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Abstract: We introduce and investigate the class of skeletally Dugundji spaces as a skeletal analogue of Dugundji space.
Our main result states that the following conditions are equivalent for a given space X: (i) X is skeletally Dugundji;
(i) every compactification of X is co-absolute to a Dugundji space; (iii) every C*-embedding of the absolute p(X)
in another space is strongly s-regular; (iv) X has a multiplicative lattice in the sense of Shchepin [Shchepin E.V.,
Topology of limit spaces with uncountable inverse spectra, Uspekhi Mat. Nauk, 1976, 31(5), 191-226 (in Rus-
sian)] consisting of skeletal maps.
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1. Introduction

In this paper we introduce a class of skeletally Dugundji spaces as a skeletal analogue of Dugundji spaces [12]. The
paper can be considered as a continuation of [8-10, 21], where it was shown that |-favorable spaces [4] coincide with the
class of skeletally generated spaces [21]. The last class is a skeletal counterpart of k-metrizable compacta [17].

Recall that a map f: X — Y is called skeletal [11] (resp., semi-open) if the set Inty cly f(U) (resp., Inty f(U)) is non-
empty, for any U € Tx. Obviously, every semi-open map is skeletal, and both notions are equivalent for closed maps.
Our definition of skeletally Dugundiji spaces is similar to the spectral characterization of Dugundji spaces obtained by
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Haydon [6]. We say that a space X is skeletally Dugundji if there exists an inverse system S = {X,,pf : a < B < 1}
with surjective skeletal bonding maps, where 7 is identified with the first ordinal w(7) of cardinality 7, satisfying the
following conditions: (i) Xp is a separable metric space and all maps p*'
separable metric space M, such that X, is embedded in X, x M, and p@*' coincides with the restriction [ X, of the
projection 7: Xo x My — X,); (ii) for any limit ordinal y < 7 the space X, is a (dense) subset of lim {Xa,pfra< B <y}
(iit) X is embedded in lim S such that po(X) = X for each @, where pq: limS — X, is the a-th limit projection; (iv) for

have metrizable kernels (i.e., there exists a

every bounded continuous real-valued function f on l'l(_mS there exists a € A such that p, < f (the last relation means
that there exists a continuous function g on X, with f = gop,). If the inverse system S and X satisfy conditions (ii)
and (iii), X is said to be the almost limit of S, notation X = a-lim S. We also say that an inverse system S is factorizing
if it satisfies condition (iv).

In this paper we provide different characterizations of skeletally Dugundji spaces. One of our starting points is the
result of Shapiro [15] that a compactum X is co-absolute to a Dugundji space (i.e., the absolute of X is the absolute
of a Dugundji space) if and only if X is the limit space of a continuous inverse system S = {X,,pf : a < B < 1}
satisfying all conditions from the definition of skeletally Dugundji spaces, except that the maps p*' do not necessarily
have metrizable kernels but have countable m-weight (see Section 3 for this notion). Let us note that necessity of the
above result was announced in [15, Theorem 3] without a proof. We establish in Section 2 that any space co-absolute
to a space with a multiplicative in the sense of Shchepin [16] lattice of open maps has a multiplicative lattice of skeletal
maps. This extends the necessity of Shapiro’s result, mentioned above. Some properties of skeletally Dugundji spaces
are provided in Section 3. The following result is the main theorem from this section.

Theorem 3.3.
For any space X the following are equivalent:
(i) X is skeletally Dugundji;
(iY) every compactification of X is co-absolute to a Dugundji space;
(ii)) every C*-embedding of the absolute p(X) in another space is strongly w-reqular;

(iv) X has a multiplicative lattice of skeletal maps.

Here, we say that a subspace X of a space Y is strongly s-reqularly embedded in Y if there exists a function e: Tx — Ty
between the topologies of X and Y such that:
(e1) e(@) = @ and e(U) N X is a dense subset of U;

(e2) e(UnV) =e(U)Ne(V)forany U,V € Tx.

Such a function was considered in [14] under the name s-regular operator. It follows from Corollary 3.2 that if every
embedding of a compactum X in another space is strongly s-reqular, then X is skeletally Dugundji. A positive an-
swer to the following question would provide an external characterization of skeletally Dugundji spaces similar to the
characterization of Dugundjt spaces given by Shirokov in [18].

Question 1.1.
Is any embedding of a skeletally Dugundji compactum in a Tychonoff cube strongly m-regular?

Another question arises from Corollary 3.6 that if X is a skeletally Dugundji space, then the absolute p(BX) of BX is a
retract of any extremally disconnected space in which p(BX) is embedded.

Question 1.2.
Let X be a compact space such that its absolute p(X) is a retract of any extremally disconnected space containing p(X).
Is X skeletally Dugundji?

When X is 0-dimensional, this question is equivalent to the open problem following [7, Observation 5.3.10]. According
to [13], Question 1.2 has a positive answer if the weight of X is < wy. All spaces in this paper are Tychonoff and the
single-valued maps are continuous.
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N
2. Spaces co-absolute with AE (0)-spaces

Haydon [6] established that the class of compact absolute extensors for zero-dimensional spaces (br., AE(0)-spaces)
coincides with the class of Dugundji spaces and any compactum X belongs to that class iff X can be represented as the
limit space of a continuous inverse system S = {X,,pf : a < B < w(X)} with open bonding maps such that each map
p&™1 has a metrizable kernel, see [6]. Dugundji spaces can be also characterized as the compact spaces X possessing a
multiplicative lattice in the sense of Shchepin [16] consisting of open maps. This means that there exists a family ¥ of
open maps with domain X such that:

(L1) For any map f: X — f(X) there exists ¢ € W with ¢ < f and w(¢p(X)) < w(f(X)).

(L2) W is multiplicative, Le., if {¢q : @ € A} C W, then the diagonal product A{¢, : @ € A} belongs to V.

Let us note that a general definition of AE(0) in the class of all Tychonoff spaces was introduced by Chigogidze [3]. By
[20, Theorem 1], for every C-embedding of an AE(0)-space X in R” there exists an upper semi-continuous compact-valued
map r: R* — X with r(x) = {x} for all x € X. Then, following the terminology of [20, Lemmas 3-6], all restrictions
ng| X, where B C A is r-admissible, are open and form a multiplicative lattice. Therefore, every AE(0)-space possesses
a multiplicative lattice of open maps.

Proposition 2.1.
Let X be C-embedded in R" for some ' and X has a multiplicative lattice W of quotient maps. Then the family
A={BcCT :¢g € W} where pg = ng[X: X — mp(X) is the restriction of the projection ng: R" — RE, has the
following properties:

(i) A is additive, i.e., the union of any elements from A is also from A.
(it) Every C C T is contained in some B € A with |B| < |C|-Ro.

Proof. Let W be a multiplicative lattice on X consisting of quotient maps. Suppose B = | J B, with B, € A for all a.
Then ¢ = A¢p, because A¢g, € W is quotient. So, B € A. Assume C C I is infinite of cardinality |C| = 7. We
construct by induction an increasing sequence {B(k)} C I" and a sequence {¢«} C W such that B(1) = C, |B(k)| = T,
w(Pk(X)) < T and Pprr1) < Pk < Pp for all k. Suppose the construction is done up to level k for some k > 1. We
consider each ¢ (X) as a subspace of R”. Since X is C-embedded in R", there exists a map g;: R" — RT extending ¢.
Then g, depends on T many coordinates of R", so we can find a set B(k+1) C I of cardinality T containing B(k) such
that 741y < gk. Consequently, ¢ppii1) < ¢r. Next, by condition (L1), there exists ¢y € W with ¢ < P41y and
w(¢r11(X)) < 7. This completes the construction. Finally, let B = J;2, B(k) and ¢ = A, ¢. Obviously, |B| = T and
¢ =¢ € W¥. Hence, C C B € A. O

Shapiro [15, Theorem 3] stated without a proof that if a compactum X is co-absolute to a Dugundji space, then X is the
limit space of a continuous inverse system S = {X,, pf : @ < B < w(X)} such that X is a point, the bonding maps are
skeletal and each p¢*! has a countable 7-weight (see Section 3 for this notion). The next theorem is a generalization
of Shapiro’s result (recall that any Dugundji space is an AE(0), and hence has a multiplicative lattice of open maps).

Theorem 2.2.
Let X be a space with a multiplicative lattice of open maps. Then every space co-absolute with X has a multiplicative
lattice of semi-open maps.

Proof. Suppose Y is co-absolute with X and Z is their common absolute. So, there exist irreducible perfect maps
Ox:Z — X and 6y: Z — Y. Consider the set-valued maps rx: X — Y and ry: Y — X defined by rx(x) = 9;/(9)}1 (X)),
x € X, ry(y) = 6x(6y'(y)), y € Y. Since By is irreducible, for every open V C Y the set r§(V) = {x € X : rx(x) C V}
is non-empty and open in X, and r§(V) = 6%(6,"(V)), where 0% (W) = {x € X : 65'(x) c W}, W C Z. Hence, rx is
upper semi-continuous and compact valued. Similarly, ry is also upper semi-continuous and compact valued.

The next claim follows from the fact that both 6x and 8y are closed irreducible maps, and Z is extremally disconnected.

1951



Skeletally Dugundji spaces

1852

Claim 1. For every open V C Y the set 6%(6y (\/)) is regularly open and r (V) = ry' (V) = 6%(6,'(V)).

Consider the disjoint union X@ Y of X and Y as a C-embedded subspace in R" for some I". For every B C I let
¢5 = 7 X, pg = mglY, Xg = ¢5(X) and Yz = pg(Y). If B C C C T, there exist natural maps ¢5: Xc — Xz and
pS: Yo — Yp. Let W be a multiplicative lattice for X consisting of open maps. Since X is also C-embedded in R', the
family A = {B C T : ¢ € WV} satisfies conditions (i)—(it) from Proposition 2.1.

Claim 2. Let C € A be a set of cardinality T and {V,} an open family in Yc of the same cardinalitg. Then there exist
B € A containing C and a family {G,} of open subsets of ¢g(X) such that |B| = t and ¥ (ps'(V.)) is a dense subset
of ¢5'(G,) for each a.

Because every disjoint open family in X is at most countable [19], any family of open subsets of X contains a dense
countable subfamily. For every o choose a cover y, of r}f(p;(\/u)) consisting of open subsets of X of the form U N X,
where U is a standard open set in R". Then there exists a dense countable subfamily w, of y,. Since each element of w,
depends on finitely many coordinates, by Proposition 2.1, we can find a set B € A containing C of cardinality |B| = T
such that ¢g(W) is open in ¢5(X) and ¢5'(ds(W)) = W for every W € w, and every a. Then each Oa = ¢p(W,) is open
in p(X) and ¢5'(O,) = W, where W, = [ J{W : W € w,}. Because ¢z is open, we have ¢5'(0,) = W, = r§ (p5' (Vo))
and ¢5(r¥(p5'(Va))) C IntO, = G,. Hence, r§(ps'(Va)) C ¢5'(Ga) C r¥(p5'(Va)) for every a. Tth completes the
proof of Claim 2.

For any B C I let Qg and Ag be bases for Xz and Yg, respectively, having cardinality < |B| such that Qg consists of
open sets of the form UN X and Ag consists of all finite unions of sets of the form V' N Y, where U and V are standard
open sets in R3. Denote by I the family of all B C I satisfying the following conditions:

(@) Be A,

(b) for every V' € Ag there exists an open set Gy C ¢g(X) such that r§(pg'(V)) is dense in ¢5'(Gy);

(c) for any U € Qg there exists an open set Vi, C Y with pg' (V) C i (¢5' (V).

Claim 3. ¥ is additive.

First, let us show that I is finitely additive. It suffices to prove that if B(1), B(2) belong to X, then so does B = B(1)UB(2).
Because A is additive, we need to check that B satisfies conditions (b) and (c).

Suppose V C Ygisopenand V =V, UV, U--- UV, where each V; is of the form W; N Yz with W; being a standard
open subset of RE. So, for everg i we have W; = [1{Wi(a) : a € B} such that all W;(a), a € B, are open intervals
and the set k(V)) = {a: a) # R} is finite. Then the family {V4,..., V,} is the union of the following families:
vi = {Vi: k(Vi) C B(j)}. /—1 2, and vy, = {Vi: k(Vi))\ B(j) # @, /—1 2} Let Or = U{pg;(V) : Vi € y;} and
0, =U{vi: Vie y,} j =1,2. Then, according to (b), r¥(pp(,(O;)) is a dense subset of ¢g(y(G;7) for some open
Gr C Xag), j =1,2. Since pg(})(O]’f) = pz'(0)), for every j =1,2,

(d) r¥(p5'(0)) is dense in ¢5'(G;) with G; = ((,bg(j))q(C/’-‘).

It Vi € y12, then Vi = V(1) N Vi(2) with Vi(j) € v;, j = 1,2. Hence, for each j there exists an open set Gy, C Xp(; such
that ¢ (Gvi(y) contains r§ (pp(y(Vi(j)*) as a dense subset, where V;(j)* = pg,(Vi(j)). Because pz'(Vi) = me(\/( )N
Paiy(Vi(2)"), the set r§ (pg'(Vi)), being the 'Lntersect'ton of the open sets r¥ (pgh, (Vi(1))) and r§ (pal(Vi(2))), is dense
in ¢3'(Gv:), where Gy, = ((j)gm)q(GVl m) (¢B(2)) (Gv,»)- Therefore, we have finitely many open sets Gy C Xg such
that

(e) r¥(pg'(W)) is dense in ¢5' (Gw), W € 1.

Obviously, V =J{W : W € y12} U O U Oy, and let G(V) = J{Gw : W € y12} U Gy U G,. It follows from (d) and (e)
that the set

L=J{Z(ps'W) : W € yi2} Uk (p5'(00) UK (p5' (02))

is dense in ¢5'(G(V)). On the other hand, by Claim 1,

= J{(ps' W) : W € vi2} U ri" (p5'(01)) U 15 (p5'(02)).-
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Therefore, L = ry'(pg' (V) = ¢5'(G(V)). Let Gy = IntG(V). Because ¢z is an open map, ¢5'(Gy) = Intry' (p5'(V)).

Finally, since r¥(pg'(V)) is open in X and it is dense in ry'(p5'(V)) (see Claim 1), r¥(ps'(V)) is a dense subset

of ¢5'(Gy). Thus, B satisfies condition (b).

To show that B satisfies condition (c), let U € Qp. Then U = d)gm(UU))ﬂqbg(z)(U(Z)) with U(i) € Qg i =1,2. So, there
- _ N -1 -1

are open sets Vi C Yg such that pgi (Vi) C r¢(¢3(1i)(U(t))), i=1,2 Let Vy = (pgm) (Vum) 0 (pg(z)) Vu@)-

Then, p5' (Vo) = pity(Vum) 0 Py (Vo) and é5'(U) = @iy (U) N ¢ (U(2)). Consequently, p5' (Vo) C rf (95 (U)).
Hence, B € .

Suppose now that B = | J B, is the union of infinitely many B, € I, and let V € Ag. Then there exists a set C C B
which is a union of finitely many B, i = 1,...,k, such that (p2)""(pE(V)) = V and V* = pB(V) € Ac. Since C € L,
there exists an open set G} in Xc with r§(pg'(V*)) being a dense subset of ¢¢'(G}). Obviously, pc'(V*) = pg'(V)
and ¢.'(Gy) = ¢5'(Gy), where Gy = (¢2)7"(G}). Consequently, r¥(ps'(V)) is a dense subset of ¢5'(Gy). Hence,
B satisfies (b). Similarly, one can show that B also satisfies condition (c). Therefore, B € L. This complete the proof of
Claim 3.

Claim 4. Every infinite C € A of cardinality T is contained in a set B € ¥ with |B| = 1.

We construct by induction sets B(k) € A, open subsets {Gy : V &€ Agpi} of ¢ppksry(X) and open subsets {V, : U €
Qpprs1)} of Yoz such that for every k > 0 we have:

(i) B(0) = C, |B(K)| = t and B(k) C B(k+1);
(ii) r% (Bl (V) is a dense subset of ¢ .4 (Gy) for every V € Agpi;

(i) P2 (V1) C 17 (@Biaksn) (V) for every U € Qparia).

Suppose the construction is done up to level 2k. Since the family {P§(12/<)(V) : V € Agpy} is of cardinality < 7, by
Claim 2, there exist a set B(2k +1) € A of cardinality 7 containing B(2k) and open sets {Gy : V &€ Agpi} in dpyr1)(X)
satisfying (ii). Because each r{(¢ply 1) (U)), U € Qs is open in Y, we can find a set B(2k +2) € A containing
B(2k+1) such that |B(k+2)| = T and pgpis2(Y) contains an open family {Vy : U € Qppiir)} satisfying (iii). This
completes the inductive step. Obviously, B = | J;2, B(k) € A and |B| = 1. Repeating the arguments from the proof of
Claim 3, one can show that B satisfies conditions (b) and (c). So, B € L, which completes the proof of Claim 4.

Claim 5. For any B € ¥ the map pg: Y — Yg is semi-open.

First, let us show that if B € ¥ and ¢g(x1) = ¢s(x2) for some x1,x2 € X, then pg(rx(x1)) = ps(rx(x2)). Indeed, suppose
pa(rx(x2)) € V, where V C Yp is open. Since pg(rx(x2)) is compact and Ag is finitely additive, we can assume that
V € Ag. Then x; € rf(p;(V)). By condition (b), r}*(p?(V)) is a dense subset of ¢3'(Gy) for some open set Gy in X,
so x1 € ¢5'(x2) C ¢5'(Gy). On the other hand, according to Claim 1, we have 6% (6" (p5'(V))) = Intrf(pgs'(V)).
Hence, 6%(0y'(p5'(V))) contains the set ¢5'(Gy). Thus, rx(x1) C 6y(60y'(p5'(V))) = pg' (V). Finally, we obtain
pa(rx(x1)) € V, which implies pg(rx(x1)) C pa(rx(x2)). Similarly, pa(rx(x2)) C pa(rx(x1)).

To show that pg is semi-open, let W C Y be open. Then qSB(rff(W)) is open in ¢p(X). According to (c), there
exist U € Qg and open Vi C Yg with U C d)B(rff(W)) and pg'(Wy) C rf((,‘b;(U)). The last inclusion implies
Vu C pa(ri(¢5'(U))). It is easily seen that ri (¢5' (U)) C rx(¢5' (U)). So, we have the inclusions

Vy C ps(ry (¢5'(U))) € ps(rx(¢5'(V)))-

Therefore, it suffices to show that pg(rx(¢z'(U))) is contained in pg(W). To this end, let x € ¢5'(U). Then there

exists y € r¥(W) with ¢g(x) = ¢sly). Hence, ps(rx(x)) = ps(rx(y)) C pa(W). Thus, pg(rx(¢s'(U))) C ps(W), which
completes the proof of Claim 5.

We can show now that Y has a multiplicative lattice of semi-open maps. Indeed, let Wy = {pg : B € £}. According to
the last claim, Wy consists of semi-open maps. If {pg} C Wy, then it is easily seen that Apge) = ps, where B is the
union of all B(a). Hence, App) € Wy. Finally, let g: Y — g(Y) be an arbitrary map with w(g(Y)) = t. Considering
g(Y) as a subspace of R, we can extend g to a map h: R" — R" (recall that Y is C-embedded in R"). Then there
exists a set B € ¥ of cardinality 7 such that g < h. Consequently, pg < g and w(pg(Y)) < t. O
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Corollary 2.3.

Every space Y co-absolute with a space possessing a multiplicative lattice of open maps is skeletally Dugundji. In
particular, if Y is co-absolute to an AE(0)-space, then Y has a multiplicative lattice of semi-open maps and Y is
skeletally Dugundiji.

Proof. We are going to show that ¥ = a-limS, where S = {Ya,p? . @ < B < 1} is a factorizing inverse system
with skeletal maps such that Y is a separable metric space and p@*' has a metrizable kernel for each a. Let R" and £
be as in the proof of Theorem 2.2. There is nothing to prove if Y is second countable. So, let w(Y) > Ry and assume
that " is the set of all ordinals a < w(t). For every a € ' there exists a countable set A(a) € ¥ containing a. Define
B(0) = A(0), B(a) = U{A(B) : B < a} if a is a limit ordinal, and B(a) = |J{A(B) : B < a} if a is isolated. Then the
inverse system S = {YB(a),PgEﬁ’; ra< B < w(r)} consists of skeletal maps and pgtg)ﬂ) has a metrizable kernel for all a.

Moreover, Y is a dense subset of limS with Y = a-lim S.
— —

The second part of the corollary follows from the fact that each AE(0)-space has a multiplicative lattice of open maps. [

Corollary 2.4.
Let Y be a Lindeldf p-space co-absolute with a space possessing a multiplicative lattice of open maps. Then Y has a
multiplicative lattice of perfect skeletal maps.

Proof. Suppose Y is co-absolute with a space X possessing a multiplicative lattice of open maps. Recall that
a Lindelof p-space [1] is a space admitting a perfect map onto a separable metric space, and that this property is
invariant under images and preimages of perfect maps. So, X is also a a Lindeldf p-space. Then X and Y can
be embedded as closed subsets of a product of the form M x1" for some I, where M is a second countable space.
Considering in Proposition 2.1 such a product instead of R", we obtain a family A = {B C I : ¢ € W}, where
¢ = [ X: X — mg(X) is the restriction of the projection ;g: M xI" — M xIB. Hence, all ¢5, B € A are perfect
and open maps. Similarly, replacing R" in Theorem 2.2 with M x I, we obtain the family £ C A and that the perfect
skeletal maps pg = 7 Y: Y — mp(Y), B € L, form a multiplicative lattice. O

3. Skeletally Dugundji spaces

The next proposition provides examples of skeletally Dugundji spaces.

Proposition 3.1.
A space X is skeletally Dugundiji if it satisfies one of the following conditions:

(1) X has a multiplicative lattice of skeletal maps;

(iY) X is strongly m-reqularly C*-embedded subset of a space with a multiplicative lattice of open maps.

Proof. Suppose X has a multiplicative lattice W of skeletal maps. For every continuous function f € C(X) fix a
map ¢; € W such that ¢; < f and ¢¢(X) is second countable. We assume that C(X) = {f, : a < w(7)} for some
cardinal 7. Let g = ¢, @ is the diagonal product Ago, ¢y, if a is a limit ordinal, and @, = Dp<q Py, if a is isolated.
Define X, = @q(X) and @g : Xo — Xp, B < @, to be the natural projection. Since all ¢, € W, the inverse system
S ={Xa, ¢f: B < a< w()} consists of skeletal maps and X is the almost limit of S. It follows from the definition of
the maps ¢, that for every f € C(X) there exists a with ¢, < f. So, S is factorizing. This proves (i).

Let M be a space with a multiplicative lattice ® of open maps and X be strongly s-reqularly C*-embedded in M. Let
e: Tx — Ty be a strongly sr-regular operator and My = ¢(M) for any ¢ € ®. We say that a map ¢ € ¢ is e-admissible
if

¢~ (oe(p7'(U)NX))) = e(e(U)NX), U € By, M
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where By is an open base for M, of cardinality w(My). We are going to show that the family ®x = {¢[X :
¢ is e-admissible} is a multiplicative lattice on X consisting of skeletal maps. Our arguments follow the proof of [21,
Proposition 3.7]. Let X, = ¢(X), ¢ € ®x.

Claim 6. Any ¢ € ®x is skeletal.

Let U C X be open in X and ¢ = ¢[X for some e-admissible ¢ € . Because ¢ is open, it suffices to show that
@(e(U)) N X, C (U)*. Suppose there exists a point z € ¢(e(U)) N X, \ ¢(U)* and take V € B, containing z such that
VNe(U) = @ (here ¢(U) is the closure in My). Since ¢ is e-admissible, ¢~ (¢(e(U1))) = e(Uy), where Uy = ¢ (V)N X.
Obviously, Uy NU = @ and @(U;) = VN X,. Because e(U;) N X is dense in Uy, we have ¢(e(Ur) N X) = @(U7) = VN X,.
Since ¢(e(U;)) is closed in My (recall that ¢, being open, is a quotient map), z € ¢(e(U;)) N ¢(e(U)) which implies

e(Ur) ne(U) # @. So, e(Uy) Ne(U) # @, and consequently, U N U; # @. This contradiction completes the proof of the
claim.

Claim 7. The diagonal product of any family {¢, : a € A} of e-admissible maps is e-admissible.

For every a € A fix a base By, for M, satisfying condition (1). Let ¢9 = Dscado and V € By, where By, is the
standard open base of My, generated by all By,. Then ¢'(V) = ﬂ[.k:1 ¢;(11)(\/,-) for some V; € By, ,. The equality
e(¢" (V)N X) = Ny e(¢zh (V)N X) together with the facts that ¢y, is open and ¢q, < ¢, for each i, implies that
bo (Do (e(@ (V)N X))) = (¢! (V)N X). Hence, ¢q, is e-admissible.

Claim 8.  For every map f: X — f(X) there exists ¢ € ®x such that ¢ < f and w(X,) < w(f(X)).

We embed f(X) in I7, where T = w(f(X)). Since X is C*-embedded in M, f can be extended to a map f: M — I*. Next,
there exists ¢y € ® with ¢y < f and w(My,) < T. We construct by induction a sequence {¢,},>0 C ®, such that for
every n > 0 we have:

L4 ¢n+1 < ¢n;
o w(My,) < T

® ¢, satisfies condition (1) for all U € B, with B, being a base for My, of cardinality < 7.

Suppose ¢, is already constructed. For each U € B, there exists ¢y € @ such that ¢ (du(e(¢y' (U)NX))) =
e(¢g' (U)NX) and w(My,) is countable (see [21, Lemma 3.6] for a similar statement). Obviously, ¢, 1 = A{¢y : U €
B,} satisfies the above conditions. This completes the construction. It is easily seen that the diagonal product ¢ of
all ¢, is e-admissible. Hence, ¢ = ¢[X is as required.

Therefore, ®x = {#[X : ¢ is e-admissible} is indeed a multiplicative lattice on X consisting of skeletal maps. Finally,
according to (i), X is skeletally Dugundij. O

Corollary 3.2.
Let M be a product of separable metric spaces. Then every strongly st-reqularly C*-embedded subset of M is skeletally
Dugundii.

A map f: X = Y is said to have a m-weight < 7 [15], notation tw(f) < 7, if there exists a family B of functionally
open sets in X with |B| < t such that y = {UNf~"(V): U € B,V € Tx} is a m-base for X (i.e,, every open subset
of X contains some W € y). Everywhere below p(X) denotes the absolute of X and Ox: p(X) — X is the canonical
trreducible map.

Theorem 3.3.
For any space X the following are equivalent:

(1) X is skeletally Dugundji;
(i) every compactification of X is co-absolute to a Dugundji space;

(itt) X has a compactification co-absolute to a Dugundji space;
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(iv) every C*-embedding of the absolute p(X) in another space is strongly m-regular;

(v) X has a multiplicative lattice of skeletal maps.

Proof. (i)= (ii). Since every compactification of X is an irreducible image of BX, it suffices to show that BX is
co-absolute with a Dugundiji space. Let S = {X,,pt : @ < y < T} be a factorizing inverse system with skeletal maps
such that X = a-lim S, Xo is second countable and p2*' has a metrizing kernel for all a. Take a second countable
compactification Yy of Xy and consider the inverse system S= {Ya,ql s a <y < 1}, where Y, = BX,, g = B(pk) for
a >0, and g : BX, — Yo is the extension of p§. Then nw(q*") < Xy for each @ because pS*' has a metrizable kernel.

Moreover, all projections g are skeletal. Since S is factorizing, BX is the limit space of S. Therefore, we can apply
Shapiro’s result [15, Theorem 2] to conclude that BX is co-absolute to a Dugundji space.

(il) < (iii). If there exists a compactification c¢(X) of X which is co-absolute to a Dugundji space, then so is BX as an
irreducible preimage of X. Hence, every compactification of X has this property.

(i) = (iv). Suppose BX is co-absolute to an AE(0)-space Y and let p(X) be C*-embedded in a space Z. Then p(X)#?
is homeomorphic to Bp(X). Since Bp(X) = p(BX), Bp(X) is the absolute of Y. Consider the canonical irreducible maps
Opz: p(BZ) — BZ and Oy: Bp(X) — Y. Because Y € AE(0), the restriction ¢ = Oyo8g7[H: H — Y has a continuous
extension ¢: p(BZ) — Y, where H = 65(Bp(X)). Finally, for every open U C Bp(X) define e(U) = 6%, (¢~ (67 (U))).
It is easily seen that e: Tg,x) — Tpz is a strongly s-reqular operator. This implies that p(X) is strongly s-reqularly
embedded in Z.

(iv)= (v). Obviously, item (iv) implies that every embedding of p(BX) in any Tychonoff cube I” is strongly s-reqular. So,
by Corollary 3.2, p(BX) is the limit space of a continuous inverse system {Z,, g% : @ < y < 1} with skeletal projections
such that Z; is a metric compactum and each g*' has a metrizable kernel. Then, according to [15, Theorem 2], p(BX)
is co-absolute to a Dugundji space Y. Because p(BX) is extremally disconnected, it is the absolute of Y. Since Y
has a multiplicative lattice of open maps (as an AE(0)-space), BX has a multiplicative lattice W of skeletal maps (by
Theorem 2.2). Finally, observe that Wx = {@[X : ¢ € W} is a multiplicative lattice on X consisting of skeletal maps.

(V)= (i). This implication follows directly from Proposition 3.1. O

Recall that X is skeletally generated [21] if there exists a factorizing inverse system S = {X,, p? : A} consisting of
separable metric spaces X, and surjective skeletal bonding maps such that: (i) the index set A is o-complete (every
countable chain in A has a supremum in A); (i) for every countable chain {a, : n > 1} C A with B = sup{a, : n > 1}
the space X is a (dense) subset of Lim {Xa,, part'}; (iil) X is embedded in lim S such that p,(X) = X, for each a.

Corollary 3.4.
Every skeletally Dugundji space is skeletally generated.

Proof. Let W be a multiplicative lattice for X consisting of skeletal maps and W = {¢ € W : w(¢(X)) < R}. Define
Xs = ¢(X) and equip Wo with the partial order ¢ < ¢, iff there exists a map ¢7: X, — Xp, such that ¢7 o ¢, = ¢y.
It is easily seen that the inverse system S = {X,, ¢& : Wy} satisfies all conditions from the definition of skeletally
generated spaces. O

Corollary 3.5.
Any perfect image of a normal space possessing a multiplicative lattice of open maps is skeletally Dugundji. In particular,
any dyadic compactum is skeletally Dugundji.

Proof. Suppose M is a normal space with a multiplicative lattice of open maps and let f: M — X be a perfect
surjection. Then there exists a closed subset Z of M such that the restriction g = f[Z: Z — X is irreducible. One can
see that e(U) = f~1(g#(U)), U € T, defines a strongly sr-reqular operator e: T — Ty, Hence, by Proposition 3.1,
Z is a skeletally Dugundji space. Next, Theorem 3.3 yields that BZ is co-absolute to a Dugundiji space. Finally, since
Bg: BZ — BX is irreducible, p(BX) = p(BZ). Therefore, X is skeletally Dugundji. O
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Corollary 3.6.
Let X be a skeletally Dugundji space. Then for every C*-embedding of p(X) in any extremally disconnected space Z
there exists a retraction from BZ onto p(BX).

Proof. By Theorem 3.3, there exists a strongly sr-reqular operator e: T,gx) — Tgz. Then the operator €: Tygx) — T5z,
g(U) = e(U) has the following properties: &(UN V) = &(U)Neg(V) and g(U) N p(X) = U for any open sets U, V C p(BX).
Next, define the set-valued map ®: BZ — 2PBX), &(z) = N{U: z € (U), U € Typx} if z € J{e(U) : U € Typx}
and ®(z) = p(BX) otherwise. It is easily seen that ® is an upper semi-continuous map with compact non-empty values
and ®(z) = z for z € p(BX). Finally, according to [5], ® has a continuous selection r: BZ — p(BX). Obviously, r is a
retraction. O

A combination of Corollary 3.5 and Corollary 3.6 implies a generalization of the following result [2]: the absolute of any
dyadic compactum is a retract of any extremally disconnected space in which it is embedded.

Corollary 3.7.
Any product of skeletally Dugundji spaces is skeletally Dugundji.

Proof. Suppose X = [,ca
spaces. Then, according to Theorem 3.3, for each a there exists a strong s-reqular operator e: T,x,) — T for
some A(a). Denote by B the family of all standard open sets U = Uy x -+ x Uy x {p(Xo) : @ # a;, i =1,...,k}
in Z = [1,eaP(Xa), and let €'(U) = eq(Uyg) X -+ Xeq (Ug) x {IA® : a # o, i = 1,...,k}. Finally, e: Tz — Ty,
e(W)=U{e'(U): Uc W, U e B}, where Y =[], I"®, is a strong n-reqular operator. Hence, by Proposition 3.1 (ii),
Z is skeletally Dugundji. Since the map 0 = [],c4 620 Z — X is irreducible, X and Z are co-absolute. Therefore, X is
skeletally Dugundiji. O

X with each X, being skeletally Dugundji. We can suppose that all X, are compact

For any map f: X — Y let p(f) denote the absolute of f. It is well known that p(f) is a map from p(X) — p(Y) such that
By op(f) = Bxof, where p(X) and p(Y) are the absolutes of X and Y, respectively, and Ox: p(X) = X, 6y: p(Y) = Y
are the corresponding canonical maps. In general, a map f can have many absolutes, but it has a unique one if f is
skeletal.

The next lemma was established in [15, Lemma 1] in the case X and Y are compact, but the same arguments provide a
more general version.

Lemma 3.8.

Let f: X — Y be a perfect skeletal map of a countable wt-weight with X and Y being 0-dimensional Lindelof p-spaces
and Y € AE(0). Then there exist a space Z and perfect maps g: X — Z, h: Z — Y such that: f = hog, g is irreducible;
h is an open map having a metrizable kernel; dimZ = 0.

Theorem 3.9.
The following conditions are equivalent for any Cech-complete Lindeléf p-space X:

(i) X is the limit space of a continuous inverse system S = {X,, & : @ < y < T} with perfect skeletal bonding maps
such that Xy is a complete separable metric space and each @2*' has a metrizable kernel;

(it) X is co-absolute with an AE(0)-space;

(itt) X has a multiplicative lattice of perfect skeletal maps.

Proof. (i)= (ii). Following the arguments from the proof of [15, Theorem 2], we construct an inverse system E =
{Ye. gt : a < y < 1} consisting of O-dimensional AE(0)-spaces Y, and open perfect bonding maps such that all g*'
have metrizable kernels and Y, are co-absolute to X,. Assume we already have constructed Y,. So, we have perfect
irreducible maps Oy, : p(X,) = X, and Oy, : p(X,) — Y.. Since ¢o*! is a perfect skeletal map with a metrizable kernel,

its absolute p(p2*"): p(Xa11) — p(Xa) is a perfect open map of countable sr-weight. Then Oy, op(™'): p(Xas1) — Ya
is a perfect skeletal map of countable w-weight. Moreover, Y, and p(X,41) are both Cech—complete Lindeldf p-spaces
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(recall that the last property is invariant under images and preimages of perfect maps). Hence, by Lemma 3.8, there
exist a O-dimensional space Y,.1 and perfect maps q%*": Yo11 — Yo, ¢: p(Xas1) = Yauq such that g¢*" is open with
a metrizable kernel and ¢ is irreducible. Since p(Xy4+1) is extremally disconnected and ¢ is irreducible, p(X,) is the
absolute of Y., and ¢ coincides with the canonical projection 6y, ,. Because Y, € AE(0) and g2 is open and has a

metrizable kernel, Y 41 € AE(0).

If @ < 7 is a limit ordinal and the construction was done for all B < a, we take Y, to be the limit of the inverse system
{Yg,qé : B < y < a}. Using again that all Yg € AE(0) and ng are open perfect maps with metrizable kernels, we
obtain that Y, is a O-dimensional AE(0)-space which is co-absolute with X,. This completes the construction. Finally,
observe that the space ¥ = lim E is co-absolute to X and Y € AE(0).

(it) = (iii). Since X is co-absolute to an AE(0)-space Y, Y is also a éech—complete Lindelsf p-space. Consequently, it
has a multiplicative lattice of open perfect maps. Then, by Corollary 2.4, X has a multiplicative lattice of skeletal perfect
maps.

(it)) = (1).  This implication follows from the arguments used in the proof of Proposition 3.1 (i). O
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