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1. Preliminaries

Motivated by recent results on stable strong and total duality for constrained convex optimization problems in [2, 6, 7,
9, 13, 17] and the ones on zero duality gap in [15, 16] we introduce in this paper several regularity conditions which
characterize e-duality gap statements (with € > 0) for a constrained optimization problem and its Lagrange and Fenchel-
Lagrange dual problems, respectively. The regularity conditions we provide in Section 2 are based on epigraphs, while
the ones in Section 3 on e-subdifferentials. In this way we extend many of the results in the mentioned papers, which
are recovered as special cases when € = 0, delivering thus generalizations of the classical Farkas—Minkowski and
basic constraint qualifications. Moreover some statements in [6-8, 15, 16], which arise from our results in the special
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case € = 0, are extended by removing convexity and topological hypotheses, while various assertions from [15, 16] are
improved by working in locally convex spaces instead of Banach spaces and removing the continuity and nonempty
domain interior assumptions of the involved functions.

Consider two separated locally convex vector spaces X and Y and their continuous dual spaces X* and Y* endowed
with the weak* topologies w(X*, X) and w(Y* Y) respectively. Some of the following notions and results, as well as
the statements we prove within in this paper, can be given in the more general framework of linear spaces, but in order
to avoid juggling with spaces we decided to consider only locally convex spaces. Let the nonempty closed convex cone
C C Y and its dual cone C* = {y* € Y*: (y* y) > 0, y € C} be given, where we denote by (y* y) = y*(y) the
value at y of the continuous linear functional y*. On Y we consider the partial ordering induced by C, “<(", defined by
zZcyiffy—ze C, z,y €Y. To Y we attach a greatest element with respect to “<¢" denoted by coc which does
not belong to Y and let Y* = Y U {ooc}. Then for any y € Y* one has y <¢ coc and we consider on Y* the following
operations: y + coc = co¢c + Yy = ooc and t-ooc = ooc for all y € Y and all t > 0. Moreover, for y* € C* we set
(y*, ooc) = +o0.

Given a subset U of X, by clU we denote its closure in the corresponding topology, while its indicator function
dy: X = R =RU {*co} and respectively support function gy : X* — R are defined as follows:

0 if e v,
dulx) = b and  oy(x’) = sup{x", x).
+o00 otherwise, xeU

We define in the following a notion that extends the one of a closed set, needed for being able to provide generalized
closedness type characterizations via epigraphs for e-duality gap statements, extending thus the investigations begun
in [11, 12] and continued later in many works such as [2, 5-9, 13, 15-17]. Note that the notion of an e-closed set was
considered in the literature in different instances that have nothing in common with our research, see for instance [1, 14],
while in [18, Definition 3.2] one can find the definition of a vertically closed set.

Definition 1.1.
Let € > 0. Aset U C X xR is said to be e-vertically closed if cLU C U — (0, €).

For a function f: X — R we have its domain and epigraph defined by domf = {x € X : f(x) < +oo} and epif =
{(x,r) € XxR : f(x) < r}, respectively. We say that f is proper if f(x) > —oo for all x € X and domf # @. The
conjugate of f regarding the set U C X is f};: X* — R, given by f};(x*) = sup {{x*, x) — f(x) : x € U}.

When U = X the conjugate regarding the set U is the classical (Fenchel-Moreau) conjugate function of f denoted by f*.
One can easily notice that 8}, = oy. Between a function f: X — R and its conjugate regarding some set U C X, the
Young—Fenchel inequality holds, namely

o) + f(x) > (x%, x), xel, x"eX.
Let f: X —» R, x € X with f(x) € R and € > 0. The set 0.f(x) = {x* € X*: f(u) — f(x) + &€ > {x*, u —x), u € X} is
called the e-subdifferential of f at x. When f(x) & R or € < 0 we take by convention 9.7(x) = @.
Given a proper function f: X — R, for all € >0, x € X and x* € X* one has

x* € 0f(x) = FA(x*) + f(x) < (x",x) + €.

For € = 0, the e-subdifferential turns out to be the classical (convex) subdifferential. For U = X, the set N (x) = 0.0u(x)
is called the e-normal set of U at x € X. When € =0, Ny(x) is actually the (convex) normal cone of U at x.

Given two proper functions f, h: X — R, their infimal convolution is

fOh: X >R,  fOh(a) = inf{f(x) + h(a—x) : x € X},
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and it is called exact at some a € X when there is x € X such that f0h(a) = f(x) + h(a —x). There are notions given
for functions with extended real values that can be formulated also for vector functions as follows.

For a function g: X — Y* one has its domain domg = {x € X : g(x) € Y}. We say that g is proper if domg # @ and
C-convex if g(tx+(1—1t)y) Sc tg(x)+(1—1t)g(y) for all x,y € X and all ¢t € [0,1]. For A € C*, we define (Ag): X — R,
(Ag)(x) = (A, g(x)) for all x € X. The C-epigraph of g is defined by epicg = {(x,y) € XxVY :y € g(x) + C}. We
say that g is C-epi-closed if epi. g is closed. If (Ag) is lower semicontinuous for all A € C* we say that g is positively
C-lower semicontinuous (also known as star C-lower semicontinuous in the literature).

Let U be a nonempty subset of X and g: X — Y* a proper vector function. Denote A = {x € U : g(x) € —C} and
assume this set non-empty. For a proper function f: X — R fulfilling A N dom f # @ consider the optimization problem

inf (x). (P)

We denote by v(P) the optimal objective value of the optimization problem (P). In the following we will write min (max)
instead of inf (sup) when the corresponding infimum (supremum) is attained. Let us recall some results, needed later.

Lemma 1.2 (cf. [12]).
Let f,h: X — R be proper convex lower semicontinuous functions, with the intersection of their domains nonempty.
Then

epi(f+h)" = clepi(f*Oh*) = cl(epif*+ epih”).

Lemma 1.3 (cf. [6, 7]).

If U is closed convex and g is C-convex and C-epi-closed, one has

epigy = cl{epioy + U epi(Ag)" | = cl U epi(Ag)-
AeC* AeC*

The hypotheses of Lemma 1.3 are sufficient to guarantee that A is a closed convex set. When f and 04 are proper convex
lower semicontinuous functions, one has by Lemma 1.2, epi(f +04)* = cl(epif*+ epigy). By Lemma 1.3, this is further
equal to cl(epif* + cllJ,cc- epi(Ag);)), which is actually cl(epif* + [J,.c- epi(Ag)}). Analogously, one can show that
under these hypotheses there holds epi(f+0d4)* = cl(epi f* 4+ U,ec- epi(Ag)* + epi UU).

For x* € X* we also consider the linearly perturbed optimization problem

inf [f(x) + (x*, x)]. (Py)

xeA

To (Py+) one can attach the Lagrange dual problem

sup inf [f(x) + (X, x) + ()\g)(x)], (DL)
reCx X€EU
which can be equivalently written as
sup —( +(Ag)) , (—x"): (D)
AeC*

For A € C* the inner minimization problem that appears in the first formulation of (D%.) can be rewritten as

inf [£(x) + (x*, x) + du(x) + (Ag)(x)].

xeX

To this problem one can attach different Fenchel type dual problems, obtaining via (D.) some Fenchel-Lagrange type
dual problems to (P,s). The name Fenchel-Lagrange is given to the below dual problems because they are thus
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“combinations” of the classical Fenchel and Lagrange dual problems. Keeping together 0y and (Ag) one gets the
following Fenchel-Lagrange type dual problem to (P,«):

sup [—f*(B) — (Ag)y(—x"—B)]- (D)

When f, (Ag) and 0y are separated, the following Fenchel-Lagrange type dual problem to (P,) is obtained:

sup [~*(B) — (A9)*(a) — ou(=x"—a—B)]. (Dx)
B,aeX*

When x* = 0 these duals to (P) are denoted simply by (D%), (D) and (D), respectively. Note that when f and &, are
put together, one can obtain a third Fenchel-Lagrange dual to (P,+), namely

sup [—13(B) — (Ag)' (—x"— B)]. (D)
AECH
pex*

We will not use it further, but the results given in this paper can be easily adapted for it, too.

Between (P) and (D) one always has weak duality, i.e. v(P) > v(D). When v(P) = v(D) we say that there is zero
duality gap between (P) and (D) and if (D) has moreover an optimal solution, the situation is called strong duality. If
v(P) — v(D) < ¢, with € > 0, we have e-duality gap for (P) and (D). If one of these situations holds for (P,+) and (D)
for all x* € X* it will be called stable.

2. e-duality gap statements involving epigraphs for Lagrange and Fenchel-
Lagrange duality

Motivated by the characterizations of the stable strong duality from [6, 7] we begin this section with several equivalent
representations of various instances of e-duality gap for (P) and its duals by means of epigraphs.

Theorem 2.1.
Let f: X — R be proper and fulfilling A N dom f # @ and € > 0. Then the condition

epi(f+04)" C U (epif*+ epi(Ag)* + epioy) — (0, €) (RCE)
AECH

holds if and only if for all x* € X* there exist A € C* and @, B € X* such that
v(Py) < —*(B) — (Ag)"(@) — ou(—x"—B—1a) + e. )

Proof. (=) Letx* € X* We have v(P) = —(f + 0.4)*(—x"), thus (—x*, —v(Py+)) € epi(f + d4)*. From (RCE) there
exist A € C* and @, B € X* such that (B, f*(B)) € epif’, (@, (Ag)*(@) € epi(Ag)’, (—x*—a—B, oy(—x*—a—p)) €
epi oy fulfilling

*(B) + (Ag)*(@) + au(—x"—a—B) —e < —v(P,),
which yields (1).
(&) Take now (—x*,u) € epi(f+0,4)*. This is equivalent to (f +04)*(—x*) < u and further to —u < v(P,+). Because
of (1), there are some A € C* and @, B € X* such that

—u < —f*(B) — (Ag)*(@) — oy(—x*—a—B) + €,
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which is equivalent to f*(B) + (Ag)*(@) + ou(—x"—a—B) < u + &. But

(B.F(B) + (@, (Ag)"(@) + (—x"—@—B, au(—x"—@—B)) = (—x", F*(B) + (R9)"(@) + ou(—x" — T — B)).

So, (—x* u) € epif* + epi(Ag)* + epioy — (0, €). As (—x*, u) € epi(f 4+ 04)* was arbitrarily chosen, validity of (RCE)
follows. 0

Analogously, one can prove the following similar statement concerning the dual (D).

Corollary 2.2.
Let f: X — R be proper and fulfilling A N dom f #+ @ and € > 0. The condition
epi(f+04) C U(epi f*+ epi(Ag)]) — (0, €) (RCE)
rec*

holds if and only if for all x* € X* there exist A € C* and B € X* such that v(P,) < —f*(B) — (Ag)}(—x*—B) + .

Moreover, for the Lagrange dual one has the following characterization.

Corollary 2.3.
Let f: X — R be proper and fulfilling A Ndom f #+ @ and € > 0. The condition
epi(f+04)" C U epi(f+(Ag))y —(0,¢) (RCE"Y)
AeC*

holds if and only if for all x* € X* there exists A € C* such that v(P.) < —(f + (Ag))(—x*) + €.

Remark 2.4.

The quantity in the right-hand side of (1) is not necessarily v(D,+) + €, as the suprema in (D,) are not shown to be
attained at A, @ and B, respectively. Though, (1) implies v(P,x) < v(Dy) + € and (A, @, B) is an e-optimal solution to
(Dy+). This applies to Corollaries 2.2 and 2.3, with the corresponding modifications.

If we take f(x) = 0 for all x € X, (RCE) becomes

epiaa C | epi(Ag)” + epioy — (0, ¢). (RCE,)

rec*

From Theorem 2.1 we obtain the following result.

Corollary 2.5. -
The condition (RCEo) holds if and only if for each x* € X* there exist A € C* and @ € X* such that —o4(x*) <
—oy(—x*—7a) — (Ag)*(a) + €.

Using it, one can show the following statement.

Corollary 2.6.
The condition (RCEo) holds if and only if when the constraint set A is closed convex for each proper convex lower
semicontinuous function f: X — R which satisfies A N dom f #+ @ and

epif* +epiog is closed, (CQO)

for each x* € X* there exist A € C* and @, B € X* such that v(P,:) < —f*(B) — (Ag)*(@) — oy(—x*—a—B) + .
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Proof. The sufficiency follows from the previous corollary by taking f linear and continuous. To prove the necessity,
note that since —v(Py) = (f 4 04)*(—x"), we have (—x* —v(Py)) € epi(f+9,4)" From Lemma 1.2 and (CC) there is
B € X* such that (B, f*(B)) € epif*, (—x*— B, ou(—x*—B)) € epiagy fulfilling f*(B) + ou(—x*—B) = —v(Py). By
Corollary 2.5, relation (RCEy) yields that there are some A € C* and @ € X* such that —a4(—x*—B) < —oy(—x*—7a)—
(Ag)*(@— B) + €. Consequently, v(Py) < —f*(B) — ay(—x* —@) — (Ag)*(@— B) + €. O

Remark 2.7.
When f(x) = 0 for all x € X both (RCE) and (RCE') collapse into the same condition, for which statements similar to
Corollaries 2.5 and 2.6 can be analogously proven.

Adding convexity and topological hypotheses to the functions and sets considered in Theorem 2.1, one obtains the below
statement. Analogously, one can derive similar statements from its consequences and analogous assertions for the other
duals presented above.

Theorem 2.8.

Let f: X — R be a proper convex lower semicontinuous function, g: X — Y* a proper C-convex and C-epi-closed vector
function and U C X a closed convex set fulfilling ANdom f # @, and € > 0. Then the set|J,.(epif*+ epi(Ag)*+ epioy)
is e-vertically closed if and only if for all x* € X* there exist A € C* and @, B € X* such that (1) holds.

Remark 2.9.

If € =0, Theorem 2.8 turns out to be [6, Theorem 1]. Adding the necessary topological and convexity hypotheses to
Corollary 2.2, one rediscovers in case € = 0 [6, Theorem 2], while after the same treatment Corollary 2.3 collapses
into [7, Theorem 1]. Moreover, Corollary 2.6 rediscovers and extends towards stable strong duality [6, Theorem 4] and
analogously one can rediscover and sometimes generalize the similar statements from [6, 7] for the other considered
duals to (P).

Inspired by [15, 16] we give other regularity conditions which characterize e-duality gap statements for (P) and its duals.
For this, let us define the functions h°, h$;: X* — R by h°(x*) = inficc+(Ag)*(x*) and h(x*) = infrec(Ag); (x*), for
x* € X*. From the definitions it follows that | J, ... epi(Ag)* C epi h®, respectively | J,c- epi(Ag), C epihg,.

Lemma 2.10.
If g is C-convex and U is convex, the function h}; is proper convex. Moreover, if g is also C-epi-closed and U additionally
closed, it holds epi o, = clepihy,.

Proof. The properness and convexity of h, follow analogously to the properties corresponding of h° shown in
[15, Theorem 3.1]. As [ J,cc- epi(Ag)}, C epihf, Lemma 1.3 yields epigs C clepih,.

On the other hand, for any A € C* we have d,4(x) > (Ag)(x) + ou(x) for all x € X, which implies g4 (x*) < (Ag)y,(x*) for
all x* € X*, followed by 04 (x*) < infrec(Ag)};(x*) = h{(x*). This implies that epigg 2 clepihf,. O

Using Lemma 2.10, for f proper convex lower semicontinuous, g moreover C-convex and C-epi-closed and U also closed
convex, we get
epi(f +04)" = cl(epif*+ epihy) = clepi(f"Ohy) = clepi(f*Oh°Oay). (2)

Now let us give some other e-duality gap characterizations by means of h® and h{,.

Theorem 2.11.
Let f: X — R be proper and fulfilling A ndom f + @ and € > 0. The condition

epi(f+04)" C epi(f*Oh°Ooy) — (0, €) (RCI)

holds if and only if there is stable e-duality gap for the problems (P) and (D), i.e. one has e-duality gap for the pair of
problems (Py+) and (Dy) for all x* € X*,
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Proof. (=) Let x* € X*. We have v(Py) = —(f 4+ d4)*(—x*), thus (—x*, —v(P)) € epi(f +d4)* From (RCl) we
have

(FOhDou)(=x) = _inf [f(B) +h*(a) + ou(—x"—a—B)] —& < —v(P)

— aéng*[Aiean*(f*(B) + (Ag)*(a) + ou(—x"—a— 3))] —e< —v(Py)
= - SUQ[—f*(B) — (Ag)*(a) — ou(—x"—a—B)] < —v(Py) + £
a),\/gECX*
— —v(Dys) < —v(Py) + € = v(Py) < v(Dy) + €.

So, we get e-duality gap for the pair of problems (P,«) and (D).
(&) Let x* € X*. The e-duality gap inequality for (P,«) and (Dy+) is equivalent to (f*Oh°0Ooy)(—x*) — e < —v(Py) =

(F+04)*(—x*). As x* € X* was arbitrarily taken one gets epi(f+ d4)* C epi(f*Oh°Oay) — (0, €). O
One can give a similar statement for (D).

Corollary 2.12.
Let f: X — R be proper and fulfilling A Ndom f #+ @ and € > 0. The condition

epi(f+04)" Cepi(fOh]) — (0, ¢€) (RCI)

holds if and only if there is stable e-duality gap for the problems (P) and (D), i.e. one has e-duality gap for the pair of
problems (P,+) and (Dy+) for all x* € X*.

Remark 2.13.

If X and Y are Fréchet spaces, f is proper convex lower semicontinuous, g is C-convex and positively C-lower semi-
continuous, U closed convex and 0 € sqri(domf — domg N U), where by sqri one denotes the strong quasi relative
interior of the corresponding set, then the condition (RCI) is satisfied if and only if there is stable e-duality gap for the
problems (P) and (DY).

A characterization of the Lagrange e-duality gap without the additional hypotheses from Remark 2.13 follows.

Corollary 2.14.
Let f: X — R be proper and fulfilling A Ndom f #+ @ and € > 0. The condition

epi(f+384)" C epiinf (f+Ag); —(0,¢) (RCIY)
nl,

holds if and only if there is stable e-duality gap for the problems (P) and (D%), i.e. one has e-duality gap for the pair
of problems (P,:) and (D%.) for all x* € X*.

If we take f(x) = 0 for all x € X, (RCI) becomes
epigq C epi(h®Oay) — (0, €) (RCly)

and we obtain the following results.
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Corollary 2.15.
The condition (RCly) holds if and only if for each x* € X*,

—0a(x*) < sup{—oay(—x*—a) — h°(a)} + €.
acC*

Corollary 2.16.
The condition (RClo) holds if and only if when A is closed convex for each proper convex lower semicontinuous function
f: X = R satisfying A N dom f + @ and f*0006% being lower semicontinuous, for all x* € X* one has

v(Py) < fucg{—f*(ﬁ) —(A9)*(a) — ou(—x"—a—B)} +e.
a,pEX*

Adding convexity and topological hypotheses to the functions and sets considered in Theorem 2.11, one obtains the
below statement. Analogously, one can derive similar statements from its consequences and analogous assertions for
the other duals presented above.

Theorem 2.17.

Let f: X — R be a proper convex lower semicontinuous function, g: X — Y* a proper C-convex and C-epi-closed vector
function and U C X a closed convex set fulfilling ANdom f # @, and € > 0. Then the set epi(f*Th°0Ooay) is e-vertically
closed if and only if there is stable e-duality gap for the problems (P) and (D).

Remark 2.18.

In case € = 0 and U = X, Theorem 2.17 and the similar statement obtained when adding convexity and topological
hypotheses to Corollary 2.12 extend the Fenchel-Lagrange analogous of [16, Theorem 3.1], while Remark 2.13 and
Corollary 2.14 (with the corresponding convexity and topological hypotheses) show that [16, Theorem 3.1] actually holds
in a more general framework, i.e. without taking the function g continuous. Analogously, Corollary 2.16 extends and
improves, respectively, by dropping the strong nonempty domain interior and continuity hypotheses on the involved
functions, statements like [15, Theorem 4.1] and [16, Corollary 3.1].

Now, let us give other stable e-duality gap statements for (P) and its duals, by making use of other reqularity conditions
inspired by (2).

Theorem 2.19.
Let f: X — R be proper and fulfilling A N dom f # @ and € > 0. The condition

epi(f+04)" C epif* +epih®+epioy—(0,¢€) (RCP)
holds if and only if for all x* € X* there exist @, § € X* such that

v(Py) < Asetlg{—f*(g) —(Ag)*(@) — ou(—x"—B—1a)} +&. 3)

Proof. Let x* € X*. We have v(Py:) = —(f + 8.4)*(—x*), thus (—x*, —v(P,+)) € epi(f +04)* From (RCP) there exist
@, B € X* such that (B, f*(B)) € epif*, (@, h°(@)) € epi h®, (—X*—E—E, UU(—X*—E—E)) € epioy fulfilling

*(B) + h°(@) + ou(—x* —a—B) — e < —v(P,) (4)

and we obtain that v(Py) < —f*(B) — h®(@) — oy(—x"— B —1a) + ¢ if and only if
v(Pe) < —F(B) + fug{—(Ag)*(a)} —oy(-x"—B-a)+e
= WPy < sup{~F"(B) = (hg)"(@ —ou(—x" B} + &

Vice versa, as the hypothesis means that (4) holds for all x* € X*, the validity of (RCP) follows. O
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A similar statement can be given for (D), too.

Corollary 2.20.
Let f: X — R be proper and fulfilling A N dom f #+ @ and € > 0. The condition

epi(f+04)" C epif” +epithy —(0,¢) (RCP)
holds if and only if for all x* € X* there exists B € X* such that

v(Py) < ;up{—f*(E) — (Ag)y(—x"—B)} +&.

ec*

Note that the analogous result for (D) collapses into Corollary 2.14 and when € = 0 it and both Theorem 2.19 and
Corollary 2.20 become “pure” stable zero duality gap statements.

Adding convexity and topological hypotheses to the functions and sets considered in Theorem 2.19, one obtains the
below statement. Analogously, one can derive similar statements from its consequences and analogous assertions for
the other duals.

Theorem 2.21.

Let f: X — R be a proper convex lower semicontinuous function, g: X — Y* a proper C-convex and C-epi-closed vector
function and U C X a closed convex set fulfilling A N domf + @, and € > 0. Then the set epif* + epih® + epioy is
e-vertically closed if and only if for all x* € X* there exist @, B € X* such that (3) holds.

3. e-duality gap statements involving e-subdifferentials for Lagrange and
Fenchel-Lagrange duality

We introduce reqularity conditions to characterize e-duality gap statements, using e-subdifferentials, too, when the
existence of an e-optimal solution to the primal problem is assumed. Recall that, for x* € X* x € ANdomf is an
e-optimal solution to (P,+) if and only if 0 € d.(f +x*+ 0.,4)(X), which is equivalent to —x* € 9.(f + 0.4)(X).

Theorem 3.1. B
Let for a proper function f: X - R, x € Andomf and € > 0. Then

O(f+3)®) = |J (9F(%) + NF(X) + 0c,(Ag)(x)) (RCL)
rec*
£>0, i=123
e1+ex+e3=+(Ag)(X)

holds if and only if for all x* € X* for which X is an e-optimal solution to (P,:) there exist A € C* and @, B € X* such
that

f(0) + (¢, %) < ~*(B) — (Rg)*(a) — oy(~x"—B—a) + . 5)

Proof. “=" Let x* € X* be such that —x* € 0.(f + d4)(x). Because the condition (RCL) is satisfied at X, there are
some A € C* and €1, &, €3 > 0 such that —x* € 0, f(X) + N (X) + 9¢, (Ag)(X) and &1 + &, + €3 = £ + (Ag)(X). Thus there
exist B € d.,f(x) and @ € 653(19)(?) such that —x* — @ — B € N7 (X), ie.

fX)+(B) <(B.x)+e1,  (Ag) (@) + (Ag)(X) < (@.X) + &3,

Uu(—X*—E—a)-f'éu(;) < <—X*—E—6,Y>+82. (6)
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Summing up these inequalities we get
f(%) + F*(B) + (Ag)"(@) + (Ag)(X) + ou(—x" =B =17) + 0u(X) < —(x", X) + &1 + &2 + &3,

followed, as x € U, by (5).
“<" Take now —x* € 9.(f 4+ 0,4)(X). From (5) there are some A € C* and @, B € X* such that

F(X) + (x", X) < —*(B) — ou(—x" = B—13) — (Ag)"(@) + &.

This can be rewritten as

f(X) + £*(B) — (B.X) + 0u(X) + ou(—x"— B—3) — (—x"— B~ X) + (A9)(X) + (Ag)"(@) — (@, %) < € + (Ag)(X).

IA

Using also the Young—Fenchel inequality, it follows that there exist €1, €5, €3 > 0, with &1 + &, + €3 = € + (Ag)(X), such
that (6) hold. Consequently, B € d,f(x), @ € 653@9)(?), —x* — B —@ € N?(x). Thus, the inclusion “C" in (RCL) holds
and, since, “2” is always true, we obtain the validity of (RCL). O

Similar statements can be given for (D) and (D"), too.

Corollary 3.2.
Let a proper function f: X — R, x € Andomf and € > 0. Then
0(f+34)% = | (910 + 0, (6u+ (Ag)) (X)) (RCD)
AeC*
£20, i=1,2

e1+ex=e+(Ag)(x)

holds if and only if for each x* € X* for which X is an e-optimal solution to (P,-) there exist A € C* and B € X* such
that

F(X) + (x", %) < =F*(B) — (Ag)y(—x"—B) + €.

Corollary 3.3.
Let for a proper function f: X — R, X € ANdomf and € > 0. Then
Oclf +3)%) = | Ocruiqn (1 + 80+ (Ag)) (%) (RCLY)
reC*

holds if and only if for each x* € X* for which X is an e-optimal solution to (P,:) there exists A € C* such that
(%) + (<", %) < (F+(Ag)) ,(—x") + €.

Remark 3.4.

The quantity in the left-hand side of (5) is not necessarily v(P), while in the right-hand side one has something smaller
than v(D,+) + €. However, (5) implies v(P,:) < v(D,+) + € and (A, @, B) is an e-optimal solution to (D,:). This applies to
Corollaries 3.2 and 3.3, with the corresponding modifications.

Remark 3.5.

Taking € = 0, Theorem 3.1 becomes [6, Theorem 5] without the topological and convexity assumptions on the involved
functions, Corollary 3.2 is [6, Theorem 6], while Corollary 3.3 turns into [7, Theorem 3]. Note also that by considering (RCL)
for f(x) = 0 whenever x € X one can extend (analogously to Theorem 3.12, see also Remarks 3.13 and 3.14) [6, Theorem 9]
towards e-duality gap and the same can be done for their counterparts corresponding to the other considered duals.
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As mentioned in Remark 3.4, the statements given above are not “pure” characterizations of the stable zero duality
gap for (P) and its corresponding dual problems. In the following we provide subdifferential formulae that characterize
e-duality gap statements which have in the right-hand side the optimal objective value of the duals plus €.

Theorem 3.6.
Let for a proper function f: X — R, x € Andomf and € > 0. Then

Oe(f+0)) = [ U (0cF%) + NF®) + 0, (Ag)(x)) (RCS)

n>0 reC*
£>0, =123
e1+ex+e3=+n+(Ag)(x)

holds if and only if for each x* € X* for which X is an e-optimal solution to (P,-),

(%) + (x*, X) < sup {—f*(B) — ou(—x"—B—a) — (Ag)"(a)} + . 7)

Proof. “=" Letx* € X* such that —x* € 9.(f+J.4)(x). Because the condition (RCS) is satisfied at X, for each n > 0
there are some A, € C* and &4, €;, &3 > 0 such that —x* € 0, F(X)+ N7 (x)+0, (A,9)(X) and &1+€2+€3 = e+n+(A,9)(X).
Thus there are some E,, € d.,f(x) and @, € 0, ( 29)(X) such that —x* — @, — B,, € N7 (x), Le.

() + £5(B,) < (BpX)+ e, (Ag) (@) + (A9)(X) < (@, %) + 3,
ou(—x*—B,—a,) + 0u(x) < (—x*"—B,—@,, X) + &. (8)

Summing up these inequalities we get
f(X) + £ (B,) + (29) (@) + (A9)(x) + ou(—x* — B, —@,) + 0u(X) < —(x", X) + &1 + & + &3,
followed, as x € U, by f(x) + (x*, x) < —f*(B,) — (A,9)*(@,) — ou(—x*—B,—a,) + £ + n, which implies

f(x) + (x*, x) < Asucp {—f*(B) —(Ag)"(a) — oy(—x"—B— 0()} +e+n.
a,pEX*

Letting n converge towards 0, (7) follows.

"<" Take now —x* € 0.(f+04)(X). Let n > 0. From (7) there are some A, € C* and @,, B, € X* such that

f(x) + (x*, x) < =*(B,) — ou(—x"—B,— @) — (A9)*(@,) + n+ €. As x € U, this can be rewritten as
F(R) + 1(By) + 0u(X) + ou(=X" = B, = @) + (Ayg)(¥) + (Ayg)" (@) + (X" %) < 1+ €+ (Mg)(X),

which implies that

f(;)+f*(gl7)_< >+6U( )+UU( X _E _an)
—(—X — By =y X) + (49)(X) + (A,9)"(@,) — (@, %) < 0+ €+ (A,9)(%)-

Using also the Young—Fenchel inequality, it follows that there exist €1, €, 63 >0, with e1 + 2 +e3=n+ e+ (X,,g)(?),
such that (8) holds. So, we get that B, € 9,f(x), @, € 0.,(4,9)(X), —x* — B, — @, € N;(x). Thus, the inclusion “C"
in (RCS) holds and, since, "2" is always true, (RCS) is valid. O

Remark 3.7.

Relation (7) implies v(P,s) < v(D+) + €, without being a consequence of it in general.
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Similar statements can be given for (D) and (D"), too.

Corollary 3.8.
Let for a proper function f: X — R, X € ANdomf and € > 0. Then
0:(f+04)%) = [ | (0e7() + 9e, (80 + (A9)) (%)) (RCS)
>0  AeC*

>0, i=1.2
e1+er=e+n+(Ag)(X)

holds if and only if for each x* € X* for which X is an e-optimal solution to (Pi-),

F(x) + (¢ %) < sup {=F*(B) — (Ag)y(—x"— B)} + &.

rec*
BeX*
Corollary 3.9.
Let for a proper function f: X — R, X € ANdomf and € > 0. Then
0c(f+84)%) = () U Ocrnvarm (f +0u + (Ag)) (X) (RCSY)
n>0 xeC*

holds if and only if for each x* € X* for which X is an e-optimal solution to (Py),

f(X) + (x*, ) < sup inf [f(x) + (x*, x) + (Ag)(x)] + €.

reCx Xx€U
Remark 3.10.
When f(x) = 0 for all x € X, for x € A the condition (RCS) becomes
= U (NJ® +0.,(A9)(x)). (RCSy)
>0 Aec*
&30, =12

e1+ey=e+n+(Ag)(X)

We also consider the condition

= U (N®+0,(9)®), & <€[0e] (RCS})
>0  AeC*
>0, i=1.2

e1+e2=€"+n+(Ag)(x)

We have the next result, as a direct consequence of Theorem 3.6, which characterizes the e-Fenchel-Lagrange duality
gap for optimization problems consisting in minimizing linear functionals that have an e-minimum over A at X.

Corollary 3.11.

For x € A, the condition (RCSy) holds if and only if for each x* € X* which has an e-minimum over A at X one has

(x*,X) < sup{—oy(—x"—a) — (Ag)*(a)} + €.
sk

The next theorem gives via (RCSy) at some X € A an e-duality gap statement for convex optimization problems consisting
in minimizing over the set A of proper convex lower semicontinuous functions f: X — R which attain an e-minimum over
A at x and fulfil the condition

0067 s lower semicontinuous and exact at 0, (FRC)

and their Fenchel-Lagrange type dual problems.
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Theorem 3.12.

Let f: X — R be a proper convex lower semicontinuous function, A be closed convex and € > 0. When (FRC) is fulfilled,
x € Andomf is an e-optimal solution to (P) and the condition (RCSg) holds, then
f(x) < sup {—F"(B) — (Ag)"(a) — ou(—a—B)} + €. 9
a),\EECX*
Proof. Take a function f as requested in the hypothesis. We have f(x) < —(f +J4)*(0) + € and (FRC) guarantees
that there is some B € X* such that (f + 6,4)*(0) = f*(B) + g4 (—B). Further we get

f(X) + F*(B) + 0u(=B) + 0a(x) < (B.X) + (=B.X) + €,

therefore there exist €1, &, > 0 with &1 + &, = € such that B € d,,f(x) and —B € NZ(x). By (RCS}) for each n > 0
there are some 4, € C* and &3, & > 0 with &5 + &4 = & + (4,9)(X) + n such that —B € 0,,(X,9)(X) + N;'(x). This
implies that there exists @ € X* such that @ € 9.,(4,9)(X) and —@ — B € N[/ (X), so we have

f(x) + £*(B) + 0u(X) + ou(—a —B) + (A,9)(X) + (1,9)"(@)
<BX)—(@+B.xX)+{@xX)+e1+e3+es+n=¢e +e+ Ag)X) +n.

Further f(x) < —f*(B) — (4,9)*(@) — ay(—@ — B) + € + n, which yields

f(x) < sup {=1*(B) — (Ag)*(a) = au(—a—B)} + e +n.
a,pEX*

Letting n converge towards 0, the proof is complete. O

Remark 3.13.
In the preceding theorem, the relation (9) yields the condition (RCSy), without being implied by it in general. For the
other duals one can obtain similar results with Theorem 3.12, too.

Remark 3.14.
In case € = 0 the assertion from Theorem 3.12 turns, via Remark 3.13, into an equivalence, improving [15, Theorem 4.2]
by removing the continuity assumptions on the functions involved.

4. Conclusions and further research

We provided new characterizations for e-duality gap statements (with € > 0) for a constrained optimization problem
and its Lagrange and Fenchel-Lagrange dual problems, respectively, by means of epigraphs and e-subdifferentials,
respectively. After formulating the results in the most general frameworks, with the functions taken only proper, we
added to them convexity and topological hypotheses, which led to extending several recent results on stable strong and
total duality for constrained optimization problems from [6-8, 15, 16] and in some cases to improving them by removing
the continuity and nonempty domain interior assumptions of the involved functions.

We intend to extend our investigations to other classes of optimization problems, for instance the ones containing
compositions of functions as considered in [5]. Moreover, an extension of the notion of a set closed regarding another
one (cf. [3-5]) in the direction of e-vertical closedness can be considered, too. Note that one can formulate also
e-optimality conditions statements for (P) and its considered dual problems, extending thus the corresponding optimality
conditions statements from [6, 7]. Moreover, e-Farkas type results can be given for the considered problem by combining
the statements from this paper with ideas from [10]. Nevertheless, by defining an (n, €)-saddle point of a function
L: XxY — R, where n,e > 0, to be some (x,7) € X x Y for which L(x, y)—n < L(x,7) < L(x,g)+eforall (x,y) € X x Y,
the connections between such points of the Lagrangian functions attached to the considered dual problems to (P,+) and
the e-duality gap for the corresponding primal-dual pair of problems can be investigated, too. An interesting question
posed to us by Dr. Radu I. Bot refers to a possible convergence of the e-optimal solutions of the dual problems towards
optimal solutions of theirs when ¢ tends to 0. This, together with the ideas mentioned above, remains subject to future
research.
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