
Cent. Eur. J. Phys. • 7(3) • 2009 • 457-471
DOI: 10.2478/s11534-009-0003-2

Central European Journal of Physics

Stochastic dynamics and mean field approach in a
system of three interacting species

Research Article

Davide Valenti∗, Bernardo Spagnolo†

Dipartimento di Fisica e Tecnologie Relative, Group of Interdisciplinary Physics‡ , Università di Palermo
and CNISM-INFM, Unità di Palermo, Viale delle Scienze, edificio 18, I-90128 Palermo, Italy

Received 10 November 2008; accepted 9 January 2009

Abstract: The spatio-temporal dynamics of three interacting species, two preys and one predator, in the presence of
two different kinds of noise sources is studied, by using Lotka-Volterra equations. A correlated dichotomous
noise acts on the interaction parameter between the two preys, and a multiplicative white noise affects
directly the dynamics of the three species. After analyzing the time behaviour of the three species in a
single site, we consider a two-dimensional spatial domain, applying a mean field approach and obtaining
the time behaviour of the first and second order moments for different multiplicative noise intensities. We
find noise-induced oscillations of the three species with an anticorrelated behaviour of the two preys. Finally,
we compare our results with those obtained by using a coupled map lattice (CML) model, finding a good
qualitative agreement. However, some quantitative discrepancies appear, that can be explained as follows:
i) different stationary values occur in the two approaches; ii) in the mean field formalism the interaction
between sites is extended to the whole spatial domain, conversely in the CML model the species interaction
is restricted to the nearest neighbors; iii) the dynamics of the CML model is faster since an unitary time
step is considered.
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1. Introduction

Noise is not generally detrimental to biological systemsbut can be employed to generate genotypic, phenotypic,and behavioral diversity [1–4]. Real ecosystems are af-fected by the presence of noise sources which consist ofrandom variability of environmental parameters, such as
∗E-mail: valentid@gip.dft.unipa.it
†E-mail: spagnolo@unipa.it
‡URL: http://gip.dft.unipa.it

temperature, food availability, general conditions whichcan favour or thwart the increase of some biologicalspecies. This randomly fluctuating behaviour can be mod-eled by Gaussian noise sources, which influence, througha multiplicative interaction, the system dynamics. Multi-plicative noise often causes the appearance of fluctuatingbarriers or processes of anomalous diffusion and has beeninvestigated in the context of population growth and ex-tinction [1, 5–20]. In this paper we study the time evolutionof three interacting species, two preys, x and y, and onepredator, z. The interaction between the two preys issymmetric and it is given by the parameter β. We study
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the ecosystem dynamics, described by generalized Lotka-Volterra equations, in the presence of two different kindsof noise sources: (i) a dichotomous noise acting on the
β parameter, (ii) three external sources, modeled as inde-pendent multiplicative Gaussian noises, which act directlyon the three species. First we consider the deterministicdynamics of the system in a single site and we get thetime behaviour of x, y and z, by analyzing the stabilityof the ecosystem with different constant values of the in-teraction parameter β, which correspond to a coexistenceregime (βdown < 1) or to an exclusion regime (βup > 1).Then we consider the interaction parameter β varying di-chotomously between these two values. In this conditionwe study the time behaviour of the species concentrations
x, y and z for different levels of the multiplicative noiseintensity. We find noise-induced oscillations and stronganticorrelations between the preys. Afterwards we takeinto account the spatial version of our ecosystem, consid-ering a two-dimensional domain formed by N sites andadding a diffusion term in the L-V equations. By using amean field approach, we obtain the corresponding momentequations in Gaussian approximation. We find that, for βvarying dichotomously, the 1st order moments of the threespecies concentrations are independent on the multiplica-tive noise intensity. On the other hand, the behavior ofthe 2nd order moments is strongly affected by the presenceof external noise sources. In particular we find that thetime behavior is anticorrelated for the species densities ofthe two preys, and correlated between the predator andthe total density of the two preys. Finally we get the timebehavior of the 1st and 2nd order moments using a coupledmap lattice (CML) model [21] and we compare these re-sults with those previously obtained within the mean fieldapproach. In view of an application on real systems, theresults obtained could be useful to explain experimentaldata, reproducing the behaviour of natural ecosystems [5–11, 22, 23].
2. The model
Time evolution of our system is given by a stochastic modelconsisting of generalized Lotka-Volterra equations withmultiplicative noise terms, within the Ito scheme, and dif-fusive terms in a spatial lattice formed of N sites
ẋi,j = λxi,j

(1− νxi,j − βyi,j − αzi,j) + xi,j
√
σxξxi,j+D

(
〈x〉 − xi,j

)
, (1)

ẏi,j = λyi,j
(1− νyi,j − βxi,j − αzi,j) + yi,j

√σyξyi,j+D
(
〈y〉 − yi,j

)
, (2)

żi,j = λzzi,j
[
−1 + γ

(
xi,j + yi,j

)] + zi,j
√
σzξzi,j+D
(
〈z〉 − zi,j

)
, (3)

where the dot indicates the time derivative. The variables
xi,j , yi,j and zi,j are functions of the time t, and denote thedensities, respectively, of the two preys and the predatorin the lattice site (i, j). λ and λz are scale factors, ν is thesaturation parameter for the two preys, D is the diffusioncoefficient, and 〈x〉, 〈y〉, 〈z〉 indicate the spatial mean, per-formed on the whole lattice, of the three species densities.The coefficient β is the interaction parameter between thetwo preys. The coefficients α and γ account for the in-teraction between preys and predator. ξxi,j (t), ξyi,j (t), ξzi,j (t)are statistically independent Gaussian white noises withzero mean and unit variance, and they model the interac-tion between species and environment. Finally, σx , σy, σzare the intensities of the three sources of Gaussian whitenoise.
2.1. Single site dynamics
2.1.1. Stability analysis and dynamical regimesDepending on the value of the interaction parameter, co-existence or exclusion regimes take place. In the absenceboth of multiplicative noise (σx = σy = σz = 0) and diffu-sion terms (D = 0), Eqs. (1)-(3) describe the deterministicdynamics of a single site ecosystem. In these conditions,for the generic site of lattice the stationary values of thethree species densities are given by

xstat = ystat = 12γ , (4)
zstat = 2γ − (β + ν)2αγ . (5)

where the indices i, j were suppressed. From Eq. (4) onecan see that the two prey densities have stationary val-ues that are independent on the interaction parameter β.Conversely, the stationary value of the predator density(Eq. (5)) is connected with the value of β. This indicatesthat the interaction parameter between the two preysdetermines the coexistence or exclusion regimes for thewhole system, affecting the stationary value zstat . FromEq. (5) the survivance condition for the predator is zstat〉0,which allows to get the coexistence condition for the threespecies as a function of β
β < 2γ − ν. (6)

The inequality (6) indicates that the system is charac-terized by two stationary states, which become stable orunstable depending on the values that β, γ and ν take on.
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In order to determine the conditions for which the sta-tionary values given in Eqs. (4), (5) correspond to a pointof stable equilibrium in the phase space, we perform astability analysis for the deterministic dynamics in singlesite. Therefore, in Eqs. (1) - (3) we neglect the noise terms

and consider the generic site of lattice, suppressing theindices i, j . Afterwards, we obtain the equations for thevariations δx, δy, δz around the stationary values xstat ,
ystat , zstat

δẋ =λ (1− 2νxstat − βystat − αzstat) δx − λβxstatδy − λαxstatδz, (7)
δẏ =λ (1− 2νystat − βxstat − αzstat) δy − λβystatδx − λαystatδz, (8)
δż =λz [−1 + γ

(
xstat + ystat

)]
δz + λzγzstatδx + λzγzstatδy. (9)

By considering the solutions
δx = δx0ekt , δy = δy0ekt , δz = δz0ekt , (10)

with k generic complex number and δx0, δy0, δz0 initial variations around the stationary values, and replacing Eqs. (10)in Eqs. (7) - (9), we obtain the following linear system of algebraic equations
[
λ
(1− 2νxstat − βystat − αzstat)− k] δx0 − λβxstatδy0 − λαxstatδz0 = 0, (11)

−λβystatδx0 + [λ (1− 2νystat − βxstat − αzstat)− k] δy0 − λαystatδz0 = 0, (12)
λzγzstatδx0 + λzγzstatδy0 + {λz [−1 + γ

(
xstat + ystat

)]
− k
}
δz0 = 0. (13)

In order to get solutions different from the trivial ones, i.e. δx0 = δy0 = δz0 = 0, after substituting for xstat , ystatand zstat the expressions given in Eqs. (4), (5), we set to zero the determinant of the system (11) - (13), obtaining thecorresponding eigenvalue equation
− λ2ν2k − 4λνγk2 − 2λ2νλzγ + λ2ν2λz − 4γ2k3 − 4γ2λλzk + 2γλλzβk + 2γλλzνk+ λ2β2k + 2λ2βλzγ − λ2β2λz = 0, (14)

whose solutions are
k1 = λ(β − ν)2γ , (15)
k2 = −λ(β + ν) +√λ2ν2 + 2λ2νβ + λ2β2 + 8γλλzν + 8γλλzβ − 16γ2λλz4γ , (16)
k3 = −λ(β + ν)−√λ2ν2 + 2λ2νβ + λ2β2 + 8γλλzν + 8γλλzβ − 16γ2λλz4γ . (17)

Setting λ = 3, λz = 0.06, ν = 1, α = 0.02, γ = 1, we calculate the eigenvalues and the corresponding eigenvectors fortwo different values of the interaction parameter β
ks1 = −2.9081, ks2 = −0.0900, ks3 = −0.0019 (β = βdown = 0.94 < 1), (18)

vs
1 = [−0.7071, −0.7071, 0.0438], vs

2 = [−0.7064, 0.7064, 0.9247 · 10−10] ,
vs

3 = [0.0103, 0.0103, −1.0017] (β = βdown = 0.94 < 1), (19)
ku1 = −3.0612, ku2 = 0.0600, ku3 = 0.0012 (β = βup = 1.04 > 1), (20)
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vu
1 = [−0.7071, −0.7071, −0.0277], vu

2 = [0.7068, −0.7068, 0.1445 · 10−9] ,
vu

3 = [−0.0098, −0.0098, 1.0000] (β = βdown = 1.04 > 1), (21)
where the apices ”s” and ”u” indicate stable and unstable equilibrium, respectively.
In fact, for β = βdown = 0.94, all the eigenvalues arenegative (Eqs. (18)), what causes the corresponding equi-librium point, given by Eqs. (4), (5) for β = βdown, tobe stable. Analogously, in the second set of eigen-values (Eqs. (20)) ku2 and ku3 are positive, what deter-mines the equilibrium point, given by Eqs. (4), (5) for
β = βup, to become unstable. This is clear obtaining thegeneric vector [δxs, δys, δzs], whose components are thevariations around the equilibrium point. We can express[δxs, δys, δzs] as a function of the eigenvalues given inEqs. (18) and the corresponding eigenvectors (Eqs. (19)).By this way we obtain

[δxs, δys, δzs] = C1 [−0.7071, −0.7071, 0.0438] e−2.9081t
+ C2 [−0.7064, 0.7064, 0.9247 · 10−10] e−0.0900t

+ C3 [0.0103, 0.0103, −1.0017] e−0.0019t, (22)
where C1, C2, C3 are generic real numbers. Since k1,
k2 and k3 take on negative values, [δxs, δys, δzs] tendsto zero for t → ∞, this behaviour indicating stability.Analogously, for β = βup = 1.04, we write [δxu, δyu, δzu]as a function of the eigenvalues given in Eqs. (20) and thecorresponding eigenvectors (Eqs. (21)), obtaining

[δxu, δyu, δzu] = C1 [−0.7071, −0.7071, −0.0277] e−3.0612t
+ C2 [0.7068, −0.7068, 0.1445 · 10−9] e0.0600t

+ C3[−0.0098, −0.0098, 1.0000]e0.0012t. (23)
Since k2 and k3 take on positive values, [δxu, δyu, δzu]diverges for t → ∞, what indicates instability.In particular, when the condition (6) is satisfied, the sta-ble state, obtained for β = βdown = 0.94, is representedby the coexistence of the three species. Otherwise, aftera transient, the predator tends to disappear (inequality(6) doesn’t hold anymore) and we get a system formedby two competing species, whose coexistence/exclusionconditions depend directly on the value of the parameter
β [22, 24–31]. Therefore, the predator plays a regulatoryrole for the dynamics of the two preys, whose recipro-cal behavior is mediated by the interaction parameter βthrough the presence of the species z. We calculate thenumerical solutions for single site dynamics by integrat-ing Eqs. (1) - (3). The parameter values are the sameused in the stability analysis, that is λ = 3, λz = 0.06,

ν = 1, α = 0.02, γ = 1, with the two different values
βdown = 0.94 and βup = 1.04. The initial conditions are
x(0) = y(0) = 0.1, z(0) = 2.0. The values of multiplicativenoise intensity are the same for the three species, that is
σ = σx = σy = σz . In Fig. 1 we show the time series ofthe three species in coexistence (β = βdown) and exclusion(β = βup) regimes, for σ = 0 and σ = 10−16. When thesystem is subject to deterministic dynamics, the coexis-tence regime causes, after a transient, the three speciesto reach the stationary values, xstat = ystat = 0.5, zstat =1.5, obtained from Eqs. (4) - (5) using ν = 1, α = 0.02,
γ = 1, β = βdown = 0.94 (see Fig. 1a). We note that in thegraph, as in panels b and c of the same figure, the densi-ties of the two preys overlap, so that the time behaviourof species x (black line) is not visible.These stationary values, according to the previous stabil-ity analysis (see Eq. (22)), correspond to a stable equi-librium point in the phase space. Conversely, taking
β = βup = 1.04 and using the same values for the otherparameters, from Eqs. (4) - (5) we get xstat = ystat = 0.5,
zstat = −1.0. According to the previous stability analy-sis (see Eq. (23)), we observe that these stationary valuescorrespond to an unstable equilibrium point in the phasespace. This agrees with two aspects of the dynamics ofthis system: i) the predator density cannot maintain anegative value, so that it evolves towards a new value,that, in particular, is given by zero (in Fig. 1 we show thetime series of the species for β = βup = 1.04 observing theextinction of the species z); ii) one of the two preys cannotkeep the equilibrium value 0.5, but has to evolve towardsa different stationary value. In fact, after the species zvanishes, the system consists of two competing species,whose dynamics depends on the value of β. In particular,for the value of β considered, that is β = βup = 1.04,after a transient, one of the two species (x and y) dis-appears (exclusion regime) [24, 29, 30]. We observe thatin deterministic exclusion regime the predator tends veryslowly to vanish, while the two prey densities reach thestationary values, remaining constant (Fig. 1b), even if thisequilibrium point is unstable (see Eq. (23)). However, inthe presence of a small level of multiplicative noise, thesymmetry, due to the parameter values and initial condi-tions used in our simulations, is broken and one of the twopreys prevails, displacing the other one (Fig. 1d), accord-ing to the results previously obtained [29, 30]. Finally wenote that no significative modifications occur, with respect
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to the deterministic case, when a small level of noise ispresent in coexistence regime (see Fig. 1c). This obvi-ously depends on the fact that, for β = βdown, the system
occupies a stable equilibrium point (see Eq. (22)), whichis maintained also in the presence of low levels of multi-plicative noise.

Figure 1. Time evolution of the three species. Deterministic dynamics in (a) coexistence and (b) exclusion regime. Stochastic dynamics, for
σ = 10−16 in (c) coexistence and (d) exclusion regime. Values of the parameters and initial conditions are λ = 3, λz = 0.06, ν = 1,
α = 0.02, γ = 1, x(0) = y(0) = 0.1, z(0) = 2.0.

However, environmental perturbations, due to the pres-ence both of deterministic and random fluctuations of bi-ological and physical variables, such as the temperature,affect the dynamics of the species. These external forcescan modify the behaviour of the populations, either in-troducing multiplicative noise sources which act directlyon the species or affecting the dynamics of the interac-tion parameter β. In fact, the environmental variationscan cause the system dynamics to change between coex-istence (β < 2γ − ν) and exclusion (β > 2γ − ν) regimes.This dynamical behavior can be described by considering

that the interaction parameter β(t) is a stochastic processdriven by a dichotomous noise, whose jump rate is givenby
χ(t) = { 0, ∆t ≤ τd,

χ0 (1 + A| cosωt|) , ∆t > τd .
(24)

where ∆t is the time interval between two consecutiveswitches, and τd is the delay between two jumps, that isthe time interval after a switch, before another jump canoccur. In Eq. (24), A and ω are respectively amplitude
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Figure 2. Time evolution of the interaction parameter β(t) with ini-
tial value β(0) = 1.04 and delay time τd = 435. The inter-
action parameter β(t) switches quasi-periodically between
βdown = 0.94 and βup = 1.04. The values of the other pa-
rameters are A = 9.0, ω/(2π) = 10−3, χ0 = 2 · 10−2.

and angular frequency of the periodic term, and χ0 is thejump rate in the absence of periodic term. This causes
β(t) to jump between two values, βdown < 2γ − ν and
βup > 2γ − ν. According to the condition (6), these val-ues determine the two possible dynamical regimes (coex-istence or exclusion) of the deterministic Lotka-Volterra’smodel for three interacting species. For given values ofthe parameters A, ω and χ0 the switching time betweenthe two levels of β(t) depends on τd. Applying a procedureanalogous to that followed for the two-species case [24],we set A = 9.0, ω/(2π) = 10−3, χ0 = 2 · 10−2, obtainingthe time series of β(t) for τd = 435, with βdown = 0.94and βup = 1.04. The results, shown in Fig. 2, indicate thepresence of a synchronization between the jumps and theperiodicity of the rate χ(t). For a system formed by twocompeting species this causes a quasi-periodical time be-havior of the two populations, which can be considered asa signature of the stochastic resonance phenomenon [32–35] in population dynamics [25–31]. Therefore we fix thedelay at the value τD = 435, which determines an oscillat-ing dynamical regime. In these conditions, β(t) switchesquasi-periodically between βdown and βup (see Fig. 2),causing the system to be alternatively subject to the co-existence and exclusion regimes.
2.1.2. Time behaviour of the species in a single site

In this section we analyze the time behaviour of threeinteracting species in a single site of the lattice. From

Eqs. (1)-(3), by setting D = 0 we get
ẋ = λx(1− νx − βy − αz) + x

√
σxξx (t), (25)

ẏ = λy(1− νy − βx − αz) + y√σyξy(t), (26)
ż = λzz(−1 + γx + γy) + z

√
σzξz(t), (27)

where the indices i, j where suppressed.
By choosing β(0) = 1.04 and τd = 435, we obtain for
β(t) the time behaviour shown in Fig. 2. We analyze thetime evolution of the species densities by numerical sim-ulation of Eqs. (25)-(27). The time series of x, y and z areobtained for different values of the multiplicative noise in-tensity, namely σ = 0, 10−12, 10−6, 10−3. The values ofthe other parameters are the same used in the previoussection, that is λ = 3, λz = 0.06, ν = 1, α = 0.02, γ = 1,
βdown = 0.94, βup = 1.04. The initial values of the speciesdensities are x(0) = y(0) = 0.1, z(0) = 2.0. In Fig. 3,where the results are reported, the time series of x(t), y(t)(preys) and z(t) (predator) show correlated behaviour inthe absence of noise (panel a). Here, the densities of thetwo preys overlap and the time series of species x (blackline) is not visible.
In the presence of noise intensity an anticorrelated os-cillating behaviour of x(t) and y(t) appears (see panels(b)-(d)). Moreover we note that, for all the values of mul-tiplicative noise intensity, the two prey densities oscillate,with the frequency of the external driving force, around thestationary values, xstat = ystat = 0.5. We observe thatthe predator density show an oscillating behaviour, withthe same frequency, around a value much smaller than
zstat = 1.5. However, the oscillations of z(t) are charac-terized by a larger amplitude with respect to x(t) and y(t).This behaviour is connected with the different effect thatthe alternating regime (exclusion/coexistence) produces onpreys and predator. In fact, the quasi-periodical behaviourof β(t) affects directly the dynamics of the predator (seeEq. (5)), causing a decrease of the mean value of z duringthe exclusion regime. Conversely, in coexistence regimethe two preys maintain a constant value (see Eq. (4)) go-ing towards an anticorrelated regime for β(t) = βup. Inthis last condition the two preys are subject to a purecompetitive dynamics, recovering the behaviour observedin a system of two competing species [29, 30].
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Figure 3. Time evolution of the three species densities in a single site of the lattice. The values of the multiplicative noise intensity are: (a) σ = 0,
(b) σ = 10−12, (c) σ = 10−6, (d) σ = 10−3. Here λ = 3, λz = 0.06, ν = 1, α = 0.02, γ = 1. The values of the other parameters are the
same of Fig. 2. The initial values of the species densities are x(0) = y(0) = 0.1, z(0) = 2.0. The time series of x(t), y(t) (preys) and z(t)
(predator) show a correlated behaviour in the absence of noise (panel a). In the presence of the noise (panels (b)-(d)) an anticorrelated
behaviour of x(t) and y(t) appears.

2.2. Spatially extended system: mean field
approach
In this section we analyze the time behaviour of threeinteracting species in a spatially extended system by us-ing a mean field approach. The system dynamics is de-scribed by Eqs. (1)-(3) in the presence of the diffusive term(D 6= 0). In order to use a mean field approach we derivethe moment equations for this system. Assuming N →∞,we write Eqs. (1)-(3) in a mean field form

ẋ = fx (x, y, z) +√σxgx (x)ξx (t) +D (〈x〉 − x) , (28)
ẏ = fy(x, y, z) +√σygy(y)ξy(t) +D (〈y〉 − y) , (29)
ż = fz(x, y, z) +√σygz(y)ξz(t) +D (〈z〉 − z) , (30)

where 〈x〉, 〈y〉 and 〈z〉 are average values on the spatiallattice considered (ensemble averages in the thermody-

namic limit) and we set fx (x, y, z) = λx(1−νx −βy−αz),
gx (x) = x, fy(x, y, z) = λy(1 − νy − βx − αz), gy(y) = y,
fz(x, y, z) = λzz[−1 + γ(x + y)], gz(z) = z. By site aver-aging Eqs. (28)-(30), we obtain

〈ẋ〉 = 〈fx (x, y, z)〉,
〈ẏ〉 = 〈fy(x, y, z)〉,
〈ż〉 = 〈fz(x, y, z)〉. (31)

By expanding the functions fx (x, y, z), gx (x), fy(x, y, z),
gy(y), fz(x, y, z), gz(z) around the 1st order moments 〈x(t)〉,
〈y(t)〉 and 〈z(t)〉, we get an infinite set of simultaneous or-dinary differential equations for all the moments [36]. Totruncate this set we apply a Gaussian approximation, forwhich the cumulants above the 2nd order vanish. Thereforewe obtain
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〈ẋ〉 = λ〈x〉 (1− ν〈x〉 − β〈y〉 − α〈z〉)− λ (νµ200 + βµ110 + αµ101) , (32)
〈ẏ〉 = λ〈y〉 (1− ν〈y〉 − β〈x〉 − α〈z〉)− λ (νµ020 + βµ110 + αµ011) , (33)
〈ż〉 = λz〈z〉 (−1 + γ〈x〉+ γ〈y〉) + λzγ (µ101 + µ011) , (34)
µ̇200 = 2λ (1− 2ν〈x〉 − β〈y〉 − α〈z〉) µ200

− 2λ〈x〉 (βµ110 + αµ101) + 2σx (µ200 + 〈x〉2)− 2Dµ200, (35)
µ̇020 = 2λ (1− 2ν〈y〉 − β〈x〉 − α〈z〉) µ020

− 2λ〈y〉 (βµ110 + αµ011) + 2σy (µ020 + 〈y〉2)− 2Dµ020, (36)
µ̇002 = 2λz (−1 + γ〈x〉+ γ〈y〉) µ002+ 2λzγ〈z〉 (µ101 + µ011) + 2σz (µ002 + 〈z〉2)− 2Dµ002, (37)
µ̇110 = λ [2− 2ν (〈x〉+ 〈y〉)− β (〈x〉+ 〈y〉)− 2α〈z〉] µ110

− λβ (〈x〉µ020 + 〈y〉µ200)− λα (〈x〉µ011 + 〈y〉µ101)− 2Dµ110, (38)
µ̇101 = λ (1− 2ν〈x〉 − β〈y〉 − α〈z〉) µ101 + λz (−1 + γ〈x〉+ γ〈y〉) µ101

− λ〈x〉 (αµ002 + βµ011) + λzγ〈z〉 (µ110 + µ200)− 2Dµ101, (39)
µ̇011 = λ (1− 2ν〈y〉 − β〈x〉 − α〈z〉) µ011 + λz (−1 + γ〈x〉+ γ〈y〉) µ011

− λ〈y〉 (αµ002 + βµ101) + λzγ〈z〉 (µ110 + µ020)− 2Dµ011, (40)

where µ200, µ020, µ002, µ110, µ101, µ011 are the 2nd ordercentral moments defined on the lattice
µ200(t) = 〈x2〉 − 〈x〉2,
µ020(t) = 〈y2〉 − 〈y〉2,
µ002(t) = 〈z2〉 − 〈z〉2,
µ110(t) = 〈xy〉 − 〈x〉〈y〉,
µ101(t) = 〈xz〉 − 〈x〉〈z〉,
µ011(t) = 〈yz〉 − 〈y〉〈z〉.

(41)

In order to get the dynamics of the three species we an-alyze the time evolution of the 1st and 2nd order momentsaccording to Eqs. (32)-(40). As initial conditions we con-sider each species uniformly distributed on the spatialdomain, that is we set 〈x(0)〉 = 〈y(0)〉 = 0.1, 〈z(0)〉 = 2.0,
µ200(0) = µ020(0) = µ002(0) = µ110(0) = µ101(0) = µ011(0) =0. Therefore, from Eqs. (32)-(40) we get, in the determin-istic case, the stationary values for 〈x〉, 〈y〉 and 〈z〉, in thecoexistence regime.

〈x〉stat = 〈y〉stat = 12γ ,
〈z〉stat = 2γ − (βdown + ν)2αγ .

(42)

Using for the parameters the same values of the singlesite analysis, we obtain
〈x〉stat = 〈y〉stat = 0.5,
〈z〉stat = 1.5. (43)

We also fix the delay time at the same value, τd = 435,used in the single site case. Finally, by numerical in-tegration of Eqs. (32)-(40), setting D = 10−1, we get thetime series of the 1st and 2nd order moments for the follow-ing values of multiplicative noise intensity σ = 0, 10−12,10−6, 10−3. The results are reported in Figs. 4, 5. Herewe note that, after a transient, the mean values of the twoprey densities (see panels a and d of Figs. 4, 5) oscillatearound the stationary values. The oscillations are con-nected with the presence of two stable equilibrium points.For β = βdown < 1 the stable equilibrium is given by thecontemporary presence of the three species (coexistenceregime). Conversely, for β = βup > 1 the system goestowards a new equilibrium point, with the predator tend-ing to disappear (exclusion regime). In the presence of adynamical regime (the system switches periodically fromcoexistence to exclusion), we observe the appearance ofcorrelated oscillations in the time series of 〈x(t)〉, 〈y(t)〉and 〈z(t)〉. In particular, we note that 〈z(t)〉 is subject tooscillations occurring around a value much smaller than
464



Davide Valenti, Bernardo Spagnolo

the stationary one (〈z〉stat = 1.5) and characterized by alarger amplitude with respect to 〈x(t)〉 and 〈y(t)〉. This behaviour is analogous to that observed in the case ofsingle site dynamics.

Figure 4. Time evolution of the 1st and 2nd order moments in the mean field approach. The values of the multiplicative noise intensity are: σ = 0,10−12 from top to bottom. In the absence of noise the time series of 〈x(t)〉, 〈y(t)〉 (panel a), µ200, µ020, µ002 (panel b) and µ110, µ101,
µ011 (panel c) are completely overlapped. The predator (mean value of species z) shows a behaviour correlated with those of both
preys (mean values of species x and y). For σ = 10−12, no changes are observed in the behaviour of the mean values (panel d),
the variances of the two preys oscillate overlapping each other and a correlation is observed with the variance of the species z (panel
e), the covariance of the two preys, µ110, oscillates taking on only negative values (the two preys are anticorrelated each other), while
µ101 and µ011 are always zero (panel f). The initial values of the moments are 〈x(0)〉 = 〈y(0)〉 = 0.1, 〈z(0)〉 = 2.0, µ200(0)=µ020(0)=µ002(0) =
µ110(0)=µ110(0) = 0=µ011(0)=0. The diffusion coefficient is D = 10−1. The values of the other parameters are the same used in Fig. 3.

In the absence of noise (top of Fig. 4), the time series of
〈x(t)〉, 〈y(t)〉 and 〈z(t)〉 (panel a), µ200(t), µ020(t), µ002(t)(panel b) and µ110(t), µ101(t), µ011(t) (panel c) are com-pletely overlapped and each species maintains a homoge-neous distribution over the lattice, that is all the 2nd ordermoments remain equal to zero. In particular we observethat in panels a, d of Fig. 4 and Fig. 5 the time behaviorof prey x (black line) is not visible, because of the overlapwith the time series of prey y. In panels b, c of Fig. 4 the2nd order moments of all the three species overlap andthe only green line is visible. For σ = 10−12 (bottom ofFig. 4) no changes are observed in the behaviour of themean values (see panel d), and the variances of the threespecies show correlated oscillations (panel e). In panel f,
µ110 oscillates taking on only negative values. This indi-cates that the spatial distributions in the lattice will becharacterized by the presence of regions where species xor species y prevails. The two preys will be distributed

therefore in non-overlapping spatial patterns. This pic-ture is in agreement with previous results obtained with adifferent model [37]. Conversely, µ101 and µ011 are alwayszero (see panel f of Fig. 4). This behaviour indicates thatthe predator is uncorrelated with the density of each prey:the species z tends to occupy indifferently the sites where
x or y prevails (see the time behaviour of µ002 in panel eof Fig. 4), but is correlated with the total prey density (aglobal increase of food availability improves the life con-ditions of the predator). This explains why the variance ofthe predator shows small oscillations. On the other hand,when exclusion regime takes place, the two preys tend tooccupy different sites, ”spreading out” in the spatial do-main and causing an increase of their variances (see panele of Fig. 4) with a stronger anticorrelation (see the be-haviour of µ110 in panel f of Fig. 4). Finally we note thatthe amplitude of the oscillations both of all variances andcovariances µ110 increases as a function of the noise inten-
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sity. This dependency is connected with pattern formationin the spatial distributions of the three species [37], whatsuggests the presence of a phase transition phenomenon.In particular the oscillations of the second order momentshave the same order of magnitude of σ (see panels b, c, e,f, in Figs. 4, 5). In fact, for higher levels of multiplicative

noise (σ = 10−6, 10−3) the amplitude of the oscillationsincreases and the periodical anticorrelated behaviour be-tween the two preys becomes more evident. Conversely,no modifications appear in the time series of the meanvalues as a function of the multiplicative noise intensity(see panels a, d in Figs. 4, 5).

Figure 5. Time evolution of the 1st and 2nd order moments. The values of the multiplicative noise intensity are: 10−6, 10−3 from top to bottom. No
changes are observed in the time behaviour of 〈x〉 = 〈y〉 = 〈z〉 (see panels a and d) for both values of the noise intensity. An increase in
the amplitude of oscillations, as a function of the noise intensity, appears both in the variances of the three species, µ200, µ020, µ002 (see
panels b and e), and in the covariance of the two preys, µ110 (see panels c and f). The values both of initial conditions and parameters
are the same used in Fig. 4.

Even if it is related to a very different mechanism, thisbehavior is similar to the stochastic resonance effect pro-duced in population dynamics, when the interaction pa-rameter is subjected to an oscillating bistable potential inthe presence of additive noise [29–31]. We note that in theabsence of external noise (σ = 0) both populations coexistand the species densities oscillate in phase around theirstationary value [29, 30]. This occurs identically in eachsite of the spatial lattice (single site dynamics). The be-havior of the mean values reproduces this situation. For
σ 6= 0, in the single site dynamics we observe anticorre-lated oscillations of x and y (preys). By site averagingthese noise-induced oscillations (see Ref. [29, 30]) we re-cover the average behavior obtained in the absence ofnoise. This spatial auto-averaging effect explains why the1st order moment behavior is independent on the external

noise intensity, while the 2nd order moments give infor-mation on ”spreading” and anticorrelation of the speciesdensities in the spatial domain.
3. Coupled map lattice model
In this section we adopt a different approach to analyzethe dynamics of the three species on the square lattice de-fined in Section 2. We consider the time evolution of oursystem by using a coupled map lattice (CML) model [21].In this formalism both correlated and anticorrelated spa-tial patterns of the three interacting species have beenfound [37]. Here we calculate the moments by using theCML model. By this approach, the dynamics of the spatialdistributions of the three species is given by the following
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equations
x(n+1)
i,j =λx(n)

i,j
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(n)
i,j

)
, (46)

where x(n)
i,j , y(n)

i,j and z(n)
i,j denote respectively the densitiesof prey x, prey y and predator z in the site (i, j) at thetime step n. According to the notation used for the meanfield approach, λ, λz , ν, β, α , γ and D represent the samequantities defined in Section 2. ξx(n)

i,j , ξy(n)
i,j , ξz(n)

i,j are inde-pendent Gaussian white noise sources with zero mean andunit variance. The interaction parameter β(n) correspondsto the value of β(t) taken at the time step n, according toEq. (24). Here ∑ρ indicates the sum over the four nearestneighbours.
3.1. Stationary states for the CML model
Applying a procedure analogous to that used for Eqs. (1)-(3), we consider Eqs. (44)-(46) in the absence both of noisesources and diffusion terms (D = 0). In this conditions,for x(n+1)

i,j = x(n)
i,j , y(n+1)

i,j = y(n)
i,j , z(n+1)

i,j = z(n)
i,j , we obtainthe stationary values of the three species densities for thegeneric site

xstat
CML

= ystat
CML

= 12γ
[
λz + 1
λz

]
, (47)

zstat
CML

= 2γ [ λ−1
λ
]
− (β + ν) [ λz+1

λz

]
2αγ , (48)

where the indices i, j were suppressed. As in the approachbased on the use of differential equations, the stationaryvalues of the two prey densities are independent on theinteraction parameter β, which is responsible for the twodifferent dynamical regimes, coexistence or exclusion, andaffects the dynamics of the whole system through its actionon the stationary value zstat
CML

. The existence condition forthe predator
zstat
CML

= 2γ [ λ−1
λ
]
− (β + ν) [ λz+1

λz

]
2αγ > 0 (49)

allows to get the following inequality for the interactionparameter β
β < 2γ [ λ−1

λ
][

λz+1
λz

] − ν. (50)
The inequality (50) indicates that, according to the anal-ysis performed in Section 2.1, the CML model is char-acterized by two stationary states that become stable orunstable depending on the values of the parameters. Com-paring the inequalities (6) and (50), we note that in theCML model the coexistence condition and the regulatoryrole, played by the predator on the dynamics of the twopreys, depend also on the scale factors λ and λz .
3.2. Time series in the CML model
In view of a comparison between mean field approach andCML model, we define the 1st and 2nd order moments onthe discrete lattice, at the time step n. The mean values,
〈x〉(n), 〈y〉(n), 〈z〉(n), given by
〈u〉(n) = ∑

i,j u
(n)
i,j

N , (u = x, y, z) (51)
represent the 1st order moments. The variances var(n)

x ,
var(n)

y , var(n)
z defined as

var(n)
u = ∑

i,j

(
u(n)
i,j − 〈u〉(n))2
N , (u = x, y, z), (52)

and the covariances
cov (n)

uw =∑i,j

(
u(n)
i,j − 〈u〉(n))(w (n)

i,j − 〈w〉(n))
N ,

(u,w = x, y, z; u 6= w) (53)
are the 2nd order central moments.In order to get β = 1 as critical value for the coexis-tence/exclusion regimes, we choose for all parameters, ex-cept γ, the same values of Section 2. In fact, by set-ting λ = 3, λz = 0.06, ν = 1, α = 0.02, γ = 26.5in Eqs. (49), (50), we obtain, for β < 1, survivance ofthe species z and, as a consequence, coexistence of thethree species. Conversely, for β > 1, we get the exclusionregime. Therefore, the value γ = 26.5 allows to obtainthe coexistence/exclusion dynamical regime for the sametime behaviour of β(t) used in the moment approach (seeEq. (24) and Fig. 2).Finally, by using this set of parameter values inEqs. (47), (48), we calculate the stationary values for the
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densities of the two preys and predator in the coexistenceregime (β = βdown = 0.94)
〈x〉statCML = 〈y〉statCML = 0.3,
〈z〉statCML = 1.0. (54)

We note that these values are close to those obtained inthe mean field approach (see Eqs. (43)). The CML modelcan be considered as a time discrete version of the Lotka-Volterra system, with time step ∆t = 1. For the numericalintegration of Eqs. (32)-(40) we used dt = 10−3, whichis a suitable value to obtain convergence of the solution.Obviously, with these values of ∆t and dt, the dynamicsof the CML model results to be faster with respect tothat obtained within the moment formalism. In particular,for β = βup > 1, using the same parameter values ofthe mean field approach, the exclusion regime causes thespecies z to vanish in one time step (∆t = 1). This impliesthat, when the system is subject to the dynamical regimediscussed in Section 2.1, the predator disappears. Thisbehaviour disagrees with the results found by using themoment equations (see Section 2.2).

In particular, we calculated the solutions of Eqs. (44) -(46) in the coexistence/exclusion dynamical regime for val-ues of the diffusion coefficient progressively decreasing,
i.e. D = 10−1, 10−2, 10−3, and we found exclusion ofspecies z.

In order to remove this discrepancy between CML modeland mean field approach, in the discrete time equations weuse a much smaller value for the diffusion constant, namely
D = 10−4, that allows to obtain a slowdown of the diffu-sion dynamics and, as a consequence, the survivance of thepredator in the coexistence/exclusion dynamical regime.In order to get the time behaviour of the 1st and 2nd ordermoments within the scheme of the CML model, we con-sider a square lattice with N = 100× 100, using for β(t)the time behaviour given in Fig. 2. Afterwards, at eachtime step n we calculate, from Eqs. (44), (45), (46), thenew values of x(n)

i,j , y(n)
i,j , z(n)

i,j , and the moments accordingto Eqs. (51), (52), (53). By iterating this procedure, weobtain the time series shown in Figs. 6, 7.

Figure 6. In panels (a), (b) and (c) we show, respectively, the mean values, 〈x〉(n), 〈y〉(n), 〈z〉(n), the variances, var(n)
x , var(n)

y , var(n)
z , and the

covariances, cov (n)
xy , cov (n)

xy , cov (n)
xy for σ = 0. The same quantities are shown in panels (d), (e) and (f) for σ = 10−12. The time series are

obtained within the formalism of the CML model (see Eqs. (44), (45), (46)). The diffusion coefficient is D = 10−4, and γ = 26.5. The
initial values of the species concentrations are x(0)

i,j = y(0)
i,j = 0.1, z(0)

i,j = 2.0 for all the sites (i, j). The values of the other parameters are
the same of Fig. 4: λ = 3, λz = 0.06, ν = 1, α = 0.02.

468



Davide Valenti, Bernardo Spagnolo

Figure 7. In panels (a), (b) and (c) we show, respectively, the mean values, 〈x〉(n), 〈y〉(n), 〈z〉(n), the variances, var(n)
x , var(n)

y , var(n)
z , and the

covariances, cov (n)
xy , cov (n)

xy , cov (n)
xy for σ = 10−6. The same quantities are shown in panels (d), (e) and (f) for σ = 10−3. The time series

are obtained within the formalism of the CML model (see Eqs. (44), (45), (46)). The values of the other parameters and the initial
conditions are the same of Fig. 6.

Since the interaction among sites is limited to the nearestneighbors (each site only interacts with other four ones),we expect that for a square lattice the results do not de-pend significantly on the size of the spatial domain, whenthe condition N � 4 is satisfied. An increase of the sys-tem size should delay the very short transient of the sys-tem dynamics towards the stationary behaviour shown inFigs. 6, 7, recovering the longer transient behaviour foundin the mean field approach (see Figs. 4, 5).The 1st and 2nd order moments calculated within theformalism of the CML model can be compared with thesame quantities obtained in the mean field approach (seeFigs. 4, 5). We note that the two set of time series are ina good qualitative agreement.According to the results obtained in the formalism of themoment equations, the mean values of the three speciesshow time oscillations, whose amplitude is larger for thepredator (panels a, d of Figs. 6, 7). In the absence ofnoise, the 2nd order moments remain equal to zero (seepanels b, c of Fig. 6), recovering the conditions of ho-mogeneous distributions obtained for σ = 0 in the meanfield approach (see panels b, c of Fig. 4). In the presence

of multiplicative noise, no modifications occur in the timeseries of the 1st order moments (see left side panels inFigs. 6, 7). However, for σ 6= 0 a symmetry breaking is in-troduced, with non-vanishing oscillating variances that areconnected with inhomogeneous distributions of the threespecies. For higher levels of the noise intensity, the am-plitude of the oscillations remains constant in the time se-ries of varx , vary and varz (see panels b, e of Figs. 6, 7).These results show some difference with those obtainedin the formalism of moment equations, where higher noiseintensities cause the oscillation amplitudes of µ200, µ020and µ002 to become larger (see panels b, e of Figs. 4, 5).Finally, we find that for σ 6= 0, temporal oscillations alsoappear in the time series of covxy. This agrees with theresults of the mean field approach, revealing the presenceof an anticorrelated dynamics between the two preys. Onthe other hand, covxz and covyz remain equal to zero alsoin the presence of multiplicative noise. This behaviour, inagreement with that obtained in the mean field formal-ism, indicates that the spatial distribution of the predatoris uncorrelated with those of each prey considered sep-arately, but depends on the total density of preys. The
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comparison between the two approaches shows that themean values 〈x〉(n), 〈y〉(n), 〈z〉(n) and those obtained withinthe formalism of the moment equations oscillate arounddifferent values. Moreover, the amplitudes of the oscilla-tions in the 2nd order moments appear significantly largerin the CML model. This discrepancies can be explainedrecalling that: i) in the two approaches the stationaryvalues are different (see Eqs. (42) and Eqs. (47)-(48)); ii)in the mean field formalism the interaction between sitesis extended to the whole spatial domain, conversely inthe CML model the species interaction is restricted to thenearest neighbors; iii) the dynamics of the CML model isfaster since an unitary time step (∆t = 1) is taken, insteadof the time step dt = 10−3 used in the moment equations.
4. Conclusions

We report a study on the stochastic dynamics of anecosystem with three interacting species (two preys andone predator), described by generalized Lotka-Volterraequations. After considering the single site dynamics ofthe ecosystem, we consider a spatially extended domain(two-dimensional lattice) by introducing diffusive terms totake into account the interaction of each site with all theother ones. The study is performed by a mean field ap-proach, in the formalism of the moment equations. Thesystem is affected by the presence of two noise sources,namely a multiplicative white noise and a correlated di-chotomous noise. The role of the correlated dichotomousnoise is to control the dynamical regime of the ecosystem(see Fig. 2), while the multiplicative noise is responsiblefor the anticorrelated behavior of the species concentra-tions. The mean field approach in Gaussian approximationenables us to obtain the time series of the 1st and 2nd or-der moments. We compare the results obtained within themean field approach with the time series calculated bya coupled map lattice (CML) model. The agreement isquite good, even if some discrepancies are present, dueto the discrete nature of the CML model and the limitedextension of the diffusive interaction (nearest neighbors)among different sites of the coupled map lattice. Our the-oretical results could explain the time evolution of popu-lations in real ecosystems whose dynamics is strictly de-pendent on random fluctuations, always present in naturalenvironment [23, 38, 39]. In particular, the time series ofreal data for vole and lemming populations revealed thepresence both of cycles and random fluctuations, and thequestion is ”whether a key feature of the cycle... is bestunderstood in terms of highly nonlinear interactions withmodest influence of environmental stochasticity or weaklynonlinear interactions with strong stochastic forcing” (see

in Ref. [7]). Detailed studies on the time series of theferal Soay sheep of the St. Kilda archipelago have beenperformed, reproducing the time behaviour of the sheepdistributions by using an autoregressive model which in-volves nonlinearity, periodic climate variations and envi-ronmental noise [40]. The introduction of stochastic terms,into a system of Lotka-Volterra equations for two compet-ing species, allowed to reproduce both the spatial distri-butions of benthic foraminifera in marine environment [41]and the time behaviour of the concentration of a bacterium,
Listeria monocytogenes, in a food product [42], finding agood agreement with experimental data. Finally, we notethat connections between random fluctuations of environ-mental variables and amplitude of oscillations in the popu-lation abundances were found in time series of planktonicforaminifera [43]. The model presented in this paper isthe two-dimensional version of nonlinear stochastic mod-els previously investigated. The application of a meanfield approach makes direct to analyze the spatial distri-butions in terms of mean concentrations and correspond-ing variances and covariances (2nd order moments). Theknowledge of the 2nd order moments and their relationswith the amplitude of random fluctuations could be the keyto explain spatial distributions of biological species, andto account the pattern formations appearing both in theo-retical studies [22, 37] and in real ecosystems, such as fishpopulations in marine environment [23, 44, 45]. This anal-ysis, performed on ecosystems consisting of three species,will be the subject of a forthcoming paper.
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