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Introduction

In [1] the notion of a normal fusion subcategory of a fusion category was introduced as a categorification of the notion
of a normal subgroup of a group. For the fusion category Rep A of a semisimple Hopf algebra it follows that a fusion
subcategory is normal if and only if it is of the form Rep(A//L) where L is a normal Hopf subalgebra of A [1, Lemma 2.10].

Also in [7] the authors introduced the notion of commutator of a fusion subcategory of a given fusion category, and proved
that if D C € then its commutator D® is a fusion subcategory if the Grothendieck ring of € is commutative. In this
paper we show that the commutator D® is a fusion subcategory for any normal fusion subcategory D = Rep(A//L) of
the fusion category C = Rep A. Moreover an explicit formula for D® is given in Theorem 2.2.

Recently the author introduced in [3] the notion of kernel of representation of a semisimple Hopf algebra, which gener-
alizes the notion of kernel of group representations. It was proven that if the character of the representation is central
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in the dual Hopf algebra then the kernel is a normal Hopf subalgebra. It is not known whether the kernel of an ar-
bitrary representation is in general a normal Hopf subalgebra. Hopf algebras having the property that all kernels of
representations are normal are studied in [4]. It is shown that if a Hopf algebra has this property then its dual also has
this property.

In this paper we prove that in the case D(G), of a Drinfeld double of a finite group G, all representations have the
kernels normal Hopf subalgebras of D(G). In order to do this we give an explicit description of kernels of all irreducible
representations of D(G). Note that the structure of all Hopf subalgebras of D(G) can be deduced from [5, Theorem 4.1].
In order to be able to handle the kernels of representations here we give a different description of these Hopf subalgebras
and show that this description coincides with the description given in Theorem 4.1 of the above paper.

Fusion subcategories of the category Rep D(G) of a finite group G were recently studied in [15]. They are parameterized
in terms of a pair of commuting subgroups of G and a G-invariant bicharacter defined on their product. The main
ingredient used in [15] is the notion of centralizer for a fusion subcategory introduced in [13]. In this paper we will
identify from the above mentioned parametrization all normal fusion subcategories of Rep D(G), i.e. those that are of the
form Rep(D(G)//L) where L is a normal Hopf subalgebra of D(G). We show that their associated bicharacters satisfy a
stronger condition than that of G-invariance given in [15].

This paper is organized as follows. The first section recalls some basic results on semisimple Hopf algebras and kernels
of their representations that are needed in the paper. Kernels and centers of irreducible representations of the dual
Hopf algebra CG* are computed here.

The second section is concerned with fusion subcategories of Rep A for a semisimple Hopf algebra A. The notion of
a normal fusion subcategory from [1] is also recalled here. Next the formula for the commutator of a normal fusion
subcategory of Rep A is given. Other necessary and sufficient conditions for a simple A-module to be in the commutator
of a normal fusion subcategory are stated in Corollary 2.4.

In Section 3 a basis of central characters of Z(D(G)) N C(D(G)*) is given in Theorem 3.6. It is used in the next section
to decide when a Hopf subalgebra of D(G) is a normal Hopf subalgebra.

Section 4 describes the Hopf subalgebras of D(G) following the method from [5]. Also it introduces a new class of Hopf
subalgebras of D(G) and shows that this class covers all Hopf subalgebras of D(G). In subsection 4.4 a description of
all normal Hopf subalgebras of D(G) is given and it is shown that the kernel of any representation of D(G) is normal.

In the last section the parametrization from [15] of fusion subcategories of Rep D(G) is recalled. Then using the results
of the previous section all normal fusion subcategories of Rep D(G) are identified.

We work over the algebraically closed field k = C. For a vector space V the dimension dimc V' is denoted by |V|. We
use Sweedler’s notation A(x) = }_ x1® x; for comultiplication. All the other Hopf notation is that used in [12].

1. Preliminaries

1.1. General conventions

Let A be a semisimple Hopf algebra over C. Then A is finite dimensional and also cosemisimple [10]. If K is a Hopf
subalgebra of H then K is also a semisimple and cosemisimple Hopf algebra [12]. For any two subcoalgebras C and D
of H we denote by CD the subcoalgebra of H generated as k-vector space by all elements of the type cd with c € C
and d € D.

Let Go(A) be the Grothendieck group of the category of left A-modules. Then Gy(A) becomes a ring under the tensor
product of modules and C(A) = Go(A)®zk is a semisimple subalgebra of A* [20]. Moreover, C(A) has a vector space
basis given by the set Irr A of irreducible characters of A and C(A) = Cocom A*, the space of cocommutative elements
of A*. By duality, the character ring of A* is a semisimple subalgebra of A and C(A*) = CocomA. If M is an A-module
with character X then M* is also an A-module with character X* = X o S. This induces an involution “* ": C(A) — C(A)
on C(A). Let ma(X, ) be the multiplicity form on C(A). For d € Irr A* denote by C, the simple subcoalgebra of A whose
character as A*-module equals d [9]. Denote by t4 the integral in A* with ta(1) = |A]. It is known that t4 is also the
regular character of A[12]. Let also A4 be the idempotent integral of A. Thus ta(Ax) = 1.
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1.2. The subcoalgebra associated to a comodule

Let W be a right H-comodule. Since H is finite dimensional it follows that W is a left H*-module via the module structure
f.w = f(w1)wy where p(w) = wo®w; is the given right H-comodule structure of W. Then one can associate to W a
subcoalgebra of H denoted by Cy [9]. This is the minimal subcoalgebra of H with the property that p(W) c W® Cy
Moreover, it can be shown that Cyy = (AnngyW)% and Cy is called the subcoalgebra of H associated to the right
H-comodule W.

If W is simple right H-comodule (or equivalently W is an irreducible H*-module) then the associated subcoalgebra Cy
is a co-matrix coalgebra. More precisely, if dim W = g then dim Cyy = g2 and it has a k-linear basis given by x;; with
1 < i,j £ q. The coalgebra structure of Cyy is then given by A(x;) = ), xy®x;; for all 1 < i,j < g. Moreover the
irreducible character d € C(H*) of W is given by formula d = Y |, xy. It is easy to check that W is an irreducible
H*-module if and only if Cy is a simple subcoalgebra of H. This establishes a canonical bijection between the set
Irr H* of simple right H*-comodules and the set of simple subcoalgebras of H. For any irreducible character d & Irr H*
we denote by C, be the simple subcoalgebra of H associated to the character d (see also [9]).

1.3. Kernels of characters for semisimple Hopf algebras

Let M be a representation of A which allows the character X. Define keraX as the set of all irreducible characters
d € Irr A* which act as the scalar €(d) on M. Then [3, Proposition 1.2] implies that

keraX = {d € Irr A" : X(d) = e(d)X(1)}.

Similarly, let zaX be the the set of all irreducible characters d € Irr A* which act as a scalar ae(d) on M, where a is a
root of unity. Then from the proposition cited above it follows

22X = {d € lIrr A" : [X(d)| = e(d)X(1)}.

Clearly, keraX C zaX. Since the sets keraX and zsX are closed under multiplication and “ * " they generate Hopf
subalgebras of A denoted by A, and ZxX, respectively (see [3]).

Recall that a Hopf subalgebra L of H is called a normal Hopf subalgebra if it is stable under the left and right adjoint
action of A on itself. When H is a semisimple Hopf algebra it is equivalent for L to be closed only under the left adjoint
action, i.e. h{LS(h;) C Lforany h € H. Let Lt = Lnkere and set HJ/L = H/HL*. Since HL" is a Hopf ideal of H
(see [12)) it follows that H//L is a quotient of Hopf algebra of H. Moreover, (H//L)* can be regarded as a Hopf subalgebra
of H* via the dual map of the canonical Hopf projection 7r,: H — HJ/L.

Remark 1.1.

Suppose that K is a Hopf subalgebra of a semisimple Hopf algebra A via i: K — A. The restriction functor from
A-modules to K-modules induces a map res: C(A) — C(K). It is easy to see that res = i"[4), the restriction of the
dual map i*: A* — K* to the subalgebra of characters C(A) C A*.

Remark 1.2.
Let B be a normal Hopf subalgebra of a semisimple Hopf algebra A and X a character of A allowing the representation
My. Then My is a representation of A//B if and only if Ay D B.

1.4. Examples: kernels and centers in CG*

In this subsection we apply the previous constructions of kersX and z.X for A = CG*. Note that in this case one has
IrrAZ G.

Let X € Irr G. It follows that h € kerceX if and only if N(h) C kercgX where N(h) is the smallest normal subgroup of G
containing the group element h.
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Lemma 1.3.
For any h € G one has CG; = C[G/N(h)]*.

Proof. By its definition CG; is determined by all the characters X € Irr G such that X(h) = X(1). These are precisely
the characters of G/N(h). O

Lemma 1.4.
For any h € G one has Z¢g+-h = C[G/[G, N(h)]]".

Proof. By its definition Zj is generated by the set of irreducible characters X of G with the property that X(h) = wX(1)
for some root of unity w. Since N(h) is generated by the conjugacy class of h it follows that every element of N(h)
acts as a scalar on the representation M, allowed by X. Then if n € N(h) and g € G it follows that gng='n~" acts as
identity on My. Thus X € Irr(G/[G, N(h)]). Conversely, for any X € Irr(G/[G, N(h)]) one has that left multiplication by
any n € N(h) is a morphism of CG modules and Schur’s lemma implies the conclusion. O

2. On the commutator of a normal fusion subcategory of Rep A

2.1. Fusion categories

In this subsection we recall some basic facts on fusion categories from [6, 7]. As usually, by a fusion category we mean a
k-linear semisimple rigid tensor category C with finitely many isomorphism classes of simple objects, finite dimensional
spaces of morphisms, and such that the unit object 1¢ of C is simple. We refer the reader to [6] for a general theory of
such categories.

Let C be a fusion subcategory and O(C) be its set of simple objects considered up to isomorphism. Recall that a fusion
subcategory D of C is a full abelian replete subcategory of C such that if X, Y € D then X* € D and X® Y € D. For
a set X of objects of € let (X) be the fusion subcategory of C generated by the set X. Recall that this means that (X)
is the smallest fusion subcategory of € whose set of objects is containing the set X U X* where X* = {x*: x € X}.

2.2. Fusion subcategories of Rep A

Let A be a semisimple Hopf algebra. It is known that Rep A is a fusion category. Moreover there is a maximal central
Hopf subalgebra K(A) of A such that (RepA).s = Rep(A/K(A)), see [7]. Since K(A) is commutative it follows that
K(A) = (CUx)* where U, is the universal grading group of RepA. For example if A = CG then K(A) = CZ(G) and
Uy = Z/(E) the linear dual group of the center Z(G) of G.

Let D be a fusion subcategory of Rep A and O(D) be its set of objects. Then Ip = [, o) AnnaV is a Hopf ideal
in A[18] and D = Rep(A/lp). For a fusion category D C Rep A define its reqular character as rpo =)y, o dimg XXx
where Irr D is the set of irreducible objects of D and Xx is the character of X as A-module. Thus rp € C(A).

2.3. Normal fusion subcategory

Recall [1] that a fusion subcategory D C € is called normal if there is a normal tensor functor F: € — & such that
D = ker F. By its definition, ker F is the fusion subcategory of C generated by the set of all objects X € € with
F(X) = (FPdim X)1p. For the definition of the Frobenius—Perron dimension FPdim X one has to consult [6]. It follows
from [1, Lemma 2.10] that a normal fusion subcategory of Rep A has to be of the type Rep(A//L) with L a normal Hopf
subalgebra of A.
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2.4. The commutator subcategory of a normal fusion subcategory

Recall the notion of commutator subcategory from [7]. If D is a fusion subcategory of € then D® is the full abelian
subcategory of C generated by objects X such that X® X* € O(D). In the same paper [7] it is proved that D® is a fusion
subcategory if the Grothendieck ring of C is commutative. In this section we show that D® is a fusion subcategory for
any normal fusion subcategory D = Rep(A//L) of Rep A.

Example 2.1.

Let C = Rep G be the category of finite dimensional representations of a finite group G and D = Rep(G/N) for a normal
subgroup N of G. Then it is known that D = Rep(G/[G, N]) where [G, N] is the commutator subgroup generated by
gng~'n~" withn € Nand g € G [7)

In this subsection we will describe the category Rep (A//L)® for any normal Hopf subalgebra L of A. For a, b € A define
[a,b] = ab — ba the usual commutator. Then for L, a Hopf subalgebra of A, let [A, L] be the ideal generated by [a, (]
withe € Aand [ € L

Theorem 2.2.
Let L be a normal Hopf subalgebra of A. Then [A, L] is a Hopf ideal of A and

Rep (AfIL)® = Rep (A/[A, L]).
Proof. To see that [A, L] is a Hopf ideal note that

Afa,l) =) ath®ahb—) ha1®bLay =) (a1l —ha)®abh+) Lai®(a:ly — bay).

Now consider M an irreducible A/[A, L]-module allowing the character X € C(A). Since (la).m = (al).m for all a € A,
Ll € L and m € M it follows that left multiplication by [ on M is a morphism of A-module. Schur’s Lemma implies that each
[ € L acts by a scalar on M. Thus X[} = X(1)¢ for some linear character ¢y of L. Then (XX*)|}' = X(1)2¢p~" = X(1)%eL.

Conversely, suppose that M®M™* is a trivial L-module for an irreducible A-module. Let A = lyy®AnnsM be the
decomposition of A in two-sided ideals where Iy, is the minimal ideal in A corresponding to M. It is well known (see [19]
for example) that the minimal ideal /s in A corresponding to M satisfies Iy = M ®& M* where I is regarded as A-module
by the adjoint action. Therefore [1xSl, = €(l)x for all x € Iyy and [ € L. Then Ix = (l1xS(L)) 5 = x! for all x € Iy and
[l € L Then (la—al)m =0 for all @ € A. Indeed if a € AnnaM this is clear since (la).m = (al).m = 0. On the other
hand if @ € Iy then al — la = 0 and thus (al—la).m = 0. This shows that M € Rep(A/[A, L]). O

Definition 2.3.
Let L be a normal Hopf subalgebra of A. An irreducible character a of L is called A-stable if there is a character
X € Rep A such that X |} = X(1)ala(1). Such a character X is said to sit over a.

Denote by Gg(L) the set of all A-stable linear characters of L. Clearly Gy(L) is a finite subgroup of the group G(L*).
We also have the following characterization for simple objects M € O (Rep(A//L)<).

Corollary 2.4.

Let M be an irreducible module of A allowing a character X. Then the following are equivalent:
1) M € O(Rep(A//L)<),
2) X1} = X(1)a for some A-stable linear character a of L,

3) L acts trivially on some tensor power M®" of M.
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Proof. 1)=2) Suppose that M € O(Rep(A//L)°) and let X|}' = ¥, x ma@. Since m(e;, aB*) = 4, counting
the multiplicity of e, in X' X*|7" implies that X |/ = X(1)a for an L-linear character a. If n is the order of a in G(L*)
then clearly X"|/' = X(1)" e, which shows that L acts trivially on M®".

2)=3) x|} =X(1)a then clearly X" = X(1)" e, where n is the order of a in Gy(L).
3)=2) Suppose that L acts trivially on some tensor power M®” of M. This means that X"} = X(1)"¢,. Let

le = Zmaa

aclrr L

for some nonnegative integers m, and

X”’Uf‘ = Z nga

aclrr L

for some nonnegative integers n,. Recall from [16] that m;(e;, @B) > 0 if and only if @ = B*. Since X"|}' = X(1)" e,
this implies that X|}' = X(1)a/a(1) and X"7'|} = X(1)""a*/a(1) for a fixed character a. It follows by counting the
multiplicity of ¢, in X"|7 that a(1) = 1. Thus a is an A-stable linear character of L.

2)=1) One has a* = a" and therefore (XX*)|} = X [} X*|? = X(1)2aa* = X(1)%€,. O

3. Kernels of representations of D(() and its central characters

3.1. The Drinfeld double D(G)

Let D(G) be the Drinfeld double of a finite group G over the complex field C. Recall that as a coalgebra D(G) =
CG*°P®@ CG and the multiplication is given by

(Px>g)(pypah) = pupgyg-1>9gh = 0, 4yg-1px>gh.

Moreover, the antipode is given by the formula

S(px<g) =g Pt = pgi1gg

A vector space basis for D(G) is given by {p,>ay}.yec where {p,}.cc is the dual basis of the basis of CG given by the
group elements.

3.2. Irreducible representations of D(G)

Let R be a set of representatives of conjugacy classes of G. Then the irreducible representations of D(G) are param-
eterized by pairs (a, y) where @ € R and y € Irr C¢(a) is an irreducible character of the centralizer Cg(a) of a in G.
Their characters are denoted by (a, y) respectively.

3.3. Some results on group representations

In this subsection we give some results on group representations that are needed in the sequel. Let H be a subgroup
of G. Denote by corecH the largest normal subgroup of G contained in H. Then corecH = ﬂgechg‘1. Let N be a
normal subgroup of G. Then it is known that G acts on the set of irreducible characters of N.

Let a be an irreducible character of N. The set of characters of G lying over «a is denoted by (Irr G)|,. It is the set of
irreducible characters X of G such that a is a constituent of X |.
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Lemma 3.1.
Let N be a normal subgroup of G and a € Irr N. Then the induced character a1, vanishes outside N. If a is a G-stable
character of N then a1y(g) = |G|a(g)/|N| for all g € N.

Proof. Denote by M, the representation allowed by a. Let G = [J;_, ;N be a coset decomposition of G. Then
gxi®vm) = x;®n (x/‘1gx,-).m where j is chosen such that gx;N = x;N. Thus if g ¢ N then i # j and aT5(g) = 0. On
the other hand, if g € N then a1%(g) = S a(x7"gx). Butif a is G-stable then a(x7'gx;) = a(g) for all i and the
formula follows. O

Let a € G and denote by Cg(a) the core subgroup cores Ci(a) of the centralizer Cs(a) of a. For any a € G let N(a) be
the smallest subgroup of G containing a. It is easy to see that N(a) is the subgroup generated by the conjugacy class
of a. Also, for any subgroup N C G of G let C5(N) =("),cn Co(n) be the subgroup of the elements of G that commute
with each element of N.

Proposition 3.2.
Let a € G and N(a) be defined as above. Then N¢(N(a)) = Cc(a).

Proof. One has Cg(a) = ﬂgechG(a)g’1 = Nyec Cc(gag™). Since N(a) is generated by the conjugacy class
of a, x € N¢(N(a)) if and only if x commutes with all conjugates of x. Therefore x € Ng(N(a)) if and only if
x € Nyee Calgag™) = Cela). O

Lemma 3.3.
Leth € G and X € Zcg+(h) with X(h) = wX(1), w € C*. Then all irreducible characters p of G which satisfy u(h) = wu(1)
are constituents oerN(h)Tg(h) where e is the trivial character of the normal subgroup N(h) of G.

Proof. 1f u(h) = wu(1) then h € kercqpX*. Since N(h) is a normal subgroup it easily follows (see for example [2,
Theorem 4.3]) that uX* has all the constituents inside eNU,)Tf,(,,). Thus mc(u,XeN(,,)T,f,(h)) = mc(uX*, eN(/,)Tf,(,,)) >0 O

3.4. Central characters in D(G)

Lemma 3.4.
Let c =3 ,ccXn>h be a character of D(G)* with X, € C(G). Then c is central in D(G) if and only if X j,g1 = X}, and
Xy, vanishes on G\ Cg(h).

Proof. The character c is central if and only it is invariant under the adjoint action of D(G) on itself. Thus c is central
if and only if gcg™' = g for all g € G and p,.c = d,1¢ for all x € G. The first condition is equivalent to X ;-1 = X
for all g € G. For the second condition one has

PoC=) pucpr = Y puXppah)p =Y Y pXuppipssh =Y > ppiXpsah,

uv=x heG uv=x heG uv=x heG {u:uhu="h=1=x}

Suppose that ¢ is central. Then py.c = 0,1 ¢ if and only if

Z Phu-1h-1Xn = 0x1 X
{v:uhuh="=x}

for all h € G. If x =1 this means precisely that X}, is zero outside Cg(h). The converse is immediate. O

For a conjugacy class C of G let pe =)  opxand ze =) o X. The elements {pe}e form a basis for the character
ring C(G) of G and {ze}e form a basis for the center Z(CG). For a character X of a group G and a conjugacy class C
of G denote by X¢ the value of X on the conjugacy class C. Thus X =Y . Xepe.

The following remark is straightforward.



S. Burciu

Remark 3.5.
Let H be a subgroup of G. Then a character X € C(G) vanishes outside H if and only if it vanishes outside corec H.

Theorem 3.6.
A basis for Z(D(C)) N C(D(C)*) is given by the elements pp<ize where D and C run through all conjugacy classes
of G that centralize each other element-wise.

Proof. Leta € €. Then Cg(a) = Nyec gCa(a)g™" =(,ee Cc(x). Thus any element of a conjugacy class D centralize
each element of another conjugacy class € if and only if D is contained in Cg(a). In this case the above remark implies
po vanishes outside the centralizer of each element of C. The previous lemma implies that pp<ize is central in D(G).
The same lemma also implies that any central character is a linear combination of such characters. O

4. Hopf subalgebras of Drinfeld doubles D(G)

If N is a normal subgroup of G let Gy(N) be the group of linear characters of N that are stable under the conjugation
action of G on the subgroup N. It is not difficult to check the following result. Its proof follows from Lemma 3.1.

Lemma 4.1.
Let N be a normal subgroup of G and x,x" € Gy(N). Then

G
MGG = 12 )1

INI

If x is a character of N then as in subsection 1.2 denote by Cng the subcoalgebra of CG* associated to the character

x1$. On the other hand if N is a normal subgroup of G let ty: G — G/N be the natural group projection and for any
g € G denote by Cﬂﬁ@ the vector subspace of kG with a basis given by the elements {gn : n € N}.

Lemma 4.2.
Let N be a normal subgroup of G and x € Gg(N). Then

X

Cng{fEkG:nAf:x(n)f}.

Proof. Note that
{fek®:n—f=xn)f}=((an—x(n)a:ae C))L.

By a straightforward computation it can be checked that the annihilator Annkc(xTﬁ) is the linear subspace of kG
generated by the elements {an — x(n)a : @ € G}. This implies the conclusion of the lemma. O

4.1. Hopf subalgebras of D((G)

In this subsection we describe all Hopf subalgebras of D(G). Let N and M be normal subgroups of G, X C Gg(N) and
¢: X — G/M be a monomorphism of groups. Let D(N, M, X, ¢)) be the subcoalgebra of D(G) given by

D(N.M, X, ) = Corg ™ oy 1wy
xeX

In the next theorem it will be shown that D(N, M, X, ¢) is a Hopf subalgebra of D(G).
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Proposition 4.3.
With the above notation D(N, M, X, ¢)) is a Hopf subalgebra of D(G) for any given datum as above.

Proof. In order to show that a subcoalgebra of a semisimple Hopf algebra is a Hopf subalgebra is enough to show
that the set of irreducible characters associated to the respective subcoalgebra is closed under multiplication and
duality “*" (see [17, Theorem 6]). Since D(G) is finite dimensional it is enough to show that this set is closed under
multiplication only. Since x is a G-stable character by Frobenius reciprocity it follows that x1§, = 2 ven X(1)X and
therefore dimc Cy = |G|/|N|. Then dimgc D(N, M, X, ) = |X|-|G|-|M|/|N]. Let ¢(x) € G such that Y(x) = Yo(x)M
for all x € M. Since ¢ is a group morphism it follows that (o (x)Awm)(o(x")Am) = o(xx')Ay for all x,x” € M. Here
Avi = (1IM]) X cpy m. Let

N
/\D(N,M,x,zp) = |x| : ||G|| |M| Z XT/?/ > L[jo(X)/\M
xeX

One has

2

2 |N| G /4G ’ |N| n4+G ’
Nowmxw) = (W) ngXTNX TR < o (x) A o (X)) A = Wxgx(” ) TR > o (xx') Awg

by the above lemma. This shows that D(N, M, X, () is a Hopf subalgebra of D(G). O

4.2. Definition of the Hopf subalgebras C(M, H, A)

Define the linear harpoon operators on C% by L,(f) = a = f and R,(f) = f — a forall a € G. Let M,H < G be
subgroups of G with M a normal subgroup of G. Let also A: M x H — k* be an invariant twisted bicharacter on M x H,
i.e. a function satisfying the following three properties:

A(mn, h) = A(m, h)A(n, h),
A(m, hl) = AX(m, h)A(hmh~", 1),
Ma™"ma, h) = A(m, h)

—_ o~~~
w N =
= = =

forall a € G, m,n € M and h, [ € H. Define the following vector subspace of D(G):

C(M,H, %) = P Ci(h)#h

heH

where Cy(h) = {f € C“ : m — f = A(m, h)f, m € M}. Note that D(G) fits into a cocentral exact sequence of Hopf
algebras
C—-CG" -DG)-CG-C

and the results from [5] therefore can be applied. Then [5, Theorem 4.1] shows that any Hopf subalgebra of D(G) is of
the type C(M, H, A).

4.3. The correspondence between the two Hopf subalgebras

Proposition 4.4.

With the above notations one has:

(@) DIN.M, X, ) = C(N, H, Ax y), where H = (p(X)M) and Ax,y: Nx H — k* is given by Ax,,(n, Yo(x)m) = x(n) on
the generators (x)m of the subgroup H of G.

(b) C(M,H, ) = DM, keryA, X, ) where keryA = {h € H: A(-,h) =1} and X = {A(-,h) : h € H}. Moreover,
: X — GlkeryA is defined by y(A(-, h)) = h.



S. Burciu

Proof, (a) As above suppose that ¢s(x) = (io(x)M for a chosen element ()p(x) € G. Then it is easy to see that Ay
is well defined and satisfies equations (1) and (2). The rest of the proof follows from Lemma 4.2.

(b) This part is also straightforward. Note that the compatibility condition (3) implies that X C Gg(N). O

[5, Theorem 4.1] together with the previous proposition imply the following.

Corollary 4.5.
Any Hopf subalgebra of D(G) is of the type D(N, M, X, ¢) for a given datum as above.

4.4. Kernels of representations of D(() and normal Hopf subalgebras of D(G)

Theorem 4.6.
A Hopf subalgebra D(N, M, X, ) of D(G) is normal if and only y(X) C Co(N)IM N Z(GIM) and [N,M] = 1.

Proof. In order to see when D(N, M, X, ¢)) is a normal Hopf subalgebra of D(G) it is enough to decide when its
integral Apw,m,x,g) is central in D(G) (see [11]). In order to do this one needs to verify the conditions from Lemma 3.4
for centrality of a character of D(G)*.

First note that go(x)m # ¢o(y)m’ for x # y and for any m,m" € M since ¢ is a monomorphism. The equality of
characters X ,,1 = X;, from Lemma 3.4 is satisfied if and only if gun(x)Mg™" = o(x)M for all ¢ € G. This is
equivalent to the fact that ¢s(x) € Z(G/M). On the other hand, for the second condition note that by Lemma 3.1, x1§
is zero outside N and does not vanish on any element of N. Thus the second condition of Lemma 3.4 is equivalent to
N C Ce(go(x)m) for all m € M. For x = 1 this implies that [N, M] =1 and then for an arbitrary x € X it follows that
Y(x) € Co(N)IM. O

4.5. Kernels of irreducible characters of D((G)

Since D(G) = CG*P<xCG as vector spaces, the dual Hopf algebra D(G)* can be identified with CG*® CG°P via
(F®L pyxig) = (f,g){px, 1) for any g, x,[ € G and f € CG*.

For a subgroup H of G denote by (G/H); the set of representatives for the left cosets of H in G.

Lemma 4.7. .
For an irreducible representation (a, y) of D(G) its character (a,y) is given by

@ = Y Y VP, ®92g7".

g€(G/Cgla)) zeCg(a)

Proof. It is enough to show that
(@, v)(px><l) = v(g~'lg) “4)
if there is g € G such that x = gag™ and g~'lg € Cg(a). Also if there is no such g € G then (a/,\y)(pqul) =0.

The representation corresponding to (a, y) is given by CG ® ¢ ¢, (qyM, where M, is the module allowing the character y.
The action of CG* is given by px(g ®CCC(a)m) = éx,gug*1 (g ®CCC(a)m) and the action of CG is the action of induced
module. Using Lemma 3.1 a straightforward computation implies formula (4). O

Proposition 4.8.
Let M be a subgroup of G, y € lrr M an irreducible character of M and a € G. Then the set § of pairs (X,l) €
Zcc+a x coregM such that X(a)/X(1) = (v(glg™")/y(1))~" for all g € G is of the form

s

8= |[(r G)lyi x Lo coreg(kermy)]
i=0
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for some G-stable character fy € Gy(N(a)) of N(a) and some ly € Zcjcya)Y- Moreover fy has order s and [§ €
coreg(keryy).

Proof. Define the following set of scalars:

H:{wE(C:thereis(X,l)eSwlthw:)%}.

It can be easily checked that H is a subgroup of C*. Since C is algebraically closed and H is finite it follows that H is
a cyclic group. Therefore H = {1, w,...,w*'} for some root of unity w of order s. Let X and ly such that (Xo, lo) € 8
and Xo(a)/Xo(1) = w = (v(glog™")/y(1))~" for all g € G. Then Xolf,(,,) = Xo(1)fo for some fy € G4(N(a)) of order s. Also
note that gg € coreg(keryy). Lemma 3.3 implies the conclusion of the proposition. O

Corollary 4.9.
With the notation of the previous proposition, the Hopf subalgebra of D(G) generated by the characters Xwl, with
(X, 1) € 8, is of the form D(N(a),corec(kerMy),x,l/J) where X = {ft};_, and ¢: X — G/ coreg(kermy) is given by

Y(fy) = Ly

Proof. Note that § is closed under multiplication, i.e. if (X,{), (X, l') € 8 then (u, [l') € 8 for any y, an irreducible
constituent of XX’. Then using [17, Theorem 6] it follows that this set generates a Hopf subalgebra of D(G) which clearly
should coincide with D(N(a),corec(kerMy),x,Lﬂ). O

Remark 4.10.
Note that since y(glog=")/y(1) = vy(lo)/y(1) it follows that glog™" € [y coreg(kerpy) which means that y(fy) €
2(G/ coreg(keryy)) and therefore ¢(X) C Z(G/ coreg(keryy)).

Theorem 4.11.
Let a € R and y € Irr Cg(a). Then the Hopf subalgebra Di,,,) = D(G)m is a normal Hopf subalgebra of D(G).
Moreover, with the above notation one has

Dia,y) = D(N(a), coreg(kercy @), (fo), ¢)

for some G-stable linear character fy of N(a) and some group monomorphism ¢: (fy) — 2Z(G/corec(kerc @y)) N
Ca(N(a))/kerc;a)y-

Proof. First we will describe ker (a/,\y). An irreducible character of D(G)* is given by Xl with X € Irr G and [ € G.
It follows that Xl € kerpg) (a, y) if and only if

@ ¥)0ceal) = X(1)y(1) AY

It follows from Lemma 4.7 that

(@, V)(X>al) = X(a) ( S y(gwg)) :

{9€(GICq(a)i:legCala)g ™"}

Note that the above the sum has at most |G|/|Cg(a)| terms and the absolute value for each term satisfies
[X(a)|-lv(g~"lg)] < X(1)y(1). Then we deduce that the above equality is satisfied if and only if there is a root of
unity w € C* such that X(a) = wX(1) and [ € core¢(Zc.()y) with the property that y(g~'lg) = w™'y(1) for all g € G.
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Thus the set § = kerp(q (17,/7) satisfies the hypothesis of Proposition 4.8. Then as in Corollary 4.9 it follows that there
is fo a G-stable linear character of N(a) and [y € G such that

kero(c)m = |_| [(Irr G)ly; [ coreg(kerc, @ V)]-
i=0

Thus one can take X to be the group generated by f; and define ¢y by sending f{ to the class of g modulo coreg(kerc,a)¥).
for all 1 < i < s—1. It can be easily checked that the map ¢ satisfies the additional hypothesis from Theorem 4.6.
Note that [N(a), Cs(a)] = 1 by Proposition 3.2. Thus (X) C Cc(N(a))/coreg(kerc.(q)v). The other condition ¢(X) C
Z(G/core(;(kercc(a)y)) of Theorem 4.6 follows from Remark 4.10. O

The description of the kernels from the previous theorem implies the following corollary.

Corollary 4.12.
With the above notation one has Dy;,,) = CG*xClkergy).

A proof similar to the proof of Theorem 4.11 gives

Proposition 4.13.
If (a,y) is a representation of D(G) then

Zoio)(a,y) = CIG/G, N(a)]J 2 C(corec(Zcg(a)V)-

Note that Lemma 1.4 is also needed in order to compute the center Z¢¢+a.

5. Normal fusion subcategories of Rep D(G)

5.1. Fusion subcategories of Rep D(G)

In this subsection we recall the parametrization of fusion subcategories of Rep D(G) given in [15].

Let D be a fusion subcategory of €. Then, following [14], the fusion subcategroy D is completely determined by two
canonical normal subgroups Kp and Hp of G and a G-invariant bicharacter By : Kp x Hp — C*. The subgroups Kp
and Hyp are defined as follows:

Kp = {gag‘1 : g € Gand (a,y) € D for some y}

and Hp is the normal subgroup of G such that D N Rep G = Rep(G/Hp). Note that Ky is the fusion subcategory
of CG* determined by restricting all simple objects of D to CG*.

The bicharacter By : Kp x Hp — C* is defined by

v(ghg™)

Bp(g~'ag, h) = )

if (a,y) € D. This is well defined and does not depend on y [15]. Recall, see again [15], that a bicharacter is called
G-invariant if and only if B(xkx™", xhx™") = B(k, h) for all x € G, k € K and h € H.

Conversely, any two normal subgroups K and H of G that centralize each other element-wise together with a G-invariant
bicharacter B: Kx H — C* give rise to a fusion category denoted by S(K, H, B) in [15]. It is defined as the full
abelian subcategory of Rep D(G) generated by the objects (a,y) such that ¢ € KN R and y € Irr Cg(a) such that
y(h) = B(a, h)y(1) for all h € H.
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5.2. Normal fusion subcategories of Rep D(G)

In this subsection we will identify all the normal fusion subcategories S(K, H, B) of Rep D(G).

Remark 5.1.

Let B be a normal Hopf subalgebra of a semisimple Hopf algebra A and a € A. Then @(A//B) # 0 if and only if aAg # 0.
Indeed it is easy to verify that the map A//B — AAg given by a + AB* — a/\g is an isomorphism of A-modules (see
also [8, Lemma 3.2)).

Theorem 5.2.

Let D(N,M, X, ) be a normal Hopf subalgebra of D(G) as in Theorem 4.6. Then the normal fusion subcategory
Rep (D(G)/ID(N, M, X, 1)) can be identified with 8(K, H, B) where K = N, H = (i(x),M : x € X) and B: K x H — C*
is given by B(n, go(x)m) = x(n)~".

Proof. Let D = Rep(D(G)//D(N, M, X, ). For the subgroup Hp one has to look at Rep(D(G)//D(N, M, X, ) N
Rep (CG). Thus
HD = m kerCX.
{xelr G:(1x)eD}

But (1,X) € D if and only if Dy D D(N, M, X, ). Note that Dy g = CG*akercX by Corollary 4.12. Then it follows
that Dy O DN, M, X, ¢) if and only if kercX D (Y(x), m : x € X, m € M). Thus Hp = ((x),m : x € X, m € M).
The subgroup Ko is generated by all x € G such that the relation p,(D(G)/D(N,M, X, ) # 0 holds. The above
remark implies that Kp is given by x € G such that p,/Apnm,x,g) F 0. Formula for Appy,a,x.g) from Theorem 4.5 shows

that x € Ky if and only if (F115)(x) # O for some i and some f € X. Lemma 3.1 shows that Ky € N. Since f is a linear
character it follows that Kp = N.

In order to describe the bicharacter B suppose now that we have (a,y) € Rep(D(G)/D(N,M, X, {)). Then Dy, D
D(N, M, X, ). But using again Lemma 3.1 one has

Lo YigTthg) [ x1e) T
Blgag™ h) = ==oa ‘(|G|N/|N|) =X -

For any bicharacter B: K x H — k* define
Kt ={h€H:Bla,h)=1,a €K}

Using the previous theorem we can give the following criteria.

Theorem 5.3.
A fusion subcategory S(K, H, B) is a normal fusion subcategory of Rep D(G) if and only if
B(gag™', h) = B(a, h) = B(a,ghg™") )
for all a, g, h € G. In these conditions
S(K, H, B) = Rep(D(G)ID(K, K+, X, ) (6)

where X = {B(-,h): h € H} and : X — Z(G/K*) N Cc(K)/K* is given by y(x) = h for any h € H with x = B(-, h).

Proof. Suppose that S(K, H, B) is a normal fusion subcategory. Then, using the previous theorem, (6) follows for
some data (N, M, X, ). Thus B(gag™, do(x)m) = x(gag™") = x(a) = B(a, Yu(x)m). Conversely, suppose that (5) is
satisfied. Then clearly X is a group of G-stable linear characters of K. Moreover it is straightforward to check that
 takes values inside Z(G/K*) N Cg(K)/K*. The rest of the theorem follows from Theorem 5.2. O
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