

Central European Journal of Physics

Approximate analytical solutions of scattering states for Klein-Gordon equation with Hulthén potentials for nonzero angular momentum

Research Article

Chang-Yuan Chen*, Fa-Lin Lu, Dong-Sheng Sun

Department of Physics, Yancheng Teachers University, Yancheng, 224002, P. R. China

Received 6 April 2008; accepted 18 May 2008

Abstract:

In this paper, using the exponential function transformation approach along with an approximation for the centrifugal potential, the radial Klein-Gordon equation with the vector and scalar Hulthén potential is transformed to a hypergeometric differential equation. The approximate analytical solutions of l-waves scattering states are presented. The normalized wave functions expressed in terms of hypergeometric functions of scattering states on the " $k/2\pi$ scale" and the calculation formula of phase shifts are given. The physical meaning of the approximate analytical solution is discussed.

PACS (2008): 03.65.Pm; 11.80.-m; 03.65.Db

Keywords:

Hulthén potential • Klein-Gordon equation • scattering states • approximate analytical solution • phase shifts © *Versita Warsaw and Springer-Verlag Berlin Heidelberg.*

1. Introduction

The Hulthén potential [1] is one of the important short-range potentials in physics. The potential is given by

$$V(r) = -\frac{V_0}{e^{r/r_0} - 1} = -\frac{Ze^2}{r_0} \frac{1}{e^{r/r_0} - 1},$$
 (1)

where V_0 is a constant and r_0 is the range of the potentials. If the potential is used for atoms, then $V_0 = Z/r_0$ (with $\hbar = c = e = 1$), where Z is identified as the atomic number. This potential has been applied to a number of areas such as nuclear and particle physics [2], atomic physics

[3, 4], molecular physics [5–7], and chemical physics [8], etc. The Hulthén potential behaves like the Coulomb potential near the origin $(r \rightarrow 0)$, but in the asymptotic region ($r\gg 1$) the Hulthén potential decreases exponentially, so its capacity for bound states is smaller than the Coulomb potential. However, for large values of r_0 , the Hulthén potential becomes the Coulomb potential given by $V(r) = -\frac{V_0}{e^{r/r_0} - 1} \xrightarrow[r_0 \gg 1]{} -\frac{Z}{r}$. Unfortunately, the Hulthén potential can be solved analytically only for the states with zero angular momentum [1]. For the case $l \neq 0$, the Hulthén potential cannot be exactly solved. In the nonrelativistic case, for nonzero angular momentum, several techniques were used to obtain approximate solutions, a number of methods have been used to find the boundstate energy eigenvalues numerically [9, 10] and quasianalytically, such as the variational [9, 11], perturbation

^{*}E-mail: yctcccy@163.net

[12], shifted 1/N expansion [13, 14], SUSYQM [15, 16], and AIM [17] methods. In the relativistic case, Dominguez-Adame [18], Chetouani et al. [19], and Talukdar et al. [20] have given the exact solutions for bound state and the scattering state of s-wave Klein-Gordon equation with vector and scalar Hulthén potentials, respectively. The exact solution for bound state of s-wave Dirac equation with vector and scalar Hulthén potentials has also been discussed [21–23]. Very recently, Chen et al. [24] and Soylu et al. [25] have presented approximate analytical solutions of bound states for the Klein-Gordon equation and the Dirac equation with vector and scalar Hulthén potentials for nonzero angular momentum, respectively. Haouat et al. [26] have discussed approximate analytical solutions of bound states and scattering states for the Klein-Gordon equation and the Dirac equation only with vector Hulthén potentials for the case $l \neq 0$.

The purpose of the current work is to study relativistic characteristics of scattering states for the Hulthén potential in the case $l \neq 0$. In the strong coupling case, the relativistic effects of a moving particle in a potential field should be discussed. In Section 2, we will give the approximate analytical solution of scattering states of l-wave

Klein-Gordon equation with vector and scalar Hulthén potentials on the assumption that an effective approximation of $\frac{1}{r^2} \approx \frac{e^{r/r_0}}{r_0^2(e^{r/r_0}-1)^2}$ is used for the centrifugal term in the case of any l-states. In Section 3, we will discuss the physical meaning of the approximate analytical solution.

2. The approximate analytical solutions of scattering states

In spherical coordinates, the Klein-Gordon equation with scalar potential S(r) and vector potential V(r) is written as $(\hbar = c = e = 1)$

$$\left\{-\nabla^2 + [M+S(r)]^2\right\} \Psi(r,\theta,\varphi) = [E-V(r)]^2 \Psi(r,\theta,\varphi)$$
(2)

Letting $\Psi(r, \theta, \phi) = \frac{u(r)}{r} Y_{lm}(\theta, \varphi)$, the radial equation is represented as

$$\frac{d^2u}{dr^2} + \left\{ [E^2 - M^2] - 2[MS(r) + EV(r)] + [V^2(r) - S^2(r)] - \frac{l(l+1)}{r^2} \right\} u(r) = 0.$$
 (3)

Now we consider vector and scalar Hulthén potentials which are written as

$$V(r) = -\frac{V_0}{e^{r/r_0} - 1}, \quad S(r) = -\frac{S_0}{e^{r/r_0} - 1},$$
(4)

respectively. Substituting Eq. (4) into Eq. (3), the result is

$$\frac{d^2u(r)}{dr^2} + \left\{k^2 + \frac{\beta^2/r_0^2}{e^{r/r_0} - 1} - \frac{v^2/r_0^2}{(e^{r/r_0} - 1)^2} - \frac{l(l+1)}{r^2}\right\} u(r) = 0,$$
(5)

where

$$k = (E^2 - M^2)^{1/2}, \quad \beta = (2EV_0 + 2MS_0)^{1/2}r_0, \quad \mathbf{v} = (S_0^2 - V_0^2)^{1/2}r_0.$$
 (6)

For the scattering states, E > M, k > 0. The boundary conditions for Eq. (3) are

$$r \to 0$$
, $u(r) \to r^{l+1}$; $r \to \infty$, $u(r) \to 2\sin(kr - \pi l/2 + \delta_l)$, (7)

The term $\frac{l(l+1)}{r^2}$ in Eq. (3) is known as the centrifugal term. When l=0 (s-wave), Eq. (5) can be exactly solved [18–20], but for the case $l\neq 0$, Eq. (5) cannot be exactly solved. Therefore, we must use an approximation for the centrifugal term similar to the bound states [15–17, 24]. In this approximation, $\frac{1}{r^2} \approx \frac{e^{r/r_0}}{r_0^2(e^{r/r_0}-1)^2}$ is used for the centrifugal term. So, Eq. (5) can be written as

$$\frac{d^2u(x)}{dx^2} + \left\{ k^2 r_0^2 + \frac{\beta^2}{e^x - 1} - \frac{v^2}{(e^x - 1)^2} - \frac{l(l+1)e^x}{(e^x - 1)^2} \right\} u(x) = 0,$$
 (8)

where $x = r/r_0$. If we rewrite equation (8) by using a new variable of the form $z = 1 - e^{-x}$ ($r \in [0, \infty)$, $z \in [0, 1]$), we obtain

$$\frac{d^2u(z)}{dz^2} - \frac{1}{1-z}\frac{du(z)}{dz} + \left\{\frac{k^2r_0^2}{(1-z)^2} + \frac{\beta^2}{z(1-z)} - \frac{v^2}{z^2} - \frac{l(l+1)}{z^2(1-z)}\right\}u(z) = 0.$$
 (9)

Considering the boundary conditions of the scattering states, we take the wave function with the form

$$u(z) = z^{l'+1} (1-z)^{-ik r_0} f(z), \tag{10}$$

where

$$l' = \frac{1}{2} \left[\sqrt{4\nu^2 + (2l+1)^2} - 1 \right] = \frac{1}{2} \left[\sqrt{4r_0^2(S_0^2 - V_0^2) + (2l+1)^2} - 1 \right]. \tag{11}$$

Substituting Eq. (10) into Eq. (9), we can obtain the following second-order differential equation

$$z(1-z)\frac{d^2f(z)}{dz^2} + \left[2(l'+1) - (2l'+3-2ikr_0)z\right]\frac{df(z)}{dz} + \left[\beta^2 + v^2 - (l'+1)^2 + 2ikr_0(l'+1)\right]f(z) = 0, \quad (12)$$

which is called the hypergeometric differential equation [27, 28]. Thus, analytical solution as $z=0 (r \to 0)$ is the hypergeometric function

$$f(z) = {}_{2}F_{1}(a, b; c; z)$$
 (13)

The parameters are

$$a = l' + 1 + \sqrt{\beta^2 + v^2 - k^2 r_0^2} - i k r_0, \quad b = l' + 1 - \sqrt{\beta^2 + v^2 - k^2 r_0^2} - i k r_0, \quad c = 2 l' + 2.$$
 (14)

Here the hypergeometric function ${}_2F_1(a,b;c;z)$ is a special case of the generalized hypergeometric function

$${}_{p}F_{q}(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{p}; \beta_{1}, \beta_{2}, \cdots, \beta_{q}; z) = \sum_{k=0}^{\infty} \frac{(\alpha_{1})_{k}(\alpha_{2})_{k} \cdots (\alpha_{p})_{k}}{k! (\beta_{1})_{k} (\beta_{2})_{k} \cdots (\beta_{q})_{k}} z^{k}$$

$$(15)$$

where the Pochhammer symbol is defined by $(x)_k = \Gamma(x+k)/\Gamma(x)$. Thus, the radial wave function of scattering states is

$$u(r) = N_{kl}(1 - e^{-r/r_0})^{l'+1} e^{ikr_2} F_1(a, b; c; 1 - e^{-r/r_0})$$
(16)

We now study asymptotic form of the above expression for large r, and calculate the normalization constant N_{kl} of the radial wave functions and phase shifts. From Eq. (14), we have

$$c - a - b = 2i kr_0 = (a + b - c)^*$$
 (17)

$$c - a = l' + 1 - \sqrt{\beta^2 + v^2 - k^2 r_0^2} + i \, k r_0 = b^*$$
 (18)

$$c - b = l' + 1 + \sqrt{\beta^2 + v^2 - k^2 r_0^2} + i \, k r_0 = a^*$$
 (19)

By using the transformation formulas for hypergeometric functions [27, 28]

$${}_{2}F_{1}(a, b; c; z) = \frac{\Gamma(c)\Gamma(c - a - b)}{\Gamma(c - a)\Gamma(c - b)} {}_{2}F_{1}(a, b; a + b - c + 1; 1 - z)$$

$$+ (1 - z)^{c - a - b} \frac{\Gamma(c)\Gamma(a + b - c)}{\Gamma(a)\Gamma(b)} {}_{2}F_{1}(c - a, c - b; c - a - b + 1; 1 - z)$$
(20)

and paying attention to ${}_{2}F_{1}(a, b; c; 0) = 1$, we have

$${}_{2}F_{1}(a, b; c; 1 - e^{-r/r_{0}}) = \frac{\Gamma(c)\Gamma(c - a - b)}{\Gamma(c - a)\Gamma(c - b)} {}_{2}F_{1}(a, b; a + b - c + 1; e^{-r/r_{0}})$$

$$+ (e^{-r/r_{0}})^{c - a - b} \frac{\Gamma(c)\Gamma(a + b - c)}{\Gamma(a)\Gamma(b)} {}_{2}F_{1}(c - a, c - b; c - a - b + 1; e^{-r/r_{0}})$$

$$\xrightarrow[r \to \infty]{} \Gamma(c) \left[\frac{\Gamma(c - a - b)}{\Gamma(c - a)\Gamma(c - b)} + e^{-2ikr} \left(\frac{\Gamma(c - a - b)}{\Gamma(c - a)\Gamma(c - b)} \right)^{*} \right]. \tag{21}$$

Letting

$$\frac{\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)} = \left| \frac{\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)} \right| e^{i\delta}$$
 (22)

then

$$\left(\frac{\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)}\right)^* = \left|\frac{\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)}\right| e^{-i\delta}$$
(23)

where δ is a real number. Eq. (21) then becomes

$${}_{2}F_{1}(a,b;c;1-e^{-r/r_{0}}) \underset{r \to \infty}{\longrightarrow} \Gamma(c) \left| \frac{\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)} \right| e^{-ikr} \left[e^{i(kr+\delta)} + e^{-i(kr+\delta)} \right]$$

$$(24)$$

Substituting Eq. (24) into Eq. (16) leads to

$$u(r) \underset{r \to \infty}{\longrightarrow} 2 N_{k l} \Gamma(c) \left| \frac{\Gamma(c - a - b)}{\Gamma(c - a) \Gamma(c - b)} \right| \cos(kr + \delta)$$

$$\underset{r \to \infty}{\longrightarrow} 2 N_{k l} \Gamma(c) \left| \frac{\Gamma(c - a - b)}{\Gamma(c - a) \Gamma(c - b)} \right| \sin[kr - \pi l/2 + (\pi(l + 1)/2 + \delta)]. \tag{25}$$

Comparing Eqs. (7) with (25), we have the phase shifts as

$$\begin{split} \delta_{l} &= \pi (l+1)/2 + \arg \Gamma(c-a-b) - \arg \Gamma(c-a) - \arg \Gamma(c-b) \\ &= \pi (l+1)/2 + \arg \Gamma(2ikr_{0}) - \arg \Gamma(l'+1 - \sqrt{\beta^{2} + v^{2} - k^{2}r_{0}^{2}} + ikr_{0}) - \arg \Gamma(l'+1 + \sqrt{\beta^{2} + v^{2} - k^{2}r_{0}^{2}} + ikr_{0}) \end{split} \tag{26}$$

and the normalization constant on the " $k/2\pi$ scale" as

$$N_{k\,l'} = \frac{1}{\Gamma(c)} \left| \frac{\Gamma(c-a)\Gamma(c-b)}{\Gamma(c-a-b)} \right| = \frac{1}{\Gamma(2l'+2)} \left| \frac{\Gamma(l'+1-\sqrt{\beta^2+v^2-k^2r_0^2}+ikr_0)\Gamma(l'+1+\sqrt{\beta^2+v^2-k^2r_0^2}+ikr_0)}{\Gamma(2\,i\,kr_0)} \right|. \tag{27}$$

Where l' and k, β , ν are given in formulas (11) and (6), respectively. The corresponding normalized wave functions of scattering states as

$$u(r) = \frac{1}{\Gamma(2l'+2)} \left| \frac{\Gamma(l'+1-\sqrt{\beta^2+v^2-k^2r_0^2}+ikr_0)\Gamma(l'+1+\sqrt{\beta^2+v^2-k^2r_0^2}+ikr_0)}{\Gamma(2ikr_0)} \right| (1-e^{-r/r_0})^{l'+1} e^{ikr}$$

$$\times {}_2F_1(l'+1+\sqrt{\beta^2+v^2-k^2r_0^2}-ikr_0,l'+1-\sqrt{\beta^2+v^2-k^2r_0^2}-ikr_0;2l'+2;1-e^{-r/r_0}).$$
 (28)

3. Discussion

After approximately solving the scattering states of *l*-wave Klein-Gordon equation with vector and scalar Hulthén potentials, we have several remarks.

- (1) When l=0, both the centrifugal term and the approximation centrifugal term are zero. Eqs. (26) and (28) reduce to the exact phase shifts formula and the normalized wave functions on the " $k/2\pi$ scale" for the scattering states of s-wave Klein-Gordon equation with Hulthén potential, respectively.
- (2) When $r_0 \gg 1$, the Hulthén potential becomes the Coulomb potential, i. e.

$$V(r) = -\frac{V_0}{e^{r/r_0} - 1} \xrightarrow[r_0 \gg 1]{} -\frac{Z_v}{r}, \quad S(r) = -\frac{S_0}{e^{r/r_0} - 1} \xrightarrow[r_0 \gg 1]{} -\frac{Z_s}{r}. \tag{29}$$

Therefore, $V_0=Z_{\nu}/r_0$, $S_0=Z_s/r_0$, and Eq. (6) and (11) becomes respectively,

$$k = (M^2 - E^2)^{1/2}, \quad \beta = \sqrt{2r_0(EZ_V + MZ_s)}, \quad \nu = \sqrt{(Z_s^2 - Z_v^2)},$$
 (30)

$$l' = \frac{1}{2} \left[\sqrt{4(Z_s^2 - Z_v^2) + (2l+1)^2} - 1 \right]. \tag{31}$$

From Eq. (14), (30), and (31), we can obtain

$$\lim_{r_0 \gg 1} a = \lim_{r_0 \gg 1} \left(l' + 1 + \sqrt{\beta^2 + v^2 - k^2 r_0^2} - i \, k r_0 \right) = l' + 1 - i (EZ_v + MZ_s)/k, \tag{32}$$

and

$$\lim_{r_0 \gg 1} b = \lim_{r_0 \gg 1} \left(l' + 1 - \sqrt{\beta^2 + v^2 - k^2 r_0^2} - i \, k r_0 \right) = \lim_{r_0 \gg 1} (-i2k \, r_0) \to \infty. \tag{33}$$

And using the relation of hypergeometric function with confluent hypergeometric function [27, 28],

$$\lim_{b \to \infty} {}_{2}F_{1}(a,b;c;z/b) = {}_{1}F_{1}(a;c;z)$$
(34)

we can rewrite the radial wave function (28) as

$$u(r) = A_{k \, l'}(kr)^{l'+1} \, e^{i \, k \, r} \, {}_{1}F_{1}(l'+1 - i(EZ_{v} + MZ_{s})/k \, ; \, 2 \, l' + 2; \, -2 \, i \, k \, r). \tag{35}$$

The above expression is the same as the radial wave function for the scattering states of Klein-Gordon equation with vector and scalar Coulomb potential [29], where the normalization constant is

$$A_{k\,l'} = \frac{2^{l'+1} \, |\Gamma(l'+1-i(EZ_v+MZ_s)/k)| \, e^{\pi \, (EZ_v+MZ_s)/2k}}{\Gamma(2l'+2)} \, , \tag{36}$$

and corresponding phase shifts are represented as

$$\delta_l = \arg \Gamma(l' + 1 - i(EZ_v + MZ_s)/k) + \pi(l - l')/2. \tag{37}$$

(3) In the case that the scalar potential is equal to the vector potential, $S_0 = V_0$, l' = l, then Eqs. (26) and (28) reduce respectively to

$$\delta_{l} = \pi(l+1)/2 + \arg\Gamma(2ikr_{0}) - \arg\Gamma(l+1 - \sqrt{2V_{0}(E+M)r_{0}^{2} - k^{2}r_{0}^{2}} + ikr_{0})$$

$$- \arg\Gamma(l+1 + \sqrt{2V_{0}(E+M)r_{0}^{2} - k^{2}r_{0}^{2}} + ikr_{0}), \tag{38}$$

$$u(r) = \frac{1}{(2l+1)!} \left| \frac{\Gamma(l+1-\sqrt{2V_0(E+M)r_0^2 - k^2r_0^2 + ikr_0})\Gamma(l+1+\sqrt{2V_0(E+M)r_0^2 - k^2r_0^2 + ikr_0})}{\Gamma(2ikr_0)} \right| (1-e^{-r/r_0})^{l+1} e^{ikr}$$

$$\times {}_2F_1(l+1+\sqrt{2V_0(E+M)r_0^2 - k^2r_0^2 - ikr_0}, l+1-\sqrt{2V_0(E+M)r_0^2 - k^2r_0^2 - ikr_0}; 2l+2; 1-e^{-r/r_0}). \tag{39}$$

(4) Finally, we discuss the non-relativistic limit of the phase shifts and the radial wave functions. When S(r) = V(r), Eq. (2) reduces to a Schrödinger-like equation for the potential 2V(r). In other words, the non-relativistic limit of scattering states is the Schrödinger equation for the potential $-2V_0/[\exp(r/r_0) - 1]$. By using methods of Ref. [30], we have the non-relativistic representation of the phase shifts and the normalized radial wave functions of scattering states on the " $k/2\pi$ scale" for the potential $-2V_0/[\exp(r/r_0) - 1]$ as (where $\hbar = c = e = 1$)

$$\delta_l = \pi(l+1)/2 + \arg\Gamma(2ikr_0) - \arg\Gamma(l+1+ikr_0 - \sqrt{4MV_0r_0^2 - k^2r_0^2}) - \arg\Gamma(l+1+ikr_0 + \sqrt{4MV_0r_0^2 - k^2r_0^2}), \quad (40)$$

$$u(r) = \frac{1}{(2l+1)!} \left| \frac{\Gamma(l+1-\sqrt{4MV_0r_0^2-k^2r_0^2}+ikr_0)\Gamma(l+1+\sqrt{4MV_0r_0^2-k^2r_0^2}+ikr_0)}{\Gamma(2i\,kr_0)} \right| (1-e^{-r/r_0})^{l+1} e^{ikr}$$

$$\times {}_2F_1(l+1+\sqrt{4MV_0r_0^2-k^2r_0^2}-ikr_0,l+1-\sqrt{4MV_0r_0^2-k^2r_0^2}-ikr_0;2l+2;1-e^{-r/r_0}), \tag{41}$$

where $k = \sqrt{2ME_{non}}$, M and E_{non} are rest mass and non-relativistic energy, respectively.

In the weak coupling condition, $E = M + E_{non}$, $E + M = M + E_{non} + M \approx 2M$, $k = (E^2 - M^2)^{1/2} = \sqrt{(E + M)(E - M)} \approx \sqrt{2ME_{non}}$. Thence Eqs. (38) and (39) reduce to the non-relativistic phase shifts expression (40) and the normalized radial wave functions expression (41) on the " $k/2\pi$ scale", respectively.

4. Conclusions

In this paper, the approximate analytical solution of any l – waves scattering states for the Klein-Gordon equation with vector and scalar Hulthén potential is presented. Using an exponential function transformation, the radial Klein-Gordon equation is transformed into a hypergeometric differential equation on the assumption that an effective approximation of $\frac{1}{r^2} \approx \frac{e^{r/r_0}}{r_0^2(e^{r/r_0}-1)^2}$ is used for the centrifugal term in the case of any l- states. The normalized wave functions expressed in terms of hypergeometric functions of scattering states on the " $k/2\pi$ scale" and the calculation formula of phase shifts are given. When l=0, the result is an exact solution of scattering states of s-wave Klein-Gordon equation with vector and scalar

Hulthén potentials. In the case of $r_0\gg 1$, the result reduces to an exact solution of scattering states of Klein-Gordon equation with vector and scalar Coulomb potentials. Furthermore, we discussed non-relativistic limit of the phase shifts and the radial wave functions.

Acknowledgements

We thank the referees for their useful suggestions. This work is supported by the Natural Science Foundation of the Jiangsu Higher Education Institutions of China under Grant No: 06KJB140123.

- S. Flügge, Practical Quantum Mechanics (Springer Press, Berlin, 1974)
- [2] B. Durand, L. Durand, Phys. Rev. D 23, 1092 (1981)
- [3] R. Dutt, K. Chowdhury, Y. P. Varshni, J. Phys. A 18, 1379 (1985)
- [4] T. Xu, Z. Q. Cao, Y.C. Ou, Q.S. Shen, G.L. Zhu, Chin. Phys. 15, 1172 (2006)
- [5] I.S. Bitensky, V.K. Ferleger, I.A. Wojciechowski, Nucl. Instrum. Meth. B 125, 201 (1997)
- [6] C.S. Jia, J.Y. Wang, S. He, L.T. Sun, J. Phys. A 33, 6993 (2000)
- [7] J.X. Sun, L.Y. Zhang, Acta Phys. Sin. 45, 1953 (1996) (in Chinese)
- [8] J.A. Olson, D.A. Micha, J. Chem. Phys. 68, 4352 (1978)
- [9] Y.P. Varshni, Phys. Rev. A 41, 4682 (1990)
- [10] M.A. Nunez, Phys. Rev. A 47, 3620 (1993)
- [11] S.H. Patil, J. Phys. A 34, 3153 (2001)
- [12] P. Matthys, H.D. Meyer, Phys. Rev. A 38, 1168 (1988)
- [13] A.Z. Tang, F.T. Chan, Phys. Rev. A 35, 911 (1987)
- [14] B. Roy, R. Roychoudhury, J. Phys. A 20, 3051 (1987)
- [15] B. Gönül, O. Özer, Y. Cancelik, M. Kocak, Phys. Lett. A 275, 238 (2000)
- [16] B. Gönül, Chin. Phys. Lett. 21, 1685 (2004)
- [17] O. Bayrak, G. Kocak, I. Boztosun, J. Phys. A 39, 11521 (2006)

- [18] F. Dominguez-Adame, Phys. Lett. A 136, 175 (1989)
- [19] L. Chetouani, L. Guechi, A. Lechebb, T.F. Hammann, A. Messouber, Physica A 234, 529 (1996)
- [20] B. Talukdar, A. Yunus, M.R. Amin, Phys. Lett. A 141, 326 (1989)
- [21] S.Z. Hu, R.K. Su, Acta Phys. Sin. 40, 1201 (1991) (in Chinese)
- [22] J.Y. Guo, J. Meng, F.X. Xu, Chin. Phys. Lett. 20, 602 (2003)
- [23] A.D. Alhaidari, J. Phys. A 37, 5805 (2004)
- [24] C.Y. Chen, D.S. Sun, F.L. Lu, Phys. Lett. A 370, 219 (2007)
- [25] A. Soylu, O. Bayrak, I. Boztosun, J. Math. Phys. 48, 082302 (2007)
- [26] S. Haouat, L. Chetouani, Phys. Scr. 77, 025005 (2008)
- [27] Z.X. Wang, D.R. Guo, An Introduction to Special Functions (Science Press, Beijing, 1979) (in Chinese)
- [28] I.S. Gradshteyn, I.M. Ryzhik, Tables of Integrals, Series, and Products, 6th Edition (Academic Press, New York, 2000)
- [29] C.Y. Chen, D.S. Sun, F.L. Lu, Phys. Lett. A 330, 424 (2004)
- [30] C.Y. Chen, F.L. Lu, D.S. Sun, Acta Phys. Sin. 56, 6204 (2007) (in Chinese).