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Abstract: Let X be an affine T -variety. We study two different quotients for the action of T on X : the toric Chow quotient
X/CT and the toric Hilbert schemeH. We introduce a notion of the main componentH0 ofH, which parameterizes
general T -orbit closures in X and their flat limits. The main component U0 of the universal family U over H is a
preimage of H0. We define an analogue of a universal family WX over the main component of X/CT . We show
that the toric Chow morphism restricted on the main components lifts to a birational projective morphism from
U0 to WX . The variety WX also provides a geometric realization of the Altmann–Hausen family. In particular, the
notion of WX allows us to provide an explicit description of the fan of the Altmann–Hausen family in the toric case.
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1. Introduction

An important problem in algebraic geometry is to introduce a good notion of a quotient for an action of a reductivealgebraic group G on a variety X . For many actions there exists an open subset U ⊂ X where G acts freely, such thata variety U/G exists as a geometric quotient. Constructing a quotient X/G is, thus, choosing a compactification of U/G.In the case when X is projective, one approach to this problem is provided by geometric invariant theory (GIT) developedby Mumford [16]. Given a G-equivariant embedding of X in the projectivisation of a G-module, the GIT-quotient is theprojective spectrum of the subring of G-invariants in the homogeneous coordinate ring on X . There are two other naturalcompactifications, provided by appropriate Chow varieties of algebraic cycles and Hilbert schemes. The Chow quotient
∗ E-mail: chuvashova@gmail.com
† E-mail: kolia.pechnik@gmail.com
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of a projective variety X parameterizes the closures of G-orbits in X having the same dimension and degree and theirlimits in the Chow variety of all algebraic cycles having these parameters. The Chow quotient of a toric projective varietyby a subtorus action was studied in [15]. The invariant Hilbert scheme classifies closed G-invariant subschemes Z ⊂ Xsuch that the G-module O(Z ) has prescribed multiplicities [6]. The G-Hilbert scheme is a particular case of the invariantHilbert scheme. It arises in the case of a finite group G and is considered in [5]. The main component of the G-Hilbertscheme parameterizes regular G-orbits in X and their flat limits. Another particular case of an invariant Hilbert schemeis the toric Hilbert scheme which will be considered below.We are interested in the following case. Let X be an affine variety and G = T be an algebraic torus. Denote by X s thesubset of stable points in X under the torus action which is an open subset in X where T acts freely (see subsection3.2.2 for the precise definition). The toric Hilbert scheme H is defined as the invariant Hilbert scheme parameterizing
T -invariant ideals in k [X ] having the same Hilbert function as the toric variety Tx, where x ∈ X s. The main component
H0 of H is the irreducible component obtained by closing the image of X s/T in H. In the case of the subtorus action onthe affine toric variety X the toric Hilbert scheme and its main component were studied in [7].The Chow quotient (X/CT )0 of X by the T -action is by definition the main component of the inverse limit X/CT of GIT-quotients (see subsection 3.1.2). It is obtained by closing the image of X s/T in X/CT , so there is a canonical rationalmap q : X 99K (X/CT )0. Denote by Y = (X/CT )norm0 the normalization of (X/CT )0. In [2] Altmann and Hausen introduceda certain family ψ : X̃ → Y of T -varieties, where the T -variety X̃ can be interpreted as a resolution of X improvingthe quotient behavior. The morphism ψ is a good quotient under the action of T and there is a proper and birationalmorphism φ : X̃ → X such that the following diagram is commutative:

X̃
φ / /

ψ
� �

X

qnorm
��

Y .

The family ψ is closely related to the combinatorial-geometrical datum used in [2] for the description of affine normal
T -varieties. In subsection 3.1.3 we recall the construction of ψ and explain how one can easily pass from ψ to this datumand back. A first result of the paper, Proposition 3.9, realizes ψ as the normalization of an elementarily constructedfamily pC : WX → (X/CT )0. The variety WX is defined as the closure of the graph of the rational map q, and pC is theprojection on (X/CT )0. In Theorem 4.2 we then use this result to construct the fan of variety X̃ in the toric case.Our main result, Theorem 3.18, relates the universal family U0 → H0 over the main component of the toric Hilbert schemevia a toric Chow morphism to the family WX → (X/CT )0. The toric Chow morphism from H to X/CT was constructed byHaiman and Sturmfels in [13] in the case when X is a finite-dimensional T -module. We generalize their constructionand include this morphism into a commutative square

U0 //

��

WX

pC
��

H0 // (X/CT )0.
(1)

We state that horizontal morphisms here are projective and birational.The paper is organized as follows. In Section 2 we fix notation concerning toric geometry and T -varieties and recallthe definition of the functor of points which is necessary to define the invariant Hilbert scheme. In subsection 3.1 weprovide an exposition of the results of [2]. We recall the notion of the Altmann–Hausen family and then prove our firstresult, Proposition 3.9, about its simple geometrical realization. In subsection 3.2 we recall the definition of the toricHilbert scheme and introduce the notion of its main component in the T -variety case. In subsection 3.3 we investigatethe toric Chow morphism, lift it to the universal families and prove our main result, Theorem 3.18. Section 4 is, in fact, arepetition of Section 3 in the case of a subtorus action on an affine toric variety. In this case almost all the statementsof Section 3 can be interpreted in terms of fans. We provide the construction of the fans of toric varieties H0, (X/CT )0, U0and WX and compute them in concrete examples.
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2. Preliminaries

We consider the category of schemes over an algebraically closed field k of characteristic zero. Our main references onschemes are [10, 14].A variety is a separated reduced scheme of finite type. We denote by OZ the structure sheaf of a scheme Z , and k [Z ]denotes the algebra of sections of OZ over Z .
2.1. Basic facts from toric geometry

An n-dimensional torus T is an algebraic group isomorphic to the direct product of n copies of the multiplicativegroup k×. We use the notation X(T ) = Hom(T , k×) and Λ(T ) = Hom(k×, T ) for the lattices of characters and one-parameter subgroups of T , respectively. Denote by X(T )Q = X(T )⊗ZQ and Λ(T )Q = Λ(T )⊗ZQ the corresponding
Q-vector spaces.For any affine scheme X with an action of a torus T its algebra of regular functions k [X ] is graded by the group X(T )of characters of T ,

k [X ] = ⊕
χ∈X(T )k [X ]χ ,

where k [X ]χ = {f ∈ k [X ] : t · f = χ(t)f, t ∈ T} is the subspace of T -semi-invariant functions of weight χ . Let
Σ = {χ ∈ X(T ) : k [X ]χ 6= 0}.

If X is an irreducible variety, then Σ is a finitely generated monoid called the weight monoid. If T acts on X faithfully,then Σ generates X(T ).A T-variety is a normal variety endowed with a faithful regular action of T . Let X be a T -variety. A morphism π : X → Yis called a good quotient for this action if π is affine, T -invariant, and the canonical map π# : OY → π∗(OX )T is anisomorphism.Given a scheme S, a family of affine T-schemes over S is a scheme X equipped with an action of T and with a morphism
p : X → S such that p is affine, of finite type and T -invariant. Then the sheaf of OS-algebras p∗(OX ) is equipped witha compatible grading by X(T ).A toric variety under the torus T is an irreducible T -variety X that contains an open orbit isomorphic to T . We do notrequire X to be normal. We will consider only those toric varieties X that admit an open covering by affine T -invariantcharts (all normal toric varieties satisfy this condition). Our main references on toric varieties are [8, 11, 17]. Given atoric variety X , we denote by CX ⊂ Λ(T )Q the associated fan. The T -orbits on X are in order-reversing one-to-onecorrespondence with the cones of CX . If σ (Z ) is the cone in CX corresponding to a T -orbit Z , then a one-parametersubgroup λ ∈ Λ(T ) lies in the interior of σ (Z ) if and only if lims→0 λ(s) exists and lies in Z . A toric variety is determinedby its fan up to normalization.Let X1 under a torus T1 and X2 under a torus T2 be toric varieties. A morphism φ : X1 → X2 is toric if φ maps the torus
T1 into T2 and φ�T1 : T1 → T2 is a group homomorphism. For the toric morphism φ we have the following commutativediagram:

T1×X1
φ�T1×φ
� �

// X1
φ

��
T2×X2 // X2.The morphism of algebraic groups φ : T1 → T2 induces a Z-linear map φ : Λ(T1)→ Λ(T2) and Q-linear map φQ : Λ(T1)Q →Λ(T2)Q.In the following two propositions X1 and X2 are normal toric varieties.
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Proposition 2.1 ([8, Theorem 3.3.4]).
A morphism φ : X1 → X2 is toric if and only if the corresponding Z-linear map φ is compatible with fans CX1 and CX2 .
It means that for every cone ς ∈ CX1 there exists a cone ς̃ ∈ CX2 such that φQ(ς) ⊂ ς̃.
Denote by |C| the support of the fan C.
Proposition 2.2 ([8, Theorem 3.4.11]).
A toric morphism φ : X1 → X2 is proper if and only if φ−1

Q (|CX2 |) = |CX1 |.

If X is toric variety under a factor torus T/T , then we can consider the fan of this variety as a quasifan in Λ(T)Q whosecones include the subspace Λ(T )Q ⊂ Λ(T)Q.
Proposition 2.3.
Let X = Tx, Y = Ty be toric varieties. Then the fan associated to the toric variety T (x, y) ⊂ X×Y is the coarsest
common refinement of fans CX and CY (in particular, its support is equal to |CX | ∩ |CY |).
Note that the action of the torus T on the toric varieties X and Y is not required to be faithful here. So the fans CXand CY should be considered as quasifans in Λ(T ).
Proof. Let λ ∈ Λ(T ). The limit limt→0 λ(t)(x, y) exists if and only if both limits limt→0 λ(t)x and limt→0 λ(t)y exist.The limits of the point (x, y) with respect to one-parameter subgroups λ1 and λ2 coincide if and only if the limits withrespect to λ1 and λ2 of both points x and y coincide, i.e. λ1 and λ2 lie in the same cones of the fans CX and CY .
2.2. Basic facts on the functor of points

Recall that any scheme Z is characterized by its functor of points that is the contravariant functor from the category ofschemes to the category of sets:
Z : (Sch)◦ → (Set), Z (X ) = Mor(X, Z ),

where Mor(X, Z ) is the set of morphisms of schemes from X to Z over k (we denote the functor of points of a schemeby the corresponding underlined letter). Each f ∈ Mor(X, Y ) defines a morphism of sets Z (f) : Z (Y ) → Z (X ). For
g ∈ Mor(Y , Z ) we have Z (f)(g) = g◦f ∈ Mor(X, Z ).Let F : (Sch)◦ → (Set) be an arbitrary functor. We say that a scheme Z represents the functor F if there exists anisomorphism of functors Z ∼= F (the scheme Z is then also called the fine moduli space of the functor F ). Denote by(Fun ((Sch)◦, (Set))) the category of contravariant functors from the category of schemes to the category of sets.The covariant functor ∗ : (Sch) → (Fun ((Sch)◦, (Set))) is defined by X 7→ X . By Yoneda’s lemma, the functor ∗ is anequivalence between the category of schemes and the full subcategory of the category of functors. In particular, it definesa natural bijection between the sets Mor(X, Y ) and Mor(X, Y ).
3. General constructions

3.1. The toric Chow quotient and the Altmann–Hausen theory

3.1.1. Combinatorial description of affine normal T -varieties

In this section we recall the description of normal affine T -varieties in terms of proper polyhedral divisors on a normalsemiprojective variety given in [2].
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Let M be a lattice, N be its dual lattice, MQ = M⊗ZQ, NQ = N⊗ZQ. Denote by 〈 · , · 〉 : MQ×NQ → Q the naturalduality pairing, by σ a pointed polyhedral cone in NQ, by σ∨ ⊂ MQ its dual cone, and by Polσ (NQ) the set of all
σ-polyhedra, i.e. polyhedra in NQ with the recession cone σ (see [21, Definition 1.11] for the definition of the recessioncone). Let T = Spec k [M] be an algebraic torus with its lattice of characters equal toM. To a σ-polyhedron ∆ ∈ Polσ (NQ)we associate its support function h∆ : σ∨ → Q, defined by

h∆(m) = min 〈m,∆〉 = min
p∈∆ 〈m, p〉.

Definition 3.1.A variety is called semiprojective if it is projective over an affine variety. Let Y be a normal semiprojective variety.A σ-polyhedral divisor on Y is a formal sum D = ∑Z ∆Z ·Z , where Z runs over all prime divisors on Y , ∆Z ∈ Polσ (NQ),and ∆Z = σ for all but finitely many Z . For m ∈ σ∨ we define the Q-divisor D(m) = ∑Z h∆Z (m) ·Z on Y . A σ-polyhedraldivisor D is called proper if the following two conditions hold:
• D(m) is semiample and Q-Cartier for all m ∈ σ∨,• D(m) is big for all m ∈ relint σ∨.

A Q-Cartier divisor D is called semiample if there exists r > 0 such that the linear system |rD| is base point free, and
big if there exists a divisor D0 ∈ |rD|, for some r > 0, such that the complement Y \ suppD0 is affine.For a Q-divisor D = ∑

Z aZ ·Z , let bDc = ∑
ZbaZc ·Z be the round-down divisor of D, and O(D) = O(bDc) be thecorresponding sheaf of OY -modules. Any σ-polyhedral divisor D defines an M-graded quasicoherent sheaf of algebrason Y as follows:
A[Y ,D] = ⊕

m∈σ∨∩M

O(D(m)).
Let A[Y ,D] = Γ(Y ,A[Y ,D]) be the M-graded algebra corresponding to D.
Theorem 3.2.
To any proper σ-polyhedral divisor D on a normal semiprojective variety Y one can associate a normal affine T-variety
of dimension dimY + dimT defined by X [Y ,D] = SpecA[Y ,D]. Conversely, any normal affine T-variety is isomorphic
to X [Y ,D] for some semiprojective variety Y and some proper σ-polyhedral divisor D on it.

We will discuss the converse correspondence in subsection 3.1.3.
3.1.2. Ingredients from GIT

Let X be an affine T -variety. Let us recall the construction of the inverse limit of GIT-quotients.The cone ω generated by the weight monoid Σ in the vector space X(T )Q = X(T )⊗ZQ is called the weight cone. Forany χ ∈ Σ, consider the set of its semistable points
X ss
χ = ⋃

r>0
⋃

f∈k [X ]rχXf .

Two characters χ1 ∈ Σ and χ2 ∈ Σ are called equivalent if X ss
χ1 = X ss

χ2 . Under this equivalence Σ decomposes intofinitely many equivalence classes which are forming the GIT-fan Q ⊂ X(T )Q with suppQ = ω [4, Section 2]. Recall somedefinitions giving us the construction of the GIT-fan.
Definition 3.3 ([4, Definition 2.1]).For any x ∈ X , the orbit cone wx associated to x is the following convex cone in X(T ):

wx = cone {χ ∈ Σ : there exists f ∈ k [X ]χ such that f(x) 6= 0}.
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Definition 3.4 ([4, Definition 2.8]).For any character χ ∈ Σ, the associated GIT-cone σχ is the intersection of all orbit cones containing χ :
σχ = ⋂

{x∈X :χ∈wx}wx .

By [4, Theorem 2.11], the collection of GIT-cones forms a fan Q having ω as its support. Moreover, the following statementholds.
Proposition 3.5 ([4, Proposition 2.9]).
Let χ1, χ2 ∈ Σ. Then X ss

χ1 ⊆ X ss
χ2 if and only if σχ1 ⊇ σχ2 .

For any cone λ ∈ Q, denote X ss
λ = X ss

χ , where χ is an arbitrary character in relint λ. Let X/λT = X ss
λ //T be the goodquotient under the action of T . Varieties X/λT are called GIT-quotients. Notice also that X/λT = Proj k [X ](χ) for any

χ ∈ relint λ, where
k [X ](χ) = ∞⊕

r=0 k [X ]rχ .
In particular, X/0T = X//T = Spec k [X ]T .Denote by qλ : X ss

λ → X/λT the quotient map. We consider natural morphisms between GIT-quotients. Namely, if
λ1 ⊃ λ2, where λ1, λ2 ∈ Q, then we have the following commutative diagram:

X ss
λ1
qλ1
��

� � // X ss
λ2
qλ2
� �

X/λ1T
pλ1λ2 // X/λ2T .

So the quotient maps qλ : X ss
λ → X/λT form a finite inverse system with q0 : X → X//T sitting at the end. We have acanonical morphism

q : X ss = ⋂
χ∈ΣX

ss
χ → lim

←−
X/χT = X/CT .

The variety X/CT is called the GIT-limit.
Definition 3.6.The main component (X/CT )0 of the GIT-limit X/CT is the closure of the image q(X ss) ⊂ X/CT .
The main component of the GIT-limit is also called the toric Chow quotient (see e.g. [9]). This terminology correspondsto results of [15], where it was proved that in the case of a projective toric variety X the main component of GIT-limit is,indeed, isomorphic to the Chow quotient by the action of a subtorus.
3.1.3. The Altmann–Hausen family

Now we give a construction of the Altmann–Hausen family of an affine normal T -variety X following [2, Section 6].Let Y = (X/CT )norm0 be the normalization of the main component of the GIT-limit, qnorm : X ss → Y be the lifting of q to thenormalization, and pλ : Y → X/λT be the composition of the normalization map and canonical morphisms from GIT-limitto the elements of the inverse system restricted on the main component. For λ1, λ2 ∈ Q, λ1 ⊃ λ2, we have the followingcommutative diagram:
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X ss
qnorm
��

� � //X ss
λ1
qλ1
� �

� � // X ss
λ2
qλ2
� �

� � // X

q0

��

Y
pλ1 //

p0

( (

X/λ1T
pλ1λ2 / /

pλ10

%%

X/λ2T

pλ20

��
X//TAs it was shown in [2, Lemma 6.1], the morphisms pλ and pλ1λ2 are projective surjections with connected fibers. Inparticular, Y is projective over the affine variety X//T = Spec k [X ]T . Moreover, the morphisms pλ are birational when

λ ∩ relint σ 6= ∅, and, consequently, dimY = dimX − dimT and k(Y ) = k(X )T .A character χ ∈ Σ is called saturated if the algebra k [X ](χ) is generated by elements of degree one. It is well knownthat for any χ ∈ Σ there exists an integral nχ > 0 such that knχχ is saturated for all integers k > 0. For multigradedversion of this notion and an algebraic characterization of GIT-fan see [3].For any λ ∈ Q and χ ∈ relint λ, we have a sheaf of OX/λT -modules Aλ,χ = (qλ)∗(OXss
λ
)χ . It is easy to see that thedefined sheaf coincides with the twisting sheaf of Serre, if the variety X/λT is considered as Proj k [X ](χ). In particular,the sheaf Aλ,χ is invertible if χ is saturated. For a saturated χ , denote by Aχ = (pλ(χ))∗(Aλ(χ),χ ) the invertible sheavesof OY -modules.Firstly, assume that χ is saturated. If f ∈ k [X ]χ , λ = σχ ∈ Q, then Xf //T is an open affine subset in X/λT and

Aλ,χ�Xf //T = f ·OXf //T (see [2, Lemma 6.3 (ii)]). Denote Yf = p−1
λ (Xf //T ). The open sets Yf cover Y , and by definition of theinverse image we have (see [2, Lemma 6.4 (ii)])

Aχ�Yf = f ·OYf ⊂ f ·k(Y ) = f ·k(X )T = k(X )χ .
Consequently, we can consider the sheaves Aχ as subsheaves of the constant sheaf k(X ) on Y .For unsaturated χ , we define Aχ (U) = {f ∈ k(X ) : fnχ ∈ Anχχ (U)}. The defined sheaves together constitute the
X(T )-graded sheaf of OY -algebras

A =⊕
χ∈Σ Aχ .

From [2, Lemma 6.4] we can see that the multiplication is defined correctly and preserves the grading.
Definition 3.7.The Altmann–Hausen family is the family ψ : X̃ → Y of T -schemes, where X̃ = SpecY A is the relative spectrum, ψ isthe morphism given by A0 → A and the T -action on X̃ is given by the X(T )-grading of A.
By [2, Lemma 6.4 (ii)], we have X = Spec Γ(X̃ ,OX̃ ).Summarizing all that we have done in this section, note that from a T -variety X we constructed a semiprojective variety Yequipped with a X(T )-graded sheaf of OY -algebras A such that X can be restored from this data.Denote Λ(T )Q = Λ(T )⊗ZQ and σ = ω∨ ⊂ Λ(T )Q. One can easily pass from the sheaf of algebras A to the proper
σ-polyhedral divisor D on Y such that

A = A[Y ,D]. (2)To do this, let us choose a (non-canonical) homomorphism s : X(T )→ k(X ) such that for every χ ∈ X(T ) the function s(χ)is homogeneous of degree χ . Such homeomorphisms always exist since T acts on X faithfully. Next, for a saturated
χ ∈ ω ∩ X(T ) there exists an unique Cartier divisor D(χ) on Y such that

O(D(χ)) = 1
s(χ) ·Aχ ⊂ k(Y ).
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For unsaturated χ , define
D(χ) = 1

nχ
·D(nχχ).

Now one can check that Q-Cartier divisors D(χ) can be “glued” together to form a proper σ-polyhedral divisor D on Ysatisfying condition (2) (see [2, Section 6]). The divisor D constructed in such way is called minimal.We see that the variety X̃ appears as a middle step in the correspondence between normal affine T -varieties andcombinatorial data of this action (Y ,D) from Theorem 3.2 with an additional minimality condition on D:
T y X̃

����
T y X

22

{(Y ,D)},
l l

where one of the arrows is dashed, because the reconstruction of D from X̃ is not canonical.The main result illustrating the role of the Altmann–Hausen family in this assignment is the following one.
Proposition 3.8 ([2, Theorem 3.1]).
The morphism ψ is a good quotient for the T-action. The canonical morphism φ : X̃ → X is T-equivariant, birational
and proper. We have the following commutative diagram:

X ss � � / /

qnorm
!!

X
φ−1 //

��

X̃
φo o

ψ~~
Y .

3.1.4. A geometric description of the Altmann–Hausen family

Define
WX = {(x, q(x)) : x ∈ X ss} ⊂ X × (X/CT )0,and let pC be projection on the second component. The following result modulo normalization morphism was statedin [20, Lemma 1], where actions of complexity one were considered, but the same proof is valid for a general case.

Proposition 3.9.
The Altmann–Hausen family ψ : X̃ → Y is isomorphic to the normalization W norm

X → (X/CT )norm0 of the family of T -schemes
pC : WX → (X/CT )0.
Proof. Define a morphism θ : X̃ → (X/CT )0 as a composition ι ◦ ψ of the morphism ψ : X̃ → (X/CT )norm0 and thenormalization morphism ι : (X/CT )norm0 → (X/CT )0. Due to commutativity of the diagram from Proposition 3.8, the mappings
φ : X̃ → X and θ : X̃ → (X/CT )0 define a morphism α = (φ, θ) : X̃ → WX .

X̃
α

  
φ

""θ

$$

WX � s

%%
X × (X/CT )0 //

��

X

(X/CT )0
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The morphism ι is affine as a normalization morphism, ψ is affine as a good quotient, so θ is affine as a composition ofaffine morphisms. The morphism φ is proper, so α is proper. Further, α is finite, because it is both proper and affine.But α is also birational, hence it is the normalization morphism.
Note that the variety WX is equipped with the natural faithful action of the torus T , which lifts to an action of T on
X̃ = W norm

X and defines a X(T )-grading of the sheaf ψ∗(OX̃ ). By formula Aχ = ψ∗(OX̃ )χ , one can recover the X(T )-gradedsheaf of OY -algebras A, and, as well, the proper polyhedral divisor on Y (see subsection 3.1.3).Denote by pC the projection WX → (X/CT )0. Note that pC is the good quotient. Indeed, it is clear that pC is affine,
T -invariant, and p#C : O(X/CT )0 → (pC)∗(OWX )T is injective. To prove the surjectiveness of p#C , use the fact that functionswhich are constant on the fibers come from the base.We have the following commutative diagram, where pWX denotes the projection on X :

WX

pC
� �

pWX // X

π

��(X/CT )0
pWX //T

// X//T .

Example 3.10.Let X = An, T = k× and T act on X by scalar multiplication, i.e. t · (x1, . . . , xn) = (tx1, . . . , txn). Then the Z-grading ofthe algebra k [X ] = k [x1, . . . , xn] is given by deg xi = 1 for i = 1, . . . , n. For this action, GIT-fan consists of two cones λ0and λ1:
r0 1−1
λ0 λ1

We have
X ss
λ0 = X, X/λ0T = X//T = Spec k [X ]T = {pt};

X ss
λ1 = X \ {x1 = . . . = xn = 0}, X/λ1T = Proj k [x1, . . . , xn] = Pn−1.

The inverse limit X/CT of GIT-system is equal to the variety X/λ1T , so
Y = (X/CT )0 = X/CT = X/λ1T = Pn−1, X ss = X ss

λ1 = X \ {x1 = . . . = xn}.

In coordinates the map qnorm : X ss → Y is given by qnorm (x1, . . . , xn) = [x1 : . . . : xn]. The variety WX ⊂ X× (X/CT )0 =
An×Pn−1 is defined by the equations xiyj = xjyi, where (x1, . . . , xn) are coordinates on An, and [y1 : . . . :yn] arehomogeneous coordinates on Pn−1, i.e. WX is the blowing-up of An at the point (0, . . . , 0). On the other hand,

X̃ = SpecY A = SpecY ⊕
n∈Z>0

An = SpecY OY ⊕
⊕
n∈Z>0

Aλ1,n = SpecY ⊕
n∈Z>0

O(n) = Tot(O(−1))
is the total space of the tautological line bundle on Pn−1. It is well known that these varieties are isomorphic.
3.2. The toric Hilbert scheme and its main component

Let X be an irreducible affine T -variety. In the following subsection we give an exposition of basic properties onmultigraded Hilbert schemes and study some particular cases of this notion. See [6, Section 3] for some generalizationsof these results on the case of G-variety X with a reductive algebraic group G.
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3.2.1. Definitions and basic facts on multigraded Hilbert schemes

Definition 3.11.Given a function h : X(T )→ N, a family p : F → S of affine T -schemes has Hilbert function h if for every χ ∈ X(T ) thesheaf of OS-modules p∗(OF )χ is locally free of rank h(χ).
Note that the morphism p is flat. If h(0) = 1, then p is the good quotient of X by the action of T .
Definition 3.12 ([13]).Given a function h : X(T ) → N, the Hilbert functor is the contravariant functor Hh

X,T from the category of schemes tothe category of sets assigning to any scheme S the set of all closed T -stable subschemes Z ⊆ S×X such that theprojection p : Z → S is a (flat) family of affine T -schemes with Hilbert function h.
In [13, Theorem 1.1] it was proved that there exists a quasiprojective scheme Hh

V ,T which represents this functor in thecase when X is a finite-dimensional T -module V ; the scheme Hh
V ,T is called the multigraded Hilbert scheme. In thecase of an arbitrary X there exists a T -equivariant closed immersion X ↪→ V , where V is a finite-dimensional T -module.Then the Hilbert functor Hh

X,T is represented by a closed subscheme Hh
X,T of Hh

V ,T [1, Lemma 1.6]. The scheme Hh
X,T iscalled the invariant Hilbert scheme.Recall that the universal family Uh

X,T is the element of Hh
X,T (Hh

X,T ) corresponding to the identity map {Id : Hh
X,T →

Hh
X,T} ∈ Hh

X,T (Hh
X,T ) = Mor (Hh

X,T , Hh
X,T ). So Uh

X,T is the closed subscheme of Hh
X,T×X such that for any Z ∈ Hh

X,T (S)we have Z = Uh
X,T×HhX,T S. In particular, for any T -equivariant closed immersion of X in a finite-dimensional T -module

V , we have the following Cartesian diagram:
Uh
X,T

� �

� � / / Uh
V ,T

� �
Hh
X,T
� � / / Hh

V ,T .

Lemma 3.13.
Assume that h(0) = 1. Then we have the following commutative diagram:

Uh
X,T

pH
� �

pX / / X

π

� �
Hh
X,T

pX //T // X//T ,

where pX is the projection, and pX //T assigns to any family its quotient by T . The morphisms pX and pX //T are
projective.

Proof. The commutativity of the diagram can be seen easily by considering the corresponding morphisms of functorsof points. The morphism pX //T is projective by [7, Lemma 3.3]. The morphism Uh
X,T → Hh

X,T×X//T X is a closed embedding,so the morphism pX is projective. See also [6, Proposition 3.15].
3.2.2. Definition of main component

Let
X s = ⋂

χ∈Σ
⋃

f∈k [X ]χXf .
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Note that, if x ∈ X s, then Tx has the following Hilbert function:
hΣ(χ) = {1 if χ ∈ Σ,0 otherwise.

Let XΣ denote the affine toric T -variety with the weight monoid Σ; then Tx ' XΣ for x ∈ X s. We denote by H theinvariant Hilbert scheme HhΣ
X,T ; it is called the toric Hilbert scheme [18]. So for any x ∈ X s we have the k-rational point

Tx ∈ H. Also denote U = UhΣ
X,T , H = H

hΣ
X,T .Let X s×T XΣ be the quotient of the variety X s×XΣ by the action of T given by t · (x, y) = (t−1x, ty).

Lemma 3.14.
There exists the geometric quotient πs : X s → X s/T and an open embedding of X s/T in the toric Hilbert scheme H.
Moreover, we have the following Cartesian diagram:

X s×T XΣ
� �

� � // U

pH
��

X s/T � � // H.

Proof. Step 1. There exists the categorical quotient πs : X s → X s/T . Moreover, πs is a locally trivial bundle.Indeed, let χ1, . . . , χr ∈ Σ be such that the algebra k [X ] is generated by k [X ]χi , i = 1, . . . , r. Then X s is covered by
T -invariant open affine subschemes

Xf1·...·fr = Spec(k [X ]f1·...·fr ),where fi ∈ k [X ]χi , fi 6= 0. Fix a basis e1, . . . , ed ∈ X(T ). Since the characters χ1, . . . , χr generate Σ and, consequently,
X(T ), we can choose non-zero elements hl ∈ k [Xf1·...·fr ]el . Then we have

k [Xf1·...·fr ] ' k [Xf1·...·fr ]T⊗k[h±11 , . . . , h±1
d
]
' k [Xf1·...·fr ]T⊗k [T ].

Note that these isomorphisms satisfy the compatibility conditions and the variety X s/T obtained by gluing affine charts
Xf /T is separated. Indeed, we have to show that the diagonal morphism

Xfg/T → Xf /T ×Xg/T

is closed for any Xf /T = Spec(k [Xf ]T ) and Xg/T = Spec(k [Xg]T ), where f = f1 · . . . · fr , g = g1 · . . . · gr and fi, gi ∈ k [X ]χi .This is equivalent to showing that the corresponding homomorphism of algebras
k [Xf ]T⊗k [Xg]T → k [Xfg]T

is surjective. But this is clear since for any element h/(fg)k ∈ k [Xfg]T we have h/(fg)k = (h/f2k )(fk /gk ).
Step 2. Let us prove that X s/T represents an open subfunctor of H. Consider the family

ps : X s×T XΣ → X s/T .
We shall show that this is the universal family over X s/T . Indeed, X s×T XΣ is a locally trivial bundle over X s/T withfiber XΣ. Further, there is a canonical closed embedding X s×T XΣ ⊂ X× (X s/T ), which is locally given by the surjectivehomomorphisms of algebras

k [X ]⊗k [Xf1·...·fr ]T →⊕
χ∈Σ k [Xf1·...·fr ]χ
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(X s×T XΣ is covered by the open affine subschemes Spec ⊕χ∈Σ k [Xf1·...·fr ]χ ). This gives us an element in H(X s/T ), i.e.,we have the following Cartesian diagram:
X s×T XΣ
��

// U

pH
��

X s/T // H.

Step 3. It is clear that the image of X s/T lies in the locus Hs of H where the fibers of the universal family areirreducible and reduced. By [12, Theorem 12.1.1], it follows that p−1
H (Hs) is an open subscheme of U . Since p−1

H (Hs) is
T -invariant and pH maps closed T -invariant subsets to closed subsets, it follows that Hs is an open subscheme of H.We shall show that the morphism Φ: X s/T → Hs is an isomorphism. Given a morphism φ : S → X s/T , we have thefollowing commutative diagram:

Z

��

// X s×T XΣ
��

// Us

��
S // X s/T // Hs,

where Us = Hs×H U and Z = S×Hs Us is the image of φ in Hs(S). Note that all the squares of this diagram areCartesian. In particular, it follows that Z = Z s×T XΣ, where Z s = S×Xs/T X s = Z ∩ (S×X s).Conversely, let us construct the inverse morphism Φ′ : Hs → X s/T . Let Z ∈ Hs(S). Consider Z s = Z ∩ (S×X s);then Z s/T = S. So the projection Z s → X s defines a morphism of quotients {S → X s/T} ∈ X s/T (S). Moreover,
Z s = S×Xs/T X s and Z = Z s×T XΣ. Thus we see that Φ◦Φ′ = IdHs and Φ′ ◦Φ = IdXs/T .
Definition 3.15.The main component H0 of the toric Hilbert scheme H is the closure in H of the image of X s/T .
By Lemma 3.14, it follows that the main component H0 is an irreducible component of H. Consider also the main
component of the universal family U0 = p−1

H (H0). Denote by p0 the restriction of pH on U0.
Lemma 3.16.
The main component U0 is an irreducible component of U.

Proof. It is sufficient to show that U0 is irreducible. By [7, Lemma 3.5], the dimension of any irreducible component ofthe fibre p−1(x) equals dimT for any x ∈ H. Since p0 is flat, this implies that the dimension of any irreducible component
Z of U0 is equal to dimX [14, Corollary 9.6]. It follows that Z dominates H0. Consequently, the intersection Z∩(X s×T XΣ)is non-empty and Z = Z ∩ (X s×T XΣ). This implies that U0 = X s×T XΣ is irreducible.
3.3. The toric Chow morphism

First of all, let us recall the construction of the toric Chow morphism H → X/CT . This construction was given in[13, Section 5] for the case when X is a finite-dimensional T -module, but it is almost the same in the case of an affine
T -variety.For any character χ ∈ Σ, there exists n > 0 such that the Z-graded algebra Rnχ = k [X ](nχ) is generated by its elementsof degree one. Note that the scheme X/σχT = ProjRnχ represents the functor HhSpecRnχ ,k× , where

h(m) = {1 if r ≥ 0,0 otherwise,
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(see [7, Corollary 3.5]). The natural morphism of functors H→ HhSpecRnχ ,k× induces the canonical morphism of the schemesrepresenting this functors H → X/σχT and it does not depend on the choice of n. Moreover, by [13, Lemma 7.5], thesemorphisms commute with the morphisms of the inverse system, so they define a canonical morphism Ψ: H → X/CT .
Lemma 3.17.
There exists an open embedding X s/T ⊂ (X/CT )0. Moreover, we have the following Cartesian diagram:

X s×T XΣ
� �

� � // WX

pC
��

X s/T � � // (X/CT )0.
Proof. Note that in the inverse limit of GIT-quotients X/λT , λ ∈ Q, it is sufficient to take the limit over λ intersectingrelintω. Moreover, for any such λ the quotient X s/T is an open subscheme in X ss

λ //T and X s = q−1
λ (X s/T ) ⊂ X ss

λ .Indeed, X s is covered by the open affine T -stable subschemes Xf1·...·fr (with the notation of the proof of Lemma 3.14).There exist ci > 0 such that ∑ ciχi = χ for some n > 0 and χ ∈ relint λ. Then f = fc11 · . . . · fcrr ∈ k [X ]χ , and
Xf1·...·fr = Xf = q−1

λ (Xf /T ) ⊂ X ss
λ .This implies that we have a Cartesian diagram

X s

��

� � // X ss

��
X s/T � � // X/CT .

This means that X s = X ss ∩ (X ×X s/T ) ⊂ X×X/CT . Note also that X s×T XΣ = X s ⊂ X×X s/T . Finally, this impliesthat X s×T XΣ = WX ∩ (X ×X s/T ) ⊂ X×X/CT .
In the following theorem we show that the toric Chow morphism Ψ restricted on the main component lifts to a birationalprojective morphism U0 →WX .
Theorem 3.18.
We have the following commutative diagram:

U0 Φ //

p0
X ""

pH

��

WX

pC

��

pWXzz
X

π

��

H0 Ψ0 //

p0
X //T ""

(X/CT )0
pWX //Tzz

X//T ,

where Ψ0 is the restriction of Ψ on H0 and Φ is the restriction of the morphism Ψ0× IdX on U0 ⊂ H0×X. The morphismsΨ0,Φ, pWX and pWX //T are projective ant the first three of them are, moreover, birational.
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Proof. The restriction of Ψ0 on X s/T ⊂ H0 is the identity map on X s/T ⊂ (X/CT )0, thus Ψ0 is a birational morphism.Also, the restriction of Ψ0× IdX on X s ⊂ U0 is the identity map on X s ⊂ WX,T , so Ψ0× IdX maps U0 birationally on WX .By construction of the morphisms Ψ and Φ, it follows that p0
X = pWX ◦Φ and p0

X //T = pWX //T ◦Ψ0. Further, by Lemma 3.13,the morphisms p0
X and p0

X //T are projective. It follows that Φ and Ψ0 are projective. The other assertions are obvious.
Corollary 3.19.
There exists a canonical birational projective morphism Unorm0 → X̃.

4. Subtorus actions on affine toric varieties

In this section X = Xσ is a normal affine toric variety under the torus T, σ ⊂ Λ(T)Q is a corresponding cone. Weconsider the action on X of the subtorus T ⊂ T. The natural homomorphism T → T/T induces the surjective map ofvector spaces that are generated by the corresponding lattices of one-parameter subgroups α : Λ(T)Q → Λ(T/T )Q. Theembedding of torus T ↪→ T induces the surjective map of vector spaces β : X(T)Q → X(T )Q such that β(σ∨) = ω, where
ω ⊂ X(T )Q is the weight cone.
4.1. The fan representation of the Altmann–Hausen family

Let ψ : X̃ → Y be the Altmann–Hausen family of the T -action on X , and let φ : X̃ → X be the canonical morphism. Weuse the notation of subsection 3.1.3 related to the construction of ψ.Let Tx be the open orbit of the T-action on X . It can be easily seen that X ss ⊃ Tx. Denote by xλ, xC, y the images of xin X/λT , (X/CT )0 and Y respectively. The quotient maps qλ induce actions of the torus T on the GIT-quotients X/λT . So
X/λT = Txλ is the toric variety under the torus T/Txλ , where Txλ is the stabilizer. If λ lies in the interior of ω, generalfibers of the morphism qλ contain a unique dense T -orbit, and consequently Txλ = T . Note that the morphisms pλ1λ2 inthe GIT-system are T-equivariant, so Y = Ty is a normal toric variety under the torus T/T [9, Proposition 3.8], and themorphisms pλ are T-equivariant. Also WX = T(x, xC) ⊂ X× (X/CT )0 is a toric (not necessarily normal) variety with thetorus T.
Lemma 4.1.
The fan CWX of the toric variety WX = T(x, xC) ⊂ X× (X/CT )0 is the coarsest common refinement of the cone σ and the
quasifan α−1(C(X/CT )0 ).
Proof. Note that we can consider a fan of the toric variety WX (which is not necessarily normal), because thereexists a T-invariant affine covering WX = X ×Ui, where (X/CT )0 = ⋃Ui is an affine T-invariant covering of the variety(X/CT )0. The existence of the last one immediately follows from the existence of a T-equivariant closed embedding ofvariety (X/CT )0 in the direct product of GIT-factors. Lemma follows now from Proposition 2.3 and the definition of thevariety WX .
Let Q ⊂ X(T )Q be the GIT-fan. Denote by Q0 the set of λ ∈ Q satisfying the condition λ∩ relintω 6= ∅. We have alreadyseen that for λ ∈ Q0 the corresponding GIT-quotients X/λT are toric varieties under the torus T/T . The variety Y isalso toric under the torus T/T . The construction of the fans of these varieties is described in [9]. In the framework ofthat paper a more general case of a semiprojective toric variety X corresponding to the normal fan of some polyhedra
P ⊂ X(T)Q. The case of an affine toric variety X = Xσ considered in [7, Section 5] (in this case P = σ∨). We shallcontinue our exposition following [7].For all χ ∈ ω, denote Pχ = β−1(χ)∩ σ∨. Let λ ∈ Q0. Then, for all χ ∈ relint λ, the polyhedra Pχ have the same normalfan Nλ ⊂ Λ(T/T ) [7, Remark 4.12] which coincides with the fan of the toric variety X/λT . The fan of the toric variety Yis the coarsest common refinement of all the fans Nλ, where λ ∈ Q0, so it is the normal fan of the Minkowski sum∑

λ∈Λ0 Pχλ ,
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where χλ ∈ relint λ.Having the description of the fan CY = C(X/CT )0 , the following result allows us to describe the Altmann–Hausen familyin the toric case.
Theorem 4.2.
Let X = Xσ be the toric variety with a big torus T, and let T ⊂ T be a subtorus. Then the variety X̃ constructed for the
action of T on X is a normal toric variety with the torus T. Its fan CX̃ ⊂ Λ(T) is the coarsest common refinement of the
quasifan α−1(C(X/CT )0 ) and the cone σ, where α : Λ(T)→ Λ(T/T ) is the natural map.

Proof. By Proposition 3.9, the toric variety X̃ is isomorphic to the normalization of the variety WX , so their fans CX̃and CWX coincide. Now our statement follows directly from Lemma 4.1.
The fact that the fans CX̃ and CWX coincide (and so Theorem 4.2) could be proved by methods of toric geometry withoutusing Proposition 3.9. We shall give this proof below. Moreover, one can prove Proposition 3.9 in the toric case usingTheorem 4.2 and then pass on to general case.
Another proof of Theorem 4.2. The morphism φ : X̃ → X is proper, so, by Proposition 2.2, the support of the fan
CX̃ coincides with σ . The morphism ψ : X̃ → Y is toric, hence, by Proposition 2.1, the image αQ(τ) of any cone τ ∈ CX̃is contained in some cone δ ∈ CY . Also the morphism ψ is a good quotient, so, by [19, Theorem 4.1], we have that
δ = α(τ) and τ = α−1(δ) ∩ σ , which exactly means that the fan CX̃ is the coarsest common refinement of the quasifan
α−1(C(X/CT )0 ) and the cone σ . By Lemma 4.1, it follows that the fans CWX and CX̃ coincide.
Example 4.3.Let us consider the action of the one-dimensional torus T on the four-dimensional affine space X = A4 given by
t · (x1, x2, x3, x4) = (tx1, tx2, t−1x3, t−1x4). Our main purpose is to construct the fan CX̃ of the toric variety X̃ . Along theway, we will construct the fans of the toric varieties X/λT and Y , where λ ∈ Q0.The GIT-fan Q consists of the three cones λ−1, λ0, and λ1:

r0 1−1
λ−1 λ0 λ1

We will consider the torus T as the subtorus of the four-dimensional torus T that acts on X by the rescaling ofcoordinates. Then X = Xσ , where σ ⊂ Λ(T)Q is the cone generated by the standard basis e1, e2, e3, e4 of Λ(T)Q.There is a natural immersion Λ(T )Q ↪→ Λ(T)Q. We will identify the space Λ(T/T )Q with the orthogonal complementof Λ(T )Q in the space Λ(T)Q. Then the natural map α : Λ(T)Q → Λ(T/T )Q will be the orthogonal projection.
GIT-system
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In the coordinates of the standard basis of Λ(T)Q denote ρ1 = (3, −1, 1, 1), ρ2 = (1, 1, −1, 3), ρ3 = (−1, 3, 1, 1), ρ4 =(1, 1, 3, −1) and ρ = (1, 1, 1, 1). The fans of the toric varieties X/λ0T , X/λ−1T and X/λ1T are the normal fans of thepolyhedra P0, P−1 and P1 respectively. After some calculations one can verify that the fan CX/λ0T = Nλ0 consists of onemaximal cone 〈ρ1, ρ2, ρ3, ρ4〉Q≥0 , the fan CX/λ−1T = Nλ−1 consists of two maximal cones 〈ρ1, ρ2, ρ3〉Q≥0 and 〈ρ3, ρ4, ρ1〉Q≥0 ,and the fan CX/λ1T = Nλ1 consists of two maximal cones 〈ρ4, ρ1, ρ2〉Q≥0 and 〈ρ2, ρ3, ρ4〉Q≥0 . The fan CY , as the coarsestcommon refinement of CX/λ0T , CX/λ−1T and CX/λ1T , consists of four maximal cones 〈ρ1, ρ2, ρ〉Q≥0 , 〈ρ2, ρ3, ρ〉Q≥0 , 〈ρ3, ρ4, ρ〉Q≥0 ,
〈ρ4, ρ1, ρ〉Q≥0 .The fan CX̃ is the coarsest common refinement of the quasifan α−1(CY ) and the cone σ . Denote µ1 = (1, 1, 0, 0),
µ2 = (0, 0, 1, 1). Calculations show that CX̃ consists of four maximal cones 〈e1, e3, µ1, µ2〉Q≥0 , 〈e1, e4, µ1, µ2〉Q≥0 ,
〈e2, e3, µ1, µ2〉Q≥0 , and 〈e2, e4, µ1, µ2〉Q≥0 . On the picture below you can see polyhedral slice of this fan by the hy-perplane x1 + x2 + x3 + x4 = 1.
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4.2. The fan of the main component of the toric Hilbert scheme

Finally, we complete a description of all the fans of the toric varieties from the commutative diagram (1) given in Section 1by recalling some results from [7].Consider the main component H0 of the toric Hilbert scheme and the main component U0 of the universal family in thetoric situation with their structure of reduced schemes. As shown in [7, Proposition 3.6], these varieties are toric underthe tori T/T and T respectively. Our purpose is to recall the construction of the fans corresponding to toric varieties
H0 and U0.For all χ ∈ ω ∩ X(T ) denote P I

χ = conv(β−1(χ) ∩ X(T)).
Remark 4.4.The equality P I

χ = Pχ holds if and only if the polyhedra Pχ have integer vertices. Such characters χ are called integer.
We call two polyhedra equivalent if they have the same normal fan.
Proposition 4.5 ([7, Proposition 4.9 (2)]).
There are only finitely many non-equivalent polyhedra P I

χ for χ ∈ ω. The fan CH0 corresponding to the variety H0 is
the normal fan of the Minkowski sum over a system of representatives of the equivalent classes of these polyhedra.

Of course, it is again equivalent to say that CH0 is the coarsest common refinement of the normal fans of all Pχ .The variety U0 coincides with T(y, x) ⊂ H0×X , where x ∈ X lies in the open T-orbit and y = Tx ∈ H0. FromProposition 2.3 it follows that the fan CU0 is the coarsest common refinement of the fan CH0 and σ .
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Now we know the fans of all varieties from the commutative diagram (1). By Remark 4.4 it follows that the fan CH0refines the fan C(X/CT )0 and the fan CU0 refines the fan CWX , what illustrates that morphisms Ψ0 and Φ are toric.
Remark 4.6.From construction of all these fans or straightforwardly from the properties of morphisms Ψ0,Φ, pWX it follows that
|CH0 | = |C(X/CT )0 | and |CU0 | = |CWX | = σ .
In Example 4.3 all characters χ ∈ ω∩X(T ) are integer, since the fans of the toric varieties CH0 and C(X/CT )0 coincide (andso, certainly, the fans CU0 and CWX also coincide). But this is not true in general. The example below was consideredin [7]. There were constructed the fans CH0 and C(X/CT )0 , and it was shown that they do not coincide in the consideredsituation. We shall complete this example constructing the fans CU0 and CWX = CX̃ .
Example 4.7 ([7, Example 5.3]).Let Xσ = A3, T = (k×)3 act by rescaling of coordinates, and T = k× act by t · (x1, x2, x3) = (tx1, tx2, t2x3). Denote by
e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1) the standard basis of Λ(T)Q, and let ν1, ν2, ν3 be its dual basis in X(T)Q.

X(T)
q
��	ν1 -

ν2
ν3 6 -

β
X(T )

β(ν1)
β(ν2)

β(ν3)- -q
It is easy to see that the fan CH0 is the normal fan of the trapezoid P3, whereas the fan C(X/CT )0 is the normal fan ofthe triangle P2. As in Example 4.3, we will identify the space Λ(T/T )Q with the orthogonal complement of Λ(T )Q in thespace Λ(T)Q.Denote ρ1 = (1, 1, −1), ρ2 = (−5, 1, 2), ρ3 = (1, −5, 2) in the coordinates of the standard basis of Λ(T)Q. All thesevectors are lying in Λ(T/T )Q, and it is easy to verify that C(X/CT )0 consists of three maximal cones 〈ρ1, ρ2〉Q≥0 , 〈ρ2, ρ3〉Q≥0 ,
〈ρ1, ρ3〉Q≥0 , and CH0 consists of four maximal cones 〈ρ1, ρ2〉Q≥0 , 〈ρ1, ρ3〉Q≥0 , 〈−ρ1, ρ2〉Q≥0 , 〈−ρ1, ρ3〉Q≥0 .

?

HH
HHY

��
��*

6

�
�
�

A
A
A

�
�
�
�

A
A
A
A

P3
P2

ρ1

−ρ1
ρ2 ρ3

We see that the fan CH0 subdivides the fan C(X/CT )0 , and, in particular, they do not coincide. If we intersect thecorresponding quasifans in Λ(T)Q with the cone σ = 〈e1, e2, e3〉Q≥0 , we get the fans CU0 and CWX respectively. Denote
κ = (1, 1, 2), µ1 = (1, 1, 0), µ2 = (1, 0, 2), and µ3 = (0, 1, 2). Then CWX consists of three maximal cones 〈κ, µ1, e1, µ2〉Q≥0 ,
〈κ, µ1, e2, µ3〉Q≥0 , 〈κ, µ2, e3, µ3〉Q≥0 , and CU0 consists of four maximal cones 〈κ, µ1, e1, µ2〉Q≥0 , 〈κ, µ1, e2, µ3〉Q≥0 , 〈κ, e3, µ2〉Q≥0 ,
〈κ, e3, µ3〉Q≥0 .
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