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Abstract: We introduce and investigate the class of skeletally Dugundji spaces as a skeletal analogue of Dugundji space.
Our main result states that the following conditions are equivalent for a given space X : (i) X is skeletally Dugundji;
(ii) every compactification of X is co-absolute to a Dugundji space; (iii) every C∗-embedding of the absolute p(X )
in another space is strongly π-regular; (iv) X has a multiplicative lattice in the sense of Shchepin [Shchepin E.V.,
Topology of limit spaces with uncountable inverse spectra, Uspekhi Mat. Nauk, 1976, 31(5), 191–226 (in Rus-
sian)] consisting of skeletal maps.
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1. Introduction

In this paper we introduce a class of skeletally Dugundji spaces as a skeletal analogue of Dugundji spaces [12]. Thepaper can be considered as a continuation of [8–10, 21], where it was shown that I-favorable spaces [4] coincide with theclass of skeletally generated spaces [21]. The last class is a skeletal counterpart of κ-metrizable compacta [17].Recall that a map f : X → Y is called skeletal [11] (resp., semi-open) if the set IntY clY f(U) (resp., IntY f(U)) is non-empty, for any U ∈ TX . Obviously, every semi-open map is skeletal, and both notions are equivalent for closed maps.Our definition of skeletally Dugundji spaces is similar to the spectral characterization of Dugundji spaces obtained by
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Skeletally Dugundji spaces

Haydon [6]. We say that a space X is skeletally Dugundji if there exists an inverse system S = {Xα , pβα : α < β < τ}with surjective skeletal bonding maps, where τ is identified with the first ordinal ω(τ) of cardinality τ, satisfying thefollowing conditions: (i) X0 is a separable metric space and all maps pα+1
α have metrizable kernels (i.e., there exists aseparable metric space Mα such that Xα+1 is embedded in Xα×Mα and pα+1
α coincides with the restriction π�Xα+1 of theprojection π : Xα×Mα → Xα ); (ii) for any limit ordinal γ < τ the space Xγ is a (dense) subset of lim←−{Xα , pβα : α < β < γ};(iii) X is embedded in lim←−S such that pα (X ) = Xα for each α , where pα : lim←−S → Xα is the α-th limit projection; (iv) forevery bounded continuous real-valued function f on lim←−S there exists α ∈ A such that pα ≺ f (the last relation meansthat there exists a continuous function g on Xα with f = g◦pα ). If the inverse system S and X satisfy conditions (ii)and (iii), X is said to be the almost limit of S, notation X = a-lim←−S. We also say that an inverse system S is factorizingif it satisfies condition (iv).In this paper we provide different characterizations of skeletally Dugundji spaces. One of our starting points is theresult of Shapiro [15] that a compactum X is co-absolute to a Dugundji space (i.e., the absolute of X is the absoluteof a Dugundji space) if and only if X is the limit space of a continuous inverse system S = {Xα , pβα : α < β < τ}satisfying all conditions from the definition of skeletally Dugundji spaces, except that the maps pα+1

α do not necessarilyhave metrizable kernels but have countable π-weight (see Section 3 for this notion). Let us note that necessity of theabove result was announced in [15, Theorem 3] without a proof. We establish in Section 2 that any space co-absoluteto a space with a multiplicative in the sense of Shchepin [16] lattice of open maps has a multiplicative lattice of skeletalmaps. This extends the necessity of Shapiro’s result, mentioned above. Some properties of skeletally Dugundji spacesare provided in Section 3. The following result is the main theorem from this section.
Theorem 3.3.
For any space X the following are equivalent:(i) X is skeletally Dugundji;(ii) every compactification of X is co-absolute to a Dugundji space;(iii) every C ∗-embedding of the absolute p(X ) in another space is strongly π-regular;(iv) X has a multiplicative lattice of skeletal maps.

Here, we say that a subspace X of a space Y is strongly π-regularly embedded in Y if there exists a function e : TX → TYbetween the topologies of X and Y such that:(e1) e(∅) = ∅ and e(U) ∩ X is a dense subset of U;(e2) e(U ∩V ) = e(U) ∩ e(V ) for any U,V ∈ TX .
Such a function was considered in [14] under the name π-regular operator. It follows from Corollary 3.2 that if everyembedding of a compactum X in another space is strongly π-regular, then X is skeletally Dugundji. A positive an-swer to the following question would provide an external characterization of skeletally Dugundji spaces similar to thecharacterization of Dugundji spaces given by Shirokov in [18].
Question 1.1.
Is any embedding of a skeletally Dugundji compactum in a Tychonoff cube strongly π-regular?

Another question arises from Corollary 3.6 that if X is a skeletally Dugundji space, then the absolute p(βX ) of βX is aretract of any extremally disconnected space in which p(βX ) is embedded.
Question 1.2.
Let X be a compact space such that its absolute p(X ) is a retract of any extremally disconnected space containing p(X ).
Is X skeletally Dugundji?

When X is 0-dimensional, this question is equivalent to the open problem following [7, Observation 5.3.10]. Accordingto [13], Question 1.2 has a positive answer if the weight of X is ≤ ω1. All spaces in this paper are Tychonoff and thesingle-valued maps are continuous.
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A. Kucharski, Sz. Plewik, V. Valov

2. Spaces co-absolute with AE(0)-spaces

Haydon [6] established that the class of compact absolute extensors for zero-dimensional spaces (br., AE(0)-spaces)coincides with the class of Dugundji spaces and any compactum X belongs to that class iff X can be represented as thelimit space of a continuous inverse system S = {Xα , pβα : α < β < w(X )} with open bonding maps such that each map
pα+1
α has a metrizable kernel, see [6]. Dugundji spaces can be also characterized as the compact spaces X possessing amultiplicative lattice in the sense of Shchepin [16] consisting of open maps. This means that there exists a family Ψ ofopen maps with domain X such that:

(L1) For any map f : X → f(X ) there exists φ ∈ Ψ with φ ≺ f and w(φ(X )) ≤ w(f(X )).
(L2) Ψ is multiplicative, i.e., if {φα : α ∈ A} ⊂ Ψ, then the diagonal product 4{φα : α ∈ A} belongs to Ψ.
Let us note that a general definition of AE(0) in the class of all Tychonoff spaces was introduced by Chigogidze [3]. By[20, Theorem 1], for every C-embedding of an AE(0)-space X in RA there exists an upper semi-continuous compact-valuedmap r : RA → X with r(x) = {x} for all x ∈ X . Then, following the terminology of [20, Lemmas 3–6], all restrictions
πB�X , where B ⊂ A is r-admissible, are open and form a multiplicative lattice. Therefore, every AE(0)-space possessesa multiplicative lattice of open maps.
Proposition 2.1.
Let X be C-embedded in RΓ for some Γ and X has a multiplicative lattice Ψ of quotient maps. Then the family
A = {B ⊂ Γ : φB ∈ Ψ}, where φB = πB�X : X → πB(X ) is the restriction of the projection πB : RΓ → RB , has the
following properties:(i) A is additive, i.e., the union of any elements from A is also from A.(ii) Every C ⊂ Γ is contained in some B ∈ A with |B| ≤ |C| ·ℵ0.
Proof. Let Ψ be a multiplicative lattice on X consisting of quotient maps. Suppose B = ⋃Bα with Bα ∈ A for all α .Then φB = 4φBα because 4φBα ∈ Ψ is quotient. So, B ∈ A. Assume C ⊂ Γ is infinite of cardinality |C| = τ. Weconstruct by induction an increasing sequence {B(k)} ⊂ Γ and a sequence {φk} ⊂ Ψ such that B(1) = C , |B(k)| = τ,
w(φk (X )) ≤ τ and φB(k+1) ≺ φk ≺ φB(k) for all k . Suppose the construction is done up to level k for some k ≥ 1. Weconsider each φk (X ) as a subspace of Rτ . Since X is C-embedded in RΓ, there exists a map gk : RΓ → Rτ extending φk .Then gk depends on τ many coordinates of RΓ, so we can find a set B(k+1) ⊂ Γ of cardinality τ containing B(k) suchthat πB(k+1) ≺ gk . Consequently, φB(k+1) ≺ φk . Next, by condition (L1), there exists φk+1 ∈ Ψ with φk+1 ≺ φB(k+1) and
w(φk+1(X )) ≤ τ. This completes the construction. Finally, let B = ⋃∞k=1 B(k) and φ = 4∞k=1φk . Obviously, |B| = τ and
φB = φ ∈ Ψ. Hence, C ⊂ B ∈ A.
Shapiro [15, Theorem 3] stated without a proof that if a compactum X is co-absolute to a Dugundji space, then X is thelimit space of a continuous inverse system S = {Xα , pβα : α < β < w(X )} such that X0 is a point, the bonding maps areskeletal and each pα+1

α has a countable π-weight (see Section 3 for this notion). The next theorem is a generalizationof Shapiro’s result (recall that any Dugundji space is an AE(0), and hence has a multiplicative lattice of open maps).
Theorem 2.2.
Let X be a space with a multiplicative lattice of open maps. Then every space co-absolute with X has a multiplicative
lattice of semi-open maps.

Proof. Suppose Y is co-absolute with X and Z is their common absolute. So, there exist irreducible perfect maps
θX : Z → X and θY : Z → Y . Consider the set-valued maps rX : X → Y and rY : Y → X defined by rX (x) = θY

(
θ−1
X (x)),

x ∈ X , rY (y) = θX
(
θ−1
Y (y)), y ∈ Y . Since θX is irreducible, for every open V ⊂ Y the set r#X (V ) = {x ∈ X : rX (x) ⊂ V}is non-empty and open in X , and r#X (V ) = θ#

X
(
θ−1
Y (V )), where θ#

X (W ) = {
x ∈ X : θ−1

X (x) ⊂ W
}, W ⊂ Z . Hence, rX isupper semi-continuous and compact valued. Similarly, rY is also upper semi-continuous and compact valued.The next claim follows from the fact that both θX and θY are closed irreducible maps, and Z is extremally disconnected.
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Skeletally Dugundji spaces

Claim 1. For every open V ⊂ Y the set θ#
X
(
θ−1
Y (V )) is regularly open and r#X (V ) = r−1

X (V ) = θ#
X
(
θ−1
Y (V )).Consider the disjoint union X ⊕Y of X and Y as a C-embedded subspace in RΓ for some Γ. For every B ⊂ Γ let

φB = πB�X , pB = πB�Y , XB = φB(X ) and YB = pB(Y ). If B ⊂ C ⊂ Γ, there exist natural maps φCB : XC → XB and
pCB : YC → YB . Let Ψ be a multiplicative lattice for X consisting of open maps. Since X is also C-embedded in RΓ, thefamily A = {B ⊂ Γ : φB ∈ Ψ} satisfies conditions (i)–(ii) from Proposition 2.1.
Claim 2. Let C ∈ A be a set of cardinality τ and {Vα} an open family in YC of the same cardinality. Then there exist
B ∈ A containing C and a family {Gα} of open subsets of φB(X ) such that |B| = τ and r#X (p−1

B (Vα )) is a dense subset
of φ−1

B (Gα ) for each α.Because every disjoint open family in X is at most countable [19], any family of open subsets of X contains a densecountable subfamily. For every α choose a cover γα of r#X (p−1
B (Vα )) consisting of open subsets of X of the form U ∩ X ,where U is a standard open set in RΓ. Then there exists a dense countable subfamily ωα of γα . Since each element of ωαdepends on finitely many coordinates, by Proposition 2.1, we can find a set B ∈ A containing C of cardinality |B| = τsuch that φB(W ) is open in φB(X ) and φ−1

B (φB(W )) = W for every W ∈ ωα and every α . Then each Oα = φB(Wα ) is openin φB(X ) and φ−1
B (Oα ) = Wα , where Wα = ⋃{W : W ∈ ωα}. Because φB is open, we have φ−1

B (Oα ) = Wα = r#X (p−1
B (Vα ))and φB(r#X (p−1

B (Vα ))) ⊂ IntOα = Gα . Hence, r#X (p−1
B (Vα )) ⊂ φ−1

B (Gα ) ⊂ r#X (p−1
B (Vα )) for every α . This completes theproof of Claim 2.

For any B ⊂ Γ let ΩB and ΛB be bases for XB and YB , respectively, having cardinality ≤ |B| such that ΩB consists ofopen sets of the form U ∩XB and ΛB consists of all finite unions of sets of the form V ∩YB , where U and V are standardopen sets in RB . Denote by Σ the family of all B ⊂ Γ satisfying the following conditions:(a) B ∈ A;(b) for every V ∈ ΛB there exists an open set GV ⊂ φB(X ) such that r#X (p−1
B (V )) is dense in φ−1

B (GV );(c) for any U ∈ ΩB there exists an open set VU ⊂ YB with p−1
B (VU ) ⊂ r#Y (φ−1

B (U)).
Claim 3. Σ is additive.First, let us show that Σ is finitely additive. It suffices to prove that if B(1), B(2) belong to Σ, then so does B = B(1)∪B(2).Because A is additive, we need to check that B satisfies conditions (b) and (c).Suppose V ⊂ YB is open and V = V1 ∪ V2 ∪ · · · ∪ Vm, where each Vi is of the form Wi ∩ YB with Wi being a standardopen subset of RB . So, for every i we have Wi = ∏

{Wi(α) : α ∈ B} such that all Wi(α), α ∈ B, are open intervalsand the set k(Vi) = {α : Wi(α) 6= R} is finite. Then the family {V1, . . . , Vm} is the union of the following families:
γj = {Vi : k(Vi) ⊂ B(j)}, j = 1, 2, and γ1,2 = {Vi : k(Vi) \ B(j) 6= ∅, j = 1, 2}. Let O∗j = ⋃{

pBB(j)(Vi) : Vi ∈ γj
} and

Oj = ⋃
{Vi : Vi ∈ γj}, j = 1, 2. Then, according to (b), r#X (p−1

B(j)(O∗j )) is a dense subset of φ−1
B(j)(G∗j ) for some open

G∗j ⊂ XB(j), j = 1, 2. Since p−1
B(j)(O∗j ) = p−1

B (Oj ), for every j = 1, 2,
(d) r#X (p−1

B (Oj )) is dense in φ−1
B (Gj ) with Gj = (φBB(j))−1(G∗j ).

If Vi ∈ γ1,2, then Vi = Vi(1)∩Vi(2) with Vi(j) ∈ γj , j = 1, 2. Hence, for each j there exists an open set GVi(j) ⊂ XB(j) suchthat φ−1
B(j)(GVi(j)) contains r#X (p−1

B(j)(Vi(j)∗) as a dense subset, where Vi(j)∗ = pBB(j)(Vi(j)). Because p−1
B (Vi) = p−1

B(1)(Vi(1)∗)∩
p−1
B(2)(Vi(2)∗), the set r#X (p−1

B (Vi)), being the intersection of the open sets r#X (p−1
B(1)(Vi(1)∗)) and r#X (p−1

B(2)(Vi(2)∗)), is densein φ−1
B (GVi ), where GVi = (φBB(1))−1(GVi(1)) ∩ (φBB(2))−1(GVi(2)). Therefore, we have finitely many open sets GW ⊂ XB suchthat(e) r#X (p−1

B (W )) is dense in φ−1
B (GW ), W ∈ γ1,2.

Obviously, V = ⋃{W : W ∈ γ1,2} ∪ O1 ∪ O2, and let G(V ) = ⋃{GW : W ∈ γ1,2} ∪ G1 ∪ G2. It follows from (d) and (e)that the set
L = ⋃{

r#X (p−1
B (W )) : W ∈ γ1,2} ∪ r#X (p−1

B (O1)) ∪ r#X (p−1
B (O2))

is dense in φ−1
B (G(V )). On the other hand, by Claim 1,

L = ⋃{
r−1
X
(
p−1
B (W )) : W ∈ γ1,2} ∪ r−1

X
(
p−1
B (O1)) ∪ r−1

X
(
p−1
B (O2)) .
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Therefore, L = r−1
X (p−1

B (V )) = φ−1
B (G(V )). Let GV = IntG(V ). Because φB is an open map, φ−1

B (GV ) = Int r−1
X
(
p−1
B (V )).Finally, since r#X (p−1

B (V )) is open in X and it is dense in r−1
X
(
p−1
B (V )) (see Claim 1), r#X (p−1

B (V )) is a dense subsetof φ−1
B (GV ). Thus, B satisfies condition (b).To show that B satisfies condition (c), let U ∈ ΩB . Then U = φBB(1)(U(1))∩φBB(2)(U(2)) with U(i) ∈ ΩB(i), i = 1, 2. So, thereare open sets VU(i) ⊂ YB(i) such that p−1

B(i)(VU(i)) ⊂ r#Y (φ−1
B(i)(U(i))), i = 1, 2. Let VU = (

pBB(1))−1(VU(1)) ∩ (pBB(2))−1(VU(2)).Then, p−1
B (VU ) = p−1

B(1)(VU(1)) ∩ p−1
B(2)(VU(2)) and φ−1

B (U) = φ−1
B(1)(U(1)) ∩ φ−1

B(2)(U(2)). Consequently, p−1
B (VU ) ⊂ r#Y (φ−1

B (U)).Hence, B ∈ Σ.Suppose now that B = ⋃
Bα is the union of infinitely many Bα ∈ Σ, and let V ∈ ΛB . Then there exists a set C ⊂ Bwhich is a union of finitely many Bαi , i = 1, . . . , k , such that (pBC )−1(pBC (V )) = V and V ∗ = pBC (V ) ∈ ΛC . Since C ∈ Σ,there exists an open set G∗V in XC with r#X (p−1

C (V ∗)) being a dense subset of φ−1
C (G∗V ). Obviously, p−1

C (V ∗) = p−1
B (V )and φ−1

C (G∗V ) = φ−1
B (GV ), where GV = (φBC )−1(G∗V ). Consequently, r#X (p−1

B (V )) is a dense subset of φ−1
B (GV ). Hence,

B satisfies (b). Similarly, one can show that B also satisfies condition (c). Therefore, B ∈ Σ. This complete the proof ofClaim 3.
Claim 4. Every infinite C ∈ A of cardinality τ is contained in a set B ∈ Σ with |B| = τ.We construct by induction sets B(k) ∈ A, open subsets {GV : V ∈ ΛB(2k)} of φB(2k+1)(X ) and open subsets {VU : U ∈ΩB(2k+1)} of YB(2k+2) such that for every k ≥ 0 we have:(i) B(0) = C , |B(k)| = τ and B(k) ⊂ B(k+1);(ii) r#X (p−1

B(2k)(V )) is a dense subset of φ−1
B(k+1)(GV ) for every V ∈ ΛB(2k);(iii) p−1

B(2k+2)(VU ) ⊂ r#Y (φ−1
B(2k+1)(U)) for every U ∈ ΩB(2k+1).

Suppose the construction is done up to level 2k . Since the family {p−1
B(2k)(V ) : V ∈ ΛB(2k)} is of cardinality ≤ τ, byClaim 2, there exist a set B(2k+1) ∈ A of cardinality τ containing B(2k) and open sets {GV : V ∈ ΛB(2k)} in φB(k+1)(X )satisfying (ii). Because each r#Y (φ−1

B(2k+1)(U)), U ∈ ΩB(2k+1), is open in Y , we can find a set B(2k+2) ∈ A containing
B(2k+1) such that |B(k+2)| = τ and pB(2k+2)(Y ) contains an open family {VU : U ∈ ΩB(2k+1)} satisfying (iii). Thiscompletes the inductive step. Obviously, B = ⋃∞

k=1 B(k) ∈ A and |B| = τ. Repeating the arguments from the proof ofClaim 3, one can show that B satisfies conditions (b) and (c). So, B ∈ Σ, which completes the proof of Claim 4.
Claim 5. For any B ∈ Σ the map pB : Y → YB is semi-open.First, let us show that if B ∈ Σ and φB(x1) = φB(x2) for some x1, x2 ∈ X , then pB(rX (x1)) = pB(rX (x2)). Indeed, suppose
pB(rX (x2)) ⊂ V , where V ⊂ YB is open. Since pB(rX (x2)) is compact and ΛB is finitely additive, we can assume that
V ∈ ΛB . Then x2 ∈ r#X (p−1

B (V )). By condition (b), r#X (p−1
B (V )) is a dense subset of φ−1

B (GV ) for some open set GV in XB ,so x1 ∈ φ−1
B (x2) ⊂ φ−1

B (GV ). On the other hand, according to Claim 1, we have θ#
X
(
θ−1
Y
(
p−1
B (V ))) = Int r#X (p−1

B (V )).Hence, θ#
X
(
θ−1
Y
(
p−1
B (V ))) contains the set φ−1

B (GV ). Thus, rX (x1) ⊂ θY
(
θ−1
Y
(
p−1
B (V ))) = p−1

B (V ). Finally, we obtain
pB(rX (x1)) ⊂ V , which implies pB(rX (x1)) ⊂ pB(rX (x2)). Similarly, pB(rX (x2)) ⊂ pB(rX (x1)).To show that pB is semi-open, let W ⊂ Y be open. Then φB

(
r#X (W )) is open in φB(X ). According to (c), thereexist U ∈ ΩB and open VU ⊂ YB with U ⊂ φB

(
r#X (W )) and p−1

B (VU ) ⊂ r#Y (φ−1
B (U)). The last inclusion implies

VU ⊂ pB
(
r#Y (φ−1

B (U))). It is easily seen that r#Y (φ−1
B (U)) ⊂ rX(φ−1

B (U)). So, we have the inclusions
VU ⊂ pB

(
r#Y (φ−1

B (U))) ⊂ pB
(
rX
(
φ−1
B (U))).

Therefore, it suffices to show that pB(rX(φ−1
B (U))) is contained in pB(W ). To this end, let x ∈ φ−1

B (U). Then thereexists y ∈ r#X (W ) with φB(x) = φB(y). Hence, pB(rX (x)) = pB(rX (y)) ⊂ pB(W ). Thus, pB(rX(φ−1
B (U))) ⊂ pB(W ), whichcompletes the proof of Claim 5.We can show now that Y has a multiplicative lattice of semi-open maps. Indeed, let ΨY = {pB : B ∈ Σ}. According tothe last claim, ΨY consists of semi-open maps. If {pB(α)} ⊂ ΨY , then it is easily seen that 4pB(α) = pB , where B is theunion of all B(α). Hence, 4pB(α) ∈ ΨY . Finally, let g : Y → g(Y ) be an arbitrary map with w(g(Y )) = τ. Considering

g(Y ) as a subspace of Rτ , we can extend g to a map h : RΓ → Rτ (recall that Y is C-embedded in RΓ). Then thereexists a set B ∈ Σ of cardinality τ such that πB ≺ h. Consequently, pB ≺ g and w(pB(Y )) ≤ τ.
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Corollary 2.3.
Every space Y co-absolute with a space possessing a multiplicative lattice of open maps is skeletally Dugundji. In
particular, if Y is co-absolute to an AE(0)-space, then Y has a multiplicative lattice of semi-open maps and Y is
skeletally Dugundji.

Proof. We are going to show that Y = a-lim←−S, where S = {Yα , pβα : α < β < τ} is a factorizing inverse systemwith skeletal maps such that Y0 is a separable metric space and pα+1
α has a metrizable kernel for each α . Let RΓ and Σbe as in the proof of Theorem 2.2. There is nothing to prove if Y is second countable. So, let w(Y ) > ℵ0 and assumethat Γ is the set of all ordinals α < ω(τ). For every α ∈ Γ there exists a countable set A(α) ∈ Σ containing α . Define

B(0) = A(0), B(α) = ⋃
{A(β) : β < α} if α is a limit ordinal, and B(α) = ⋃

{A(β) : β ≤ α} if α is isolated. Then theinverse system S = {YB(α), pB(β)
B(α) : α < β < ω(τ)} consists of skeletal maps and pB(α+1)

B(α) has a metrizable kernel for all α .Moreover, Y is a dense subset of lim←−S with Y = a-lim←−S.The second part of the corollary follows from the fact that each AE(0)-space has a multiplicative lattice of open maps.
Corollary 2.4.
Let Y be a Lindelöf p-space co-absolute with a space possessing a multiplicative lattice of open maps. Then Y has a
multiplicative lattice of perfect skeletal maps.

Proof. Suppose Y is co-absolute with a space X possessing a multiplicative lattice of open maps. Recall thata Lindelöf p-space [1] is a space admitting a perfect map onto a separable metric space, and that this property isinvariant under images and preimages of perfect maps. So, X is also a a Lindelöf p-space. Then X and Y canbe embedded as closed subsets of a product of the form M× IΓ for some Γ, where M is a second countable space.Considering in Proposition 2.1 such a product instead of RΓ, we obtain a family A = {B ⊂ Γ : φB ∈ Ψ}, where
φB = πB�X : X → πB(X ) is the restriction of the projection πB : M× IΓ → M× IB . Hence, all φB , B ∈ A are perfectand open maps. Similarly, replacing RΓ in Theorem 2.2 with M× IΓ, we obtain the family Σ ⊂ A and that the perfectskeletal maps pB = πB�Y : Y → πB(Y ), B ∈ Σ, form a multiplicative lattice.
3. Skeletally Dugundji spaces

The next proposition provides examples of skeletally Dugundji spaces.
Proposition 3.1.
A space X is skeletally Dugundji if it satisfies one of the following conditions:(i) X has a multiplicative lattice of skeletal maps;(ii) X is strongly π-regularly C ∗-embedded subset of a space with a multiplicative lattice of open maps.

Proof. Suppose X has a multiplicative lattice Ψ of skeletal maps. For every continuous function f ∈ C (X ) fix amap φf ∈ Ψ such that φf ≺ f and φf (X ) is second countable. We assume that C (X ) = {fα : α < ω(τ)} for somecardinal τ. Let φ0 = φf0 , φα is the diagonal product 4β<αφfβ if α is a limit ordinal, and φα = 4β≤αφfβ if α is isolated.Define Xα = φα (X ) and φαβ : Xα → Xβ , β < α , to be the natural projection. Since all φα ∈ Ψ, the inverse system
S = {Xα , φαβ : β < α < ω(τ)} consists of skeletal maps and X is the almost limit of S. It follows from the definition ofthe maps φα that for every f ∈ C (X ) there exists α with φα ≺ f . So, S is factorizing. This proves (i).Let M be a space with a multiplicative lattice Φ of open maps and X be strongly π-regularly C ∗-embedded in M. Lete : TX → TM be a strongly π-regular operator and Mφ = φ(M) for any φ ∈ Φ. We say that a map φ ∈ Φ is e-admissibleif

φ−1(φ(e(φ−1(U)∩X ))) = e(φ−1(U)∩X ), U ∈ Bφ, (1)
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where Bφ is an open base for Mφ of cardinality w(Mφ). We are going to show that the family ΦX = {φ�X :
φ is e-admissible} is a multiplicative lattice on X consisting of skeletal maps. Our arguments follow the proof of [21,Proposition 3.7]. Let Xφ = φ(X ), φ ∈ ΦX .
Claim 6. Any φ ∈ ΦX is skeletal.Let U ⊂ X be open in X and φ = φ�X for some e-admissible φ ∈ Φ. Because φ is open, it suffices to show that
φ(e(U))∩Xφ ⊂ φ(U)Xφ . Suppose there exists a point z ∈ φ(e(U))∩Xφ \φ(U)Xφ and take V ∈ Bφ containing z such that
V ∩φ(U) = ∅ (here φ(U) is the closure in Mφ). Since φ is e-admissible, φ−1(φ(e(U1))) = e(U1), where U1 = φ−1(V )∩X .Obviously, U1 ∩U = ∅ and φ(U1) = V ∩Xφ . Because e(U1)∩X is dense in U1, we have φ(e(U1)∩X ) = φ(U1) = V ∩Xφ .Since φ(e(U1)) is closed in Mφ (recall that φ, being open, is a quotient map), z ∈ φ(e(U1)) ∩ φ(e(U)) which impliese(U1) ∩ e(U) 6= ∅. So, e(U1) ∩ e(U) 6= ∅, and consequently, U ∩ U1 6= ∅. This contradiction completes the proof of theclaim.
Claim 7. The diagonal product of any family {φα : α ∈ A} of e-admissible maps is e-admissible.For every α ∈ A fix a base Bφα for Mφα satisfying condition (1). Let φ0 = 4α∈Aφα and V ∈ Bφ0 , where Bφ0 is thestandard open base of Mφ0 generated by all Bφα . Then φ−10 (V ) = ⋂k

i=1 φ−1
α(i)(Vi) for some Vi ∈ Bφα(i) . The equalitye(φ−1(V ) ∩ X) = ⋂k

i=1 e(φ−1
α(i)(Vi)∩X) together with the facts that φα0 is open and φα0 ≺ φαi for each i, implies that

φ−1
α0
(
φα0(e(φ−1

α0 (V )∩X))) = e(φ−1
α0 (V )∩X). Hence, φα0 is e-admissible.

Claim 8. For every map f : X → f(X ) there exists φ ∈ ΦX such that φ ≺ f and w(Xφ) ≤ w(f(X )).We embed f(X ) in Iτ , where τ = w(f(X )). Since X is C ∗-embedded in M, f can be extended to a map f : M → Iτ . Next,there exists φ0 ∈ Φ with φ0 ≺ f and w(Mφ0 ) ≤ τ. We construct by induction a sequence {φn}n≥0 ⊂ Φ, such that forevery n ≥ 0 we have:• φn+1 ≺ φn;
• w(Mφn ) ≤ τ;• φn+1 satisfies condition (1) for all U ∈ Bn with Bn being a base for Mφn of cardinality ≤ τ.

Suppose φn is already constructed. For each U ∈ Bn there exists φU ∈ Φ such that φ−1
U
(
φU
(e(φ−1

U (U)∩X))) =e(φ−1
U (U)∩X) and w(MφU ) is countable (see [21, Lemma 3.6] for a similar statement). Obviously, φn+1 = 4{φU : U ∈

Bn} satisfies the above conditions. This completes the construction. It is easily seen that the diagonal product φ ofall φn is e-admissible. Hence, φ = φ�X is as required.Therefore, ΦX = {φ�X : φ is e-admissible} is indeed a multiplicative lattice on X consisting of skeletal maps. Finally,according to (i), X is skeletally Dugundji.
Corollary 3.2.
Let M be a product of separable metric spaces. Then every strongly π-regularly C ∗-embedded subset of M is skeletally
Dugundji.

A map f : X → Y is said to have a π-weight ≤ τ [15], notation πw(f) ≤ τ, if there exists a family B of functionallyopen sets in X with |B| ≤ τ such that γ = {U ∩ f−1(V ) : U ∈ B, V ∈ TX} is a π-base for X (i.e., every open subsetof X contains some W ∈ γ). Everywhere below p(X ) denotes the absolute of X and θX : p(X ) → X is the canonicalirreducible map.
Theorem 3.3.
For any space X the following are equivalent:(i) X is skeletally Dugundji;(ii) every compactification of X is co-absolute to a Dugundji space;(iii) X has a compactification co-absolute to a Dugundji space;
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(iv) every C ∗-embedding of the absolute p(X ) in another space is strongly π-regular;(v) X has a multiplicative lattice of skeletal maps.

Proof. (i)⇒ (ii). Since every compactification of X is an irreducible image of βX , it suffices to show that βX isco-absolute with a Dugundji space. Let S = {Xα , pγα : α < γ < τ} be a factorizing inverse system with skeletal mapssuch that X = a-lim←−S, X0 is second countable and pα+1
α has a metrizing kernel for all α . Take a second countablecompactification Y0 of X0 and consider the inverse system S̃ = {Yα , qγα : α < γ < τ}, where Yα = βXα , qγα = β(pγα ) for

α > 0, and qγ0 : βXγ → Y0 is the extension of pγ0 . Then πw(qα+1
α ) ≤ ℵ0 for each α because pα+1

α has a metrizable kernel.Moreover, all projections qγα are skeletal. Since S is factorizing, βX is the limit space of S̃. Therefore, we can applyShapiro’s result [15, Theorem 2] to conclude that βX is co-absolute to a Dugundji space.(ii)⇔ (iii). If there exists a compactification c(X ) of X which is co-absolute to a Dugundji space, then so is βX as anirreducible preimage of X . Hence, every compactification of X has this property.(ii)⇒ (iv). Suppose βX is co-absolute to an AE(0)-space Y and let p(X ) be C ∗-embedded in a space Z . Then p(X )βZis homeomorphic to βp(X ). Since βp(X ) = p(βX ), βp(X ) is the absolute of Y . Consider the canonical irreducible maps
θβZ : p(βZ )→ βZ and θY : βp(X )→ Y . Because Y ∈ AE(0), the restriction φ = θY ◦θβZ �H : H → Y has a continuousextension φ : p(βZ ) → Y , where H = θ−1

βZ (βp(X )). Finally, for every open U ⊂ βp(X ) define e(U) = θ#
βZ
(
φ−1(θ#

Y (U))).It is easily seen that e : Tβp(X ) → TβZ is a strongly π-regular operator. This implies that p(X ) is strongly π-regularlyembedded in Z .(iv)⇒ (v). Obviously, item (iv) implies that every embedding of p(βX ) in any Tychonoff cube Iτ is strongly π-regular. So,by Corollary 3.2, p(βX ) is the limit space of a continuous inverse system {Zα , qγα : α < γ < τ} with skeletal projectionssuch that Z0 is a metric compactum and each qα+1
α has a metrizable kernel. Then, according to [15, Theorem 2], p(βX )is co-absolute to a Dugundji space Y . Because p(βX ) is extremally disconnected, it is the absolute of Y . Since Yhas a multiplicative lattice of open maps (as an AE(0)-space), βX has a multiplicative lattice Ψ of skeletal maps (byTheorem 2.2). Finally, observe that ΨX = {φ�X : φ ∈ Ψ} is a multiplicative lattice on X consisting of skeletal maps.(v)⇒ (i). This implication follows directly from Proposition 3.1.

Recall that X is skeletally generated [21] if there exists a factorizing inverse system S = {Xα , pβα : A} consisting ofseparable metric spaces Xα and surjective skeletal bonding maps such that: (i) the index set A is σ-complete (everycountable chain in A has a supremum in A); (ii) for every countable chain {αn : n ≥ 1} ⊂ A with β = sup{αn : n ≥ 1}the space Xβ is a (dense) subset of lim←−{Xαn , pαn+1
αn }; (iii) X is embedded in lim←−S such that pα (X ) = Xα for each α .

Corollary 3.4.
Every skeletally Dugundji space is skeletally generated.

Proof. Let Ψ be a multiplicative lattice for X consisting of skeletal maps and Ψ0 = {φ ∈ Ψ : w(φ(X )) ≤ ℵ0}. Define
Xφ = φ(X ) and equip Ψ0 with the partial order φ1 ≺ φ2 iff there exists a map φ21 : Xφ1 → Xφ1 such that φ21 ◦ φ2 = φ1.It is easily seen that the inverse system S = {Xφ, φβα : Ψ0} satisfies all conditions from the definition of skeletallygenerated spaces.
Corollary 3.5.
Any perfect image of a normal space possessing a multiplicative lattice of open maps is skeletally Dugundji. In particular,
any dyadic compactum is skeletally Dugundji.

Proof. Suppose M is a normal space with a multiplicative lattice of open maps and let f : M → X be a perfectsurjection. Then there exists a closed subset Z of M such that the restriction g = f �Z : Z → X is irreducible. One cansee that e(U) = f−1(g#(U)), U ∈ TZ , defines a strongly π-regular operator e : TZ → TM . Hence, by Proposition 3.1,
Z is a skeletally Dugundji space. Next, Theorem 3.3 yields that βZ is co-absolute to a Dugundji space. Finally, since
βg : βZ → βX is irreducible, p(βX ) = p(βZ ). Therefore, X is skeletally Dugundji.
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Corollary 3.6.
Let X be a skeletally Dugundji space. Then for every C ∗-embedding of p(X ) in any extremally disconnected space Z
there exists a retraction from βZ onto p(βX ).
Proof. By Theorem 3.3, there exists a strongly π-regular operator e : Tp(βX ) → TβZ . Then the operator e : Tp(βX ) → TβZ ,e(U) = e(U) has the following properties: e(U ∩V ) = e(U)∩ e(V ) and e(U)∩p(X ) = U for any open sets U,V ⊂ p(βX ).Next, define the set-valued map Φ: βZ → 2p(βX ), Φ(z) = ⋂

{U : z ∈ e(U), U ∈ Tp(βX )} if z ∈ ⋃{e(U) : U ∈ Tp(βX )},and Φ(z) = p(βX ) otherwise. It is easily seen that Φ is an upper semi-continuous map with compact non-empty valuesand Φ(z) = z for z ∈ p(βX ). Finally, according to [5], Φ has a continuous selection r : βZ → p(βX ). Obviously, r is aretraction.
A combination of Corollary 3.5 and Corollary 3.6 implies a generalization of the following result [2]: the absolute of anydyadic compactum is a retract of any extremally disconnected space in which it is embedded.
Corollary 3.7.
Any product of skeletally Dugundji spaces is skeletally Dugundji.

Proof. Suppose X = ∏
α∈A Xα with each Xα being skeletally Dugundji. We can suppose that all Xα are compactspaces. Then, according to Theorem 3.3, for each α there exists a strong π-regular operator e : Tp(Xα ) → TIA(α) forsome A(α). Denote by B the family of all standard open sets U = Uα1× · · · ×Uαk×{p(Xα ) : α 6= αi, i = 1, . . . , k}in Z = ∏

α∈A p(Xα ), and let e′(U) = eα1 (Uα1 )× · · · ×eαk (Uαk )×{IA(α) : α 6= αi, i = 1, . . . , k}. Finally, e : TZ → TY ,e(W ) = ⋃{e′(U) : U ⊂ W, U ∈ B}, where Y = ∏α∈A IA(α), is a strong π-regular operator. Hence, by Proposition 3.1 (ii),
Z is skeletally Dugundji. Since the map θ = ∏α∈A θα : Z → X is irreducible, X and Z are co-absolute. Therefore, X isskeletally Dugundji.
For any map f : X → Y let p(f) denote the absolute of f . It is well known that p(f) is a map from p(X )→ p(Y ) such that
θY ◦p(f) = θX ◦f , where p(X ) and p(Y ) are the absolutes of X and Y , respectively, and θX : p(X ) → X , θY : p(Y ) → Yare the corresponding canonical maps. In general, a map f can have many absolutes, but it has a unique one if f isskeletal.The next lemma was established in [15, Lemma 1] in the case X and Y are compact, but the same arguments provide amore general version.
Lemma 3.8.
Let f : X → Y be a perfect skeletal map of a countable π-weight with X and Y being 0-dimensional Lindelöf p-spaces
and Y ∈ AE(0). Then there exist a space Z and perfect maps g : X → Z, h : Z → Y such that: f = h◦g; g is irreducible;
h is an open map having a metrizable kernel; dimZ = 0.

Theorem 3.9.
The following conditions are equivalent for any Čech-complete Lindelöf p-space X:(i) X is the limit space of a continuous inverse system S = {Xα , φγα : α < γ < τ} with perfect skeletal bonding maps

such that X0 is a complete separable metric space and each φα+1
α has a metrizable kernel;(ii) X is co-absolute with an AE(0)-space;(iii) X has a multiplicative lattice of perfect skeletal maps.

Proof. (i)⇒ (ii). Following the arguments from the proof of [15, Theorem 2], we construct an inverse system E =
{Yα , qγα : α < γ < τ} consisting of 0-dimensional AE(0)-spaces Yα and open perfect bonding maps such that all qα+1

αhave metrizable kernels and Yα are co-absolute to Xα . Assume we already have constructed Yα . So, we have perfectirreducible maps θXα : p(Xα )→ Xα and θYα : p(Xα )→ Yα . Since φα+1
α is a perfect skeletal map with a metrizable kernel,its absolute p(φα+1

α ) : p(Xα+1)→ p(Xα ) is a perfect open map of countable π-weight. Then θYα ◦p(φα+1
α ) : p(Xα+1)→ Yαis a perfect skeletal map of countable π-weight. Moreover, Yα and p(Xα+1) are both Čech-complete Lindelöf p-spaces
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(recall that the last property is invariant under images and preimages of perfect maps). Hence, by Lemma 3.8, thereexist a 0-dimensional space Yα+1 and perfect maps qα+1
α : Yα+1 → Yα , φ : p(Xα+1) → Yα+1 such that qα+1

α is open witha metrizable kernel and φ is irreducible. Since p(Xα+1) is extremally disconnected and φ is irreducible, p(Xα ) is theabsolute of Yα+1 and φ coincides with the canonical projection θYα+1 . Because Yα ∈ AE(0) and qα+1
α is open and has ametrizable kernel, Yα+1 ∈ AE(0).If α < τ is a limit ordinal and the construction was done for all β < α , we take Yα to be the limit of the inverse system

{Yβ , qγβ : β < γ < α}. Using again that all Yβ ∈ AE(0) and qβ+1
β are open perfect maps with metrizable kernels, weobtain that Yα is a 0-dimensional AE(0)-space which is co-absolute with Xα . This completes the construction. Finally,observe that the space Y = lim←−E is co-absolute to X and Y ∈ AE(0).

(ii)⇒ (iii). Since X is co-absolute to an AE(0)-space Y , Y is also a Čech-complete Lindelöf p-space. Consequently, ithas a multiplicative lattice of open perfect maps. Then, by Corollary 2.4, X has a multiplicative lattice of skeletal perfectmaps.(iii)⇒ (i). This implication follows from the arguments used in the proof of Proposition 3.1 (i).
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