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Abstract: In this paper we study integral operators with kernels

K (x, y) = k1(x −A1y) · · · km(x −Amy),
ki(x) = Ωi(x)/|x|n/qi where Ωi : Rn → R are homogeneous functions of degree zero, satisfying a size and a Dini
condition, Ai are certain invertible matrices, and n/q1 + · · ·+n/qm = n−α, 0 ≤ α < n. We obtain the appropriate
weighted Lp-Lq estimate, the weighted BMO and weak type estimates for certain weights in A(p, q). We also give
a Coifman type estimate for these operators.
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1. Introduction

Let 0 ≤ α < n, 1 < m ∈ N. For 1 ≤ i ≤ m, let 1 < qi < ∞ be such that n/q1 + · · · + n/qm = n − α . We denote byΣ = Σn−1 the unit sphere in Rn. Let Ωi ∈ L1(Σ). If x 6= 0, we write x ′ = x/|x|. We extend this function to Rn \ {0} asΩi(x) = Ωi(x ′). Let
ki(x) = Ωi(x)

|x|n/qi . (1)
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In this paper we study the integral operator
Tαf(x) = ∫

Rn
K (x, y)f(y)dy, (2)

with K (x, y) = k1(x −A1y) · · · km(x −Amy), where Ai, are certain invertible matrices and f ∈ L∞loc(Rn).In the case Ai = aiI, ai ∈ R, Godoy and Urciuolo in [6] obtain the Lp(Rn, dx)–Lq(Rn, dx) boundedness of this operatorfor 0 ≤ α < n, 1 < p < n/α and 1/q = 1/p − α/n. In the case that Ωi are smooth functions, in [12], Rocha and Urciuoloconsider the operator Tα for matrices A1, . . . , Am satisfying the following hypothesis:
Ai is invertible and Ai − Aj is invertible for i 6= j , 1 ≤ i, j ≤ m. (H)

They obtain that Tα is a bounded operator from Hp(Rn, dx) into Lq(Rn, dx), for 0 < p < n/α and 1/q = 1/p − α/n.For 0 ≤ α < n and 1 ≤ s < ∞ we define
Mα,sf(x) = sup

B
|B|α/n

( 1
|B|

∫
B
|f(x)|sdx)1/s

,

where the supremum is taken along all balls B such that x belongs to B. We observe that M = M0,1, where M is theclassical Hardy–Littlewood maximal operator, also for 0 < α < n, Mα = Mα,1 is the classical fractional maximal operator.It is well known [9] that if w is a weight (i.e. w is a non negative function and w ∈ L1loc(Rn, dx)) then Mα is a boundedoperator from Lp(Rn, wp) into Lq(Rn, wq), for 1 < p < n/α and 1/q = /p − α/n, if and only if
sup
B

[( 1
|B|

∫
B
wq
)1/q( 1

|B|

∫
B
w−p′

)1/p′ ]
< ∞, (3)

where 1/p+ 1/p′ = 1. The class of weights that satisfy (3) is called A(p, q).Throughout this paper we understand that for p = ∞, (∫E |f|p)1/p stands for ‖fχE‖∞, for any measurable set E . Withthis in mind we define the class A(p, q) still by (3) for all 1 ≤ p ≤ ∞ and 1 ≤ q ≤ ∞. If Ap, p ≥ 1, denotes the classicalMuckenhoupt class of weights, we note that w ∈ A(p, q) if and only if wq ∈ A1+q/p′ , and as a particular case w ∈ A(p, p)is equivalent to wp ∈ Ap. We recall that A∞ = ⋃p≥1 Ap. Also, the statement w ∈ A(∞,∞) is equivalent to w−1 ∈ A1.In [10, 11] we consider Ωi ≡ 1 and weights satisfying the following condition: There exists c > 0 such that

w(Aix) ≤ cw(x), (4)
for a.e. x ∈ Rn, 1 ≤ i ≤ m.We note that if w is a power weight then w satisfies (4). Observe that there are other weights that satisfy this condition.For example, consider

w(x) = {− ln |x| if |x| ≤ e−1,1 if |x| > e−1.
In [7], it is shown that w ∈ A1 and it is easy to check that for any a ∈ R\{0} there exists Ca such that w(ax) ≤ Caw(x),for a.e. x ∈ R. In [11] we obtain weighted estimates for this kind of operator and certain weights satisfying (4), preciselyas for the classical fractional integral operator Iα with 0 < α < n, or the singular integral operator with α = 0, we provethe Lp(Rn, wp)–Lq(Rn, wq) boundedness of Tα for weights w ∈ A(p, q), 1 < p < n/α , 1/q = 1/p − α/n and 0 ≤ α < n.Given a function f ∈ L1loc(Rn, dx), we define the sharp maximal function by

M#f(x) = sup
B3x

1
|B|

∫ ∣∣∣∣f(y)− 1
|Q|

∫
B
|f|
∣∣∣∣dy,
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and the space BMO = {f ∈ L1loc(Rn, dx) : M#f ∈ L∞(Rn, dx)},
the norm in this space is ‖f‖∗ = ‖M#f‖∞. There is also a weighted version of BMO, denoted by BMO(w), that isdescribed by the semi norm

|||f|||w = sup
B
‖wχB ‖∞

( 1
|B|

∫
B

∣∣∣∣f(x)− 1
|B|

∫
B
f
∣∣∣∣dx).

It is easy to check that |||f||| ' ‖wM#f‖∞. In [11] we also obtain the weighted weak type (1, n/(n−α)) estimate for
w ∈ A(1, n/(n−α)) and w satisfying (4). We also prove that if w ∈ A(n/α,∞) and w satisfies (4) then

|||Tαf|||w ≤ C
(∫ (|f|w)n/α)α/n. (5)

The key argument to obtain the above stated results was the Coifman type estimate (see [11, Theorem 2.1])
∫
Rn
|Tαf(x)|pw(x)dx ≤ C ∫

Rn
|Mαf(x)|pw(x)dx,

f ∈ L∞c (Rn, dx), p > 0 and w ∈ A∞ satisfying (4).For integral operators with rough kernels of the form
TΩ,αf(x) = ∫ Ω(x −y)

|x −y|n−α f(y)dy,
in [3, 8, 13] the authors obtain weighted estimates for TΩ,0 for certain functions Ω homogeneous of degree zero andΩ ∈ Lp(Sn−1) for some p > 1. In [2] the authors prove the corresponding weighted results for α > 0. Also in [1] theauthors obtain a Coifman type inequality for general fractional integrals operators with kernels satisfying a Hörmandercondition given by a Young function. In Section 2 we describe this condition.In this paper we consider the operator Tα defined in (2) where, for 1 ≤ i ≤ m, ki is given by (1) and the matrices Aisatisfy the hypothesis (H). For 1 ≤ p ≤ ∞ and Ωi ∈ L1(Σ), we define the Lp-modulus of continuity as

πi,p(t) = sup
|y|≤t

∥∥Ωi( · + y)−Ωi( · )∥∥p,Σ.
We will make the following hypotheses about the functions Ωi, 1 ≤ i ≤ m:

there exists pi > qi such that Ωi ∈ Lpi (Σ), (H1)∫ 1
0 πi,pi (t) dtt < ∞. (H2)

In Section 2 we obtain a pointwise estimate that relates (M#|Tαf|δ (x))1/δ , for 0 < δ < 1, with a fractional maximalfunction of an appropriate power of f . This estimate is the fundamental key to obtain weighted inequalities for theoperator Tα . These inequalities are developed in Section 3. We give first a Coifman type estimate for these operatorsthat allows us to get the adequate weighted Lp-Lq estimate for certain weights in A(p, q). The results that we obtainin Theorems 3.3 and 3.4 are the analogs of [2, Theorems 1 and 2]. We also get the corresponding weighted BMO andweak type estimates.Throughout this paper c and C will denote positive constants, not the same at each occurrence.
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2. Pointwise estimate

We denote by |x| ∼ R the set {x ∈ Rn : R < |x| ≤ 2R} and for 1 ≤ r ≤ ∞,
‖f‖r,|x|∼R = ( 1

|B(0, 2R)|
∫
B(0,2R)|f|rχ|x|∼R

)1/r
.

In [1] the authors introduce the following definition.
Definition 2.1.Given 0 ≤ α < n and 1 ≤ r ≤ ∞, we say that k ∈ Hr,α if there exist c ≥ 1 and C > 0 such that for all y ∈ Rn and
R > c|y|,

∞∑
m=1 (2mR)n−α∥∥k ( · − y)− k( · )∥∥r,|x|∼2mR ≤ C.

In Proposition 4.2 of the mentioned paper they prove that that if ki is as in (1) and Ωi satisfies (H2) then ki ∈ Hn/q′i ,pi .
Theorem 2.2.
Let 0 ≤ α < n and let Tα be the integral operator defined by (2). We suppose that for 1 ≤ i ≤ m, the matrices Ai and
the functions Ωi satisfy hypotheses (H), (H1) and (H2). If s ≥ 1 is defined by 1/p1 + · · · + 1/pm + 1/s = 1, then there
exists C > 0 such that for 0 < δ ≤ 1 and f ∈ L∞c (Rn, dx),

(
M#|Tαf|δ (x))1/δ ≤ C

m∑
i=1 Mα,sf(A−1

i x).
Proof. Let f ∈ L∞c (Rn, dx), f ≥ 0 and 0 < δ ≤ 1. As in [6] it can be proved that Tα is a bounded operator from
Lp(Rn, dx) into Lq(Rn, dx), for 1 < p < n/α and 1/q = 1/p− α/n, so Tα (f) ∈ L1loc(Rn, dx) and M#

δ (Tαf)(x) is well definedfor all x ∈ Rn. Let x ∈ Rn and let B = B(xB, R) be a ball that contains x, centered at xB with radius R , and Tαf(xB) < ∞.We write B̃ = B(xB, 4R), and for 1 ≤ i ≤ m we also set B̃i = A−1
i B̃. Let f1 = fχ⋃1≤i≤m B̃i and let f2 = f − f1.We choose a = Tαf2(xB). By Jensen’s inequality and from the inequality

|tδ − sδ |1/δ ≤ |t − s|,
which holds for any positive t, s, we get

( 1
|B|

∫
B

∣∣(Tαf)δ (y)− aδ∣∣dy)1/δ
≤
( 1
|B|

∫
B
|Tαf(y)−a| dy)

≤
( 1
|B|

∫
B
|Tαf1(y)| dy)+( 1

|B|

∫
B
|Tαf2(y)−a| dy) = I + II.

We consider first the case 0 < α < n.
I = 1
|B|

∫
B
|Tαf1(y)| dy ≤ 1

|B|

∫
B

m∑
i=1
∫
B̃i
|K (y, z)|f(z)dz dy = m∑

i=1
1
|B|

∫
B̃i
f(z) ∫

B
|K (y, z)| dydz.

If z ∈ B̃i let
Cl = {

y ∈ B : |y−Alz| ≤ |y−Arz|, 1 ≤ r ≤ m},
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then ∫
B
|K (y, z)| dy ≤ ∫

Cl
|K (y, z)| dy+ · · ·+ ∫

Cm
|K (y, z)| dy.

For 1 ≤ l ≤ m and j ∈ N, let
Clj = {

y ∈ B : |y−Alz| ≤ |y−Arz|, 1 ≤ r ≤ m, |y−Alz| ∼ 2−j−1R}.
We observe that if y ∈ B then |y−Alz| ≤ 5R < 8R . By Hölder’s inequality,

∫
Cl
|K (y, z)| dy ≤ ∞∑

j=−3
∫
Clj

|K (y, z)| dy ≤ C
∞∑

j=−3
[∥∥k1( · − A1z)χClj∥∥p1 · · ·

∥∥km( · − Amz)χClj∥∥pm (2−jR)n/s]. (6)
If pl < ∞, then

∥∥kl( · − Alz)χClj∥∥pl = (∫
2−j−1R≤|u|≤2−jR

(
|Ωl(u)|
|u|n/ql du

)pl)1/pl

≤ C 2jn/qlR−n/ql(∫2−j−1R≤|u|≤2−jR |Ωl(u)|pl du)1/pl
≤ C 2jn/qlR−n/ql2−jn/plRn/pl‖Ωl‖pl ,

(7)

where the last inequality follows since Ωl is homogeneous of degree zero. We observe that if pl =∞ we also have
∥∥kl( · − Alz)χClj∥∥∞ ≤ C 2jn/qlR−n/ql‖Ωl‖∞.

For 1 ≤ r ≤ m, r 6= l, we observe that if y ∈ Clj then |y−Arz| ≥ |y−Alz| > 2−j−1R . So if pr < ∞, then
∥∥kr( · − Arz)χClj∥∥pr ≤

(∑
k≥0
∫
{2−j+k−1R≤|u|≤2−j+kR}

(
|Ωr(u)|
|u|n/qr

)pr)1/pr

≤ C
∑
k≥0 2(j−k)n/qrR−n/qr2(−j+k)n/prRn/pr‖Ωr‖pr

≤ C 2jn/qirR−n/qr2−jn/prRn/pr‖Ωr‖pr
∑
k≥0 2k(n/pr−n/qr )

≤ C 2jn/qrR−n/qr2−jn/prRn/pr‖Ωr‖pr ,

(8)

the last inequality follows since pr > qr . Again, if pr =∞ we get
∥∥kr( · − Arz)χClj∥∥∞ ≤ C 2jn/qrR−n/qr‖Ωr‖∞.

Then from (6), (7) and (8) we obtain
∫
Cl
|K (y, z)| dy ≤ C

∞∑
j=−3 2jn/q1R−n/q12−jn/p1Rn/p1‖Ω1‖p1 · · · 2jn/qmR−n/qm2−jn/pmRn/pm‖Ωm‖pm (2−jR)n/s

≤ CRα‖Ω1‖p1 · · · ‖Ωm‖pm .

So, I ≤ C
m∑
i=1

Rα

|B|

∫
B̃i
f(z)dz ≤ C

m∑
i=1 Mαf(A−1

i x) ≤ C
m∑
i=1 Mα,sf(A−1

i x).
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On the other hand,
II = 1

|B|

∫
B

∣∣Tαf2y− Tαf2xB∣∣dy ≤ 1
|B|

∫
B

∫(⋃m
i=1 B̃i)c |K (y, z)− K (xB, z)|f(z)dzdy

≤
m∑
l=1

1
|B|

∫
B

∫
Zl

|K (y, z)− K (xB, z)|f(z)dzdy,
where

Zl = ( m⋃
i=1 B̃i

)c
∩
{
z : |xB−Alz| ≤ |xB−Arz|, 1 ≤ r ≤ m}.

We estimate now |K (y, z)− K (xB, z)| for y ∈ B and z ∈ Zl. It is easy to check that
|K (y, z)− K (xB, z)| ≤ m∑

i=1
[ i∏
r=1
∣∣kr−1(xB−Ar−1z)∣∣∣∣ki(y−Aiz)− ki(xB − Aiz)∣∣ m∏

r=i
∣∣kr+1(y−Ar+1z)∣∣], (9)

where we define k0 = km+1 ≡ 1.For simplicity we estimate the first summand of (9), the other summands follow in analogous way. For j ∈ N, let
Dl
j = {z ∈ Zl : |xB−Alz| ∼ 2j+1R}. We use Hölder’s inequality to get

∫
Zl

∣∣k1(y−A1z)− k1(xB−A1z)∣∣ m∏
r=2 |kr(y−Arz)|f(z)dz

= ∞∑
j=1
∫
Dl
j

∣∣k1(y−A1z)− k1(xB−A1z)∣∣ m∏
r=2 |kr(y−Arz)|f(z)dz

≤
∞∑
j=1
∥∥(k1(y−A1 · )− k1(xB−A1 · ))χDl

j

∥∥
p1

m∏
r=2
∥∥kr(y−Ar · )χDl

j

∥∥
pr

∥∥fχDl
j

∥∥
s.

Now, if pl < ∞, ∥∥kl(y−Al · )χDl
j

∥∥
pl

= (∫
Dl
j

|Ωl(y−Alz)|pl
|y−Alz|npl/ql

dz
)1/pl

≤ C (R2j )−n/ql (∫
{2jR<|y−Alz|≤2j+3R} |Ωl(y−Alz)|pl dz)1/pl

≤ C (2jR)−n/ql+n/pl (∫
{1<|u|≤8} |Ωl(u)|pldu)1/pl

≤ C (2jR)−n/ql+n/pl‖Ωl‖pl ,

(10)

where the first inequality follows since |xB−Alz|/2 ≤ |y−Alz| ≤ 2|xB−Alz|. If pl =∞ we also get∥∥kl(y−Al · )χDl
j

∥∥
∞ ≤ C (2jR)−n/ql‖Ωl‖∞.

For r 6= l, we observe that if z ∈ D
j
l then |xB−Arz| ≥ |xB−A lz| ≥ 2j+1R , so we decompose Dl

j = ⋃k≥j
(
Dl
j
)
k,r where(

Dl
j
)
k,r = {z ∈ Dl

j : |xB−Arz| ∼ 2k+1R}.
If pr < ∞, ∥∥kr(y−Ar · )χDl

j

∥∥
pr

= ∞∑
k=j+1

(∫
(Dl

j )k,r|kr(y−Arz)|pr dz
)1/pr

≤ C‖Ωr‖pr
∞∑

k=j+1(2kR)−n/qr+n/pr ≤ C‖Ωr‖pr (2jR)−n/qr+n/pr , (11)
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where the geometric sums converge since pr > qr . If pr =∞,
∥∥kr(y−Ar · )χDl

j

∥∥
∞ = ∞∑

k=j+1
∥∥kr(y−Ar · )χ(Dl

j )k,r∥∥∞ ≤ C‖Ωr‖∞(2jR)−n/qr .
Now for l = 1, ∥∥(k1(y−A1 · )− k1(xB−A1 · ))χD1

j

∥∥
p1 ≤ C

∥∥(k1(y − xB + · )− k1( · ))χ|x|∼2j+1R∥∥p1 . (12)
Since n/p2 + · · ·+ n/pm − (n/q2 + · · ·+ n/qm) = α − n/s − n/p1 + n/q1, then (10), (11) and (12) imply

∫
Z1
∣∣k1(y−A1z)− k1(xB−A1z)∣∣ m∏

r=2 |kr(y−Arz)|f(z)dz
≤ C

∞∑
j=1 (2jR)n/q1−n/p1∥∥(k1(y − xB + · )− k1( · ))χ|x|∼2j+1R∥∥p1 (2jR)α ( 1(2jR)n

∫
D1
j

fs(z)dz)1/s

≤ CMα,sf(A−11 x) ∞∑
j=1 (2jR)n/q1−n/p1∥∥(k1(y − xB + · )− k1( · ))χ|x|∼2j+1R∥∥p1 ≤ CMα,sf(A−11 x),

where the last inequality follows since k1 ∈ Hn/q′1,p1 . For l 6= 1 we observe that
∥∥(k1(y−A1 · )− k1(xB−A1 · ))χDl

j

∥∥
p1 ≤

∞∑
k=j+1

∥∥(k1(y−A1 · )− k1(xB−A1 · ))χ(Dl
j )k,1
∥∥
p1

≤ C
∞∑

k=j+1(2kR)n/p1−n/q1 (2kR)n/q1−n/p1∥∥(k1(y − xB + · )− k1( · ))χ|x|∼2k+1R∥∥p1 ≤ C (2jR)n/p1−n/q1,

where the last inequality follows since p1 > q1 and since k1 ∈ Hn/q′1,p1,. So as in the case l = 1 we obtain
∫
Zl

∣∣k1(y−A1z)− k1(xB−A1z)∣∣ m∏
r=2 |kr(y−Arz)|f(z)dz ≤ CMα,sf(A−1

l x).
Then II ≤ C m∑

i=1 Mα,sf(A−1
i x).

Now we start with the case α = 0.If pi =∞ for all 1 ≤ i ≤ m, we decompose
( 1
|B|

∫
B

∣∣(T0f)δ (y)−aδ∣∣dy)1/δ
≤
(
C
|B|

∫
B
(T0f1)δ (y)dy)1/δ+ (

C
|B|

∫
B

∣∣(T0f2)δ (y)−aδ∣∣dy)1/δ = I + II.
To estimate I we observe that

|T0f(x)| ≤ C
∫
|x −A1y|−n/q1 · · · |x −Amy|−n/qm f(y)dy = CTf(x). (13)

In [11] we obtain that the operator T is of weak-type (1, 1) with respect to the Lebesgue measure. Thus taking 0 < δ < 1and using Kolmogorov’s inequality (see [7, Exercise 2.1.5, p. 91]) we get
I ≤ C
|B|

∫
Rn
f1(y)dy ≤ m∑

j=1
C
|B|

∫
B̃j
f(y)dy ≤ C m∑

j=1 Mf(A−1
j x).
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To estimate II, we first use Jensen’s inequality and then proceed just as in the case 0 < α < n to get
II ≤ C m∑

j=1 Mf(A−1
j x),

and so the theorem follows in this case.If pi < ∞ for some 1 ≤ i ≤ m, by Jensen’s inequality,
( 1
|B|

∫
B

∣∣(T0f)δ (y)−aδ∣∣dy)1/δ
≤
( 1
|B|

∫
B
|T0f(y)−a| dy)

≤
( 1
|B|

∫
B
|T0f1(y)| dy)+( 1

|B|

∫
B
|T0f2(y)−a| dy) = I + II.

As in [6] it can be proved that T0 is bounded on Lp(Rn, dx) for 1 < p < ∞. So, by Hölder’s inequality,
I ≤ ( 1

|B|

∫
B
|T0f1(y)|pdy)1/p

≤ C
( 1
|B|

∫
Rn
|f1(y)|pdy)1/p

≤ C
m∑
j=1 M0,pf(A−1

j x).
As before, to estimate II we proceed as in the case 0 < α < n to get

II ≤ C m∑
j=1 M0,sf(A−1

j x).
If we chose p = s the theorem follows in this case.
3. Weighted estimates

Our next aim is to obtain weighted Lp-Lq estimates for the operator Tα and certain classes of weights. The fundamentaltool to get these results is the following theorem about a Coifman type inequality.
Theorem 3.1.
Let assumptions of Theorem 2.2 on α, Tα , Ai,Ωi and s hold. Let 0 < p < ∞ and w ∈ A∞ satisfy (4). Then there exists
C > 0 such that for f ∈ L∞c (Rn, dx) ∫

Rn
|Tαf(x)|pw(x)dx ≤ C ∫

Rn
|Mα,sf(x)|pw(x)dx,

always holds if the left hand side is finite.

Proof. Let w ∈ A∞, then there exists r > 1 such that w ∈ Ar . For 0 < p < ∞ we take 0 < δ < 1, such that1 < r < p/δ, thus w ∈ Ap/δ . If ‖Tαf‖p,w < ∞ then also ‖(Tαf)δ‖p/δ,w < ∞. Under these conditions we can apply[5, Theorem 2.20, p. 410], and from Theorem 2.2 we get∫
Rn
|Tαf(x)|pw(x)dx ≤ ∫

Rn
(M(Tαf)δ (x))p/δw(x)dx ≤ C

∫
Rn

(M#
δ (Tαf)(x))pw(x)dx

≤ C
∫
Rn

( m∑
i=1 Mα,sf(A−1

i x))pw(x)dx ≤ C
m∑
i=1
∫
Rn

(Mα,sf)p(x)w(Aix)dx ≤ C
∫
Rn

(Mα,sf(x))pw(x)dx,
where the last inequality follows since w satisfies (4).
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Lemma 3.2.
Let assumptions of Theorem 2.2 on α, Tα , Ai,Ωi and s hold. Suppose ws ∈ A(p/s, q/s) with 1 < p < n/α and 1/q =1/p − α/n. If f ∈ L∞c (Rn, dx) then Tα (f) ∈ Lq(Rn, wq).
Proof. The proof follows similar lines as the proof of [11, Lemma 2.2]. Since ws ∈ A(p/s, q/s) then wq ∈ Ar with
r = 1 + q/s · 1/(p/s)′ = q/n · (n/s − α).Let Mj = max{|Aj | : |y| = 1} and let M = max1≤j≤m{Mj}. Suppose supp f ⊆ B(0, R). If |x| > 2MR and y ∈ supp f ,then for 1 ≤ i ≤ m,

|x − Aiy| ≥ |x| − |Aiy| = |x| − |y|∣∣∣∣Ai y|y|
∣∣∣∣ ≥ |x| − RM ≥ |x|2 ,

so by Hölder’s inequality,
|Tαf(x)| = ∣∣∣∣∫ k1(x −A1y) · · · km(x −Amy)f(y)dy∣∣∣∣ ≤ ∥∥k1(x −A1 · )χ{|x−A1·|≥|x|/2}∥∥p1 · · ·

∥∥km(x −Am · )χ{|x−Am ·|≥|x|/2}∥∥pm‖f‖s.
Now,

∥∥ki(x −Ai · )χ{|x−Ai·|≥|x|/2}∥∥pi = ∑
k∈N

∥∥ki(x −Ai · )χ{|x−Ai·|∼2k−2|x|}∥∥pi
≤ C

∑
k∈N

2k |x|−n/qi∥∥Ωiχ{|·|∼2k−2|x|}∥∥pi ≤∑
k∈N

2k |x|−n/qi+n/pi‖Ωi‖pi = C|x|−n/qi+n/pi‖Ωi‖pi .

So,
|Tαf(x)| ≤ C|x|

∑m
i=1 −n/qi+n/pi ‖Ω1‖p1 · · · ‖Ωm‖pm‖f‖s = C|x|α−n/s‖f‖s.

Thus ∫
|x|>2MR

|Tαf(x)|qwq(x)dx = ∑
k∈N

∫
|x|∼2kMR

|Tαf(x)|qwq(x)dx
≤ C

∑
k∈N

∫
|x|∼2kMR

|x|(α−n/s)qwq(x)dx ≤ C
∑
k∈N

(2kMR)(α−n/s)qwq(B(0, 2k+1MR
))
.

Since wq ∈ Ar , there exists r̃ < r = q/n· (n/s−α) such that wq ∈ Ar̃ so wq(B(0, 2k+1MR
))
≤ C2knr̃ (see [5, Lemma 2.2])so the last sum is finite. To study ∫

|x|≤2MR

|Tαf(x)|qwq(x)dx,
we recall that in [6] the authors obtain the boundedness of Tα from Lp(Rn, dx) into Lq(Rn, dx) for 1 < p < n/α and1/q = 1/p − α/n, and so it is left to continue the proof as in [11].
We are now ready to prove the weighted boundedness result.
Theorem 3.3.
Let assumptions of Theorem 2.2 on α, Tα , Ai,Ωi and s hold. Suppose w satisfies (4) and ws ∈ A(p/s, q/s) with s < p <
n/α and 1/q = 1/p − α/n. Then there exits C > 0 such that for f ∈ L∞c (Rn, dx),

(∫
Rn
|Tαf(x)|qwq(x)dx)1/q

≤ C
(∫

Rn
|f(x)|pwp(x)dx)1/p

.
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Proof. Since ws ∈ A(p/s, q/s) for 1/q = 1/p − α/n then wq ∈ Ar ⊂ A∞, with r = q/n · (n/s − α). By Lemma 3.2 wehave that Tαf ∈ Lq(Rn, wq). Moreover we recall that ws ∈ A(p/s, q/s) implies that Mαs is bounded from Lp/s(Rn, wp/s)into Lq/s(Rn, wq/s), so we apply Theorem 3.1 to obtain
(∫

Rn
|Tαf(x)|qwq(x)dx)1/q

≤ C
(∫

Rn
(Mα,sf(x))qwq(x)dx)1/q

= C
(∫

Rn
(Mαs|f(x)|s)q/swq(x)dx)1/q

≤ C
(∫

Rn
|f(x)|pwp(x)dx)1/p

.

By a standard duality argument we obtain the following theorem.
Theorem 3.4.
Let assumptions of Theorem 2.2 on α, Tα , Ai,Ωi and s hold. Suppose w satisfies w−1(A−1

i x) ≤ Cw−1(x) for all 1 ≤ i ≤ m
and w−s ∈ A(q′/s, p′/s) with 1 < p < n/α, 1/q = 1/p − α/n and q < s′. Then there exits C > 0 such that for
f ∈ L∞c (Rn, dx), (∫

Rn
|Tαf(x)|qwq(x)dx)1/q

≤ C
(∫

Rn
|f(x)|pwp(x)dx)1/p

.

Proof. We observe that the adjoint T ∗α of the operator Tα is the integral operator with kernel
K̃ (x, y) = k̃1(x −A−11 y) · · · k̃m(x −A−1

m y),
where for 1 ≤ i ≤ m

k̃i(x) = Ω̃i(x)
|Aix|n/qi

= Ωi(−Aix)
|Aix|n/qi

.

It is easy to check that Ω̃i satisfies (H1) and (H2) and also that k̃i ∈ Hn/q′i,pi for all 1 ≤ i ≤ m. We take g with
‖g‖q′,w−q′ ≤ 1, thus ∫

Rn
Tαf(x)g(x)dx = ∫

Rn
f(x)T ∗αg(x)dx.

Hence
‖Tαf‖q,wq = sup

g

∣∣∣∣∫
Rn
f(x)T ∗αg(x)dx∣∣∣∣ ≤ ‖f‖p,wp sup

g
‖T ∗αg‖p′,w−p′ .

Since 1/q = 1/p − α/n and 1 < p < q < s′ then 1/p′ = 1/q′ − α/n and s < q′ < n/α , so as in Theorem 3.3 we obtain
‖T ∗αg‖p′,w−p′ ≤ C‖g‖q′,w−q′ ≤ C, and so ‖Tαf‖q,wq ≤ C‖f‖p,wp .

We now obtain an estimate of the type (5) for the operator Tα and for certain weights in the class A(n/α,∞).
Theorem 3.5.
Let assumptions of Theorem 2.2 on α, Tα , Ai,Ωi and s hold. Suppose ws ∈ A(n/αs,∞) and satisfies (4), then there exits
C > 0 such that for f ∈ L∞c (Rn, dx),

|||Tαf|||w ≤ C
(∫ (|f(x)|w(x))n/α dx)α/n.
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Proof. We observe that if
ws ∈ A

(
n
αs ,∞

) then ‖wMα,sf‖∞ ≤ C‖fw‖n/α . (14)
Indeed, by Hölder’s inequality we get

1
|B|1−αs/n

∫
B
|f(x)|sdx ≤ 1

|B|1−αs/n
(∫

B
|f(x)|n/αwn/α (x)dx)αs/n (∫

B
w−s(n/αs)′ (x)dx)1/(n/αs)′

.

Then, for x ∈ B, since ws ∈ A(n/(αs),∞) we get
w(x)( 1

|B|1−αs/n
∫
B
|f(x)|sdx)1/s

≤
(∫

B
|f(x)|n/αwn/α (x)dx)α/n ‖wsχB‖1/s∞

( 1
|B|

∫
B
w−s(n/αs)′ (x)dx)1/(n/αs)′s

≤ C
(∫

Rn
|f(x)|n/αwn/α (x)dx)α/n,

thus w(x)Mα,sf(x) ≤ C‖fw‖n/α , and (14) follows. Now, using Theorem 2.2 and (14), we get
|||Tαf|||w ' ‖wM#Tαf‖∞ ≤ C

m∑
i=1
∥∥wMα,sf(A−1

i · )∥∥∞ ≤ C m∑
i=1
(∫
|f(A−1

i x)w(x)|n/αdx)α/n
≤ C

m∑
i=1
(∫
|f(x)w(Aix)|n/αdx)α/n≤ C

(∫
|f(x)w(x)|n/αdx)α/n,

where the last inequality follows since w satisfies hypothesis (4).
Finally we prove that Tα satisfies a weighted weak type (1, n/(n − α)) estimate for certain weights in A(1, n/(n−α)).
Theorem 3.6.
Let the assumptions of Theorem 2.2 on α, Tα , Ai,Ωi and s hold. Suppose ws ∈ A(1, n/(n−αs)) and satisfies (4), then
there exists C > 0 such that for f ∈ L∞c (Rn, dx),

sup
λ>0 λ

(
wsn/(n−αs){x : |Tαf(x)| > λ}

)(n−αs)/sn ≤ C (∫ |f(x)|sws(x)dx)1/s
.

Proof. Given w ∈ A∞, there exists β > 0 and C > 0 such that
w
{
x : Mf(x) > 2λ, M#f(x) ≤ γλ} ≤ Cγβw{x : Mf(x) > λ},

for any γ > 0 (see [4, p. 146]). For q ≥ 1, as in [11, Theorem 3.2], we obtain that
sup
λ>0 λqw{x : Mf(x) > λ} ≤ C sup

λ>0 λqw{x : M#f(x) > γλ},

for some γ > 0. We consider first the case s > 1. If ws ∈ A(1, n/(n−αs)) then wsn/(n−αs) ∈ A∞. So for q = sn/(n−αs),we obtain
sup
λ>0 λ

(
wsn/(n−αs){x : |Tαf|(x) > λ}

)(n−αs)/(sn) ≤ C sup
λ>0 λ

(
wsn/(n−αs){x : MTαf(x) > λ}

)(n−αs)/sn
≤ C sup

λ>0 λ
(
wsn/(n−αs){x : M#Tαf(x) > γλ}

)(n−αs)/sn
≤ C sup

λ>0 λ
(
wsn/(n−αs){x : m∑

i=1 Mα,sf(A−1
i x) > Cγλ

})(n−αs)/sn
,
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where the last inequality follows from Theorem 2.2, with δ = 1. Since w satisfies (4), it is easy to check that
wsn/(n−αs){x : Mα,sf(A−1

i x) > λ
}
≤ Ciwsn/(n−αs){x : Mα,sf(x) > λ

}
,

so sup
λ>0 λ

(
wsn/(n−αs){x : |Tαf|(x) > λ}

)(n−αs)/sn ≤ C sup
λ>0 λ

(
wsn/(n−αs){x : Mα,sf(x) > λ}

)(n−αs)/sn
≤ C sup

λ>0 λ
(
wsn/(n−αs){x : Mαs|f|s(x) > λs}

)(n−αs)/sn ≤ C (∫ |f(x)|sws(x)dx)1/s
,

where the last inequality follows since ws ∈ A(1, n/(n−αs)), and since Mαs is of weak type (1, n/(n−αs)). If s = 1, Tαis bounded by the operator T defined in (13) so we proceed as in the proof of [11, Theorem 3.2].
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