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Abstract: Let X be an affine T-variety. We study two different quotients for the action of T on X: the toric Chow quotient
X/c T and the toric Hilbert scheme H. We introduce a notion of the main component Hy of H, which parameterizes
general T-orbit closures in X and their flat limits. The main component Uy of the universal family U over H is a
preimage of Hy. We define an analogue of a universal family Wx over the main component of X/c T. We show
that the toric Chow morphism restricted on the main components lifts to a birational projective morphism from
Up to Wx. The variety Wy also provides a geometric realization of the Altmann—Hausen family. In particular, the
notion of Wy allows us to provide an explicit description of the fan of the Altmann—Hausen family in the toric case.
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1. Introduction

An important problem in algebraic geometry is to introduce a good notion of a quotient for an action of a reductive
algebraic group G on a variety X. For many actions there exists an open subset U C X where G acts freely, such that
a variety U/G exists as a geometric quotient. Constructing a quotient X/G is, thus, choosing a compactification of U/G.

In the case when X is projective, one approach to this problem is provided by geometric invariant theory (GIT) developed
by Mumford [16]. Given a G-equivariant embedding of X in the projectivisation of a G-module, the GIT-quotient is the
projective spectrum of the subring of G-invariants in the homogeneous coordinate ring on X. There are two other natural
compactifications, provided by appropriate Chow varieties of algebraic cycles and Hilbert schemes. The Chow quotient
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of a projective variety X parameterizes the closures of G-orbits in X having the same dimension and degree and their
limits in the Chow variety of all algebraic cycles having these parameters. The Chow quotient of a toric projective variety
by a subtorus action was studied in [15]. The invariant Hilbert scheme classifies closed G-invariant subschemes Z C X
such that the G-module O(Z) has prescribed multiplicities [6]. The G-Hilbert scheme is a particular case of the invariant
Hilbert scheme. It arises in the case of a finite group G and is considered in [5]. The main component of the G-Hilbert
scheme parameterizes reqular G-orbits in X and their flat limits. Another particular case of an invariant Hilbert scheme
is the toric Hilbert scheme which will be considered below.

We are interested in the following case. Let X be an affine variety and G = T be an algebraic torus. Denote by X* the
subset of stable points in X under the torus action which is an open subset in X where T acts freely (see subsection
3.2.2 for the precise definition). The toric Hilbert scheme H is defined as the invariant Hilbert scheme parameterizing
T-invariant ideals in k[X] having the same Hilbert function as the toric variety Tx, where x € X°. The main component
Hp of H is the irreducible component obtained by closing the image of X°/T in H. In the case of the subtorus action on
the affine toric variety X the toric Hilbert scheme and its main component were studied in [7].

The Chow quotient (X/c T)o of X by the T-action is by definition the main component of the inverse limit X/c T of GIT-
quotients (see subsection 3.1.2). It is obtained by closing the image of X*/T in X/ T, so there is a canonical rational
map q: X --» (X/cT)o. Denote by Y = (X[ T)§°™ the normalization of (X/cT)o. In [2] Altmann and Hausen introduced
a certain family ¢: X — Y of T-varieties, where the T-variety X can be interpreted as a resolution of X improving
the quotient behavior. The morphism ¢ is a good quotient under the action of T and there is a proper and birational
morphism ¢: X — X such that the following diagram is commutative:

The family ¢ is closely related to the combinatorial-geometrical datum used in [2] for the description of affine normal
T-varieties. In subsection 3.1.3 we recall the construction of ¢y and explain how one can easily pass from ¢ to this datum
and back. A first result of the paper, Proposition 3.9, realizes ¢ as the normalization of an elementarily constructed
family pc: Wx — (X[ T)o. The variety Wy is defined as the closure of the graph of the rational map g, and pc is the
projection on (X/c T)o. In Theorem 4.2 we then use this result to construct the fan of variety X in the toric case.

Our main result, Theorem 3.18, relates the universal family Uy — Hy over the main component of the toric Hilbert scheme
via a toric Chow morphism to the family Wx — (X/c T)o. The toric Chow morphism from H to X/c T was constructed by
Haiman and Sturmfels in [13] in the case when X is a finite-dimensional T-module. We generalize their construction
and include this morphism into a commutative square

UQ% WX

Tl

Hy ——= (X/cT)o.

We state that horizontal morphisms here are projective and birational.

The paper is organized as follows. In Section 2 we fix notation concerning toric geometry and T-varieties and recall
the definition of the functor of points which is necessary to define the invariant Hilbert scheme. In subsection 3.1 we
provide an exposition of the results of [2]. We recall the notion of the Altmann-Hausen family and then prove our first
result, Proposition 3.9, about its simple geometrical realization. In subsection 3.2 we recall the definition of the toric
Hilbert scheme and introduce the notion of its main component in the T-variety case. In subsection 3.3 we investigate
the toric Chow morphism, lift it to the universal families and prove our main result, Theorem 3.18. Section 4 is, in fact, a
repetition of Section 3 in the case of a subtorus action on an affine toric variety. In this case almost all the statements
of Section 3 can be interpreted in terms of fans. We provide the construction of the fans of toric varieties Hy, (X/c T)o, Up
and Wy and compute them in concrete examples.
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2. Preliminaries

We consider the category of schemes over an algebraically closed field k of characteristic zero. Our main references on
schemes are 10, 14].

A variety is a separated reduced scheme of finite type. We denote by O the structure sheaf of a scheme Z, and k[Z]
denotes the algebra of sections of O over Z.

2.1. Basic facts from toric geometry

An n-dimensional torus T is an algebraic group isomorphic to the direct product of n copies of the multiplicative
group k*. We use the notation X(T) = Hom(T,k*) and A(T) = Hom(k*, T) for the lattices of characters and one-
parameter subgroups of T, respectively. Denote by X(T)g = X(7)®zQ and A(T)g = AT)®zQ the corresponding
Q-vector spaces.

For any affine scheme X with an action of a torus T its algebra of regular functions k[X] is graded by the group X(T)
of characters of T,

KX] = €D kIX)y.

xeX(T)

where k[X], = {f € k[X]:t-f = x(t)f, t € T} is the subspace of T-semi-invariant functions of weight x. Let
L = {x € X(T): k[X], #0}.

If X is an irreducible variety, then I is a finitely generated monoid called the weight monoid. If T acts on X faithfully,
then L generates X(T).

A T-variety is a normal variety endowed with a faithful reqular action of 7. Let X be a T-variety. A morphism 71: X — Y
is called a good quotient for this action if i is affine, T-invariant, and the canonical map n*: Oy — m,(Ox)" is an
isomorphism.

Given a scheme S, a family of affine T-schemes over S is a scheme X equipped with an action of T and with a morphism
p: X — S such that p is affine, of finite type and T-invariant. Then the sheaf of Os-algebras p.(Ox) is equipped with
a compatible grading by X(7).

A toric variety under the torus T is an irreducible T-variety X that contains an open orbit isomorphic to 7. We do not
require X to be normal. We will consider only those toric varieties X that admit an open covering by affine T-invariant
charts (all normal toric varieties satisfy this condition). Our main references on toric varieties are [8, 11, 17]. Given a
toric variety X, we denote by Cx C A(T)q the associated fan. The T-orbits on X are in order-reversing one-to-one
correspondence with the cones of Cx. If g(Z) is the cone in Cx corresponding to a T-orbit Z, then a one-parameter
subgroup A € A(T) lies in the interior of g(Z) if and only if lims_o A(s) exists and lies in Z. A toric variety is determined
by its fan up to normalization.

Let X; under a torus T; and X under a torus T, be toric varieties. A morphism ¢: X; — X; is toric if ¢ maps the torus
Ty into T and @[y, : Tt — T2 is a group homomorphism. For the toric morphism ¢ we have the following commutative
diagram:

T1 ><X1 —— X1
\L(me lzp
T2><X2 E— XZA

The morphism of algebraic groups ¢: T; — T induces a Z-linear map @ : A(T1) — A(T2) and Q-linear map ¢g: A(T1)g —
NT2)q-

In the following two propositions X; and X, are normal toric varieties.
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Proposition 2.1 ([8, Theorem 3.3.4]).
A morphism @: Xy — X; is toric if and only if the corresponding Z-linear map @ is compatible with fans Cx, and Cx,.
It means that for every cone ¢ € Cx, there exists a cone ¢ € Cx, such that EQ(Q) Cc?<.

Denote by |C| the support of the fan C.

Proposition 2.2 ([8, Theorem 3.4.11]).
A toric morphism @: Xi — X, is proper if and only if¢@1(|exz|) =[Cx, |-

If X is toric variety under a factor torus T/T, then we can consider the fan of this variety as a quasifan in A(T)g whose
cones include the subspace A(T)g C A(T)q.

Proposition 2.3.
Let X = Tx, Y = Ty be toric varieties. Then the fan associated to the toric variety T(x,y) C X x Y is the coarsest
common refinement of fans Cx and Cy (in particular, its support is equal to |Cx| N |Cy]).

Note that the action of the torus T on the toric varieties X and Y is not required to be faithful here. So the fans Cx
and Cy should be considered as quasifans in A(T).

Proof. Let A € A(T). The limit lim; o A(t)(x, y) exists if and only if both limits lim; o A(t)x and lim,_o A(t)y exist.
The limits of the point (x, y) with respect to one-parameter subgroups Ay and A, coincide if and only if the limits with
respect to A; and A, of both points x and y coincide, i.e. Ay and A; lie in the same cones of the fans Cx and Cy. O

2.2. Basic facts on the functor of points

Recall that any scheme Z is characterized by its functor of points that is the contravariant functor from the category of
schemes to the category of sets:
Z: (Sch)® — (Set), Z(X) = Mor(X, 2),

where Mor (X, Z) is the set of morphisms of schemes from X to Z over k (we denote the functor of points of a scheme
by the corresponding underlined letter). Each f € Mor (X, Y) defines a morphism of sets Z(f): Z(Y) — Z(X). For
g € Mor(Y,Z) we have Z(f)(g) = gof € Mor (X, 2).

Let F: (Sch)° — (Set) be an arbitrary functor. We say that a scheme Z represents the functor F if there exists an
isomorphism of functors Z = F (the scheme Z is then also called the fine moduli space of the functor F). Denote by
(Fun ((Sch)®, (Set))) the category of contravariant functors from the category of schemes to the category of sets.

The covariant functor x: (Sch) — (Fun ((Sch)°, (Set))) is defined by X — X. By Yoneda's lemma, the functor * is an
equivalence between the category of schemes and the full subcategory of the category of functors. In particular, it defines
a natural bijection between the sets Mor (X, Y) and Mor (X, Y).

3. General constructions

3.1. The toric Chow quotient and the Altmann-Hausen theory

3.1.1. Combinatorial description of affine normal T -varieties

In this section we recall the description of normal affine T-varieties in terms of proper polyhedral divisors on a normal
semiprojective variety given in [2].



O.V. Chuvashova, N.A. Pechenkin

Let M be a lattice, N be its dual lattice, Mg = M®zQ, Ng = N®zQ. Denote by (-, ): Mg x Ng — Q the natural
duality pairing, by o a pointed polyhedral cone in Ny, by ¢¥ C My its dual cone, and by Pol,(Ng) the set of all
o-polyhedra, i.e. polyhedra in Ng with the recession cone o (see [21, Definition 1.11] for the definition of the recession
cone). Let T = Spec k[M]be an algebraic torus with its lattice of characters equal to M. To a o-polyhedron A € Poly(Ng)
we associate its support function ha: ¢¥ — Q, defined by

ha(m) = min{m, A) = min {(m, p).
peEA

Definition 3.1.

A variety is called semiprojective if it is projective over an affine variety. Let Y be a normal semiprojective variety.
A o-polyhedral divisor on Y is a formal sum © = ) , A, -Z, where Z runs over all prime divisors on Y, Az € Pol,(Ng),
and Az = o for all but finitely many Z. For m € ¢" we define the Q-divisor ®(m) = Y_, ha,(m)-Z on Y. A g-polyhedral
divisor D is called proper if the following two conditions hold:

e D(m) is semiample and Q-Cartier for all m € ¢V,

e D(m) is big for all m € relinta".

A Q-Cartier divisor D is called semiample if there exists r > 0 such that the linear system |rD| is base point free, and
big if there exists a divisor Dy € |rD]|, for some r > 0, such that the complement Y \ supp Dy is affine.

For a Q-divisor D = ) ,a,-Z, let |D]| =) ,|laz|-Z be the round-down divisor of D, and O(D) = O(|D|) be the
corresponding sheaf of Oy-modules. Any o-polyhedral divisor © defines an M-graded quasicoherent sheaf of algebras
on Y as follows:

AlY, ] = B o@(m)).

meaVnNM

Let AlY, D] =T (Y, A[Y,D)]) be the M-graded algebra corresponding to .

Theorem 3.2.

To any proper o-polyhedral divisor ® on a normal semiprojective variety Y one can associate a normal affine T-variety
of dimension dim Y + dim T defined by X[Y,®] = SpecA[Y,D]. Conversely, any normal affine T-variety is isomorphic
to X[Y, D] for some semiprojective variety Y and some proper g-polyhedral divisor © on it.

We will discuss the converse correspondence in subsection 3.1.3.

3.1.2. Ingredients from GIT

Let X be an affine T-variety. Let us recall the construction of the inverse limit of GIT-quotients.

The cone w generated by the weight monoid I in the vector space X(T)p = X(T)®zQ is called the weight cone. For
any x € L, consider the set of its semistable points

xe=U Ux.

r>0 fek[X]ry
Two characters x1 € L and x2 € L are called equivalent if X7 = Xi°. Under this equivalence T decomposes into

finitely many equivalence classes which are forming the GIT-fan Q C X(T)g with supp Q = w [4, Section 2]. Recall some
definitions giving us the construction of the GIT-fan.

Definition 3.3 ([4, Definition 2.1]).

For any x € X, the orbit cone w, associated to x is the following convex cone in X(T):

w, = cone {x € L : there exists f € k[X], such that f(x) # 0}.
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Definition 3.4 ([4, Definition 2.8]).

For any character x € L, the associated G/T-cone g, is the intersection of all orbit cones containing x:

6= () w

{xeXxewx}

By [4, Theorem 2.11], the collection of GIT-cones forms a fan Q having w as its support. Moreover, the following statement
holds.

Proposition 3.5 ([4, Proposition 2.9]).
Let x1,x2 € E. Then X3? C X3° if and only if oy, 2 oy,.

For any cone A € Q, denote X§* = X[*, where x is an arbitrary character in relintA. Let XjT = X3/ T be the good
quotient under the action of T. Varieties X/, T are called G/T-quotients. Notice also that X/, T = Projk[X]%) for any
x € relintA, where

k(XX = ék[x],x.

In particular, X/oT = X//T = Speck[X]".

Denote by g,: X;> — X\ T the quotient map. We consider natural morphisms between GIT-quotients. Namely, if
A D Ay, where Ay, A; € Q, then we have the following commutative diagram:

SSs SS
X5 =X o
ay s,

Pr2y

X T —2 X), T

So the quotient maps g,: X;°> — X/, T form a finite inverse system with go: X — X//T sitting at the end. We have a
canonical morphism
g: X* =X = limX} T =X[T.

XEL

The variety X/c T is called the GIT-limit.

Definition 3.6.
The main component (X/c T)o of the GIT-limit X/ T is the closure of the image q(X*) C X/ T.

The main component of the GIT-limit is also called the toric Chow quotient (see e.g. [9]). This terminology corresponds
to results of [15], where it was proved that in the case of a projective toric variety X the main component of GIT-limit is,
indeed, isomorphic to the Chow quotient by the action of a subtorus.

3.1.3. The Altmann-Hausen family

Now we give a construction of the Altmann-Hausen family of an affine normal T-variety X following [2, Section 6].

Let Y = (X/c T);°™ be the normalization of the main component of the GIT-limit, g"™: X** — Y be the lifting of g to the
normalization, and p,: Y — X/, T be the composition of the normalization map and canonical morphisms from GIT-limit
to the elements of the inverse system restricted on the main component. For Ay, A; € Q, A1 D A;, we have the following
commutative diagram:
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Xss C Xj? C XAS; C X
Py Prry
Y Xh, T Xh, T
90
Po P20 Pay0
X|IT

As it was shown in [2, Lemma 6.1], the morphisms p, and p,,,, are projective surjections with connected fibers. In
particular, Y is projective over the affine variety X//T = Speck[X]". Moreover, the morphisms p, are birational when
ANrelint g # @, and, consequently, dim Y = dim X — dim T and k(Y) = k(X)".

A character y € L is called saturated if the algebra k[X]X) is generated by elements of degree one. It is well known
that for any y € I there exists an integral n, > 0 such that kn,x is saturated for all integers k > 0. For multigraded
version of this notion and an algebraic characterization of GIT-fan see [3].

For any A € Q and x € relintA, we have a sheaf of Ox;,7-modules A, = (g.)«(Oxp)y. It is easy to see that the
defined sheaf coincides with the twisting sheaf of Serre, if the variety X/, T is considered as Projk[X]). In particular,
the sheaf A, is invertible if x is saturated. For a saturated x, denote by A, = (pj))*(Aiy).x) the invertible sheaves
of Oy-modules.

Firstly, assume that x is saturated. If f € k[X]X, A =0, € Q then X;//T is an open affine subset in X/, T and
Aoy Ixr = f-Oxyr (see [2, Lemma 6.3 (ii)]). Denote Y = P (X¢/IT). The open sets Y; cover Y, and by definition of the
inverse image we have (see [2, Lemma 6.4 (ii)])

Agly, = F-0y, CF-k(Y)=F-k(X)" = k(X),.

Consequently, we can consider the sheaves A, as subsheaves of the constant sheaf k(X) on Y.

For unsaturated y, we define A, (U) = {f € k(X) : f'x € A, ,(U)}. The defined sheaves together constitute the
X(T)-graded sheaf of Oy-algebras
A=PA,.

XEL

From [2, Lemma 6.4] we can see that the multiplication is defined correctly and preserves the grading.

Definition 3.7. B _
The Altmann—Hausen family is the family ¢y: X — Y of T-schemes, where X = Spec, A is the relative spectrum, ¢ is
the morphism given by Ay — A and the T-action on X is given by the X(T)-grading of A.

By [2, Lemma 6.4 (ii)], we have X = Spec r(X, O3)-

Summarizing all that we have done in this section, note that from a T-variety X we constructed a semiprojective variety Y
equipped with a X(T)-graded sheaf of Oy-algebras A such that X can be restored from this data.

Denote A(T)g = AN(T)®zQ and ¢ = w¥ C A(T)g. One can easily pass from the sheaf of algebras A to the proper
o-polyhedral divisor ® on Y such that

A= AlY,D]. (2)
To do this, let us choose a (non-canonical) homomorphism s: X(T) — k(X) such that for every y € X(T) the function s(x)

is homogeneous of degree xy. Such homeomorphisms always exist since T acts on X faithfully. Next, for a saturated
X € wN X(T) there exists an unique Cartier divisor ®(x) on Y such that

0D () = }m Ay C K(Y).
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For unsaturated y, define

D(x) “D(nyx)-

)
Now one can check that Q-Cartier divisors ©(x) can be “glued” together to form a proper g-polyhedral divisor ® on Y
satisfying condition (2) (see [2, Section 6]). The divisor © constructed in such way is called minimal.

We see that the variety X appears as a middle step in the correspondence between normal affine T-varieties and
combinatorial data of this action (Y,®) from Theorem 3.2 with an additional minimality condition on ®:

where one of the arrows is dashed, because the reconstruction of © from X is not canonical.

The main result illustrating the role of the Altmann—Hausen family in this assignment is the following one.

Proposition 3.8 ([2, Theorem 3.1]).

The morphism  is a good quotient for the T-action. The canonical morphism ¢: X > X is T-equivariant, birational
and proper. We have the following commutative diagram:

Ts

) G S— ,,>)~(

4771

X
I
norm !
Y o
Y.

3.1.4. A geometric description of the Altmann-Hausen family

Define

Wy = {(x,q(x)) : x € X5} C X x (X[cT)o,

and let pc be projection on the second component. The following result modulo normalization morphism was stated
in [20, Lemma 1], where actions of complexity one were considered, but the same proof is valid for a general case.

Proposition 3.9.

The Altmann—Hausen family : X > VYis isomorphic to the normalization W™ — (X/[c T)g°™ of the family of T-schemes
pc: WX — (X/C T)O

Proof. Define a morphism 6: X — (XlcT)o as a composition t o ¢ of the morphism ¢: X - (Xl T)ge™ and the
normalization morphism ¢: (X/c T);°™ — (X/c T)o. Due to commutativity of the diagram from Proposition 3.8, the mappings
@: X > X and 0: X — (X/[cT)o define a morphism a = (¢, 8): X — Wx.
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The morphism ¢ is affine as a normalization morphism, ¢ is affine as a good quotient, so 6 is affine as a composition of
affine morphisms. The morphism ¢ is proper, so « is proper. Further, a is finite, because it is both proper and affine.
But a is also birational, hence it is the normalization morphism. O

Note that the variety Wx is equipped with the natural faithful action of the torus T, which lifts to an action of T on
X = W™ and defines a X(T)-grading of the sheaf ,(O3). By formula A, = .(O%)y, one can recover the X(T)-graded
sheaf of Oy-algebras A, and, as well, the proper polyhedral divisor on Y (see subsection 3.1.3).

Denote by pc the projection Wx — (X/cT)o. Note that pc is the good quotient. Indeed, it is clear that pc is affine,
T-invariant, and pE: Oy, = (Pc)«(Ouy)’ is injective. To prove the surjectiveness of p, use the fact that functions
which are constant on the fibers come from the base.

We have the following commutative diagram, where p¥¥ denotes the projection on X:

W)(LX

(X/C T)O T> X//T.
px T

Example 3.10.
Let X = A", T = k* and T act on X by scalar multiplication, i.e. t-(x1,...,X,) = (tx1, ..., tx,). Then the Z-grading of
the algebra k[X] = k[x1,...,x,] is given by degx; = 1 for i =1,..., n. For this action, GIT-fan consists of two cones Ag
and Aq:
Ao A
—1 0 1
We have

Xe =X, X T =X|T =Speck[X]" = {pt};
X=X\ {x=...=x,=0}, X, T = Projk[xi,..., x,] =P"".

The inverse limit X/ T of GIT-system is equal to the variety X/, T, so

Y = (X/CT)O =X/ T= )(//\1 T = ]P)n71, X = X)\Sf = X\{X1 =...= X,,}.
In coordinates the map "™ : X* — Y is given by ¢"™™(xy,...,X,) = [x1: ... :x,] The variety Wy C X x (X[ T) =
A"xP"" is defined by the equations x;y; = x;y;, where (xi,...,x,) are coordinates on A", and [yq:...:y,] are

homogeneous coordinates on P"~, i.e. Wy is the blowing-up of A" at the point (0,...,0). On the other hand,

X = Specy, A = Spec, @ A, = Spec, Oy & @ Ax.n = Specy @ O(n) = Tot(O(—1))

n€lxg n€Zsgo n€lzo

is the total space of the tautological line bundle on P"~'. It is well known that these varieties are isomorphic.

3.2. The toric Hilbert scheme and its main component

Let X be an irreducible affine T-variety. In the following subsection we give an exposition of basic properties on
multigraded Hilbert schemes and study some particular cases of this notion. See [6, Section 3] for some generalizations
of these results on the case of G-variety X with a reductive algebraic group G.
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3.2.1. Definitions and basic facts on multigraded Hilbert schemes

Definition 3.11.
Given a function h: X(T) = N, a family p: F — S of affine T-schemes has Hilbert function h if for every x € X(T) the
sheaf of Os-modules p.(Of), is locally free of rank h(x).

Note that the morphism p is flat. If h(0) =1, then p is the good quotient of X by the action of T.

Definition 3.12 ([13]).

Given a function h: X(T) — N, the Hilbert functor is the contravariant functor f}fﬁ’q from the category of schemes to
the category of sets assigning to any scheme S the set of all closed T-stable subschemes Z C S x X such that the
projection p: Z — S is a (flat) family of affine T-schemes with Hilbert function h.

In [13, Theorem 1.1] it was proved that there exists a quasiprojective scheme H’\},T which represents this functor in the
case when X is a finite-dimensional T-module V; the scheme HY, ; is called the multigraded Hilbert scheme. In the
case of an arbitrary X there exists a T-equivariant closed immersion X — V, where V is a finite-dimensional T-module.
Then the Hilbert functor 3% ; is represented by a closed subscheme HY ; of H{ ; [1, Lemma 1.6]. The scheme HY ; is
called the invariant Hilbert scheme.

Recall that the universal family U} ; is the element of H¥% ,(HY% ;) corresponding to the identity map {Id: Hf ; —
H% 1} € Hi (HY 1) = Mor(HY ;, HY ;). So U% ; is the closed subscheme of HY ; x X such that for any Z € H} /(S)

we have Z = U)I},TXHQT S. In particular, for any T-equivariant closed immersion of X in a finite-dimensional T-module
V, we have the following Cartesian diagram:

U)h(,T — Ul\7/,T

L

H)h(,T — H’\'/,r

Lemma 3.13.
Assume that h(0) = 1. Then we have the following commutative diagram:

b px
Uxr —=X

PH 7

Hy 2 X,

where px is the projection, and px/|T assigns to any family its quotient by T. The morphisms px and px//T are
projective.

Proof. The commutativity of the diagram can be seen easily by considering the corresponding morphisms of functors
of points. The morphism px// T is projective by [7, Lemma 3.3]. The morphism Uf(,T — Hﬁ’(,T x xy7 X is a closed embedding,
so the morphism px is projective. See also [6, Proposition 3.15]. O

3.2.2. Definition of main component

Let

x = Ux.

XEL fek[X]y
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Note that, if x € X*, then Tx has the following Hilbert function:

1 if ez,
hs(x) = { X

0 otherwise.

Let Xz denote the affine toric T-variety with the weight monoid I; then Tx ~ Xz for x € X*. We denote by H the
invariant Hilbert scheme H;'(,[T; it is called the toric Hilbert scheme [18]. So for any x € X* we have the k-rational point

Tx € H. Also denote U = Uy, H = K.
Let X*x T X; be the quotient of the variety X*x X; by the action of T given by t-(x, y) = (t ' x, ty).

Lemma 3.14.
There exists the geometric quotient 7°: X* — X°/T and an open embedding of X*/T in the toric Hilbert scheme H.
Moreover, we have the following Cartesian diagram:

XoxTXg s U

Lk

X5 |T s H.

Proof. Step 1. There exists the categorical quotient 7°: X° — X°/T. Moreover, n° is a locally trivial bundle.
Indeed, let x1,...,x. € L be such that the algebra k[X] is generated by k[X],, i = 1,...,r. Then X* is covered by
T-invariant open affine subschemes

Xi,....r, = Spec(k[X]s,...1.),

where f; € k[X],,, f; # 0. Fix a basis eq,...,eq € X(T). Since the characters 1, ..., x, generate ¥ and, consequently,
X(T), we can choose non-zero elements h; € k[Xy,. .1, ]e,. Then we have

K[Xpyot] = K[Xpyon ) @K[RT o 05T = k(X )T @ KT

Note that these isomorphisms satisfy the compatibility conditions and the variety X*/T obtained by gluing affine charts
Xi/T is separated. Indeed, we have to show that the diagonal morphism

XiglT = XeT x X,IT

is closed for any X;/T = Spec(k[X/]") and X, /T = Spec(k[X,]"), where f = f;-...-f,, g =g1-...-g, and f;, g; € k[X],,.
This is equivalent to showing that the corresponding homomorphism of algebras

KIXA)T @ k[Xg]" — k[Xpg]"

is surjective. But this is clear since for any element h/(fg)* € k[X,]" we have h/(fg)* = (h/f*)(f*/g¥).

Step 2. Let us prove that X*/T represents an open subfunctor of 3{. Consider the family
p°: XSXTX); — X°/T.

We shall show that this is the universal family over X*/T. Indeed, XxT Xz is a locally trivial bundle over X*/T with
fiber Xs. Further, there is a canonical closed embedding X*x Xz C X x (X®/T), which is locally given by the surjective
homomorphisms of algebras

KIXI@ k(X = ED KXt ]y

XEL
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(X*xT Xz is covered by the open affine subschemes Spec @xef k[Xj,....1,ly)- This gives us an element in H(X*/T), ie,
we have the following Cartesian diagram:

XSXTXZ — U

b

X|T —— H.

Step 3. It is clear that the image of X*/T lies in the locus H* of H where the fibers of the universal family are
irreducible and reduced. By [12, Theorem 12.1.1], it follows that pj;'(H*) is an open subscheme of U. Since p'(H®) is
T-invariant and py maps closed T-invariant subsets to closed subsets, it follows that H* is an open subscheme of H.
We shall show that the morphism ®: X*/T — H°® is an isomorphism. Given a morphism ¢: S — X®/T, we have the
following commutative diagram:

7 ——= X°x" Xy —— U°

N

S X|T He,

where U = H°xyU and Z = Sxys U is the image of ¢ in H°(S). Note that all the squares of this diagram are
Cartesian. In particular, it follows that Z = Z°x 7 Xz, where Z° = Sxxs;7 X* = Z N (S x X°).

Conversely, let us construct the inverse morphism ¢": H* — X*/T. Let Z € H*(S). Consider Z° = Z N (S x X°);
then Z°/T = S. So the projection Z° — X° defines a morphism of quotients {S — X*/T} € X°/T(S). Moreover,
75 = Sxxs;7 X* and Z = Z°x Xg. Thus we see that Po®’ = Idys and ' od = Idys,7. O

Definition 3.15.

The main component Hy of the toric Hilbert scheme H is the closure in H of the image of X*/T.

By Lemma 3.14, it follows that the main component Hp is an irreducible component of H. Consider also the main
component of the universal family Uy = p;;' (Ho). Denote by po the restriction of pyy on Up.

Lemma 3.16.
The main component Uy is an irreducible component of U.

Proof. It is sufficient to show that Uj is irreducible. By [7, Lemma 3.5], the dimension of any irreducible component of
the fibre p~'(x) equals dim T for any x € H. Since py is flat, this implies that the dimension of any irreducible component
Z of Uy is equal to dim X [14, Corollary 9.6]. It follows that Z dominates Hy. Consequently, the intersection ZN(X*x7 X;)

is non-empty and Z = Z N (X°x7 Xz). This implies that Uy = X>xT X; is irreducible. O

3.3. The toric Chow morphism

First of all, let us recall the construction of the toric Chow morphism H — X/ T. This construction was given in
[13, Section 5] for the case when X is a finite-dimensional T-module, but it is almost the same in the case of an affine
T-variety.

For any character y € £, there exists n > 0 such that the Z-graded algebra R,, = k[X]"¥ is generated by its elements
of degree one. Note that the scheme X/, T = Proj R, represents the functor ngecR”X,kx, where

1 if r>0,
h(m) =
0 otherwise,
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(see [7, Corollary 3.5)). The natural morphism of functors H — j{gpecf\’nx,kx induces the canonical morphism of the schemes
representing this functors H — X/, T and it does not depend on the choice of n. Moreover, by [13, Lemma 7.5], these
morphisms commute with the morphisms of the inverse system, so they define a canonical morphism W: H — X/ T.

Lemma 3.17.
There exists an open embedding X*|T C (X/cT)o. Moreover, we have the following Cartesian diagram:

X XTX}: > WX

Lk

X IT ——— (X[ T)o.

Proof. Note that in the inverse limit of GIT-quotients X4 T, A € Q, it is sufficient to take the limit over A intersecting
relint w. Moreover, for any such A the quotient X*/T is an open subscheme in X3*//T and X°* = q;1 (Xe/T) C X3
Indeed, X* is covered by the open affine T-stable subschemes Xj,. . (with the notation of the proof of Lemma 3.14).
There exist ¢; > 0 such that }_¢;x; = x for some n > 0 and x € relintA. Then f = f]' - ... f& € k[X],, and
Xiyt, = X = q; (X T) C X2

1

This implies that we have a Cartesian diagram

XS ( N XSS

L

X IT C— X[ T.

This means that X* = X* N (X x X*/T) C X x X[cT. Note also that X* xTXs = X5 € X xX5/T. Finally, this implies
that Xox" Xz = Wy N (X x X*/T) C X x X[ T. O

In the following theorem we show that the toric Chow morphism W restricted on the main component lifts to a birational
projective morphism U° — Wy.

Theorem 3.18.

We have the following commutative diagram:

PH pc

HO (X/C T)O

o
;&k{ %

XIIT,

where WO is the restriction of W on Hy and ® is the restriction of the morphism W x Idx on Uy C Hyx X. The morphisms
WO o, p% and p¥ IT are projective ant the first three of them are, moreover, birational.
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Proof. The restriction of W% on X3/T C Hy is the identity map on X*/T C (X/ T)o, thus W is a birational morphism.
Also, the restriction of WO x Idy on X C Uj is the identity map on X® C Wy 1, so WOx Idy maps Uy birationally on Wy.
By construction of the morphisms ¥ and &, it follows that pg’( = p)Vg/o¢ and pg’(//T = p)Vg///To WO Further, by Lemma 3.13,
the morphisms p% and p%//T are projective. It follows that ® and W° are projective. The other assertions are obvious. O

Corollary 3.19.

There exists a canonical birational projective morphism Ug°™ — X.

4. Subtorus actions on affine toric varieties

In this section X = X, is a normal affine toric variety under the torus T, 0 C A(T)q is a corresponding cone. We
consider the action on X of the subtorus 7 C T. The natural homomorphism T — T/T induces the surjective map of
vector spaces that are generated by the corresponding lattices of one-parameter subgroups a: A(T)g — A(T/T)g. The
embedding of torus T — T induces the surjective map of vector spaces B: X(T)g — X(T)g such that B(¢") = w, where
w C X(T)q is the weight cone.

4.1. The fan representation of the Altmann-Hausen family

Let ¢: X = Y be the Altmann-Hausen family of the T-action on X, and let ¢: X = X be the canonical morphism. We
use the notation of subsection 3.1.3 related to the construction of .

Let Tx be the open orbit of the T-action on X. It can be easily seen that X** D Tx. Denote by x,, xc, y the images of x
in X, T, (X/cT)o and Y respectively. The quotient maps g, induce actions of the torus T on the GIT-quotients X/, T. So
XLhT = Tx, is the toric variety under the torus T/T,,, where T,, is the stabilizer. If A lies in the interior of w, general
fibers of the morphism g, contain a unique dense T-orbit, and consequently T,, = T. Note that the morphisms p,,,, in
the GIT-system are T-equivariant, so Y = Ty is a normal toric variety under the torus T/T [9, Proposition 3.8], and the

morphisms p, are T-equivariant. Also Wx = T(x, xc) C X x (X/cT)o is a toric (not necessarily normal) variety with the
torus T.

Lemma 4.1.
The fan Cy, of the toric variety Wx = T(x,xc) C X x (X[cT)o is the coarsest common refinement of the cone o and the
quasifan a (Cx . 1),)-

Proof. Note that we can consider a fan of the toric variety Wy (which is not necessarily normal), because there
exists a T-invariant affine covering Wx = X x U;, where (X/cT)o = J U is an affine T-invariant covering of the variety
(XIc T)o. The existence of the last one immediately follows from the existence of a T-equivariant closed embedding of
variety (X/c T)o in the direct product of GIT-factors. Lemma follows now from Proposition 2.3 and the definition of the
variety Wx. O

Let Q C X(T)q be the GIT-fan. Denote by QO the set of A € Q satisfying the condition ANrelint w # @. We have already
seen that for A € Q0 the corresponding GIT-quotients X/, T are toric varieties under the torus T/T. The variety Y is
also toric under the torus T/T. The construction of the fans of these varieties is described in [9]. In the framework of
that paper a more general case of a semiprojective toric variety X corresponding to the normal fan of some polyhedra
P C X(T)g. The case of an affine toric variety X = X, considered in [7, Section 5] (in this case P = ¢"). We shall
continue our exposition following [7].

For all x € w, denote P, = B~"(x) N a”. Let A € Q°. Then, for all x € relintA, the polyhedra P, have the same normal
fan N, € A(T/T) [7, Remark 4.12] which coincides with the fan of the toric variety X/, 7. The fan of the toric variety Y
is the coarsest common refinement of all the fans N, where A € QY so it is the normal fan of the Minkowski sum

> Pu

AeN0
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where x; € relintA.

Having the description of the fan Cy = C(x/.1),, the following result allows us to describe the Altmann—-Hausen family
in the toric case.

Theorem 4.2. B

Let X = X, be the toric variety with a big torus T, and let T C T be a subtorus. Then the variety X constructed for the
action of T on X is a normal toric variety with the torus T. Its fan Cy C \(T) is the coarsest common refinement of the
quasifan a=(Cx,.1),) and the cone g, where a: N(T) — A(T/T) is the natural map.

Proof. By Proposition 3.9, the toric variety X is isomorphic to the normalization of the variety Wy, so their fans Cy
and Cy, coincide. Now our statement follows directly from Lemma 4.1. O

The fact that the fans €5 and Cy, coincide (and so Theorem 4.2) could be proved by methods of toric geometry without
using Proposition 3.9. We shall give this proof below. Moreover, one can prove Proposition 3.9 in the toric case using
Theorem 4.2 and then pass on to general case.

Another proof of Theorem 4.2.  The morphism ¢: X — X is proper, so, by Proposition 2.2, the support of the fan
C5 coincides with g. The morphism ¢: X = Y is toric, hence, by Proposition 2.1, the image ag(t) of any cone T € C;
is contained in some cone 0 € Cy. Also the morphism ¢ is a good quotient, so, by [19, Theorem 4.1], we have that
6 = a(1) and T = a7 '(d) N 0, which exactly means that the fan C; is the coarsest common refinement of the quasifan
a " (Cx1),) and the cone g. By Lemma 4.1, it follows that the fans Cy, and Cy coincide. O

Example 4.3.

Let us consider the action of the one-dimensional torus T on the four-dimensional affine space X = A" given by
t-(x1, X2, X3, X4) = (tx1, tx2, t'x3, t"'x4). Our main purpose is to construct the fan Cx of the toric variety X. Along the
way, we will construct the fans of the toric varieties X/, T and Y, where A € Qo

The GIT-fan Q consists of the three cones A_q, Ag, and Ay:

Aa AN

—1 0 1
We will consider the torus T as the subtorus of the four-dimensional torus T that acts on X by the rescaling of
coordinates. Then X = X,, where 0 C A(T)q is the cone generated by the standard basis ey, e;, e3, e4 of A(T)gq.

There is a natural immersion A(T)gp — A(T)p. We will identify the space A(T/T)g with the orthogonal complement
of A(T)q in the space A(T)q. Then the natural map a: A(T)g — A(T/T)g will be the orthogonal projection.

GIT-system
Cy
Cxp_, T Cxp, T
Cxp, T
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In the coordinates of the standard basis of A(T)g denote p; = (3,—-1,1,1), p2 = (1,1,=1,3), p3 = (=1,3.1,1), ps =
(1,1,3,=1) and p = (1,1,1,1). The fans of the toric varieties X/, T, X/,_, T and X/, T are the normal fans of the
polyhedra Py, P_1 and Py respectively. After some calculations one can verify that the fan GX/AOT = N, consists of one

maximal cone (p1, p2, p3, pa)a,. the fan Cx;, 7= N,_, consists of two maximal cones (p1, p2, p3)q., and (ps, P4, P1)as,:
and the fan Cy; 7 = N, consists of two maximal cones (p4, p1, p2)a., and (p2, p3, pa)g,,- The fan Cy, as the coarsest
common refinement of CX/AOT, CX/M r and CX/M 1, consists of four maximal cones (p1,p2,p)@20, (pz,pg,p)@zo, (pg,p4,p)Q20,
(P, P1, P)asy-

The fan Cy is the coarsest common refinement of the quasifan a‘1(€y) and the cone o. Denote 11y = (1,1,0,0),
= (0,0,1,1). Calculations show that Cy consists of four maximal cones (ey, 3, th, t2)a.y (€1, €4, 1, 12)Qs
(e2,e3, 1, 112)q., and (ez, eq, 11, 12)g.,- On the picture below you can see polyhedral slice of this fan by the hy-
perplane x; +x2 +x3 + x5 = 1.

€2

& €3

€1 H2

€4

4.2. The fan of the main component of the toric Hilbert scheme

Finally, we complete a description of all the fans of the toric varieties from the commutative diagram (1) given in Section 1
by recalling some results from [7].

Consider the main component Hy of the toric Hilbert scheme and the main component Uy of the universal family in the
toric situation with their structure of reduced schemes. As shown in [7, Proposition 3.6], these varieties are toric under

the tori T/T and T respectively. Our purpose is to recall the construction of the fans corresponding to toric varieties
HO and Uo.

For all x € w N X(T) denote P} = conv (B~ (x) N X(T)).

Remark 4.4.

The equality P)’( = P, holds if and only if the polyhedra P, have integer vertices. Such characters x are called integer.

We call two polyhedra equivalent if they have the same normal fan.

Proposition 4.5 ([7, Proposition 4.9 (2)]).
There are only finitely many non-equivalent polyhedra P)’( for x € w. The fan Cy, corresponding to the variety Hy is
the normal fan of the Minkowski sum over a system of representatives of the equivalent classes of these polyhedra.

Of course, it is again equivalent to say that Cy, is the coarsest common refinement of the normal fans of all P,.

The variety Uy coincides with T(y,x) C Hox X, where x € X lies in the open T-orbit and y = Tx € H,. From
Proposition 2.3 it follows that the fan Cy is the coarsest common refinement of the fan €y, and o.



O.V. Chuvashova, N.A. Pechenkin

Now we know the fans of all varieties from the commutative diagram (1). By Remark 4.4 it follows that the fan Cp,
refines the fan Cx 1), and the fan Cy, refines the fan Cy,, what illustrates that morphisms WO and ¢ are toric.

Remark 4.6.

From construction of all these fans or straightforwardly from the properties of morphisms W% ®,p¥¥ it follows that
|€H0| = |G(X/CT)0| and |er| = |GWX| =0

In Example 4.3 all characters ¥ € wNX(T) are integer, since the fans of the toric varieties Cy, and C(x,. 1), coincide (and
so, certainly, the fans Cy, and Cy, also coincide). But this is not true in general. The example below was considered

in [7]. There were constructed the fans Cy, and Cx,.7),, and it was shown that they do not coincide in the considered

o7
situation. We shall complete this example constructing the fans Gy, and Cy, = Cyx.

Example 4.7 ([7, Example 5.3]).
Let X, = A3, T = (k*)3 act by rescaling of coordinates, and T = k* act by t - (x1, x2, x3) = (tx1, tx2, t2x3). Denote by
e; =(1,0,0), e2 =(0,1,0), e3 = (0,0, 1) the standard basis of A(T)g, and let vy, v2, v3 be its dual basis in X(T)q.

x(T) x(T)
V3 L
Vi vy 3(“/‘1) B(v3)
B(v2)

It is easy to see that the fan €y is the normal fan of the trapezoid P3, whereas the fan C(x, 1), is the normal fan of
the triangle P,. As in Example 4.3, we will identify the space A(T/T)q with the orthogonal complement of A(T)q in the
space \(T)q.

Denote p1 = (1,1,-1), p» = (=5,1,2), p3 = (1,—=5,2) in the coordinates of the standard basis of A(T)g. All these
vectors are lying in A(T/T)q, and it is easy to verify that Cx, 1), consists of three maximal cones {(p1, p2)q.q: (P2: P3)0s0s

(p1,p3)@20, and €y, consists of four maximal cones (p1,pz)Q20, (p1,p3)Q20, (—p1,p2)Q20, (—p1,p3)Q20.

—p1
A
P2 ! P3

P>

Ps3

Y
P1

We see that the fan €y, subdivides the fan Cx. 1), and, in particular, they do not coincide. If we intersect the
corresponding quasifans in A(T)q with the cone o = (eq, e, e3)g.,, we get the fans Cy, and Cw, respectively. Denote
k=01,12), 1 =1,10), p=(1,0,2), and py3 = (0,1,2). Then éWx consists of three maximal cones (k, ti1, €1, 2)g.,.
(K, 1, €2, 113)Qs00 (K, 112, €3, 113)q,y, and Cy, consists of four maximal cones (i, i1, €1, 12)q.q: (K, 1, €2, 113)050s (K €3, 12)0s0
(K, €3, 113)0s,-
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