characteristic feature of “velocity-
converting” channels is that they reproduce the initial polarization state near the source, which might be of
practical interest for plasma interferometry. In the case of circularly polarized modes, “velocity-preserving”
channels completely disappear, and only “velocity-converting” channels are to be found.
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1. IntrOductlon elements: the source of electromagnetic waves in the far
infrared (FIR) or microwave band, a retro-reflector, which
returns electromagnetic waves back to the source, and an

. analyzer.
The issue of a double-passage scheme of measurements

in plasma polarimetry arises from reducing the number of Magnetized plasma 4

Sourc f Refl r
windows in the walls of large thermonuclear reactors, such [ ] g
as ITER and W-7X. A two-passage scheme of polarimet-

ric measurements, shown in Fig. 1, contains three basic

Figure 1. Scheme for double-passage measurements.
*E-mail: bobi@am.szczecin.pl

[=4C]




Double passage of electromagnetic waves through magnetized plasma: approximation of independent normal waves

274

It is intuitively evident that in the case of non-interacting
normal modes, the double-passage regime should pro-
vide twice as large phase shifts between normal modes in
plasma, compared with the single-passage scheme. This
fact can be readily proved for a pure Faraday effect, which
deals with circularly polarized waves, and for pure a
Cotton-Mouton phenomenon, observed for linearly polar-
ized waves. However, it is not an easy matter to derive the
phase-doubling phenomenon for electromagnetic waves of
arbitrary polarization. To the best of the authors’ knowl-
edge, a general analysis has not, so far, been published
in the literature.

This paper studies polarization of the electromagnetic
beam after double-passage through magnetized plasma.
Our analysis is based on the quasi-isotropic approxima-
tion (QIA) of the geometric optics method [1-5], which ad-
equately describes electromagnetic waves’ propagation in
weakly anisotropic media, primarily in plasma, which man-
ifests properties of weakly anisotropic media in millimeter,
submillimeter, and FIR ranges, which are used for plasma
diagnostics in modern thermonuclear reactors.

The materials of this paper are presented in the follow-
ing order: Basic equations of quasi-isotropic approach
are presented in Sec. 2. QIA equations are applied to
analyze forward and backward normal waves both in ho-
mogeneous (Sec. 3) and in weakly inhomogeneous plasma
(Sec. 4). Secs. 5-7 study polarization of waves, reflected
from three kinds of reflectors: a metallic plane, a 2D corner
retro-reflector (2D-CR), and a cubic corner retro-reflector
(CCR). As will be shown, the slow (fast) incident elec-
tromagnetic wave, being reflected from a metallic plane
or a CCR, is transformed into a slow (fast) wave, forming
“velocity-preserving” channels of reflection. These chan-
nels are characterized by phase doubling for every normal
mode, compared with the single-passage regime.

At the same time the wave reflected from a 2D cor-
ner retro-reflector is shown to contain both “velocity-
preserving” and “velocity-converting” channels. The lat-
ter convert the slow wave into the fast one and vice-versa.
These “velocity-converting” channels, which have not been
described so far, might be of practical interest for far in-
frared (FIR) and microwave interferometers, because these
channels reproduce the original polarization state when
the wave returns back to the primary source.

2. Waves in weakly anisotropic
media: Quasi-isotropic approxima-
tion (QIA) of the geometrical optics
method

The dielectric permittivity tensor £,4 of weakly anisotropic
media consists of two parts: a large isotropic component,
where 04z is a unit tensor, and a small anisotropic com-
ponent vg:

Eqp = 6050(3 + Veg- (M

Intending to emphasize weakness of the anisotropy tensor
veg compared with the isotropic part g, we involve an
“anisotropic” small parameter p4 as follows:

max |V,
| aB| «

. 1. 2)

Ha =
The theory of electromagnetic wave propagation in weakly
anisotropic media is based on a quasi-isotropic approxi-
mation (QIA) of the geometrical optics method [1-3]. A
short outline of the QIA is presented in books [4, 5] and
recent papers [6, 7]. Along with the “anisotropic” small pa-
rameter s (Eq. (3)), QIA also uses a “geometrical” small
parameter

1 Ao
HGco = 7 >

kol — 27L’ (3)

where ko and Ay = 2m/ky are, respectively, wave number
and wavelength in free space, and L is a characteristic
scale of the medium'’s inhomogeneity.

In the lowest (zero) order in a combined small parameter

¢ = max (Ua, tico) (4)

QIA provides an asymptotic solution to Maxwell's equa-
tions in the “quasi-isotropic” form:

E=TA(r)explikoV¥ (r)], (5)

where W (r) and A(r) are the eikonal and amplitude of
the geometrical optics (GO) wave field in the isotropic,
inhomogeneous medium, with permittivity & (r) (time de-
pendence exp(—iwt) is omitted for brevity). Vector I" (po-
larization vector) describes the evolution of polarization
in a weakly anisotropic medium.

The values W (r) and A(r) obey the eikonal and transport
equations, respectively [4, 5] and [8]:

(VW) =g, div(AVY)=0. (6)
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According to the eikonal equation, W (r) can be found by
the integration of the refractive index ng = /&g along the
ray:

Y= /\/Zoda: /nodo, (7)

where do is an elementary arc length along the ray. The
phase factor exp[ikoW (r)] can be represented as

exp[ikoW (r)] = exp i/No(r) do|, (8)
0

where Ny = kgng is a local wave number. In turn the
amplitude A obeys the energy conservation law in a ray
tube [4, 5, 8].

In the lowest order in small parameter p, the polarization
vector [ is orthogonal to the ray and can be represented
as

F=Tre+ e, ejleyll (9)

where | = dr/do is a unit vector, tangent to the ray trajec-
tory r (o), and eq and e, are the unit vectors, orthogonal
to the ray trajectory.

M. Popov has introduced an orthogonal, curvilinear coor-
dinate system [9], which performs parallel transport of the
vector wave field E along the ray. The parallel-transport
coordinate frame has been widely used in the theory of
open resonators [10] and in applications. From previous
studies [9, 10], the unit vectors eq, satisfy the equations

é1=1L(es-Vin(n), é =Ll(ez-Vin(n)), (10)

where the dot over the vector means a derivative in the
arc length o: &1, = deq,/do.
In this coordinate system, QIA equations for the polariza-
tion vector a take the form [1-5]
:r1 = {T‘Q—O[Vnﬂ + vial 2], ()
= 575 valy + vala],

where vqg are the components of the anisotropy tensor.
By choosing the isotropic permittivity of the collisionless
magnetized plasma as

47e?N,
mw?

Sm ‘ 'QEN

g=1—v,v=

: (12)

one can rewrite Eq. (11) as
M= —(i/2)20 — Q1 — Q)7 + (1/2)(iQ, — Q3)[ >,

[ = (1/2)(iQ2 + Q3)1 — (i/2)(2Q0 — Q1 + Q).
(13)

Here (1,3 are the components of vector Q

O, usin? Q| cos 2a;.
Q= Q | = L v u sin? Q) sin2a;
V1—yv1— !
Q3 V1=V “ 2\/u cos q

(14)
used by Segre to describe the Stokes vector evolution in
plasma [11]. In the frame of Stokes vector formalism, Q
and Qp = Q, (o) = 7/2) are auxiliary parameters

Q=1 +0Q%= N%%sinza” = Qg sin’qj.

(15)
Besides, u = (eBy/mcw)?® is the “magnetic” plasma pa-
rameter [12, 13]. QIA Egs. (13) slightly differ from QIA
equations, derived in [7], because the isotropic part of the
permittivity tensor was chosen in Czyz et al. [7] to be
g=1—v/(l—u)x1—v—vu, instead of & =1 —v
here.

3. Forward and backward normal
waves in homogeneous plasma

Let us apply QIA Egs. (13) for the analysis of polarization
evolution along the ray in the homogeneous plasma. In or-
der to discern parameters related to forward and backward
waves, we supply them with subscripts f and b, respec-
tively. Let us study first the forward normal waves, using
an orthogonal basis ey, ey, lf and longitudinal variable
o7, shown in Fig. 2.

The solution of Eq. (13) for the components 'y and [y
of the polarization vector 'y = "yreqs + [yrey in the ho-
mogeneous plasma can be represented in the form of a
harmonic wave

Myr = A exp[iNg (07 — 0of)], Tor = Agr exp[iNg (07 — 0or)],

(16)
where oy is a starting point, and Ny is a propagation
constant, answering to one of the normal modes in plasma:

1
Nre = —Qqo + 5 (Qii \/QZL+Q§/)

:—Qo+1§(0li()), (17)

Q=10]=/Q2 + Q2.

The values Q,r and Q3; have subscript f in order to discern
them from analogous values for backward waves, which
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Figure 2. Orientation of the static magnetic field By in the parallel
transport coordinate frame (en ,er, l,), in the case of a for-
ward wave. Coordinate systems (em,ebz,lb), connected
with a backward wave is shown in the right part of this fig-
ure.

differ from Q¢ and Qs by opposite sign. At the same time
the signs of parameters O, and Q) are the same both for
forward and backward waves. Therefore these parameters
do not need any special subscripts.

Total propagation constants N9, uniting QIA con-
stants (17) with the common geometrical optics propaga-

tion constant Ny = kgng, will be

NI = Ny + Nps = No— Qo + (1/2)(QL £ Q). (18)

The subscripts + in this and the subsequent equations
correspond simply to signs of the square root in Eq. (17).
The minus sign in Eq. (17) corresponds to the “fast” wave,
whose phase velocity v,,- = w/N/°" exceeds the phase
velocity of the slow wave v, = w/N/3":

Vo = w/[No — Qo + (1/2)(QL — Q] > vpps
= w/[No— Qo + (1/2)(Q + Q)].  (19)

In plasma, the electrical vector of the fast wave rotates in
the direction of the Larmour rotation of electrons, whereas
the slow wave’s electrical vector rotates in the opposite
direction.

It follows from Eq. (13) that the complex amplitude ra-
tio {ro = (Azr/Aqr). of the electromagnetic wave can be
represented by two equivalent expressions:

_ -0 +£0 _ —Qyr + Q3¢ (20)
fi_QZf'f‘l'Q}f T FQ
It can be readily shown that the sign “-* in Eq. (17) cor-

responds to clockwise rotation of the electric vector Iy _

4

about the ray (right-hand polarization in optical defini-
tion [8]), and sign “+" corresponds to counterclockwise
rotation (left-hand rotation). The general criterion that
differentiates the right- from the left-hand rotation uses
the sign of the imaginary part of the complex amplitude
ratio (;:

Im (¢f) > 0 < right hand rotation, (21a)
Im ({) < 0 < left hand rotation. (21b)

As a simple example of these criteria, take circularly po-
larized waves, corresponding to the pure Faraday effect,
which takes place at Q3] > ||, |Qy], |Q1|. Assuming
that Q3 > 0 (corresponding to an acute angle o) < 71/2)
we have

(s— = isgn (Q3) = i & fast wave,
right - hand polarization, (22a)
(s = —isgn (Q3) = —i & slow wave,

left - hand polarization.  (22b)

For an opposite sign of Q3, the relation between fast/slow
and right/left polarization will be opposite, too.

In the case of a real-valued amplitude ratio, we deal with
the linear polarization of normal waves, characteristic for
the pure Cotton-Mouton effect, when Q3 = 0:

(s~ = —ctg(ayL) © fast wave, (23a)
Cr+ = tg(ay) © slow wave. (23b)

Involving complex eigenvectors of unit length

e+ e
e = fe1 + Gruea) = prs (@1 + (raer),

14l
Py = 1/\/'I + |cfi|2r les] =1

we may represent the wave field E; as a superposition of

(24)

independent (non-interacting) normal modes:

Er = arrery exp(iNor) + ar_er_exp(iNi—oy).  (25)

The starting point gps in Eq. (25) is assumed to be zero:
oor = 0. Total phases Sl = N!xo; for slow and fast
waves are depicted in Fig. 3 by continuous lines.
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Figure 3. Total phases (continuous lines) for forward (59" and
backward (S}%) waves, forming “velocity-preserving”
channels of reflection from the metallic plane. Total

tot tot 5 B : »
phases S5, and S;°L, . for “velocity-converting” chan-

nels f+ = b—and f— = b+, arising under wave reflection
from a 2D-CR, are shown by dashed lines.

According to Eq. (20), {ry = —1/{;_ is equivalent to the
relation

GG =—1, (26)

worked out by Huard [14]. Normal waves in Eq. (25) are
orthogonal, because e;yef_ =14+ (G =1—-1=0.
Therefore we may treat Eq. (26) as the criterion of normal
modes’ orthogonality.

Considering backward waves, it is convenient to use a
"backward” right-handed coordinate system (e15, €2, lp),
shown in Fig. 2:

ey = ey, ey = —ey, L, = =1y, (27)

The relationship between the arc length o, along the
backward ray and the arc length oy along the forward
ray is:

0, = const. — oy. (28)

As said earlier, in the backward coordinate system the
parameter Q,, changes its sign compared with the “for-
ward” value Qy(Qz = —Qy), because ez = —ey and
a1, = —ayr (seen in Fig. 2). The parameter Q3, also
changes its sign in comparison with Qs;, but for an-
other reason: For a backward wave, the angle ap| be-
tween the direction of propagation and the static mag-
netic field is shifted by s from ay(ay) = 7 — ay)), so that

cosap) = —cosay and Qz, = —Qs;. It agrees with the
fact from the electrodynamics of magnetic media [12, 14]
that parameters, linear in magnetic field, change their
signs when the wave propagates in the opposite direc-
tion.

As a result, the solution of Eq. (13) presented by superpo-
sition of normal modes acquires a form similar to Eq. (16):

r1b = A1b exp [[Nb (Ub - gOb)] ’ (29)
b = Azp exp [N (05 — 00)],

with “backward” propagation constants identical to “for-
ward” ones:

1
Nos =~ + 3 (Oli Qi—i-()%,)
1
=00+ 5 (0L +0) = Ne. (30)

The “backward” amplitude ratio (,. = Aj,/A1p has the
opposite sign:
0, F0Q —Qyr + iQ3f

Cos = O +iQy O +0

=G (31)

Involving normalized complex eigenvectors

(e1 + Gprer)
|z

€pr = Pos (€1 + (peer),

1T+ (e
pos =111 +18 ],

one can represent the backward wave field E;, in the form
of a normal modes composition similar to Eq. (25):

(32)

leps| =1,

Ey, = apiepr exp[iNy(0p — 0op)]

+ ap_ep_ exp [[Nb,(ob — O'()b)] . (33)

4. Forward and backward normal
waves in weakly inhomogeneous
plasma

Inhomogeneous plasma polarization changes, described
by Egs. (13), are usually studied numerically. An ana-
lytic solution can only be found for a limited number of
partial cases, such as circular-mode conversion near the
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orthogonality point [2] between the ray and magnetic field,
or in a uniformly sheared plasma [11]. Here we explore
a representation of the wave field in the inhomogeneous
plasma in the form of independent (non-interacting) nor-
mal waves. This representation is of practical interest
for many applications in plasma diagnostics. It can be
readily obtained by generalization of Egs. (25) and (33)
for a weakly inhomogeneous plasma. As is known, in-
teractions between normal modes will be negligibly weak
if the characteristic scale Lp ~ P/|V|P| = P/|0P/dg|
of the plasma parameter P, essential for electromagnetic
wave propagation, significantly exceeds the spatial “beat-
ing” length [, ~ 27/(Ny — N_) = 2/Q) between normal
modes [4, 5]:

Lp > [, or |V||P| = |aP/aU| <« PQ[2m. (34)

Assuming inequality (34) to be fulfilled and neglecting
normal waves’ interaction, we may substitute the phase
factors exp (iNr.07) and exp[iNps (0 — ggp)] with the fac-

of ap

tors exp [ifoide] and exp |i [ Npwdoj |, containing
0 aop

the integrals of varying wave numbers N;. and N, along

the ray. The amplitude ratios {; and {,, given for homo-
geneous plasma by Equations (20) and (31), also preserve
their values for weakly inhomogeneous media, so that the
polarization of non-interacting normal waves in the weakly
inhomogeneous plasma will be given by the same formu-
lae (20) and (31) as for the homogeneous plasma. As a
result, the wave, propagating in the weakly inhomoge-
neous plasma in a forward direction, takes the following
form:

of
Ef = arierpexp [/Nf+d0f
0

of
+ as_es_exp i/Nf,dU, . (3H)
0
Analogously, the backward wave can be given by

Op

Ey, = aprepy exp i/Nb+dUb

90b

Op
+ ap_e,_exp iINb—dUb . (36)

%op

5. “Velocity-preserving” reflection
from a metallic plane

Let us consider a reflection of a forward wave (26) from
three kinds of reflectors: a metallic plane, a 2D-corner
retro-reflector (2D-CR), and a cubic corner retro-reflector
(CCR). All three reflectors are placed at distance gy = L
from the starting point gp; = 0.
Requiring the tangent component of the total wave field
E;: = Einc + E;ery to be zero at the metallic surface,
which we suppose to be a conductor with high electric
conductivity, we have

El = ER +E'S) = 0. (37)

mnc r

Then the reflected wave can presented as

Erefl = ZEEZ)C - Einc- (38)

At normal incidence of the transverse wave on a metallic
plane, the normal component of the electromagnetic field
(n)

mnc

happens to be zero, E; . = 0. Therefore the incident plane

wave (26) produces the reflected wave (33) in such a way
that the summary wave field E4; = E;c +Eert = Ef +Ep
would be zero at the reflecting plane gy = L:

(Ef + Ep)g=1 = 0. (39)

Assume that gy, = 0 and that const in Eq. (28) equals L.
Then the g, = L — oy boundary condition (39) takes the
following form:

arrerr exp(iN L) + ar_es_ exp(iN_L)
+ api€py + aAp_€ph_ = 0. (40)

Since

€y = €ry, e, = ef_, (41)
Eq. (40) gives
dpy = —apy exp(iNs L),
b+ r+ exp(iN L) (42)
ap— = —as_ exp(iN;_L).

Taking into account that propagation constants Ny.
(Eq. (17)) and Nps (Eq. (30)) are equal to each other,
and considering the backward wave at the starting point
or = 0, we obtain the basic relation for the electromag-
netic wave, double-passed through magnetized plasma:
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Ebly—0 = —[ar+enr exp(2iNp. L)

+ar_e,_exp(2iNi_L)].  (43)

For weakly inhomogeneous plasma, satisfying condi-
tion (34), Eq. (43) becomes

L
Eb|0f=0 = — | drr€p exp Zi/Nerde
0

L
+ar_ep_ exp(Zi/N,,daf) . (44)
0

According to Egs. (43) and (44), the phases of reflected
normal waves are twice as big as those in the single-
passage regime. The same is true for the phase difference:

Asdouble passage — 2 (N/+ - /\/,,)de

o\”\

L
= 2/Qde ZZASs'mgle passage (45)
0

This fact was known earlier for pure Faraday and pure
Cotton-Mouton phenomena at a qualitative rather than at
an analytical level. Egs. (43) and (44) generalize these
partial results for the general case of joint action of Fara-
day and Cotton-Mouton phenomena, when normal modes
are of arbitrary elliptical polarization.

Dependence of the total phases

Siet = Ni(L— o) + NiZ'L (46)

of the backward wave on “forward” distance oy is pre-
sented in Fig. 3 by solid lines.

The total backward phase S} has an initial value S}% =
N[IL at distance o = L and achieves doubled value
Siet = 2NJ°IL near the origin gy = 0. Fig. 3 shows that a
slow incident wave e;_ gives rise to a slow reflected wave
ey, and that the fast incident wave e;; generates a fast
reflected wave ey,,. It is these channels of reflection that
we identify with the “velocity-preserving” ones.

It is important that “velocity-preserving” channels of re-
flection demonstrate the opposite direction of electric vec-
tor rotation on the polarization ellipse along the ray as

compared with the forward wave. In other words, the right-
hand rotation of the forward wave produces the left-hand
rotation of the backward wave, following directly from
boundary condition (39). Therefore “velocity-preserving”
reflection can be also treated as a “rotation-converting”
one. Thus, both for forward and backward waves, the elec-
trical vector of the fast wave rotates in the same direction
as electrons, performing Larmour rotation. At the same
time the electric vector of the slow wave in both cases
rotates in the opposite direction to electrons.

6. “Velocity-preserving” and
“velocity-converting” channels under
reflection from a 2D corner retro-
reflector

An analysis of electromagnetic wave reflection from a 2D
corner retro-reflector can be performed on the basis of
boundary condition (38). Let us suppose that the edge of
a 2D corner retro-reflector is oriented along basis vec-
tor eyr and perpendicular to unit vector ey;. Two planes,
forming 2D-CR, are characterized by the unit vectors ny
and ny, which are mutually orthogonal ((ny - ny) = 0). By
applying Eq. (38) to both planes of 2D-CR, we conclude
that the vertical component eq; of the “forward” eigenvec-
tor erx = prs (€17 + {r€2f) changes its orientation after
reflection from a 2D-CR (e1f |,ert = —e1r). At the same
time the horizontal component ey becomes unchanged
(€2f |rert = —e2¢). As a result, being reflected from 2D-
CR, the eigenvector e;x = pr. (e1r + {ro€2) becomes

erxl,o = —Preeir + prerieny. (47)

Writing down Eq. (47) in the “backward” basis [(e1,, €2,) =
(e1r, —eyr)], and taking into account that (r.ezr = {pie€2p,
we have

erilrep = —Poriy + porlpresy. (48)

The reflected eigenvector (48) does not coincide with any
“backward” eigenvectors e,.. Polarization state e;. af-
ter reflection from a 2D-CR becomes transformed into a
superposition of polarization states e,, and e;_,

€rslion = (fo [ bi)eps +(fu | b_)ep, (49)

where the matrix element coefficients (f. | b.) are given
by formulae
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(fx | by) = eril,or €hr = —Pox (€15 — (preap) €),

= —popo+ (15 — (o) (€1 + (hye) = —poapss (1— G5y ) (50)

<fi | b—> = efi|,ef[ ez, = —Pbx (9117 - Cbire2b) EZ, = —Pb+Pb- (1 - CbiCZ,) . (51)

By virtue of Eq. (49) the backward wave becomes

Ep, =a. (fy | by)epy expliNp (L — 07) + iNp L]+ a4 (fy | b-) ep— exp[iNy— (L — 07) + iNp L]
+a_(fy | b_)ep exp[iNp (L — 07) + iNp_ L]+ a_{f_ | b_) e, exp[iNy_(L — 07) + iNp_L]. (52)

At the initial point g; = 0, the reflected wave field E, takes the form

Ep, =a; (fy | bi)eps expli2Np L]+ ay (fy | b_) ep_ exp[i(Np— + Npi)L]
+a_{f_| by)eps expli(Nos + Np—)L]+ a_(f— | b_)ey,_exp[i2N,_L]. (53)

The first and fourth terms in Eq. (53) describe “velocity-preserving” channels of reflection, which are accompanied by
doubled phase shifts, such as Eq. (43):

Eb|daub[ed phase = a <f+ | b+> €py exp[[2Nb+L] +a_ <f, | b,) ep_ exp[iZNb,L]. (54)

In turn, the second and third terms relate to the “velocity-converting” regime, which transforms the slow wave into the
fast one and vice versa. As a result both the fast and slow converted modes arrive at the origin gy = 0 with equal phase

changes [(Np— + Ny )L]:

Eb|canverted = [a+ <f+ | b*) e, +a_ (f7 | b+> eb+]exp[i(Nb* + Nb+)L] (55)

Matrix elements (f. | b.) generally differ from zero and
unity, except for cases when Q] < [Q,], Q3] — for ex-
ample, when the Faraday effect prevails, that is, when
|Q3] > [, |Qz] = 0. Then {p.(;. = 1 and “velocity-
preserving” channels completely disappear,

(fi |by)=(f_|b)=0, (56)

whereas ;. (5. = —1 and the "velocity-converting” chan-
nels acquire maximum (in module) values

(o | bo)=(f- | by)=—1. (57)

As a result the converted component of the reflected wave
at the origin gy = 0 will be as follows:

Eb|converted = _[a+eb— + a—eb+] exp[i(Nb— + Nb+)l—] (58)

(

Remarkably, polarization of the converted wave (58) at
or = 0 completely coincides with polarization of the initial
wave (25), which is a kind of phase-conjugation phenom-
ena in magnetoactive plasma. This property might be of
practical interest for plasma interferometry.

Summing the phase shift (Np— + Npi)L with the
“isotropic” phase shift 2NgL, we obtain the total phase
of the converted component:

St (07) = 2NoL + (Nipy + Np_)L = (2No + Q)L (59)

The dependence of the total phases S{%|convert(07) of the
converted modes on “forward” distance oy is shown in
Fig. 3 by dashed lines.

The phase (59) contains the term Q,, which is quadratic
in a magnetic field and is not sensitive to the Fara-
day effect, so that the phase (59) can be treated as
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“Faraday-independent” one. Therefore, the “velocity-
converted” components can be helpful for reducing the
influence of the magnetic field on the wave's phase and
can be recommended for interferometers in microwave and
FIR bands. These components can be separated from
“velocity-preserving” ones by means of a polarization filter
having the same polarization as the primary wave.

7. Reflection from a cubic corner
retro-reflector

Let ny, ny, and n3 be the unit vectors perpendicular to
the facets of a CCR. In the orthogonal coordinate system,
formed by mutually orthogonal vectors nq, ny, and n3, the
incident wave E;,. can be represented by the expansion

Einc =m (n1 Einc) + nZ(nZEinc) + n3(n3Einc)~ (60)

Applying Eq. (38) sequentially to every facet of a CCR, for
the reflected wave field one has

Ere!l =m (n1 Einc) + nZ(nZE[nc) + n3(n3Einc)~ (61)

According to Eq. (61), the electric vector of the re-
flected wave coincides with that of the incident field,
though both waves propagate in opposite directions. It
means that the forward wave E;,. = ar e exp(iNg L) +
ar_er_ exp(iN_L) produces the backward wave

E, = aryepy exp[iNg (L — or)] exp(iNri L)
+ ar_ep_exp[iN;_(L — o7)]exp(iNs_L). (62)

This differs from the wave field (43), reflected from the
metallic plane, only by sign. Thus, a CCR meets the “ve-
locity preserving” regime, such as the metallic plane.

8. Conclusions

The properties of electromagnetic waves, reflected from
the target of a magnetized plasma, are studied with a
special emphasis on plasma polarimetry in thermonuclear
reactors ITER and W-7X. An analysis is carried out for
independent normal modes, propagating both in homoge-
neous and weakly inhomogeneous plasmas. Three kinds
of reflectors are considered: metallic plane, 2D-corner
retro-reflector (2D-CR) and cubic corner retro-reflector
(CCR). An electromagnetic wave, reflected from a metallic
plane and from a CCR is shown to contain only “velocity-
preserving” channels of scattering, when the fast (slow)

normal wave also reproduces, after reflection, the fast
(slow) normal wave. As a result, the phases of the re-
flected waves become doubled in comparison with the
single-passage propagation. This fact, known earlier for
the pure Faraday effect (circularly polarized waves) and
for the pure Cotton-Mouton effect (linearly polarized nor-
mal waves) is generalized now for elliptically polarized,
non-interacting, normal waves of the general type.

At the same time, the wave reflection from a 2D-
corner retro-reflector (2D-CR) is characterized by the
appearance of both “velocity-preserving” and “velocity-
converting” channels, the latter transforming the fast wave
into the slow one and vice-versa. It is shown that in
the case of circularly polarized modes, the “velocity-
preserving” channels completely disappear, and only
“velocity-converting” channels exist. As shown above, for
these channels, the initial polarization state of the elec-
tromagnetic wave is reconstructed after double passage
through magnetized plasma.
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