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Abstract: The Pareto probability distribution is widely applied in different fields such us finance, physics, hydrology,
geology and astronomy. This note deals with an application of the Pareto distribution to astrophysics and
more precisely to the statistical analysis of masses of stars and of diameters of asteroids. In particular
a comparison between the usual Pareto distribution and its truncated version is presented. Finally, a
possible physical mechanism that produces Pareto tails for the distribution of the masses of stars is
presented.
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1. Introduction

The Pareto distribution [1, 2]. is a simple model for non-negative data with a power law probability tail. In manypractical applications, it is natural to consider an upperbound that truncates the tail [3–5]; the truncated Paretodistribution has a wide range of applications in severalfields in data analysis [5, 6].
Power law distributions are often found in astrophysics:for instance in the range 1M� <M < 10M�, the massof the stars (main sequence V), when expressed in termsof the solar mass M�, scales as ψ(M) ∝M−α with α=2.35, see [7], or α= 2.3 as suggested by a recent evalua-tion, see [8]. Other examples are the intensity of nonther-mal emission from supernova remnants and extra-galactic
∗E-mail: zaninetti@ph.unito.it
†E-mail: ferraro@ph.unito.it

radio-sources that scales as ν−α , with numerical valuesof α ranging between 0.5 and 1, the observed differen-tial spectrum of cosmic rays proportional to E−2.75 in theinterval 1010 eV 5.0 1015 eV [9, 10], and the gamma rayburst luminosity function that scales as L−2, [11, 12]. Ofcourse the Pareto distribution is not the only one to ex-hibit a power law tail, this behaviour being common todifferent distributions (e.g. the lognormal distribution);however, Pareto distributions are especially attractive fortheir simple analytical form.
In this paper we present in Section 2 a comparison be-tween the Pareto and the truncated Pareto distributions.In Section 3 the theoretical results are applied to distri-butions of astrophysical data, namely the mass of starsand the radius of asteroids. A physical mechanism thatproduces a Pareto type distribution for the masses is sug-gested in Section 4.
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2. Preliminaries
Let X be a random variable taking values x in the interval[a,∞], a > 0. The probability density function (in thefollowing PDF) known as the Pareto is defined by [2]

f(x;a, c) = cacx−(c+1), (1)
c > 0, and the Pareto distribution functions are

F (x;a, c) = 1− acx−c. (2)
An upper truncated Pareto random variable is defined inthe interval [a, b], the corresponding PDF is

fT (x;a, b, c) = cacx−(c+1)1− ( ab )c , (3)
[5] and the truncated Pareto distribution function is

FT (x;a, b, c) = 1− ( ax )c1− ( ab )c . (4)
Momenta of the truncated distributions exist for all c > 0.For instance, the mean fT (x;a, b, c) is, for c 6= 1 and c = 1,respectively,

〈x〉 = ca
c − 1 1− ( ab )c−11− ( ab )c , 〈x〉 = cac1− ( ab )c ln ba (5)

Similarly, if c 6= 2, the variance is given by
σ 2 = ca2(c − 2) 1− ( ab )c−2

1− ( ab )c − 〈x〉2, (6)
whereas for c = 2

cac1− ( ab )c ln ba − 〈x〉2. (7)
In general the n-th central moment is

∫ b

a
(x − 〈x〉)nfT (x)dx = ((ac)−1 − (bc)−1)−1
·
[ (−〈x〉)n a−c 2F1(−c,−n; 1− c; a

〈x〉 )
− (−〈x〉)n b−c 2F1(−c,−n; 1− c; b

〈x〉 )], (8)
where 2F1(a, b; c; z) is a regularized hypergeometricfunction, see [13–15]. An analogous formula based on some

of the properties of the incomplete beta function (see [16]and [17]) can be found in [18].Parameters of the truncated Pareto PDF can be obtainedfrom empirical data via the maximum likelihood method;explicit formulas for maximum likelihood estimators (MLE)are given in [3], and for the more general case in [5], whoseresults we report here for completeness.Consider a random sample X = x1, x2, . . . , xn and let x(1) ≥
x(2) ≥ · · · ≥ x(n) denote their order statistics so that x(1) =max(x1, x2, . . . , xn), x(n) = min(x1, x2, . . . , xn).The MLE of the parameters a and b are

ã = x(n), b̃ = x(1), (9)
respectively, and c̃ is the solution of the equation

n
c̃ + n

(
x(n)
x(1)
)c̃ ln ( x(n)

x(1)
)

1− ( x(n)
x(1)
)c̃ −

n∑
i=1 [ln xi − ln x(n)] = 0, (10)

[5].There exists a simple test to see whether a Pareto model isappropriate [5]: the null hypothesis H0 : ν =∞ is rejectedif and only if x(1) < [nC/(− lnq)]1/c , 0 < q < 1, where
C = ac . The approximate p-value of this test is given by
p = exp{−nCx−c(1)

}, and a small value of p indicates thatthe Pareto model is not a good fit; of course this is notenough per se to demonstrate the goodness of a truncatedPareto distribution.Given a set of data it is often difficult to decide if theyagree more closely with f or fT , in that, in the interval[a, b], they differ only by a multiplicative factor 1− (a/b)c ,which if the interval [a, b] is not too small approaches 1even for relatively small values of c. For this reason, ratherthan f and fT , the distributions P(X > x) and PT (X > x)are used, often called survival functions, which are givenrespectively by
P(X > x) = S(x) = 1− F (x;a, c) = acx−c (11)

and
PT (X > x) = ST (x) = 1−FT (x;a, b, c) = cac (x−c − b−c)1− ( ab )c .(12)The probabilities P and PT have qualitatively differenttrends that are better observed in a log-log plot. Inthis case P is obviously represented by a straight line,whereas PT exhibits also a almost linear trend with asharp drop when x tends to b. To illustrate this point we
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Figure 1. Log–log plot of the survival function: 10000 random data
(empty circles), generated with Eq. (13), survival func-
tion of the truncated Pareto distribution (full line) and
survival function of the Pareto distribution (dotted line).

Figure 2. Log–log plot of the survival function of the mass distribu-
tion of the stars: data (empty circles), survival function
of the truncated Pareto PDF (full line) and survival func-
tion of the Pareto PDF (dotted line). A complete sample
(main sequence V) is considered with parameters as in
Table 1.

have generated a set of n = 10000 random points drawnfrom a truncated Pareto distribution, via the formula
X : a, b, c ∼ a(1− R (1− (ab)c))− 1

c
, (13)

where R is the unit rectangular variate, and we have fittedthem with S and ST respectively, see Figure 1.
3. Applications

3.1. Mass of stars

The sample of stellar masses has been obtained from theHipparcos data as a function of the absolute magnitudeand (B-V) [19].Results of the fitting with P and PT are presented in Ta-ble 1 where a, b, c and n, the number of sample elements,are reported and in Figure 2 that shows the data with thefit.In this case in the range 3.44M� > M ≥ 0.53M�, seeTable 1 , the coefficient α = c + 1 =2.45 is in agreementwith modern estimates [8]. In this case, the power of thePareto test results to be p = 0.032, indicating that thePareto distribution is not a good fit, as can also be seenfrom Figure 2 .Table 2 therefore reports the χ2 of the fit of the star masseswhen using the Pareto and the truncated Pareto, respec-tively.

Table 1. Coefficients of mass distribution of the stars in the first
10 pc, of a complete sample (main sequence V). The pa-
rameter c is derived trough MLE and p = 0.032.

a [M�] b [M�] c n P(X > x)0.53 3.44 1.45 52 Truncated Pareto0.53 ∞ 1.77 52 Pareto
Table 2. χ2 of different distributions when the number of bins is 5 for

the stars in the first 10 pc.

Distribution χ2
Pareto 7.1Truncated Pareto 5.26

3.2. Distribution of asteroid size

Supposing that not just the masses of stars but also thoseof other astrophysical objects have a power law tail, thenis not difficult to prove also that their linear dimension,radii or diameters, must follow a power law. We havetested this hypothesis by considering the diameters ofdifferent families of asteroids, namely, Koronis, Eos andThemis.In the following the sample parameter of the families arereported in Table 3, Table 4 and Table 5 , whereas Fig-ure 3, Figure 4, Figure 5 report the graphical display ofdata and the fitting distributions.In case of the Koronis family PT fits the data better than Pand indeed p = 0.039 is correspondingly small, whereasfor the Eos family, P performs slightly better than PT
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Figure 3. Ln–ln plot of the survival function of the diameter dis-
tribution of the Koronis Family: data (empty circles),
survival function of the truncated Pareto PDF (full line)
and survival function of the Pareto PDF (dotted line). A
complete sample is considered with parameters as in
Table 3.

Figure 4. Ln–ln plot of the survival function of the diameter distri-
bution of the Eos Family: data (empty circles), survival
function of the truncated Pareto PDF (full line) and sur-
vival function of the Pareto PDF (dotted line). A com-
plete sample is considered with parameters as in Ta-
ble 4.

Figure 5. Ln–ln plot of the survival function of the diameter dis-
tribution of the Themis Family: data (empty circles),
survival function of the truncated Pareto PDF (full line)
and survival function of the Pareto PDF (dotted line). A
complete sample is considered with parameters as in
Table 5.

Figure 6. Log–log plot of the survival function of the mass distribu-
tion for the primeval nebula when m ≥ 0.5M� are con-
sidered. The truncated Pareto parameters are c = 1.36
and p = 0.0058.

(p=0.68), and the estimated of c are very closed in bothcases. Finally in the third case, the Themis family, thetwo distributions are the same, due to the fact that theratio a/b = 0.14 is small.
4. Generating Pareto tails
As a simple example of how a distribution with power canbe generated, consider the growth of a primeval nebula viaaccretion, which is the process by which nebulae “capture”mass. We start by considering a uniform PDF for the

initial mass of N primeval nebulae, m, in a range mmin <
m ≤ mmax . At each interaction the i-th nebula has aprobability λi to increase its mass mi that is given by

λi = (1− exp(−akmi)), (14)
where ak is a parameter of the simulation; thus more“massive” nebulae are more likely to grow via accretion.The quantity by which the primeval nebula can grow varieswith time, in order to take into account that the total massavailable is limited,

δm(t) = δm(0) exp(−t/τ), (15)
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Table 3. Coefficients of the diameter distribution of the Koronis fam-
ily. The parameter c is derived through MLE and p = 0.033.

a [km] b [km] c n P(X > x)25.1 44.3 3.77 29 truncated Pareto25.1 ∞ 5.04 29 Pareto
Table 4. Coefficients of the diameter distribution of the Eos family .

The parameter c is derived through MLE and p = 0.681.

a [km] b [km] c n P(X > x)30.1 110 3.80 53 truncated Pareto30.1 ∞ 3.94 53 Pareto
Table 5. Coefficients of the diameter distribution of the Themis family.

The parameter c is derived through MLE and p = 0.67.

a [km] b [km] c n P(X > x)35.3 249 2.5 53 truncated Pareto35.3 ∞ 2.6 53 Pareto
where δm(0) represents the maximum mass of exchangeand τ the scaling time of the phenomena. The simulationproceeds as follows: a number r, is randomly chosen inthe interval [0, 1] for each nebula, and, if r < λi, the mass
mi is increased by δm(t), where t denotes the iteration ofthe process. The processes proceed in parallel: at eachtemporal iteration all the primeval nebulae are considered.Results of the simulations have been fitted with bothPareto survival distributions. see Figure 6.Due to a photometric effect [19] the sample of observedstars is complete only for m ≥ 0.5M�. We thereforehave set the lower boundary of the masses to 0.5M�,and the resulting subset has been fitted with the Paretoand truncated Pareto survival distributions, Figure 6. Itshould be noted that the results of the simulation give c =1.36, that is α = 2.36 in agreement with the experimentalestimate.
5. Conclusions
Results of the analysis presented here show that the trun-cated Pareto distribution provides a good fit for the dis-tribution and performs better than the usual Pareto distri-bution. When the asteroid diameters are considered thesituation is not so clear in that it depends on the familyone considers. It is also clear the there can be cases,such as with the Themis family, in which the ratio be-tween the minimum and the maximum value of the sampleis so small that there no real difference between the two

distributions. Finally we have shown that Pareto distri-butions can result from a simple growth process, in whichthe increase of the state variable (here mass) depends onthe values taken in the previous state; furthermore resultsof the simulations agree well with the experimental data.As remarked earlier, distributions are not the only statis-tics with a power law tail; in astrophysics alternativeshave also been proposed for the statistics of asteroid di-ameters (e.g. [20]). However, Pareto distributions are par-ticularly simple; for instance note that they have just a freeparameter c, the others, a and b, being determined by theminimum and maximum values of the sample, respectively.
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