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Introduction

In [1] the notion of a normal fusion subcategory of a fusion category was introduced as a categorification of the notionof a normal subgroup of a group. For the fusion category RepA of a semisimple Hopf algebra it follows that a fusionsubcategory is normal if and only if it is of the form Rep(A//L) where L is a normal Hopf subalgebra of A [1, Lemma 2.10].Also in [7] the authors introduced the notion of commutator of a fusion subcategory of a given fusion category, and provedthat if D ⊂ C then its commutator Dco is a fusion subcategory if the Grothendieck ring of C is commutative. In thispaper we show that the commutator Dco is a fusion subcategory for any normal fusion subcategory D = Rep(A//L) ofthe fusion category C = RepA. Moreover an explicit formula for Dco is given in Theorem 2.2.Recently the author introduced in [3] the notion of kernel of representation of a semisimple Hopf algebra, which gener-alizes the notion of kernel of group representations. It was proven that if the character of the representation is central
∗ E-mail: sebastian.burciu@imar.ro
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in the dual Hopf algebra then the kernel is a normal Hopf subalgebra. It is not known whether the kernel of an ar-bitrary representation is in general a normal Hopf subalgebra. Hopf algebras having the property that all kernels ofrepresentations are normal are studied in [4]. It is shown that if a Hopf algebra has this property then its dual also hasthis property.In this paper we prove that in the case D(G), of a Drinfeld double of a finite group G, all representations have thekernels normal Hopf subalgebras of D(G). In order to do this we give an explicit description of kernels of all irreduciblerepresentations of D(G). Note that the structure of all Hopf subalgebras of D(G) can be deduced from [5, Theorem 4.1].In order to be able to handle the kernels of representations here we give a different description of these Hopf subalgebrasand show that this description coincides with the description given in Theorem 4.1 of the above paper.Fusion subcategories of the category RepD(G) of a finite group G were recently studied in [15]. They are parameterizedin terms of a pair of commuting subgroups of G and a G-invariant bicharacter defined on their product. The mainingredient used in [15] is the notion of centralizer for a fusion subcategory introduced in [13]. In this paper we willidentify from the above mentioned parametrization all normal fusion subcategories of RepD(G), i.e. those that are of theform Rep(D(G)//L) where L is a normal Hopf subalgebra of D(G). We show that their associated bicharacters satisfy astronger condition than that of G-invariance given in [15].This paper is organized as follows. The first section recalls some basic results on semisimple Hopf algebras and kernelsof their representations that are needed in the paper. Kernels and centers of irreducible representations of the dualHopf algebra CG∗ are computed here.The second section is concerned with fusion subcategories of RepA for a semisimple Hopf algebra A. The notion ofa normal fusion subcategory from [1] is also recalled here. Next the formula for the commutator of a normal fusionsubcategory of RepA is given. Other necessary and sufficient conditions for a simple A-module to be in the commutatorof a normal fusion subcategory are stated in Corollary 2.4.In Section 3 a basis of central characters of Z(D(G)) ∩ C (D(G)∗) is given in Theorem 3.6. It is used in the next sectionto decide when a Hopf subalgebra of D(G) is a normal Hopf subalgebra.Section 4 describes the Hopf subalgebras of D(G) following the method from [5]. Also it introduces a new class of Hopfsubalgebras of D(G) and shows that this class covers all Hopf subalgebras of D(G). In subsection 4.4 a description ofall normal Hopf subalgebras of D(G) is given and it is shown that the kernel of any representation of D(G) is normal.In the last section the parametrization from [15] of fusion subcategories of RepD(G) is recalled. Then using the resultsof the previous section all normal fusion subcategories of RepD(G) are identified.We work over the algebraically closed field k = C. For a vector space V the dimension dimC V is denoted by |V |. Weuse Sweedler’s notation ∆(x) = ∑ x1⊗x2 for comultiplication. All the other Hopf notation is that used in [12].
1. Preliminaries

1.1. General conventions

Let A be a semisimple Hopf algebra over C. Then A is finite dimensional and also cosemisimple [10]. If K is a Hopfsubalgebra of H then K is also a semisimple and cosemisimple Hopf algebra [12]. For any two subcoalgebras C and Dof H we denote by CD the subcoalgebra of H generated as k-vector space by all elements of the type cd with c ∈ Cand d ∈ D.Let G0(A) be the Grothendieck group of the category of left A-modules. Then G0(A) becomes a ring under the tensorproduct of modules and C (A) = G0(A)⊗Z k is a semisimple subalgebra of A∗ [20]. Moreover, C (A) has a vector spacebasis given by the set IrrA of irreducible characters of A and C (A) = CocomA∗, the space of cocommutative elementsof A∗. By duality, the character ring of A∗ is a semisimple subalgebra of A and C (A∗) = CocomA. If M is an A-modulewith character χ then M∗ is also an A-module with character χ∗ = χ ◦S. This induces an involution “ ∗ ” : C (A)→ C (A)on C (A). Let mA(χ, µ) be the multiplicity form on C (A). For d ∈ IrrA∗ denote by Cd the simple subcoalgebra of A whosecharacter as A∗-module equals d [9]. Denote by tA the integral in A∗ with tA(1) = |A|. It is known that tA is also theregular character of A [12]. Let also ΛA be the idempotent integral of A. Thus tA(ΛA) = 1.
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1.2. The subcoalgebra associated to a comodule

LetW be a right H-comodule. Since H is finite dimensional it follows thatW is a left H∗-module via the module structure
f .w = f(w1)w0 where ρ(w) = w0⊗w1 is the given right H-comodule structure of W . Then one can associate to W asubcoalgebra of H denoted by CW [9]. This is the minimal subcoalgebra of H with the property that ρ(W ) ⊂ W ⊗CWMoreover, it can be shown that CW = (AnnH∗W )⊥ and CW is called the subcoalgebra of H associated to the right
H-comodule W .If W is simple right H-comodule (or equivalently W is an irreducible H∗-module) then the associated subcoalgebra CWis a co-matrix coalgebra. More precisely, if dimW = q then dimCW = q2 and it has a k-linear basis given by xij with1 ≤ i, j ≤ q. The coalgebra structure of CW is then given by ∆(xij ) = ∑

l xil⊗xlj for all 1 ≤ i, j ≤ q. Moreover theirreducible character d ∈ C (H∗) of W is given by formula d = ∑q
i=1 xii. It is easy to check that W is an irreducible

H∗-module if and only if CW is a simple subcoalgebra of H. This establishes a canonical bijection between the setIrrH∗ of simple right H∗-comodules and the set of simple subcoalgebras of H. For any irreducible character d ∈ IrrH∗we denote by Cd be the simple subcoalgebra of H associated to the character d (see also [9]).
1.3. Kernels of characters for semisimple Hopf algebras

Let M be a representation of A which allows the character χ . Define kerAχ as the set of all irreducible characters
d ∈ IrrA∗ which act as the scalar ε(d) on M. Then [3, Proposition 1.2] implies that

kerAχ = {d ∈ IrrA∗ : χ(d) = ε(d)χ(1)}.
Similarly, let zAχ be the the set of all irreducible characters d ∈ IrrA∗ which act as a scalar αε(d) on M, where α is aroot of unity. Then from the proposition cited above it follows

zAχ = {d ∈ IrrA∗ : |χ(d)| = ε(d)χ(1)}.
Clearly, kerAχ ⊂ zAχ . Since the sets kerAχ and zAχ are closed under multiplication and “ ∗ ” they generate Hopfsubalgebras of A denoted by Aχ and ZAχ , respectively (see [3]).Recall that a Hopf subalgebra L of H is called a normal Hopf subalgebra if it is stable under the left and right adjointaction of A on itself. When H is a semisimple Hopf algebra it is equivalent for L to be closed only under the left adjointaction, i.e. h1LS(h2) ⊂ L for any h ∈ H. Let L+ = L ∩ ker ε and set H//L = H/HL+. Since HL+ is a Hopf ideal of H(see [12]) it follows that H//L is a quotient of Hopf algebra of H. Moreover, (H//L)∗ can be regarded as a Hopf subalgebraof H∗ via the dual map of the canonical Hopf projection πL : H → H//L.
Remark 1.1.Suppose that K is a Hopf subalgebra of a semisimple Hopf algebra A via i : K ↪→ A. The restriction functor from
A-modules to K-modules induces a map res : C (A) → C (K ). It is easy to see that res = i∗�C (A), the restriction of thedual map i∗ : A∗ → K ∗ to the subalgebra of characters C (A) ⊂ A∗.
Remark 1.2.Let B be a normal Hopf subalgebra of a semisimple Hopf algebra A and χ a character of A allowing the representation
Mχ . Then Mχ is a representation of A//B if and only if Aχ ⊃ B.
1.4. Examples: kernels and centers in CG∗

In this subsection we apply the previous constructions of kerAχ and zAχ for A = CG∗. Note that in this case one hasIrrA ∼= G.Let χ ∈ IrrG. It follows that h ∈ kerCGχ if and only if N(h) ⊂ kerCGχ where N(h) is the smallest normal subgroup of Gcontaining the group element h.
1902



S. Burciu

Lemma 1.3.
For any h ∈ G one has CG∗h = C[G/N(h)]∗.
Proof. By its definition CG∗h is determined by all the characters χ ∈ IrrG such that χ(h) = χ(1). These are preciselythe characters of G/N(h).
Lemma 1.4.
For any h ∈ G one has ZCG∗h = C[G/[G,N(h)]]∗.
Proof. By its definition Zh is generated by the set of irreducible characters χ of G with the property that χ(h) = ωχ(1)for some root of unity ω. Since N(h) is generated by the conjugacy class of h it follows that every element of N(h)acts as a scalar on the representation Mχ allowed by χ . Then if n ∈ N(h) and g ∈ G it follows that gng−1n−1 acts asidentity on Mχ . Thus χ ∈ Irr (G/[G,N(h)]). Conversely, for any χ ∈ Irr (G/[G,N(h)]) one has that left multiplication byany n ∈ N(h) is a morphism of CG modules and Schur’s lemma implies the conclusion.
2. On the commutator of a normal fusion subcategory of RepA
2.1. Fusion categories

In this subsection we recall some basic facts on fusion categories from [6, 7]. As usually, by a fusion category we mean a
k-linear semisimple rigid tensor category C with finitely many isomorphism classes of simple objects, finite dimensionalspaces of morphisms, and such that the unit object 1C of C is simple. We refer the reader to [6] for a general theory ofsuch categories.Let C be a fusion subcategory and O(C) be its set of simple objects considered up to isomorphism. Recall that a fusionsubcategory D of C is a full abelian replete subcategory of C such that if X, Y ∈ D then X ∗ ∈ D and X⊗Y ∈ D. Fora set X of objects of C let 〈X〉 be the fusion subcategory of C generated by the set X . Recall that this means that 〈X〉is the smallest fusion subcategory of C whose set of objects is containing the set X ∪ X ∗ where X ∗ = {x∗ : x ∈ X}.
2.2. Fusion subcategories of RepA
Let A be a semisimple Hopf algebra. It is known that RepA is a fusion category. Moreover there is a maximal centralHopf subalgebra K (A) of A such that (RepA)ad = Rep(A//K (A)), see [7]. Since K (A) is commutative it follows that
K (A) = (CUA)∗ where UA is the universal grading group of RepA. For example if A = CG then K (A) = CZ(G) and
UA = Ẑ(G), the linear dual group of the center Z(G) of G.Let D be a fusion subcategory of RepA and O(D) be its set of objects. Then ID = ⋂

V∈O(D) AnnAV is a Hopf idealin A [18] and D = Rep(A/ID). For a fusion category D ⊂ RepA define its regular character as rD = ∑X∈IrrD dimC XχXwhere IrrD is the set of irreducible objects of D and χX is the character of X as A-module. Thus rD ∈ C (A).
2.3. Normal fusion subcategory

Recall [1] that a fusion subcategory D ⊂ C is called normal if there is a normal tensor functor F : C → E such that
D = kerF . By its definition, kerF is the fusion subcategory of C generated by the set of all objects X ∈ C with
F (X ) = (FPdimX )1D. For the definition of the Frobenius–Perron dimension FPdimX one has to consult [6]. It followsfrom [1, Lemma 2.10] that a normal fusion subcategory of RepA has to be of the type Rep(A//L) with L a normal Hopfsubalgebra of A.
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2.4. The commutator subcategory of a normal fusion subcategory

Recall the notion of commutator subcategory from [7]. If D is a fusion subcategory of C then Dco is the full abeliansubcategory of C generated by objects X such that X⊗X ∗ ∈ O(D). In the same paper [7] it is proved that Dco is a fusionsubcategory if the Grothendieck ring of C is commutative. In this section we show that Dco is a fusion subcategory forany normal fusion subcategory D = Rep(A//L) of RepA.
Example 2.1.Let C = RepG be the category of finite dimensional representations of a finite group G and D = Rep(G/N) for a normalsubgroup N of G. Then it is known that Dco = Rep(G/[G,N]) where [G,N] is the commutator subgroup generated by
gng−1n−1 with n ∈ N and g ∈ G [7].
In this subsection we will describe the category Rep(A//L)co for any normal Hopf subalgebra L of A. For a, b ∈ A define[a, b] = ab − ba the usual commutator. Then for L, a Hopf subalgebra of A, let [A, L] be the ideal generated by [a, l]with a ∈ A and l ∈ L.
Theorem 2.2.
Let L be a normal Hopf subalgebra of A. Then [A, L] is a Hopf ideal of A and

Rep(A//L)co = Rep(A/[A, L]).
Proof. To see that [A, L] is a Hopf ideal note that

∆([a, l]) = ∑
a1l1⊗a2l2 −∑ l1a1⊗l2a2 = ∑(a1l1 − l1a1)⊗a2l2 +∑ l1a1⊗ (a2l2 − l2a2).

Now consider M an irreducible A/[A, L]-module allowing the character χ ∈ C (A). Since (la).m = (al).m for all a ∈ A,
l ∈ L and m ∈ M it follows that left multiplication by l onM is a morphism of A-module. Schur’s Lemma implies that each
l ∈ L acts by a scalar on M. Thus χ↓AL = χ(1)ψ for some linear character ψ of L. Then (χχ∗)↓AL = χ(1)2ψψ−1 = χ(1)2εL.Conversely, suppose that M⊗M∗ is a trivial L-module for an irreducible A-module. Let A = IM⊕AnnAM be thedecomposition of A in two-sided ideals where IM is the minimal ideal in A corresponding to M. It is well known (see [19]for example) that the minimal ideal IM in A corresponding to M satisfies IM ∼= M⊗M∗ where IM is regarded as A-moduleby the adjoint action. Therefore l1xSl2 = ε(l)x for all x ∈ IM and l ∈ L. Then lx = (l1xS(l2))l3 = xl for all x ∈ IM and
l ∈ L. Then (la−al)m = 0 for all a ∈ A. Indeed if a ∈ AnnAM this is clear since (la).m = (al).m = 0. On the otherhand if a ∈ IM then al − la = 0 and thus (al− la).m = 0. This shows that M ∈ Rep(A/[A, L]).
Definition 2.3.
Let L be a normal Hopf subalgebra of A. An irreducible character α of L is called A-stable if there is a character
χ ∈ RepA such that χ↓AL = χ(1)α/α(1). Such a character χ is said to sit over α.

Denote by Gst(L) the set of all A-stable linear characters of L. Clearly Gst(L) is a finite subgroup of the group G(L∗).We also have the following characterization for simple objects M ∈ O (Rep(A//L)co).
Corollary 2.4.
Let M be an irreducible module of A allowing a character χ. Then the following are equivalent:1) M ∈ O(Rep(A//L)co),2) χ↓AL = χ(1)α for some A-stable linear character α of L,3) L acts trivially on some tensor power M⊗n of M.

1904



S. Burciu

Proof. 1)⇒ 2) Suppose that M ∈ O (Rep(A//L)co) and let χ↓AL = ∑
α∈IrrK mαα . Since mL(εL, αβ∗) = δα,β , countingthe multiplicity of εL in χ↓AL χ∗↓AL implies that χ↓AL = χ(1)α for an L-linear character α . If n is the order of α in G(L∗)then clearly χn↓AL = χ(1)nεL which shows that L acts trivially on M⊗n.2)⇒ 3) If χ↓AL = χ(1)α then clearly χn = χ(1)nεL where n is the order of α in Gst(L).3)⇒ 2) Suppose that L acts trivially on some tensor power M⊗n of M. This means that χn↓LA = χ(1)nεL. Let

χ↓AL = ∑
α∈Irr Lmαα

for some nonnegative integers mα and
χn−1↓AL = ∑

α∈Irr Lnααfor some nonnegative integers nα . Recall from [16] that mL(εL, αβ) > 0 if and only if α = β∗. Since χn↓AL = χ(1)nεLthis implies that χ↓AL = χ(1)α/α(1) and χn−1↓AL = χ(1)n−1α∗/α(1) for a fixed character α . It follows by counting themultiplicity of εL in χn↓AL that α(1) = 1. Thus α is an A-stable linear character of L.2)⇒ 1) One has α∗ = α−1 and therefore (χχ∗)↓AL = χ↓AL χ∗↓AL = χ(1)2αα∗ = χ(1)2εL.
3. Kernels of representations of D(G) and its central characters

3.1. The Drinfeld double D(G)
Let D(G) be the Drinfeld double of a finite group G over the complex field C. Recall that as a coalgebra D(G) =
CG∗ cop⊗CG and the multiplication is given by

(px ./g)(py ./h) = pxpgyg−1 ./gh = δx,gyg−1px ./gh.

Moreover, the antipode is given by the formula
S(px ./g) = g−1px−1 = pg−1x−1gg−1.

A vector space basis for D(G) is given by {px ./y}x,y∈G where {px}x∈G is the dual basis of the basis of CG given by thegroup elements.
3.2. Irreducible representations of D(G)
Let R be a set of representatives of conjugacy classes of G. Then the irreducible representations of D(G) are param-eterized by pairs (a, γ) where a ∈ R and γ ∈ IrrCG(a) is an irreducible character of the centralizer CG(a) of a in G.Their characters are denoted by (̂a, γ) respectively.
3.3. Some results on group representations

In this subsection we give some results on group representations that are needed in the sequel. Let H be a subgroupof G. Denote by coreGH the largest normal subgroup of G contained in H. Then coreGH = ⋂
g∈G gHg−1. Let N be anormal subgroup of G. Then it is known that G acts on the set of irreducible characters of N.Let α be an irreducible character of N. The set of characters of G lying over α is denoted by (IrrG)|α . It is the set ofirreducible characters χ of G such that α is a constituent of χ↓GN .
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Lemma 3.1.
Let N be a normal subgroup of G and α ∈ IrrN. Then the induced character α↑GN vanishes outside N. If α is a G-stable
character of N then α↑GN (g) = |G|α(g)/|N| for all g ∈ N.

Proof. Denote by Mα the representation allowed by α . Let G = ⋃s
i=1 xiN be a coset decomposition of G. Then

g(xi⊗Nm) = xj⊗N (x−1
j gxi).m where j is chosen such that gxiN = xjN. Thus if g /∈ N then i 6= j and α↑GN (g) = 0. Onthe other hand, if g ∈ N then α↑GN (g) = ∑s

i=1 α (x−1
i gxi). But if α is G-stable then α (x−1

i gxi) = α(g) for all i and theformula follows.
Let a ∈ G and denote by CG(a) the core subgroup coreG CG(a) of the centralizer CG(a) of a. For any a ∈ G let N(a) bethe smallest subgroup of G containing a. It is easy to see that N(a) is the subgroup generated by the conjugacy classof a. Also, for any subgroup N ⊂ G of G let CG(N) = ⋂n∈N CG(n) be the subgroup of the elements of G that commutewith each element of N.
Proposition 3.2.
Let a ∈ G and N(a) be defined as above. Then NG(N(a)) = CG(a).
Proof. One has CG(a) = ⋂

g∈G gCG(a)g−1 = ⋂
g∈G CG(gag−1). Since N(a) is generated by the conjugacy classof a, x ∈ NG(N(a)) if and only if x commutes with all conjugates of x. Therefore x ∈ NG(N(a)) if and only if

x ∈
⋂
g∈G CG(gag−1) = CG(a).

Lemma 3.3.
Let h ∈ G and χ ∈ ZCG∗ (h) with χ(h) = ωχ(1), ω ∈ C∗. Then all irreducible characters µ of G which satisfy µ(h) = ωµ(1)
are constituents of χεN(h)↑GN(h) where εN(h) is the trivial character of the normal subgroup N(h) of G.

Proof. If µ(h) = ωµ(1) then h ∈ kerCG µχ∗. Since N(h) is a normal subgroup it easily follows (see for example [2,Theorem 4.3]) that µχ∗ has all the constituents inside εN(h)↑GN(h). Thus mG
(
µ, χεN(h)↑GN(h)) = mG

(
µχ∗, εN(h)↑GN(h)) > 0.

3.4. Central characters in D(G)
Lemma 3.4.
Let c = ∑h∈G

χh./h be a character of D(G)∗ with χh ∈ C (G). Then c is central in D(G) if and only if χghg−1 = χh and
χh vanishes on G \ CG(h).
Proof. The character c is central if and only it is invariant under the adjoint action of D(G) on itself. Thus c is centralif and only if gcg−1 = g for all g ∈ G and px .c = δx,1c for all x ∈ G. The first condition is equivalent to χghg−1 = χhfor all g ∈ G. For the second condition one has

px .c = ∑
uv=x pv cpu−1 = ∑

h∈G

∑
uv=x pv (χh./h)pu−1 = ∑

h∈G

∑
uv=x pvχhphu−1h−1 ./h = ∑

h∈G

∑
{u:uhu−1h−1=x}phu−1h−1χh./h.

Suppose that c is central. Then px .c = δx,1c if and only if∑
{u:uhuh−1=x}phu−1h−1χh = δx,1χh

for all h ∈ G. If x = 1 this means precisely that χh is zero outside CG(h). The converse is immediate.
For a conjugacy class C of G let pC = ∑

x∈C px and zC = ∑
x∈C x. The elements {pC}C form a basis for the characterring C (G) of G and {zC}C form a basis for the center Z(CG). For a character χ of a group G and a conjugacy class Cof G denote by χC the value of χ on the conjugacy class C. Thus χ = ∑C

χ
CpC.The following remark is straightforward.
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Remark 3.5.Let H be a subgroup of G. Then a character χ ∈ C (G) vanishes outside H if and only if it vanishes outside coreGH.
Theorem 3.6.
A basis for Z

(
D(G)) ∩ C (D(G)∗) is given by the elements pD./zC where D and C run through all conjugacy classes

of G that centralize each other element-wise.

Proof. Let a ∈ C. Then CG(a) = ⋂g∈G gCG(a)g−1 = ⋂x∈C CG(x). Thus any element of a conjugacy class D centralizeeach element of another conjugacy class C if and only if D is contained in CG(a). In this case the above remark implies
pD vanishes outside the centralizer of each element of C. The previous lemma implies that pD./zC is central in D(G).The same lemma also implies that any central character is a linear combination of such characters.
4. Hopf subalgebras of Drinfeld doubles D(G)
If N is a normal subgroup of G let Gst(N) be the group of linear characters of N that are stable under the conjugationaction of G on the subgroup N. It is not difficult to check the following result. Its proof follows from Lemma 3.1.
Lemma 4.1.
Let N be a normal subgroup of G and x, x ′ ∈ Gst(N). Then

x↑GN x ′↑GN = |G||N| (xx ′)↑GN .
If x is a character of N then as in subsection 1.2 denote by Cx↑GN the subcoalgebra of CG∗ associated to the character
x↑GN . On the other hand if N is a normal subgroup of G let πN : G → G/N be the natural group projection and for any
g ∈ G denote by Cπ−1

N (g) the vector subspace of kG with a basis given by the elements {gn : n ∈ N}.
Lemma 4.2.
Let N be a normal subgroup of G and x ∈ Gst(N). Then

Cx↑GN = {
f ∈ kG : n ⇀ f = x(n)f}.

Proof. Note that {
f ∈ kG : n ⇀ f = x(n)f} = (

〈an − x(n)a : a ∈ G〉)⊥.
By a straightforward computation it can be checked that the annihilator AnnkG(x↑GN ) is the linear subspace of kGgenerated by the elements {an − x(n)a : a ∈ G}. This implies the conclusion of the lemma.
4.1. Hopf subalgebras of D(G)
In this subsection we describe all Hopf subalgebras of D(G). Let N and M be normal subgroups of G, X ⊂ Gst(N) and
ψ : X→ G/M be a monomorphism of groups. Let D(N,M,X, ψ) be the subcoalgebra of D(G) given by

D(N,M,X, ψ) = ⊕
x∈X

Cx↑GN ./ CπM−1(ψ(x)).

In the next theorem it will be shown that D(N,M,X, ψ) is a Hopf subalgebra of D(G).
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Proposition 4.3.
With the above notation D(N,M,X, ψ) is a Hopf subalgebra of D(G) for any given datum as above.

Proof. In order to show that a subcoalgebra of a semisimple Hopf algebra is a Hopf subalgebra is enough to showthat the set of irreducible characters associated to the respective subcoalgebra is closed under multiplication andduality “ ∗ ” (see [17, Theorem 6]). Since D(G) is finite dimensional it is enough to show that this set is closed undermultiplication only. Since x is a G-stable character by Frobenius reciprocity it follows that x↑GN = ∑
χ∈Ax

χ(1)χ andtherefore dimC Cx↑GN = |G|/|N|. Then dimCD(N,M,X, ψ) = |X| · |G|· |M|/|N|. Let ψ0(x) ∈ G such that ψ(x) = ψ0(x)Mfor all x ∈ M. Since ψ is a group morphism it follows that (ψ0(x)ΛM )(ψ0(x ′)ΛM ) = ψ0(xx ′)ΛM for all x, x ′ ∈ M. HereΛM = (1/|M|)∑m∈M m. Let ΛD(N,M,X,ψ) = |N|
|X| · |G|· |M|

∑
x∈X

x↑GN ./ ψ0(x)ΛM .
One has

Λ2
D(N,M,X,ψ) = (

|N|
|X| · |G|· |M|

)2 ∑
x,x′∈X

x↑GN x ′↑GN ./ ψ0(x)ΛMψ0(x ′)ΛM = |N|
|X| · |G|· |M|

∑
x,x′∈X

(xx ′)↑GN ./ ψ0(xx ′)ΛM
by the above lemma. This shows that D(N,M,X, ψ) is a Hopf subalgebra of D(G).
4.2. Definition of the Hopf subalgebras C (M,H, λ)
Define the linear harpoon operators on CG by La(f) = a ⇀ f and Ra(f) = f ↼ a for all a ∈ G. Let M,H ≤ G besubgroups of G with M a normal subgroup of G. Let also λ : M×H → k∗ be an invariant twisted bicharacter on M×H,i.e. a function satisfying the following three properties:

λ(mn, h) = λ(m,h)λ(n, h), (1)
λ(m,hl) = λ(m,h)λ(hmh−1, l), (2)

λ(a−1ma, h) = λ(m,h) (3)
for all a ∈ G, m,n ∈ M and h, l ∈ H. Define the following vector subspace of D(G):

C (M,H, λ) = ⊕
h∈H

Cλ(h)#h

where Cλ(h) = {f ∈ CG : m ⇀ f = λ(m,h)f, m ∈ M}. Note that D(G) fits into a cocentral exact sequence of Hopfalgebras
C→ CG∗ → D(G)→ CG → C

and the results from [5] therefore can be applied. Then [5, Theorem 4.1] shows that any Hopf subalgebra of D(G) is ofthe type C (M,H, λ).
4.3. The correspondence between the two Hopf subalgebras

Proposition 4.4.
With the above notations one has:(a) D(N,M,X, ψ) = C (N,H, λX,ψ), where H = 〈ψ(X)M〉 and λX,ψ : N×H → k∗ is given by λX,ψ(n, ψ0(x)m) = x(n) on

the generators ψ(x)m of the subgroup H of G.(b) C (M,H, λ) = D(M, kerHλ,X, ψ) where kerHλ = {h ∈ H : λ( · , h) = 1} and X = {λ( · , h) : h ∈ H}. Moreover,
ψ : X→ G/kerHλ is defined by ψ(λ( · , h)) = h.
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Proof. (a) As above suppose that ψ(x) = ψ0(x)M for a chosen element ψ0(x) ∈ G. Then it is easy to see that λX,ψis well defined and satisfies equations (1) and (2). The rest of the proof follows from Lemma 4.2.(b) This part is also straightforward. Note that the compatibility condition (3) implies that X ⊂ Gst(N).
[5, Theorem 4.1] together with the previous proposition imply the following.
Corollary 4.5.
Any Hopf subalgebra of D(G) is of the type D(N,M,X, ψ) for a given datum as above.

4.4. Kernels of representations of D(G) and normal Hopf subalgebras of D(G)
Theorem 4.6.
A Hopf subalgebra D(N,M,X, ψ) of D(G) is normal if and only ψ(X) ⊂ CG(N)/M ∩ Z(G/M) and [N,M] = 1.

Proof. In order to see when D(N,M,X, ψ) is a normal Hopf subalgebra of D(G) it is enough to decide when itsintegral ΛD(N,M,X,ψ) is central in D(G) (see [11]). In order to do this one needs to verify the conditions from Lemma 3.4for centrality of a character of D(G)∗.First note that ψ0(x)m 6= ψ0(y)m′ for x 6= y and for any m,m′ ∈ M since ψ is a monomorphism. The equality ofcharacters χghg−1 = χh from Lemma 3.4 is satisfied if and only if gψ0(x)Mg−1 = ψ0(x)M for all g ∈ G. This isequivalent to the fact that ψ(x) ∈ Z(G/M). On the other hand, for the second condition note that by Lemma 3.1, x↑GNis zero outside N and does not vanish on any element of N. Thus the second condition of Lemma 3.4 is equivalent to
N ⊂ CG(ψ0(x)m) for all m ∈ M. For x = 1 this implies that [N,M] = 1 and then for an arbitrary x ∈ X it follows that
ψ(x) ∈ CG(N)/M.
4.5. Kernels of irreducible characters of D(G)
Since D(G) = CG∗ cop./CG as vector spaces, the dual Hopf algebra D(G)∗ can be identified with CG∗⊗CGop via
〈f ⊗l, px ./g〉 = 〈f, g〉〈px , l〉 for any g, x, l ∈ G and f ∈ CG∗.For a subgroup H of G denote by (G/H)l the set of representatives for the left cosets of H in G.
Lemma 4.7.
For an irreducible representation (a, γ) of D(G) its character (̂a, γ) is given by

(̂a, γ) = ∑
g∈(G/CG (a))l

∑
z∈CG (a)γ(z)pgag−1⊗gzg−1.

Proof. It is enough to show that (̂a, γ)(px ./ l) = γ(g−1lg) (4)if there is g ∈ G such that x = gag−1 and g−1lg ∈ CG(a). Also if there is no such g ∈ G then (̂a, γ)(px ./ l) = 0.The representation corresponding to (a, γ) is given by CG⊗C CG (a)Mγ where Mγ is the module allowing the character γ.The action of CG∗ is given by px(g⊗CCG (a)m) = δx,gag−1(g⊗CCG (a)m) and the action of CG is the action of inducedmodule. Using Lemma 3.1 a straightforward computation implies formula (4).
Proposition 4.8.
Let M be a subgroup of G, γ ∈ IrrM an irreducible character of M and a ∈ G. Then the set S of pairs (χ, l) ∈ZCG∗a×coreGM such that χ(a)/χ(1) = (γ(glg−1)/γ(1))−1 for all g ∈ G is of the form

S = s⊔
i=0
[(IrrG)|f i0×li0 coreG(kerMγ)]
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for some G-stable character f0 ∈ Gst(N(a)) of N(a) and some l0 ∈ ZC[CG (a)]γ. Moreover f0 has order s and ls0 ∈coreG(kerMγ).
Proof. Define the following set of scalars:

H = {ω ∈ C : there is (χ, l) ∈ S with ω = χ(a)
χ(1)

}
.

It can be easily checked that H is a subgroup of C∗. Since C is algebraically closed and H is finite it follows that H isa cyclic group. Therefore H = {1, ω, . . . , ωs−1} for some root of unity ω of order s. Let χ0 and l0 such that (χ0, l0) ∈ Sand χ0(a)/χ0(1) = ω = (γ(gl0g−1)/γ(1))−1 for all g ∈ G. Then χ0↓GN(a) = χ0(1)f0 for some f0 ∈ Gst(N(a)) of order s. Alsonote that gs0 ∈ coreG(kerMγ). Lemma 3.3 implies the conclusion of the proposition.
Corollary 4.9.
With the notation of the previous proposition, the Hopf subalgebra of D(G) generated by the characters χ ./l, with(χ, l) ∈ S, is of the form D

(
N(a), coreG(kerMγ),X, ψ) where X = {f i0}si=1 and ψ : X → G/ coreG(kerMγ) is given by

ψ(f i0) = li0.
Proof. Note that S is closed under multiplication, i.e. if (χ, l), (χ ′, l′) ∈ S then (µ, ll′) ∈ S for any µ, an irreducibleconstituent of χχ ′. Then using [17, Theorem 6] it follows that this set generates a Hopf subalgebra of D(G) which clearlyshould coincide with D(N(a), coreG(kerMγ),X, ψ).
Remark 4.10.Note that since γ(gl0g−1)/γ(1) = γ(l0)/γ(1) it follows that gl0g−1 ∈ l0 coreG(kerMγ) which means that ψ(f0) ∈
Z
(
G/ coreG(kerMγ)) and therefore ψ(X) ⊂ Z

(
G/ coreG(kerMγ)).

Theorem 4.11.
Let a ∈ R and γ ∈ IrrCG(a). Then the Hopf subalgebra D(a,γ) = D(G)(̂a,γ) is a normal Hopf subalgebra of D(G).
Moreover, with the above notation one has

D(a,γ) = D
(
N(a), coreG(kerCG (a)γ), 〈f0〉, ψ)

for some G-stable linear character f0 of N(a) and some group monomorphism ψ : 〈f0〉 → Z
(
G/ coreG(kerCG (a)γ)) ∩

CG(N(a))/kerCG (a)γ.
Proof. First we will describe ker (̂a, γ). An irreducible character of D(G)∗ is given by χ ./l with χ ∈ IrrG and l ∈ G.It follows that χ ./l ∈ kerD(G) (̂a, γ) if and only if

(̂a, γ)(χ ./l) = χ(1)γ(1) |G|
|CG(a)| .

It follows from Lemma 4.7 that
(̂a, γ)(χ ./l) = χ(a) ∑

{g∈(G/CG (a))l :l∈gCG (a)g−1}
γ(g−1lg).

Note that the above the sum has at most |G|/|CG(a)| terms and the absolute value for each term satisfies
|χ(a)| · |γ(g−1lg)| ≤ χ(1)γ(1). Then we deduce that the above equality is satisfied if and only if there is a root ofunity ω ∈ C∗ such that χ(a) = ωχ(1) and l ∈ coreG(ZCG (a)γ) with the property that γ(g−1lg) = ω−1γ(1) for all g ∈ G.
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Thus the set S = kerD(G) (̂a, γ) satisfies the hypothesis of Proposition 4.8. Then as in Corollary 4.9 it follows that thereis f0 a G-stable linear character of N(a) and l0 ∈ G such that
kerD(G) (̂a, γ) = s⊔

i=0
[(IrrG)|f i0×li0 coreG(kerCG (a)γ)].

Thus one can take X to be the group generated by f0 and define ψ by sending f i0 to the class of gi0 modulo coreG(kerCG (a)γ),for all 1 ≤ i ≤ s − 1. It can be easily checked that the map ψ satisfies the additional hypothesis from Theorem 4.6.Note that [N(a), CG(a)] = 1 by Proposition 3.2. Thus ψ(X) ⊂ CG(N(a))/coreG (kerCG (a)γ). The other condition ψ(X) ⊂
Z
(
G/coreG (kerCG (a)γ)) of Theorem 4.6 follows from Remark 4.10.

The description of the kernels from the previous theorem implies the following corollary.
Corollary 4.12.
With the above notation one has D(1,γ) = CG∗ ./C(kerGγ).
A proof similar to the proof of Theorem 4.11 gives
Proposition 4.13.
If (a, γ) is a representation of D(G) then

ZD(G) (̂a, γ) = C[G/[G,N(a)]]∗ ./C(coreG(ZCG (a)γ)).
Note that Lemma 1.4 is also needed in order to compute the center ZCG∗a.
5. Normal fusion subcategories of RepD(G)
5.1. Fusion subcategories of RepD(G)
In this subsection we recall the parametrization of fusion subcategories of RepD(G) given in [15].Let D be a fusion subcategory of C. Then, following [14], the fusion subcategroy D is completely determined by twocanonical normal subgroups KD and HD of G and a G-invariant bicharacter BD : KD×HD → C∗. The subgroups KDand HD are defined as follows:

KD = {
gag−1 : g ∈ G and (a, γ) ∈ D for some γ}

and HD is the normal subgroup of G such that D ∩ RepG = Rep(G/HD). Note that KD is the fusion subcategoryof CG∗ determined by restricting all simple objects of D to CG∗.The bicharacter BD : KD×HD → C∗ is defined by
BD(g−1ag, h) = γ(ghg−1)

γ(1)
if (a, γ) ∈ D. This is well defined and does not depend on γ [15]. Recall, see again [15], that a bicharacter is called
G-invariant if and only if B(xkx−1, xhx−1) = B(k, h) for all x ∈ G, k ∈ K and h ∈ H.Conversely, any two normal subgroups K and H of G that centralize each other element-wise together with a G-invariantbicharacter B : K ×H → C∗ give rise to a fusion category denoted by S(K,H,B) in [15]. It is defined as the fullabelian subcategory of RepD(G) generated by the objects (a, γ) such that a ∈ K ∩ R and γ ∈ IrrCG(a) such that
γ(h) = B(a, h)γ(1) for all h ∈ H.
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5.2. Normal fusion subcategories of RepD(G)
In this subsection we will identify all the normal fusion subcategories S(K,H,B) of RepD(G).
Remark 5.1.Let B be a normal Hopf subalgebra of a semisimple Hopf algebra A and a ∈ A. Then a(A//B) 6= 0 if and only if aΛB 6= 0.Indeed it is easy to verify that the map A//B → AΛB given by a + AB+ 7→ aΛB is an isomorphism of A-modules (seealso [8, Lemma 3.2]).
Theorem 5.2.
Let D(N,M,X, ψ) be a normal Hopf subalgebra of D(G) as in Theorem 4.6. Then the normal fusion subcategoryRep(D(G)//D(N,M,X, ψ)) can be identified with S(K,H,B) where K = N, H = 〈ψ0(x),M : x ∈ X〉 and B : K ×H → C∗
is given by B(n, ψ0(x)m) = x(n)−1.
Proof. Let D = Rep(D(G)//D(N,M,X, ψ)). For the subgroup HD one has to look at Rep(D(G)//D(N,M,X, ψ)) ∩Rep(CG). Thus

HD = ⋂
{χ∈IrrG:(1,χ)∈D}kerGχ.But (1, χ) ∈ D if and only if D(1,χ) ⊃ D(N,M,X, ψ). Note that D(1,χ) = CG∗ ./ kerGχ by Corollary 4.12. Then it followsthat D(1,χ) ⊃ D(N,M,X, ψ) if and only if kerGχ ⊃ 〈ψ(x), m : x ∈ X, m ∈ M〉. Thus HD = 〈ψ(x), m : x ∈ X, m ∈ M〉.The subgroup KD is generated by all x ∈ G such that the relation px (D(G)//D(N,M,X, ψ)) 6= 0 holds. The aboveremark implies that KD is given by x ∈ G such that pxΛD(N,M,X,ψ) 6= 0. Formula for ΛD(N,M,X,ψ) from Theorem 4.5 showsthat x ∈ KD if and only if (f i↑GN )(x) 6= 0 for some i and some f ∈ X. Lemma 3.1 shows that KD ⊂ N. Since f is a linearcharacter it follows that KD = N.In order to describe the bicharacter B suppose now that we have (a, γ) ∈ Rep(D(G)//D(N,M,X, ψ)). Then D(a,γ) ⊃

D(N,M,X, ψ). But using again Lemma 3.1 one has
B(gag−1, h) = γ(g−1hg)

γ(1) = (
x↑GN (a)
|G|/|N|

)−1= x(a)−1.

For any bicharacter B : K ×H → k∗ define
K⊥ = {h ∈ H : B(a, h) = 1, a ∈ K}.

Using the previous theorem we can give the following criteria.
Theorem 5.3.
A fusion subcategory S(K,H,B) is a normal fusion subcategory of RepD(G) if and only if

B(gag−1, h) = B(a, h) = B(a, ghg−1) (5)
for all a, g, h ∈ G. In these conditions

S(K,H,B) = Rep(D(G)//D(K,K⊥,X, ψ)) (6)
where X = {B( · , h) : h ∈ H} and ψ : X→ Z(G/K⊥) ∩ CG(K )/K⊥ is given by ψ(x) = h for any h ∈ H with x = B( · , h).
Proof. Suppose that S(K,H,B) is a normal fusion subcategory. Then, using the previous theorem, (6) follows forsome data (N,M,X, ψ). Thus B(gag−1, ψ0(x)m) = x(gag−1) = x(a) = B(a, ψ0(x)m). Conversely, suppose that (5) issatisfied. Then clearly X is a group of G-stable linear characters of K . Moreover it is straightforward to check that
ψ takes values inside Z(G/K⊥) ∩ CG(K )/K⊥. The rest of the theorem follows from Theorem 5.2.
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