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Abstract: The spatio-temporal dynamics of three interacting species, two preys and one predator, in the presence of
two different kinds of noise sources is studied, by using Lotka-Volterra equations. A correlated dichotomous
noise acts on the interaction parameter between the two preys, and a multiplicative white noise affects
directly the dynamics of the three species. After analyzing the time behaviour of the three species in a
single site, we consider a two-dimensional spatial domain, applying a mean field approach and obtaining
the time behaviour of the first and second order moments for different multiplicative noise intensities. We
find noise-induced oscillations of the three species with an anticorrelated behaviour of the two preys. Finally,
we compare our results with those obtained by using a coupled map lattice (CML) model, finding a good
qualitative agreement. However, some quantitative discrepancies appear, that can be explained as follows:
i) different stationary values occur in the two approaches; ii) in the mean field formalism the interaction
between sites is extended to the whole spatial domain, conversely in the CML model the species interaction
is restricted to the nearest neighbors; iii) the dynamics of the CML model is faster since an unitary time
step is considered.
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1. IntrOduction temperature, food availability, general conditions which
can favour or thwart the increase of some biological
species. This randomly fluctuating behaviour can be mod-
eled by Gaussian noise sources, which influence, through
a multiplicative interaction, the system dynamics. Multi-
plicative noise often causes the appearance of fluctuating
barriers or processes of anomalous diffusion and has been

Noise is not generally detrimental to biological systems
but can be employed to generate genotypic, phenotypic,
and behavioral diversity [1-4]. Real ecosystems are af-
fected by the presence of noise sources which consist of ) . ) .

investigated in the context of population growth and ex-

andom variability of environmental parameters, such as - . . .
g vartabtitty v par o st tinction [1, 5-20]. In this paper we study the time evolution

of three interacting species, two preys, x and y, and one
*E-mail: valentid@gip.dft.unipa.it predator, z. The interaction between the two preys is
TE-mail: spagnolo@unipa.it

FURL: http./Jqip ditunipa i symmetric and it is given by the parameter B. We study
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the ecosystem dynamics, described by generalized Lotka-
Volterra equations, in the presence of two different kinds
of noise sources: (i) a dichotomous noise acting on the
B parameter, (ii) three external sources, modeled as inde-
pendent multiplicative Gaussian noises, which act directly
on the three species. First we consider the deterministic
dynamics of the system in a single site and we get the
time behaviour of x, y and z, by analyzing the stability
of the ecosystem with different constant values of the in-
teraction parameter S, which correspond to a coexistence
regime (Bgown < 1) or to an exclusion regime (B,, > 1).
Then we consider the interaction parameter B varying di-
chotomously between these two values. In this condition
we study the time behaviour of the species concentrations
x, y and z for different levels of the multiplicative noise
intensity. We find noise-induced oscillations and strong
anticorrelations between the preys. Afterwards we take
into account the spatial version of our ecosystem, consid-
ering a two-dimensional domain formed by N sites and
adding a diffusion term in the L-V equations. By using a
mean field approach, we obtain the corresponding moment
equations in Gaussian approximation. We find that, for B
varying dichotomously, the 1°* order moments of the three
species concentrations are independent on the multiplica-
tive noise intensity. On the other hand, the behavior of
the 2"? order moments is strongly affected by the presence
of external noise sources. In particular we find that the
time behavior is anticorrelated for the species densities of
the two preys, and correlated between the predator and
the total density of the two preys. Finally we get the time
behavior of the 1°! and 2"¢ order moments using a coupled
map lattice (CML) model [21] and we compare these re-
sults with those previously obtained within the mean field
approach. In view of an application on real systems, the
results obtained could be useful to explain experimental
data, reproducing the behaviour of natural ecosystems [5-
11, 22, 23],

2. The model

Time evolution of our system is given by a stochastic model
consisting of generalized Lotka-Volterra equations with
multiplicative noise terms, within the Ito scheme, and dif-
fusive terms in a spatial lattice formed of N sites

).([,I' = )\Xir/ (1 — VX,"/' — Byi,j — O(Z,-,,-) + X,"/'\/OT( ‘XJ

+D((x)=x,), (1)

Gij =AYy (1= vyi — Bxij — azi) + yi\/0487,
+D (<U> - yi,j) . (2

zij = hzi [T+ (X +yi)) ] + 2,V/0 8
+D(<Z>—Zt‘,j), (3)

where the dot indicates the time derivative. The variables
Xij, Yi,j and z;; are functions of the time ¢, and denote the
densities, respectively, of the two preys and the predator
in the lattice site (i, j). A and A, are scale factors, v is the
saturation parameter for the two preys, D is the diffusion
coefficient, and (x), (y), (z) indicate the spatial mean, per-
formed on the whole lattice, of the three species densities.
The coefficient B is the interaction parameter between the
two preys. The coefficients @ and y account for the in-
teraction between preys and predator. (1), f/»(t), Si(1)
are statistically independent Gaussian white noises with
zero mean and unit variance, and they model the interac-
tion between species and environment. Finally, oy, 0, o,
are the intensities of the three sources of Gaussian white
noise.

2.1. Single site dynamics

2.1.1.  Stability analysis and dynamical regimes

Depending on the value of the interaction parameter, co-
existence or exclusion regimes take place. In the absence
both of multiplicative noise (o, = 0, = 0, = 0) and diffu-
sion terms (D = 0), Egs. (1)-(3) describe the deterministic
dynamics of a single site ecosystem. In these conditions,
for the generic site of lattice the stationary values of the
three species densities are given by
1

stat __ ,, stat __

= =3y 4
ZStat — 2)’ - (B + V)

2ay

X
: )

where the indices i, j were suppressed. From Eq. (4) one
can see that the two prey densities have stationary val-
ues that are independent on the interaction parameter B.
Conversely, the stationary value of the predator density
(Eq. (5)) is connected with the value of B. This indicates
that the interaction parameter between the two preys
determines the coexistence or exclusion regimes for the

stat - From

whole system, affecting the stationary value z
Eq. (5) the survivance condition for the predator is z°'*)0,
which allows to get the coexistence condition for the three

species as a function of B
B<2y—v. (6)
The inequality (6) indicates that the system is charac-

terized by two stationary states, which become stable or
unstable depending on the values that B, y and v take on.
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In order to determine the conditions for which the sta- and consider the generic site of lattice, suppressing the
tionary values given in Eqgs. (4), (5) correspond to a point indices i,j. Afterwards, we obtain the equations for the
of stable equilibrium in the phase space, we perform a variations 0x, 0y, 0z around the stationary values x*'“f,
stability analysis for the deterministic dynamics in single ystar, zstat

site. Therefore, in Egs. (1) - (3) we neglect the noise terms

ox =\ (1 _ ZVXstat _ Bystat _ C{Zstat) Ox — )‘Bxstatéy _ AGXSIGI(;Z, (7)
6!/ =) (1 _ 2vy5tat _ Bxstut _ C{Zstut) 6!/ _ )\Bystaréx _ )\GyStat(sZ, (8)
52 :)\z [_1 + V (Xsmr + ysmt)] 62 +)\Zy25tm(5)( + AZYZsmt(Sy. (9)

By considering the solutions
ox = ox%e*!, oy = oyPeX!, 0z = 62%", (10)

with k generic complex number and 6x°, dy°, 62° initial variations around the stationary values, and replacing Eqs. (10)
in Egs. (7) - (9), we obtain the following linear system of algebraic equations

[)\ (1 — Dyxstat _ Bystat _ aZstat) _ k] 5XO _ )\Bxsmtéyo _)\axstatézo =0, (11)
_)\Bystatéxﬂ + [)\ (1 _ zvystat _ BXSIUT _ aZStut) _ k] 6!/0 _ /\aystatézo — O, (12)
Ayz ' Ox0 + A vz oy + {4 [+ v (1 )] -k} o = (13)

I
e

In order to get solutions different from the trivial ones, i.e. dx° = dy° = 62° = 0, after substituting for xst°!, yste!

and z°'%" the expressions given in Egs. (4), (5), we set to zero the determinant of the system (11) - (13), obtaining the
corresponding eigenvalue equation

— XV2k — AAvyk? = 2X2vA,y + A2VPA, — 4Pk — 4P ANk + 2yAN Bk + 2yAh, vk
+ NPk +2X°BAy — XB%A, =0, (14)

whose solutions are

AB —v)

ki = =5 (15)

b = —A(B + V) +1/A2v2 + 2)2vB + 2252 + ByAA,v + By, B — 16y2)\)\z’ (16)
4y

6 = —AB + V) — /A2 + 202vB + )\:32 + 8yAdv + 8yAA, B — 16y2)4, ' (17)
y

Setting A =3, A, =0.06, v=1, a = 0.02, y = 1, we calculate the eigenvalues and the corresponding eigenvectors for
two different values of the interaction parameter B

ki =—2.9081, ki=—0.0900, Ki=—00019 (B =Bioun=094<1), (18)
v; = [-0.7071,—-0.7071,0.0438], v3 = [—0.7064,0.7064,0.9247 - 10-'°],
vi = [0.0103,0.0103,-1.0017] (B = Buiown = 0.94 < 1), (19)
kY =—3.0612, k!=0.0600, k!=00012 (B=RB,=104>1), (20)
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VW = [=0.7071,-0.7071, —0.0277],
v§ = [—0.0098, —0.0098, 1.0000]

n_n noon

vs = [0.7068, —0.7068,0.1445 - 10~°],
(B = Baown = 1.04 > 1), (21)

where the apices "s” and "u” indicate stable and unstable equilibrium, respectively.

In fact, for B = Biown = 0.94, all the eigenvalues are
negative (Egs. (18)), what causes the corresponding equi-
librium point, given by Egs. (4), (5) for B = Bdown, to
be stable. Analogously, in the second set of eigen-
values (Eqgs. (20)) ky and k§ are positive, what deter-
mines the equilibrium point, given by Egs. (4), (5) for
B = Bup, to become unstable. This is clear obtaining the
generic vector [0x°, 0y*, 0z°], whose components are the
variations around the equilibrium point. We can express
[0x®,0y®,0z°] as a function of the eigenvalues given in
Egs. (18) and the corresponding eigenvectors (Egs. (19)).
By this way we obtain

[6x°, 8y®, 62°] = C;[—0.7071, —0.7071, 0.0438] e 28"
+ G, [—0.7064,0.7064,0.9247 - 107 10] e =009
+ (3[0.0103,0.0103, —1.0017] e %1% (22)

where C;, G, G5 are generic real numbers. Since kq,
k, and ks take on negative values, [0x®,dy*, 0z°] tends
to zero for t — oo, this behaviour indicating stability.
Analogously, for B = B,, = 1.04, we write [0x", 0y", 02"
as a function of the eigenvalues given in Egs. (20) and the
corresponding eigenvectors (Egs. (21)), obtaining

[6xY, 0y", 62"] = C;[—0.7071, —0.7071, —0.0277] 30612t
+ (;[0.7068, —0.7068, 0.1445 - 10~°] %%
+ C5[—0.0098, —0.0098, 1.0000]e%%"** (23)

Since k; and ks take on positive values, [0x", 0y, 0z"]
diverges for t — 0o, what indicates instability.

In particular, when the condition (6) is satisfied, the sta-
ble state, obtained for B = Byouwn = 0.94, is represented
by the coexistence of the three species. Otherwise, after
a transient, the predator tends to disappear (inequality
(6) doesn’t hold anymore) and we get a system formed
by two competing species, whose coexistence/exclusion
conditions depend directly on the value of the parameter
B[22, 24-31]. Therefore, the predator plays a requlatory
role for the dynamics of the two preys, whose recipro-
cal behavior is mediated by the interaction parameter
through the presence of the species z. We calculate the
numerical solutions for single site dynamics by integrat-
ing Eqgs. (1) - (3). The parameter values are the same
used in the stability analysis, that is A = 3, A, = 0.06,

v =1 a= 002 y =1, with the two different values
Bdown = 0.94 and B,, = 1.04. The initial conditions are
x(0) = y(0) = 0.1, z(0) = 2.0. The values of multiplicative
noise intensity are the same for the three species, that is
0 = 0, = 0, = 0g,. In Fig. 1 we show the time series of
the three species in coexistence (B = Baown) and exclusion
(B = Bup) regimes, for 0 = 0 and 0 = 107", When the
system is subject to deterministic dynamics, the coexis-
tence regime causes, after a transient, the three species
to reach the stationary values, x°'" = y*'9* = 0.5, 259" =
1.5, obtained from Egs. (4) - (5) using v =1, a = 0.02,
Yy =1, B = Bdown = 0.94 (see Fig. 1a). We note that in the
graph, as in panels b and c of the same figure, the densi-
ties of the two preys overlap, so that the time behaviour
of species x (black line) is not visible.

These stationary values, according to the previous stabil-
ity analysis (see Eq. (22)), correspond to a stable equi-
librium point in the phase space. Conversely, taking
B = Buy = 1.04 and using the same values for the other
parameters, from Egs. (4) - (5) we get x*" = y*'?* = 0.5,

Zstat

= —1.0. According to the previous stability analy-
sis (see Eq. (23)), we observe that these stationary values
correspond to an unstable equilibrium point in the phase
space. This agrees with two aspects of the dynamics of
this system: i) the predator density cannot maintain a
negative value, so that it evolves towards a new value,
that, in particular, is given by zero (in Fig. 1 we show the
time series of the species for 8 = B,, = 1.04 observing the
extinction of the species z); ii) one of the two preys cannot
keep the equilibrium value 0.5, but has to evolve towards
a different stationary value. In fact, after the species z
vanishes, the system consists of two competing species,
whose dynamics depends on the value of B. In particular,
for the value of B considered, that is B = B,, = 1.04,
after a transient, one of the two species (x and y) dis-
appears (exclusion regime) [24, 29, 30]. We observe that
in deterministic exclusion regime the predator tends very
slowly to vanish, while the two prey densities reach the
stationary values, remaining constant (Fig. 1b), even if this
equilibrium point is unstable (see Eq. (23)). However, in
the presence of a small level of multiplicative noise, the
symmetry, due to the parameter values and initial condi-
tions used in our simulations, is broken and one of the two
preys prevails, displacing the other one (Fig. 1d), accord-
ing to the results previously obtained [29, 30]. Finally we
note that no significative modifications occur, with respect
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to the deterministic case, when a small level of noise is
present in coexistence regime (see Fig. 1c). This obvi-
ously depends on the fact that, for B8 = Bgown, the system

occupies a stable equilibrium point (see Eq. (22)), which
is maintained also in the presence of low levels of multi-
plicative noise.

(o]
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o

— X Y z X Y z
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Figure 1. Time evolution of the three species. Deterministic dynamics in (a) coexistence and (b) exclusion regime. Stochastic dynamics, for

o = 107"% in (c) coexistence and (d) exclusion regime. Values of the parameters and initial conditions are A = 3, A, = 0.06, v = 1,

a =002,y =1,x0) = y(0) = 0.1, 2(0) = 2.0.

However, environmental perturbations, due to the pres-
ence both of deterministic and random fluctuations of bi-
ological and physical variables, such as the temperature,
affect the dynamics of the species. These external forces
can modify the behaviour of the populations, either in-
troducing multiplicative noise sources which act directly
on the species or affecting the dynamics of the interac-
tion parameter B. In fact, the environmental variations
can cause the system dynamics to change between coex-
istence (B < 2y — v) and exclusion (B > 2y — v) regimes.
This dynamical behavior can be described by considering

that the interaction parameter B(t) is a stochastic process
driven by a dichotomous noise, whose jump rate is given
by

At < 14,

24
At > 14 . 24)

(=1"
X\H= Xo (1 + A cos wt|),

where At is the time interval between two consecutive
switches, and 7, is the delay between two jumps, that is
the time interval after a switch, before another jump can
occur. In Eq. (24), A and w are respectively amplitude
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Figure 2. Time evolution of the interaction parameter B(t) with ini-
tial value B(0) = 1.04 and delay time 4 = 435. The inter-
action parameter S(t) switches quasi-periodically between
Bdown = 0.94 and B,, = 1.04. The values of the other pa-
rameters are A = 9.0, w/(27) = 1073, o = 2-1072.

and angular frequency of the periodic term, and o is the
jump rate in the absence of periodic term. This causes
B(t) to jump between two values, Bgown < 2y — v and
Bup > 2y — v. According to the condition (6), these val-
ues determine the two possible dynamical regimes (coex-
istence or exclusion) of the deterministic Lotka-Volterra's
model for three interacting species. For given values of
the parameters A, w and xp the switching time between
the two levels of B(t) depends on t,. Applying a procedure
analogous to that followed for the two-species case [24],
we set A = 9.0, w/(27) = 1073, xo = 2 - 1072, obtaining
the time series of B(t) for 7, = 435, with Byown = 0.94
and Bup = 1.04. The results, shown in Fig. 2, indicate the
presence of a synchronization between the jumps and the
periodicity of the rate x(t). For a system formed by two
competing species this causes a quasi-periodical time be-
havior of the two populations, which can be considered as
a signature of the stochastic resonance phenomenon [32-
35] in population dynamics [25-31]. Therefore we fix the
delay at the value 7p = 435, which determines an oscillat-
ing dynamical regime. In these conditions, B(t) switches
quasi-periodically between Bgou, and B, (see Fig. 2),
causing the system to be alternatively subject to the co-
existence and exclusion regimes.

2.1.2. Time behaviour of the species in a single site

In this section we analyze the time behaviour of three
interacting species in a single site of the lattice. From

Egs. (1)-(3), by setting D = 0 we get

x = Ax(1 — vx — By — az) + x/0,& (1), (25)

g =2ry(1 —vy — Bx —az) +y,/0,¢’(1), (26

z2=Xz(=1+yx+yy) + 20,5 (1), (27)

where the indices i, j where suppressed.

By choosing B(0) = 1.04 and 7, = 435, we obtain for
B(t) the time behaviour shown in Fig. 2. We analyze the
time evolution of the species densities by numerical sim-
ulation of Eqs. (25)-(27). The time series of x, y and z are
obtained for different values of the multiplicative noise in-
tensity, namely o = 0, 107", 107°, 1073. The values of
the other parameters are the same used in the previous
section, thatis A =3, A, =0.06, v=1, a =0.02, y =1,
Bdown = 0.94, B,, = 1.04. The initial values of the species
densities are x(0) = y(0) = 0.1, z(0) = 2.0. In Fig. 3,
where the results are reported, the time series of x(t), y(t)
(preys) and z(t) (predator) show correlated behaviour in
the absence of noise (panel a). Here, the densities of the
two preys overlap and the time series of species x (black
line) is not visible.

In the presence of noise intensity an anticorrelated os-
cillating behaviour of x(t) and y(t) appears (see panels
(b)-(d)). Moreover we note that, for all the values of mul-
tiplicative noise intensity, the two prey densities oscillate,
with the frequency of the external driving force, around the
stationary values, x°'' = y*"** = 0.5. We observe that
the predator density show an oscillating behaviour, with
the same frequency, around a value much smaller than
719" = 1.5. However, the oscillations of z(t) are charac-
terized by a larger amplitude with respect to x(t) and y(t).
This behaviour is connected with the different effect that
the alternating regime (exclusion/coexistence) produces on
preys and predator. In fact, the quasi-periodical behaviour
of B(t) affects directly the dynamics of the predator (see
Eq. (5)), causing a decrease of the mean value of z during
the exclusion regime. Conversely, in coexistence regime
the two preys maintain a constant value (see Eq. (4)) go-
ing towards an anticorrelated regime for B(t) = Byp. In
this last condition the two preys are subject to a pure
competitive dynamics, recovering the behaviour observed
in a system of two competing species [29, 30].
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Figure 3. Time evolution of the three species densities in a single site of the lattice. The values of the multiplicative noise intensity are: (a) o = 0,
(b) e =10""2,(c) 0 =107°, (d) 0 =1073. Here A = 3, A, = 0.06, v = 1, a = 0.02, y = 1. The values of the other parameters are the
same of Fig. 2. The initial values of the species densities are x(0) = y(0) = 0.1, z(0) = 2.0. The time series of x(t), y(t) (preys) and z(t)
(predator) show a correlated behaviour in the absence of noise (panel a). In the presence of the noise (panels (b)-(d)) an anticorrelated

behaviour of x(t) and y(t) appears.

2.2. Spatially extended system: mean field
approach

In this section we analyze the time behaviour of three
interacting species in a spatially extended system by us-
ing a mean field approach. The system dynamics is de-
scribed by Eqgs. (1)-(3) in the presence of the diffusive term
(D # 0). In order to use a mean field approach we derive
the moment equations for this system. Assuming N — oo,
we write Egs. (1)-(3) in a mean field form

x = fx,y,2) + /0.9 (x)&(t) + D({(x) —x), (28)
fy(x.y,2) + \/0,9,(4)& (t) + D ((y) — y), (29)
f,(x.y,2) + /0,9.(y)§*(t) + D ({(z) — z), (30)

NS
Il

where (x), (y) and (z) are average values on the spatial
lattice considered (ensemble averages in the thermody-

namic limit) and we set f,(x, y,z) = Ax(1 —vx — By — az),
gx(x) = x, fy(x,y,2) = Ay(1 — vy — Bx — az), g4(y) =y,
f,(x,y,z) = Az[—1 + y(x + y)], g.(z) = z. By site aver-
aging Eqgs. (28)-(30), we obtain

(%) = (f(x.y,2)),
(9) = (fy(x.y,2)), &)
(2) = (fz(x, y, 2))-

By expanding the functions f,(x,y,z), g.«(x), fy(x,y,2),
gy(y), f.(x, y,2), g,(2) around the 15" order moments (x(t)),
(y(t)) and (z(t)), we get an infinite set of simultaneous or-
dinary differential equations for all the moments [36]. To
truncate this set we apply a Gaussian approximation, for
which the cumulants above the 2"? order vanish. Therefore
we obtain
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() = A0) (1 = v(x) = B(y) — a(z)) — A(vioo + Brinio + aprion) (32)
(9) = My)(1 = v{y) — B{x) — a{z)) — A(viioa0 + Briio + abionn) , (33)
(2) = A(2) (=14 v(x) + ¥{y)) + Ay (o1 + porn) (34)
foo = 2A(1=2v(x) — B(y) — a(z)) pa00
— 2X(x) (B + athor) + 20, (pa00 + (x)*) — 2Dpizco, (35)
flooo = 2A(1 = 2v{y) — B{x) — a(z)) Hox
— 2Xy) (Buro + apon) + 20, (po20 + (y)?) — 2Dpioao, (36)
floz = 24 (=1 + y{x) + ¥(y)) Hooz
+ 24,¥(2) (o1 + Hor) + 20 (poo2 + (2)?) — 2Dpigo2, (37)
fmo = A[2=2v((x) + (y)) = B((x) + (y)) — 2a(z)] p1o
— AB((x)Ho20 + (y)t200) — Aa ({(x)ko11 + (Y )khot) — 2Dpio, (38)
fnor = A(1=2v{x) = B(y) — a(2)) thor + A= (=1 + v(x) + v(y)) tor
— M) (aooz + Bror) + A, v(z) (110 + t200) — 2D, (39)
fiorr = A1 =2v(y) — B(x) — a(2)) po11 + A, (=1 + v{x) + ¥(y)) Hon
— Ay) (apooz + Brro) + A:v(z) (110 + Hozo) — 2Dponn, (40)

where t00, Hozo, Hooz: Hito, Hiot, Hotr are the 2" order
central moments defined on the lattice

too(t) = (x*) = (x)%,

too(t) = (y*) — (y)*,

Hooa(t) = (%) = (2)?, )
tno(t) = (xy) — () {y).

toi(t) = (xz) — (x)(2),

Hor (t) = (yz) — (y)(2)

In order to get the dynamics of the three species we an-
alyze the time evolution of the 1% and 2" order moments
according to Eqgs. (32)-(40). As initial conditions we con-
sider each species uniformly distributed on the spatial
domain, that is we set (x(0)) = (y(0)) = 0.1, (z(0)) = 2.0,
1200(0) = Ho20(0) = o02(0) = p110(0) = p101(0) = p1(0) =
0. Therefore, from Egs. (32)-(40) we get, in the determin-
istic case, the stationary values for (x), (y) and (z), in the
coexistence regime.

1
stat __ stat  _
(0 = () = 5
2V - (Bduwn + V)

2ay

(42)
<Z>Stat _

Using for the parameters the same values of the single
site analysis, we obtain

<X>5mt — <y>stat — 05’

(43)
(z)*""" = 1.5.

We also fix the delay time at the same value, 74 = 435,
used in the single site case. Finally, by numerical in-
tegration of Eqgs. (32)-(40), setting D = 107", we get the
time series of the 15 and 2"¢ order moments for the follow-
ing values of multiplicative noise intensity o = 0, 107'2,
107°%, 1073, The results are reported in Figs. 4, 5. Here
we note that, after a transient, the mean values of the two
prey densities (see panels a and d of Figs. 4, 5) oscillate
around the stationary values. The oscillations are con-
nected with the presence of two stable equilibrium points.
For B = Bgown < 1 the stable equilibrium is given by the
contemporary presence of the three species (coexistence
regime). Conversely, for B = B,, > 1 the system goes
towards a new equilibrium point, with the predator tend-
ing to disappear (exclusion regime). In the presence of a
dynamical regime (the system switches periodically from
coexistence to exclusion), we observe the appearance of
correlated oscillations in the time series of (x(t)), (y(t))
and (z(t)). In particular, we note that (z(t)) is subject to
oscillations occurring around a value much smaller than
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the stationary one ((z)*'*" = 1.5) and characterized by a
larger amplitude with respect to (x(t)) and (y(t)). This

behaviour is analogous to that observed in the case of
single site dynamics.

c=0
<X <y> <z> Hogg — Moo Hoog — Mg — Mo Han
1.0 10x1021 10x10°21
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Figure 4. Time evolution of the 1°" and 2" order moments in the mean field approach. The values of the multiplicative noise intensity are: ¢ = 0,
10~ from top to bottom. In the absence of noise the time series of (x()), (y(t)) (panel a), w200, Ho2os ooz (Panel by and w10, o1,
tonn (panel c) are completely overlapped. The predator (mean value of species z) shows a behaviour correlated with those of both
preys (mean values of species x and y). For ¢ = 107", no changes are observed in the behaviour of the mean values (panel d),
the variances of the two preys oscillate overlapping each other and a correlation is observed with the variance of the species z (panel
e), the covariance of the two preys, 11110, oscillates taking on only negative values (the two preys are anticorrelated each other), while
o1 and pppq are always zero (panel f). The initial values of the moments are (x(0)) = (y(0)) = 0.1, (z(0)) = 2.0, 1200(0)=£i020(0)=£1002(0) =
t110(0)=11110(0) = 0=p011(0)=0. The diffusion coefficient is D = 10~". The values of the other parameters are the same used in Fig. 3.

In the absence of noise (top of Fig. 4), the time series of
(x(1)), (y(t)) and (z(t)) (panel a), t2o0(t), Hozo(t), Hooz(t)
(panel b) and pn1o(t), to1(t), toir(t) (panel c) are com-
pletely overlapped and each species maintains a homoge-
neous distribution over the lattice, that is all the 2"? order
moments remain equal to zero. In particular we observe
that in panels a, d of Fig. 4 and Fig. 5 the time behavior
of prey x (black line) is not visible, because of the overlap
with the time series of prey y. In panels b, c of Fig. 4 the
274 order moments of all the three species overlap and
the only green line is visible. For ¢ = 107" (bottom of
Fig. 4) no changes are observed in the behaviour of the
mean values (see panel d), and the variances of the three
species show correlated oscillations (panel e). In panel f,
t110 oscillates taking on only negative values. This indi-
cates that the spatial distributions in the lattice will be
characterized by the presence of regions where species x
or species y prevails. The two preys will be distributed

therefore in non-overlapping spatial patterns. This pic-
ture is in agreement with previous results obtained with a
different model [37]. Conversely, tno1 and g1y are always
zero (see panel f of Fig. 4). This behaviour indicates that
the predator is uncorrelated with the density of each prey:
the species z tends to occupy indifferently the sites where
x or y prevails (see the time behaviour of gy, in panel e
of Fig. 4), but is correlated with the total prey density (a
global increase of food availability improves the life con-
ditions of the predator). This explains why the variance of
the predator shows small oscillations. On the other hand,
when exclusion regime takes place, the two preys tend to
occupy different sites, "spreading out” in the spatial do-
main and causing an increase of their variances (see panel
e of Fig. 4) with a stronger anticorrelation (see the be-
haviour of 10 in panel f of Fig. 4). Finally we note that
the amplitude of the oscillations both of all variances and
covariances 1119 increases as a function of the noise inten-

465




Stochastic dynamics and mean field approach in a system of three interacting species

466

sity. This dependency is connected with pattern formation
in the spatial distributions of the three species [37], what
suggests the presence of a phase transition phenomenon.
In particular the oscillations of the second order moments
have the same order of magnitude of o (see panels b, ¢, e,
f, in Figs. 4, 5). In fact, for higher levels of multiplicative

noise (0 = 107%,1073) the amplitude of the oscillations
increases and the periodical anticorrelated behaviour be-
tween the two preys becomes more evident. Conversely,
no modifications appear in the time series of the mean
values as a function of the multiplicative noise intensity
(see panels a, d in Figs. 4, 5).

< <y> <z> Mg — Myor — Hang
1.0 6x10¢ 4x10° ©
a c
® 0.8 @) 5x10® »
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Figure 5. Time evolution of the 15" and 2" order moments. The values of the multiplicative noise intensity are: 10-°, 10~ from top to bottom. No
changes are observed in the time behaviour of (x) = (y) = (z) (see panels a and d) for both values of the noise intensity. An increase in
the amplitude of oscillations, as a function of the noise intensity, appears both in the variances of the three species, 1200, to20, ooz (S€€
panels b and e), and in the covariance of the two preys, p110 (see panels ¢ and f). The values both of initial conditions and parameters

are the same used in Fig. 4.

Even if it is related to a very different mechanism, this
behavior is similar to the stochastic resonance effect pro-
duced in population dynamics, when the interaction pa-
rameter is subjected to an oscillating bistable potential in
the presence of additive noise [29-31]. We note that in the
absence of external noise (0 = 0) both populations coexist
and the species densities oscillate in phase around their
stationary value [29, 30]. This occurs identically in each
site of the spatial lattice (single site dynamics). The be-
havior of the mean values reproduces this situation. For
o # 0, in the single site dynamics we observe anticorre-
lated oscillations of x and y (preys). By site averaging
these noise-induced oscillations (see Ref. [29, 30]) we re-
cover the average behavior obtained in the absence of
noise. This spatial auto-averaging effect explains why the
1° order moment behavior is independent on the external

noise intensity, while the 27¢ order moments give infor-
mation on "spreading” and anticorrelation of the species
densities in the spatial domain.

3. Coupled map lattice model

In this section we adopt a different approach to analyze
the dynamics of the three species on the square lattice de-
fined in Section 2. We consider the time evolution of our
system by using a coupled map lattice (CML) model [21].
In this formalism both correlated and anticorrelated spa-
tial patterns of the three interacting species have been
found [37]. Here we calculate the moments by using the
CML model. By this approach, the dynamics of the spatial
distributions of the three species is given by the following



Davide Valenti, Bernardo Spagnolo

equations

X =) (1= vl — gyl

) +/ax &

n DZ (X,()n) . Xl(z)) ' (44)
P
gl =yl (1= vyl) — 8O — @) + eyl el
X (g;m i), )
Zl(,;+1) )\ (n) ( 1+ YX[/ + yyl]) UZZI(;){[Z’;H)

+D Z (z(")

2. (46)

where xl(,), yf';) and z ) denote respectively the densities

of prey x, prey y and predator z in the site (i, /) at the
time step n. According to the notation used for the mean
field approach, A, A;, v, B, a, y and D represent the same

quantities defined in Section 2. EZ}”’, E.‘/(") 55}") are inde-

i
pendent Gaussian white noise sources wlith zero mean and
unit variance. The interaction parameter 8" corresponds
to the value of B(t) taken at the time step n, according to
Eq. (24). Here ZP indicates the sum over the four nearest

neighbours.

3.1. Stationary states for the CML model

Applying a procedure analogous to that used for Egs. (1)-
(3), we consider Eqs. (44)-(46) in the absence both of noise
sources and diffusion terms (D = 0). In this conditions,

(n+1) ()  (n+1) () _(n+1) (n) ;
for X” = l’]', [”j = ["j, 2[3 = z[.,"j, we obtain
the stattonarg values of the three species densities for the

generic site

» v 1A+

= = | )
2v[5] - B+ v [

Zstut — A [ ]: (48)

CML 2ay

where the indices i, j were suppressed. As in the approach
based on the use of differential equations, the stationary
values of the two prey densities are independent on the
interaction parameter B, which is responsible for the two
different dynamical regimes, coexistence or exclusion, and
affects the dynamics of the whole system through its action
on the stationary value Z?AZZ The existence condition for
the predator

2y A1 + A1
Pk dea >0 (49)
CML 20()/

allows to get the following inequality for the interaction
parameter B

[]
B <2y —v. (50)
Aot
5]
The inequality (50) indicates that, according to the anal-
ysis performed in Section 2.1, the CML model is char-
acterized by two stationary states that become stable or
unstable depending on the values of the parameters. Com-
paring the inequalities (6) and (50), we note that in the
CML model the coexistence condition and the regulatory
role, played by the predator on the dynamics of the two
preys, depend also on the scale factors A and A,.

3.2. Time series in the CML model

In view of a comparison between mean field approach and
CML model, we define the 1°* and 2"¢ order moments on
the discrete lattice, at the time step n. The mean values,

(O, ()1, (), given by

'™

(u)? = /T‘f (u=xy4,2 (51

represent the 15t order moments. The variances var!”,

varl", var!" defined as

o (vl — (o)’

varl™ = N .

(u=xy,2), (52
and the covariances

oy (ul] = ()) (wl) = (w))
N ©B3)

(u,w=x,y,2z, u#w)

n —
covy) =

are the 2"¢ order central moments.

In order to get B = 1 as critical value for the coexis-
tence/exclusion regimes, we choose for all parameters, ex-
cept y, the same values of Section 2. In fact, by set-
ting A = 3, A, = 006, v =1, a =002 y = 265
in Egs. (49), (50), we obtain, for B < 1, survivance of
the species z and, as a consequence, coexistence of the
three species. Conversely, for 8 > 1, we get the exclusion
regime. Therefore, the value y = 26.5 allows to obtain
the coexistence/exclusion dynamical regime for the same
time behaviour of B(t) used in the moment approach (see
Eq. (24) and Fig. 2).

Finally, by using this set of parameter values in
Eqs. (47), (48), we calculate the stationary values for the
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densities of the two preys and predator in the coexistence
regime (B = Baown = 0.94)

(O0chL = (y)dm = 0.3, (54)

(2)dw =1.0.
We note that these values are close to those obtained in
the mean field approach (see Egs. (43)). The CML model
can be considered as a time discrete version of the Lotka-
Volterra system, with time step At = 1. For the numerical
integration of Eqs. (32)-(40) we used dt = 1073, which
is a suitable value to obtain convergence of the solution.
Obviously, with these values of At and dt, the dynamics
of the CML model results to be faster with respect to
that obtained within the moment formalism. In particular,
for B = B,, > 1, using the same parameter values of
the mean field approach, the exclusion regime causes the
species z to vanish in one time step (At = 1). This implies
that, when the system is subject to the dynamical regime
discussed in Section 2.1, the predator disappears. This
behaviour disagrees with the results found by using the
moment equations (see Section 2.2).

In particular, we calculated the solutions of Eqs. (44) -
(46) in the coexistence/exclusion dynamical regime for val-
ues of the diffusion coefficient progressively decreasing,
ie. D = 107", 1072, 1073, and we found exclusion of

species z.

In order to remove this discrepancy between CML model
and mean field approach, in the discrete time equations we
use a much smaller value for the diffusion constant, namely
D = 107", that allows to obtain a slowdown of the diffu-
sion dynamics and, as a consequence, the survivance of the
predator in the coexistence/exclusion dynamical regime.
In order to get the time behaviour of the 1°* and 2"¢ order
moments within the scheme of the CML model, we con-
sider a square lattice with N = 100 x 100, using for B(t)
the time behaviour given in Fig. 2. Afterwards, at each
time step n we calculate, from Eqs. (44), (45), (46), the
new values of xf;), yf?, sz}), and the moments according
to Egs. (51), (52), (53). By iterating this procedure, we
obtain the time series shown in Figs. 6, 7.
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Figure 6. In panels (a), (b) and (c) we show, respectively, the mean values, (x), (y)", (z)", the variances, var", var{", var, and the

covariances, cavx";), covl’;), covx(f,) for ¢ = 0. The same quantities are shown in panels (d), (€) and (f) for o = 10~'2. The time series are
obtained within the formalism of the CML model (see Egs. (44), (45), (46)). The diffusion coefficientis D = 10~*, and y = 26.5. The

initial values of the species concentrations are x}f})

the same of Fig. 4: A =3, A, =0.06, v =1, o = 0.02.

= yi.f]} =0.1, zfg.) = 2.0 for all the sites (i, j). The values of the other parameters are
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Figure 7. In panels (a), (b) and (c) we show, respectively, the mean values, (x), (y)", (z){"), the variances, varl", varl", var!", and the

(n

covariances, covly, cov)((z), coviﬂ,) for ¢ = 10~°. The same quantities are shown in panels (d), (e) and (f) for o = 10~3. The time series
are obtained within the formalism of the CML model (see Egs. (44), (45), (46)). The values of the other parameters and the initial

conditions are the same of Fig. 6.

Since the interaction among sites is limited to the nearest
neighbors (each site only interacts with other four ones),
we expect that for a square lattice the results do not de-
pend significantly on the size of the spatial domain, when
the condition N > 4 is satisfied. An increase of the sys-
tem size should delay the very short transient of the sys-
tem dynamics towards the stationary behaviour shown in
Figs. 6, 7, recovering the longer transient behaviour found
in the mean field approach (see Figs. 4, 5).

The 15! and 2"? order moments calculated within the
formalism of the CML model can be compared with the
same quantities obtained in the mean field approach (see
Figs. 4, 5). We note that the two set of time series are in
a good qualitative agreement.

According to the results obtained in the formalism of the
moment equations, the mean values of the three species
show time oscillations, whose amplitude is larger for the
predator (panels a, d of Figs. 6, 7). In the absence of
noise, the 2"¢ order moments remain equal to zero (see
panels b, c of Fig. 6), recovering the conditions of ho-
mogeneous distributions obtained for ¢ = 0 in the mean
field approach (see panels b, ¢ of Fig. 4). In the presence

of multiplicative noise, no modifications occur in the time
series of the 1°' order moments (see left side panels in
Figs. 6, 7). However, for o # 0 a symmetry breaking is in-
troduced, with non-vanishing oscillating variances that are
connected with inhomogeneous distributions of the three
species. For higher levels of the noise intensity, the am-
plitude of the oscillations remains constant in the time se-
ries of var,, var, and var, (see panels b, e of Figs. 6, 7).
These results show some difference with those obtained
in the formalism of moment equations, where higher noise
intensities cause the oscillation amplitudes of p00, Loz
and po2 to become larger (see panels b, e of Figs. 4, 5).
Finally, we find that for o # 0, temporal oscillations also
appear in the time series of cov,,. This agrees with the
results of the mean field approach, revealing the presence
of an anticorrelated dynamics between the two preys. On
the other hand, cov,, and cov,, remain equal to zero also
in the presence of multiplicative noise. This behaviour, in
agreement with that obtained in the mean field formal-
ism, indicates that the spatial distribution of the predator
is uncorrelated with those of each prey considered sep-
arately, but depends on the total density of preys. The
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comparison between the two approaches shows that the
mean values (x)", (y), (z)(" and those obtained within
the formalism of the moment equations oscillate around
different values. Moreover, the amplitudes of the oscilla-
tions in the 2"¢ order moments appear significantly larger
in the CML model. This discrepancies can be explained
recalling that: i) in the two approaches the stationary
values are different (see Egs. (42) and Egs. (47)-(48)); (i)
in the mean field formalism the interaction between sites
is extended to the whole spatial domain, conversely in
the CML model the species interaction is restricted to the
nearest neighbors; iii) the dynamics of the CML model is
faster since an unitary time step (At = 1) is taken, instead
of the time step dt = 103 used in the moment equations.

4. Conclusions

We report a study on the stochastic dynamics of an
ecosystem with three interacting species (two preys and
one predator), described by generalized Lotka-Volterra
equations. After considering the single site dynamics of
the ecosystem, we consider a spatially extended domain
(two-dimensional lattice) by introducing diffusive terms to
take into account the interaction of each site with all the
other ones. The study is performed by a mean field ap-
proach, in the formalism of the moment equations. The
system is affected by the presence of two noise sources,
namely a multiplicative white noise and a correlated di-
chotomous noise. The role of the correlated dichotomous
noise is to control the dynamical regime of the ecosystem
(see Fig. 2), while the multiplicative noise is responsible
for the anticorrelated behavior of the species concentra-
tions. The mean field approach in Gaussian approximation
enables us to obtain the time series of the 15 and 2"? or-
der moments. We compare the results obtained within the
mean field approach with the time series calculated by
a coupled map lattice (CML) model. The agreement is
quite good, even if some discrepancies are present, due
to the discrete nature of the CML model and the limited
extension of the diffusive interaction (nearest neighbors)
among different sites of the coupled map lattice. Our the-
oretical results could explain the time evolution of popu-
lations in real ecosystems whose dynamics is strictly de-
pendent on random fluctuations, always present in natural
environment [23, 38, 39]. In particular, the time series of
real data for vole and lemming populations revealed the
presence both of cycles and random fluctuations, and the
question is "whether a key feature of the cycle... is best
understood in terms of highly nonlinear interactions with
modest influence of environmental stochasticity or weakly
nonlinear interactions with strong stochastic forcing” (see

in Ref. [7]). Detailed studies on the time series of the
feral Soay sheep of the St. Kilda archipelago have been
performed, reproducing the time behaviour of the sheep
distributions by using an autoregressive model which in-
volves nonlinearity, periodic climate variations and envi-
ronmental noise [40]. The introduction of stochastic terms,
into a system of Lotka-Volterra equations for two compet-
ing species, allowed to reproduce both the spatial distri-
butions of benthic foraminifera in marine environment [41]
and the time behaviour of the concentration of a bacterium,
Listeria monocytogenes, in a food product [42], finding a
good agreement with experimental data. Finally, we note
that connections between random fluctuations of environ-
mental variables and amplitude of oscillations in the popu-
lation abundances were found in time series of planktonic
foraminifera [43]. The model presented in this paper is
the two-dimensional version of nonlinear stochastic mod-
els previously investigated. The application of a mean
field approach makes direct to analyze the spatial distri-
butions in terms of mean concentrations and correspond-
ing variances and covariances (2" order moments). The
knowledge of the 2"¢ order moments and their relations
with the amplitude of random fluctuations could be the key
to explain spatial distributions of biological species, and
to account the pattern formations appearing both in theo-
retical studies [22, 37] and in real ecosystems, such as fish
populations in marine environment [23, 44, 45]. This anal-
ysis, performed on ecosystems consisting of three species,
will be the subject of a forthcoming paper.
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