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weighted LP-L9 estimate, the weighted BMO and weak type estimates for certain weights in A(p, gq). We also give
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1. Introduction

let0<a<n1<meN For1<i<m,let1< q; <oobesuchthatn/g;+---+n/q, =n— a. We denote by
L = L, 4 the unit sphere in R". Let Q; € L'(Z). If x # 0, we write x’ = x/|x|. We extend this function to R" \ {0} as
Qi(x) = Qu(x). Let
Q,‘ X
k) = ) (0

=
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In this paper we study the integral operator

i) = [ Kixu)fto) dy, @

with K(x, y) = ki(x —A1y) - - - kn(x —Any), where A;, are certain invertible matrices and f € L2 (R").

loc

In the case A; = a;/, a; € R, Godoy and Urciuolo in [6] obtain the LP(R", dx)-L9(R", dx) boundedness of this operator
for0<a<n, 1<p<n/aand1/q=1/p—aln. In the case that Q; are smooth functions, in [12], Rocha and Urciuolo
consider the operator T, for matrices A, ..., A, satisfying the following hypothesis:

A; is invertible and A; — A; is invertible for i # j, 1 < i,j < m. (H)

They obtain that T, is a bounded operator from HP(R", dx) into LY(R", dx), for 0 < p < n/a and 1/qg =1/p — a/n.
ForO< a < nand1<s < oo we define

1 1/s
Maof(x) = sup |B|a/"(f / |f(x)|5dx) ,
u 18] Js

where the supremum is taken along all balls B such that x belongs to B. We observe that M = My, where M is the
classical Hardy-Littlewood maximal operator, also for 0 < a < n, M, = M, is the classical fractional maximal operator.
It is well known [9] that if w is a weight (L.e. w is a non negative function and w € L] _(R", dx)) then M, is a bounded

loc

operator from LP(R", w”) into L9(R", w?), for 1 < p < n/a and 1/qg = /|p — a/n, if and only if

1 1/q 1 7/1/p’
Szp[(m/,swq) (@i ) ]<°°' ©)

where 1/p +1/p" = 1. The class of weights that satisfy (3) is called A(p, q).

Throughout this paper we understand that for p = oo, ( f; |f|")1/p stands for ||fxe| e, for any measurable set E. With
this in mind we define the class A(p, q) still by (3) forall1 < p < oo and 1 < g < 0. If A,, p > 1, denotes the classical
Muckenhoupt class of weights, we note that w € A(p, q) if and only if w9 € A1, and as a particular case w € A(p, p)
is equivalent to w” € A,. We recall that A,, = Up21 A,. Also, the statement w € A(oo, 00) is equivalent to w™' € A;.

In [10, 11] we consider Q; = 1 and weights satisfying the following condition: There exists ¢ > 0 such that
w(Aix) < cw(x), (4)

forae. xeR" 1< i<m.

We note that if w is a power weight then w satisfies (4). Observe that there are other weights that satisfy this condition.

{—ln x| i x| <e
w(x) =

For example, consider

1 if |x|>e™

In [7], it is shown that w € A; and it is easy to check that for any a € R\ {0} there exists C, such that w(ax) < C,w(x),
for a.e. x € R. In[11] we obtain weighted estimates for this kind of operator and certain weights satisfying (4), precisely
as for the classical fractional integral operator /, with 0 < a < n, or the singular integral operator with a = 0, we prove
the LP(R", wP)-L9(R", w?) boundedness of T, for weights w € A(p,q), 1 <p <n/a,1/g=1/p—a/nand 0 < a < n.

Given a function f € L, (R", dx), we define the sharp maximal function by

1 1
M#f(x) = — fly)— — | ||| dy,
o0 = g 1 |1 = i
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and the space

BMO = {f € L{,(R", dx) : M*f € [*(R", dx)},

OC(

the norm in this space is |f||. = ||M#f||s. There is also a weighted version of BMO, denoted by BMO(w), that is
described by the semi norm
f dx).

It is easy to check that [|f]| = |[wM#f||e. In [11] we also obtain the weighted weak type (1,n/(n—a)) estimate for
w € A(1,n/(n—«a)) and w satisfying (4). We also prove that if w € A(n/a, o0) and w satisfies (4) then

aln
W7l < c( / (|f|w)"/ﬂ) . 5

The key argument to obtain the above stated results was the Coifman type estimate (see [11, Theorem 2.1])

1
fl[|w = sup ||w oo | =7
1l = sup o o 5

/|Tf(x|p dX<C/|MfX)|pWX)dX

f e [PR" dx), p>0and w € A, satisfying (4).

For integral operators with rough kernels of the form

TQ(X X) jl |n af(y)dy'

in [3, 8, 13] the authors obtain weighted estimates for Ty for certain functions Q homogeneous of degree zero and
Q € [P(S"") for some p > 1. In [2] the authors prove the corresponding weighted results for a > 0. Also in [1] the
authors obtain a Coifman type inequality for general fractional integrals operators with kernels satisfying a Hormander
condition given by a Young function. In Section 2 we describe this condition.

In this paper we consider the operator T, defined in (2) where, for 1 < i < m, k; is given by (1) and the matrices A;
satisfy the hypothesis (H). For 1 < p < oo and Q; € L'(Z), we define the [P-modulus of continuity as

@p(t) = sup (- +y) — Q)] ;-

lyl<t
We will make the following hypotheses about the functions Q;, 1 < i < m:

there exists p; > g; such that (; € L[Pi(L), (H1)

/1 @i i (1) 9t . (Ha)
0 t

In Section 2 we obtain a pointwise estimate that relates (M*|T,f|%(x))"/?, for 0 < & < 1, with a fractional maximal
function of an appropriate power of f. This estimate is the fundamental key to obtain weighted inequalities for the
operator T,. These inequalities are developed in Section 3. We give first a Coifman type estimate for these operators
that allows us to get the adequate weighted LP-L9 estimate for certain weights in A(p, g). The results that we obtain
in Theorems 3.3 and 3.4 are the analogs of [2, Theorems 1 and 2]. We also get the corresponding weighted BMO and
weak type estimates.

Throughout this paper ¢ and C will denote positive constants, not the same at each occurrence.
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2. Pointwise estimate

We denote by |x| ~ R the set {x e R" : R < |x| < 2R} and for 1 < r < oo,

1 1/r
fle~r = | 5m 5507 I Xw~r |
e e e

In [1] the authors introduce the following definition.

Definition 2.1.
Given 0 < a < nand 1 <r < oo, we say that k € H,, if there exist ¢ > 1 and C > 0 such that for all y € R" and
R > clyl,

[e)

> @R[k (- = g) = k()| pyoane < C

m=1
In Proposition 4.2 of the mentioned paper they prove that that if k; is as in (1) and (); satisfies (H;) then k; € H,q .-

Theorem 2.2.

Let 0 < a < n and let T, be the integral operator defined by (2). We suppose that for 1 < i < m, the matrices A; and
the functions Q; satisfy hypotheses (H), (H1) and (H,). If s > 1 is defined by 1/py + --- + 1/p, + 1/s =1, then there
exists C > 0 such that for 0 < 0 <1 and f € [°(R", dx),

(M TP ()" < €Y Maof (A7),

i
Proof. letf € [®(R",dx), f > 0and 0 < § < 1. As in [6] it can be proved that T, is a bounded operator from
LP(R", dx) into LI(R", dx), for 1 < p < nfa and 1/qg = 1/p — a/n, so T,(f) € L] (R", dx) and MZ(T,f)(x) is well defined

forall x € R". Let x € R" and let B = B(x, R) be a ball that contains x, centered at x5 with radius R, and T,f(xg) < co.
We write B = B(xg,4R), and for 1 < i < m we also set B; = A7'B. Let f; = fXU1<v< g and let f, =f —f;.

We choose a = T,f,(xg). By Jensen’s inequality and from the inequality

|0 =51 < |t =],

which holds for any positive t, s, we get

(i 10w —alay)” < (& [ rat—alav)
(|,13|/|Tf1 )|dy)+ (|[13|/|sz a|dy) s

A

IN

We consider first the case 0 < a < n.

1
| = @,Bmmy”dg §/Z[ K(y, 2)|f(2) dz dy = |B|/f(z)/|/<(y z)|dy dz.

Ifz e é,» let
e ={yeB:ly—Az|<ly—Azl1<r<m},
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then

[k 2ldy < [ Ktg.aldy+-+ [ [Kig.2)dy.

For1<l<mandje€N, let

C={yeB:ly—Azl<|ly—-Az

< r<m, ly—Az| ~ 2”"1R}.

We observe that if y € B then |y —A;z| < 5R < 8R. By Halder’s inequality,

/ellK(yIZ)Idy <>

=3

[ K214y < €y [||k1<- ~ Axerll, Il —Amz)xe;.Hpm(zﬂR)”’S]. ©)

=3

If pi < o0, then

B Q)] |\
||kl(~—A[Z)XC§||p1 - (/2’/’1R§|u\§2’fR( |u|”/ql du

1/p;
C2inlag=nla (/ |y (u)]P! du) < cna Ra=IMP RYPL| Q|
2-/-R<|u|<2-IR

/)

IN

where the last inequality follows since ; is homogeneous of degree zero. We observe that if p; = co we also have

k(- = Az)xell|, < C27HRT1Q o

For 1 <r<m, r+ [ we observe that if y € €} then [y —A,z| > |y —Aiz| > 277'R. So if p, < oo, then

1/PI
Z/ ( 1Q, (u)] )pr
=5 Jit IRl iRy |ular

C Z 2li=kinlgr p=nlqr 5(=j+knlp: pnlps 191,
k>0 (8)

C2inlair g=nlary—=inlpr pnipr 1Q, ”p Z Qk(nlpr=nlar)

k>0

Czjn/QrR_nIQrZ_j“/Par/pr ||Qr ”p ,

IN

[k (- —A,Z)Xq”pr

IN

IN

IN

the last inequality follows since p,. > g,. Again, if p, = co we get

||/<,(. _A’Z)X€§||m < C2inlar g—nlar 19l oo-

Then from (6), (7) and (8) we obtain

/ IK(y,2)|dy < C Z 2inlar R=nlg19=inlp1 RNIP1 Qi 2inlqm R=nlqm=jnlpm Rnlpm Q0 ”pm(zﬂ’R)n/S
el /
j==3

< CRG||Q1 ||p1 e ”Q’"“Pm'

m R¢ m B m -
l<Cc) 18] /Bf(z) dz < CY Maf(AT'%) < CY Maof(ATX).
i=1 i i=1 i=1

B840
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On the other hand,

A

= 1—/|Taf2g— Tobaxg| dy < T // (K(y, 2) = K(xg, 2)| f(z) dz dy
|B| Js Bl Js (U, B)

Zi[ IK(y, 2) — K (x5, 2)|(2) dzdy,
2 18] Jy ).,

where

,1§r§m}.

i=1

Uéf) N{z:a—Azl < g —Az

We estimate now |K(y,z) — K(xg,z)| for y € B and z € Z!. It is easy to check that

K(y.2) = K(xg,2)| <) _ [l‘l k1 (xs = Ara2)| |kily — Aiz) — kilxs — A2)| [ ][Krsa(y = Ara2)| |, (9)

i=1 Lr=1 r=i

where we define ko = k.1 = 1.

For simplicity we estimate the first summand of (9), the other summands follow in analogous way. For j € N, let
Di={zeZ':|xg—Az| ~ 2*'R}. We use Holder’s inequality to get

/Z[|k1(y —Aiz) — ki (xg — A12)| |—| |k (y — A,2)|f(z) dz
r=2

[|k1(y—A1z) — ki(xg —A12)] |_| |k (y — A, 2)|f(z) dz

j=1 I"/ r=2
<Y (kg =Ar) = kalxe = A1) xot [, [ 11y = A Do, 1
j=1 r=2
Now, if p; < o0,
Qg -Az |\
_ \y —Az
||k1(y_A[)X’Df||pl - ( 'D; |y_A[Z|np,/ql dZ)
) 1/py
< C(RY)="a (/ |Q(y — Aiz)|Pt dz)
(2IR<|y—Aiz|<2i*3R) (10)

IN

1/p;
C(2/R)~"artnlp ( I |Q,(u)|p’du)
{1<|u|<8}

CR) TP Q|

IA

where the first inequality follows since |xg—Az|/2 < |y —Aiz| < 2|xg —Aiz|. If p; = oo we also get
Ky = A o, < CRRY

For r # [, we observe that if z € D} then |xg—A,z| > [xg —Az| > 2*'R, so we decompose DJ’. = Ukzj(D/[')k,r where
(D;)k,r ={zeDj: xg—Az| ~2"'R}.

If p, < o0,

o0 1/pr
||kr(y_Ar)XCD;Hpr = Z (/(D |kr(y_ArZ)|pr dZ)

ks

k=j+1 (11)
< IO, Y- @Ry < ClQ, |, (ZIR) e,
k=j+1
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where the geometric sums converge since p, > q,. If p, = oo,

kely = A xotlle = 2 Ikely = Ao, Il < ClQ I @R) ™.

- k=j+1
Now for [ =1,
[(ki(y =Ar+) = kalxs = Ar) ) x|, < Cll(Ki(y = x5 + ) = ki () Xiu1g - (12)

Since n/py +---+nlpy — (n/g2+ -+ n/qn) = a — nls — n/py + n/qq, then (10), (11) and (12) imply

/ |ki(y —Avz) — ka(xg — Ar2)]| I_l |k (y — A, 2)|f(z) dz
21

r=2

CY_@RY"™ =" |[(kily = xa + ) = ki () -1 ], @R)"

j=1

IN

1/s
1 S
w7 Ly dz)

CMasF(AT'X) Y (IR "7 |(Kily = x5 + +) = ki) Xiapezrir ), € CMasFAT'X),
j=1

IN

where the last inequality follows since k; € H, For [ # 1 we observe that

nlqy.p1

Iksty = Av) = ks = A )l < 2 ([ (kaly A = kilxa =10 l,

k=j+1
<C Z (sz)n/m—n/(H (sz)n/q1—n/P1 H(k1(9 —xg+-)— k1('))X\x|~2k+1R||p1 < C(Z/‘R)n/m—n/m,
k=j+1

where the last inequality follows since py > g1 and since ki € H,q; ,, . So as in the case [ =1 we obtain

m

/Zl|k1(y—A1z) — ki(xg — A12)]| |_||kr(g—A,z)|f(z) dz < CM,.f(A 'x).

r=2

Then
1< CY Maof(ATX).

i=1
Now we start with the case a = 0.

If p; = oo forall 1 < i < m, we decompose

o L)< (S [rarmn) s (& [m-oln)-
(|B|/B|(Tof) (y) a|dy) < |B|/B(T0f1) (y)dy + |B|/B|(Tof2) (y) Gydy = |+l

To estimate | we observe that
[Tof(x)] < C[ [x—= Ay~ x = Ay T F(y) dy = CTH(x). (13)

In [11] we obtain that the operator T is of weak-type (1, 1) with respect to the Lebesgue measure. Thus taking 0 < d < 1
and using Kolmogorov's inequality (see [7, Exercise 2.1.5, p.91]) we get

C/ u C/ u .
1< = [ Aly)dy <Y — | fly)dy < CY MFA ).
<5 Rﬂ(y”—;m ROLTE ]Z1 (A7X)
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To estimate Il, we first use Jensen's inequality and then proceed just as in the case 0 < a < n to get

1< CY MIFATX),

=1

and so the theorem follows in this case.

If p; < oo for some 1 < i < m, by Jensen's inequality,

1/0
(|1§|/B|(Tof)6(y)—05|dy) < (|1§|[B|Tof(y)—a|dy)
1 1
< (ﬁjBlToﬂ(y)ldy) + (ﬁjBlTofz(y)—aldy) = 1+1L

As in [6] it can be proved that Ty is bounded on LP(R", dx) for 1 < p < co. So, by Hélder’s inequality,

1/ )1/p (1/ )1/p m »
1< | —= Tof Pd < C|— f Pd <C Mo, f(AT ).
< (g [rmnwras) < c (g [ wra) < Mool

As before, to estimate || we proceed as in the case 0 < a < n to get
m
1< CY MosF(ATx).
j=1

If we chose p = s the theorem follows in this case. O

3. Weighted estimates

Our next aim is to obtain weighted LP-L7 estimates for the operator T, and certain classes of weights. The fundamental
tool to get these results is the following theorem about a Coifman type inequality.

Theorem 3.1.
Let assumptions of Theorem 2.2 on a, T,, A;,€Q); and s hold. Let 0 < p < co and w € A, satisfy (4). Then there exists
C > 0 such that for f € [>(R", dx)

/ [ Taf(X)]P w(x) dx < C/ [Me sf(X)|P w(x) dx,
RN RN
always holds if the left hand side is finite.

Proof. lLet w € A, then there exists r > 1 such that w € A,. For 0 < p < oo we take 0 < § < 1, such that
1< r < pld, thusw € Ays. If | Tof|pw < oo then also |(Tof)?|psmw < oo. Under these conditions we can apply
[5, Theorem 2.20, p.410], and from Theorem 2.2 we get

] | TLf(x) P w(x) dx < / (M(TLF)°(x))PPw(x) dx < C / (ME(TL)(x))” w(x) dx
R" R" R?
m P m
< C/Rn(;/\/lavsf(Aﬂx)) w(x) dx < C;/Rn(/\/lavsf)p(x) w(Aix) dx < C/R,,(Ma’sf(x))p w(x) dx,

where the last inequality follows since w satisfies (4). O
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Lemma 3.2.
Let assumptions of Theorem 2.2 on a, T,, A;,Q; and s hold. Suppose w* € A(p/s,q/s) with1 < p < nla and 1/q =
1p—aln. If f € [P(R", dx) then T,(f) € LI(R", w9).

Proof. The proof follows similar lines as the proof of [11, Lemma 2.2]. Since w* € A(p/s, q/s) then w? € A, with
r=1+q/s-1(pls) =qln-(n]s—a).

Let M; = max{|A;| : |y| = 1} and let M = maxi<j<n {M;}. Suppose suppf C B(0,R). If |x| > 2MR and y € suppf,
then for 1 <i < m,

y X
b= Ayl > x| — Al = x| - |y|\A,-m1 > - R B

so by Holder’s inequality,

ITaf (X)| = Uk1(X—A1y)“-km(X—Amy)f(y)dy‘ < [k = A )xge-mizmz - l[kn = An D xian iz, 1F]s-

Now,
[[kilx = Ac) g ncizimim L, = D[kl =Ac ) xguea 2240l
keN
< C Y 2 Qi ll, < 2 2 XTI, = CI T,
keN keN
So,
ITef ()] < ClxEE =P Oy - Q1] = Clxl ™[]

Thus

/|Taf(x)|qw‘7(x) dx = Z [ Tof(x)]9wi(x) dx

IX|>2MR kEN | ~2k MR
<Cy X[ W (x) dx < €Y (2XMR)“"19w(B(0, 2" MR)).
kENMNZkMR keN

Since w9 € A,, there exists T < r = g/n-(n/s— a) such that w? € Az so w9(B(0, 28" MR)) < C2*"" (see [5, Lemma 2.2))
so the last sum is finite. To study

/ | Tof(X)]9w(x) dx,
IX|<2MR

we recall that in [6] the authors obtain the boundedness of T, from LP(R”, dx) into L9(R", dx) for 1 < p < n/a and
1/g =1/p — a/n, and so it is left to continue the proof as in [11]. O

We are now ready to prove the weighted boundedness result.

Theorem 3.3.
Let assumptions of Theorem 2.2 on a, T4, A;, Q; and s hold. Suppose w satisfies (4) and w° € A(p/s, q/s) withs < p <
n/a and 1/q = 1/p — a/n. Then there exits C > 0 such that for f € L*(R", dx),

1/q 1lp
(/ |Taf(x)|‘7wq(x)dx) <C (/ |f(x)[PwP (x) dx) .
Rl’l RN
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Proof. Since w* € A(p/s, q/s) for 1/qg = 1/p — a/n then w9 € A, C Ay, with r = g/n - (n/s — a). By Lemma 3.2 we
have that T,f € L9(R", w9). Moreover we recall that w® € A(p/s, q/s) implies that M, is bounded from LP/s(R", wP/)
into L95(R", w9’5), so we apply Theorem 3.1 to obtain

1/q

1/q
(/ [ Tof(x)]Tw(x) dx) <C (/ (Ma,sf(x))Twi(x) dx)
RP A

1/q 1/p
= C( (Mas|f(x)|5)q/5wq(x)dx) <C (/ |f(x)[P wP (x) dx) . O
R R"

By a standard duality argument we obtain the following theorem.

Theorem 3.4.
Let assumptions of Theorem 2.2 on a, T,, A;, Q; and s hold. Suppose w satisfies w™ (A7'x) < Cw'(x) forall 1 < i <m
and w=* € A(q'/s,p’ls) with1 < p < nla, 1/g = 1/p — a/n and q < s’. Then there exits C > 0 such that for

f e LR, dx), , .,
q p
(/ |Tgf(x)|qwq(x)dx) <C (/ |f(x)|P wP(x) dx) .
Iy RN

Proof. We observe that the adjoint T of the operator T, is the integral operator with kernel
Kixy) = ki(x=Ar'y) - kn(x = A,'y),
where for1 <i<m

~ Q) Q(—A)
ki(x) = Ax|7/70 = Ax]/el .

It is easy to check that Q; satisfies (H;) and (H) and also that k; € Hyjgp, for all 1 < i < m. We take g with
gl < 1, thus

/Taf(x)g(x)d)(:/f(X)T;g(x)dx.
R R

Hence

/ f(x)T;g(x)dx
R

I Tafllgwe = sup < A Fllpwr sup [IT2G 1o
g g

Since 1/g =1/p—a/nand 1 < p < g < s’ then1/p’=1/q’ — a/n and s < ¢’ < n/a, so as in Theorem 3.3 we obtain

I72gll, - < Cligllgr - <€ andso [[Tafflgue < Cl[f[lpwe- O

We now obtain an estimate of the type (5) for the operator T, and for certain weights in the class A(n/a, c0).

Theorem 3.5.
Let assumptions of Theorem 2.2 on a, T,, A;, Q; and s hold. Suppose w* € A(n/as, o0) and satisfies (4), then there exits
C > 0 such that for f € L°(R", dx),

aln

I7.Al < C ( [ttt ax
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Proof. We observe that if

W e A(%,oo) then WMol < Cllfw]lue. (14)

Indeed, by Halder's inequality we get

1 s 1 nla . nla ashn —s(n/as)

Then, for x € B, since w® € A(n/(as), co) we get

1 1/s aln : 1 , 1/(nlas)'s
w0 (g [reapax) < { [roarewecgan) wxal (g [ wan)

aln

[FOOI™ W™ (x) dX) ,

) 1/(nlas)

el

RN

thus w(x)My sf(x) < C||fw| ne, and (14) follows. Now, using Theorem 2.2 and (14), we get

m m aln
I Taflllw = WM Tof|lse < CZ||w/vla,5f(A;1 I, < cZ (I |f(A;1x)w(x)|"/“dx)
i=1 i=1

aln

m aln
<C ( |f(x)W(A,~x)|”/“dx) < C( |f(x)W(x)|”/"dx) ,
2 /

where the last inequality follows since w satisfies hypothesis (4). O

Finally we prove that T, satisfies a weighted weak type (1, n/(n — a)) estimate for certain weights in A(1, n/(n — a)).

Theorem 3.6.
Let the assumptions of Theorem 2.2 on a, T,,A;, Q; and s hold. Suppose w* € A(1,n/(n — as)) and satisfies (4), then
there exists C > 0 such that for f € [>®°(R", dx),

1/s
sup A(w =) | T f ()| > A1) < € (/|f(x)|sws(x) dx) .
0

A>

Proof. Given w € A, there exists 8> 0 and C > 0 such that
w{x : Mf(x) > 24, M*f(x) < yA} < CyPw{x : Mf(x) > A},
for any y > 0 (see [4, p.146]). For g¢ > 1, as in [11, Theorem 3.2], we obtain that

sup Aw {x : Mf(x) > A} < Csup Aw{x : M*f(x) > yA},
A>0 A>0

for some y > 0. We consider first the case s > 1. If w* € A(1, n/(n — as)) then w*""=2s) € A . So for g = sn/(n — as),
we obtain

S)\ug )\(Wsn/(n—as){x: |Taf|(X) > )‘})(n—aS)/(sn) < Ciu(l-']) )\(Wsn/(nfas){x . MTO,f(X) > )‘})(n—as)/sn
> >

< Csup AW s MPTf(x) > yA}) """
A>0

m (n—as)/sn
< Csup)\(ws”/(”"s) {x : ZMaysf(Afx) > CyA]») ,

A>0 i=1
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where the last inequality follows from Theorem 2.2, with 0 = 1. Since w satisfies (4), it is easy to check that
Wsn/(n—ozs){x . Ma,sf(A,'_1X) > )\} < Ciwsn/(l1—a5){x . Ma,sf(X) > )\}'

SO

SAUOP )\(WS"/("_GS){X . |Taf|()() > A})(NﬂJS)/sn < Ciug A(Wsn/(n_asl{x M f(x) > A})(n—as)/sn
> >

1/s
< Csup AW x - M| (x) > 43) " < € (/ |F(x)]° w* (x) dx) ,
A>0

where the last inequality follows since w* € A(1, n/(n — as)), and since My, is of weak type (1, n/(n—as)). lf s =1, T,
is bounded by the operator T defined in (13) so we proceed as in the proof of [11, Theorem 3.2]. O
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