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1. Preliminaries

Motivated by recent results on stable strong and total duality for constrained convex optimization problems in [2, 6, 7,9, 13, 17] and the ones on zero duality gap in [15, 16] we introduce in this paper several regularity conditions whichcharacterize ε-duality gap statements (with ε ≥ 0) for a constrained optimization problem and its Lagrange and Fenchel–Lagrange dual problems, respectively. The regularity conditions we provide in Section 2 are based on epigraphs, whilethe ones in Section 3 on ε-subdifferentials. In this way we extend many of the results in the mentioned papers, whichare recovered as special cases when ε = 0, delivering thus generalizations of the classical Farkas–Minkowski and
basic constraint qualifications. Moreover some statements in [6–8, 15, 16], which arise from our results in the special
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case ε = 0, are extended by removing convexity and topological hypotheses, while various assertions from [15, 16] areimproved by working in locally convex spaces instead of Banach spaces and removing the continuity and nonemptydomain interior assumptions of the involved functions.Consider two separated locally convex vector spaces X and Y and their continuous dual spaces X ∗ and Y ∗, endowedwith the weak∗ topologies w (X ∗, X ) and w (Y ∗, Y ) respectively. Some of the following notions and results, as well asthe statements we prove within in this paper, can be given in the more general framework of linear spaces, but in orderto avoid juggling with spaces we decided to consider only locally convex spaces. Let the nonempty closed convex cone
C ⊆ Y and its dual cone C ∗ = {y∗ ∈ Y ∗ : 〈y∗, y〉 ≥ 0, y ∈ C} be given, where we denote by 〈y∗, y〉 = y∗(y) thevalue at y of the continuous linear functional y∗. On Y we consider the partial ordering induced by C , “5C ”, defined by
z 5C y iff y − z ∈ C , z, y ∈ Y . To Y we attach a greatest element with respect to “5C ” denoted by ∞C which doesnot belong to Y and let Y • = Y ∪ {∞C}. Then for any y ∈ Y • one has y 5C ∞C and we consider on Y • the followingoperations: y +∞C = ∞C + y = ∞C and t ·∞C = ∞C for all y ∈ Y and all t ≥ 0. Moreover, for y∗ ∈ C ∗ we set
〈y∗, ∞C 〉 = +∞.Given a subset U of X , by clU we denote its closure in the corresponding topology, while its indicator function
δU : X → R = R ∪ {±∞} and respectively support function σU : X ∗ → R are defined as follows:

δU (x) = {0 if x ∈ U,+∞ otherwise, and σU (x∗) = sup
x∈U
〈x∗, x〉.

We define in the following a notion that extends the one of a closed set, needed for being able to provide generalizedclosedness type characterizations via epigraphs for ε-duality gap statements, extending thus the investigations begunin [11, 12] and continued later in many works such as [2, 5–9, 13, 15–17]. Note that the notion of an ε-closed set wasconsidered in the literature in different instances that have nothing in common with our research, see for instance [1, 14],while in [18, Definition 3.2] one can find the definition of a vertically closed set.
Definition 1.1.Let ε ≥ 0. A set U ⊆ X ×R is said to be ε-vertically closed if clU ⊆ U − (0, ε).
For a function f : X → R we have its domain and epigraph defined by dom f = {x ∈ X : f(x) < +∞} and epi f =
{(x, r) ∈ X×R : f(x) ≤ r}, respectively. We say that f is proper if f(x) > −∞ for all x ∈ X and dom f 6= ∅. The
conjugate of f regarding the set U ⊆ X is f∗U : X ∗ → R, given by f∗U (x∗) = sup{〈x∗, x〉 − f(x) : x ∈ U}.When U = X the conjugate regarding the set U is the classical (Fenchel–Moreau) conjugate function of f denoted by f∗.One can easily notice that δ∗U = σU . Between a function f : X → R and its conjugate regarding some set U ⊆ X , the
Young–Fenchel inequality holds, namely

f∗U (x∗) + f(x) ≥ 〈x∗, x〉, x ∈ U, x∗ ∈ X ∗.

Let f : X → R, x ∈ X with f(x) ∈ R and ε ≥ 0. The set ∂εf(x) = {x∗ ∈ X ∗ : f(u) − f(x) + ε ≥ 〈x∗, u − x〉, u ∈ X} iscalled the ε-subdifferential of f at x. When f(x) /∈ R or ε < 0 we take by convention ∂εf(x) = ∅.Given a proper function f : X → R, for all ε ≥ 0, x ∈ X and x∗ ∈ X ∗ one has
x∗ ∈ ∂εf(x) ⇐⇒ f∗(x∗) + f(x) ≤ 〈x∗, x〉+ ε.

For ε = 0, the ε-subdifferential turns out to be the classical (convex) subdifferential. For U = X , the set Nε
U (x) = ∂εδU (x)is called the ε-normal set of U at x ∈ X . When ε = 0, NU (x) is actually the (convex) normal cone of U at x.Given two proper functions f, h : X → R, their infimal convolution is

f�h : X → R, f�h(a) = inf {f(x) + h(a−x) : x ∈ X},
2021
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and it is called exact at some a ∈ X when there is x ∈ X such that f�h(a) = f(x) + h(a−x). There are notions givenfor functions with extended real values that can be formulated also for vector functions as follows.For a function g : X → Y • one has its domain domg = {x ∈ X : g(x) ∈ Y}. We say that g is proper if domg 6= ∅ and
C-convex if g(tx+(1−t)y) 5C tg(x)+ (1−t)g(y) for all x, y ∈ X and all t ∈ [0, 1]. For λ ∈ C ∗, we define (λg) : X → R,(λg)(x) = 〈λ, g(x)〉 for all x ∈ X . The C-epigraph of g is defined by epiC g = {(x, y) ∈ X×Y : y ∈ g(x) + C}. Wesay that g is C-epi-closed if epiC g is closed. If (λg) is lower semicontinuous for all λ ∈ C ∗ we say that g is positively
C-lower semicontinuous (also known as star C-lower semicontinuous in the literature).Let U be a nonempty subset of X and g : X → Y • a proper vector function. Denote A = {x ∈ U : g(x) ∈ −C} andassume this set non-empty. For a proper function f : X → R fulfilling A ∩ dom f 6= ∅ consider the optimization problem

inf
x∈A

f(x). (P)
We denote by v(P) the optimal objective value of the optimization problem (P). In the following we will write min (max)instead of inf (sup) when the corresponding infimum (supremum) is attained. Let us recall some results, needed later.
Lemma 1.2 (cf. [12]).
Let f, h : X → R be proper convex lower semicontinuous functions, with the intersection of their domains nonempty.
Then epi (f+h)∗ = cl epi (f∗�h∗) = cl (epi f∗+ epih∗).
Lemma 1.3 (cf. [6, 7]).
If U is closed convex and g is C-convex and C-epi-closed, one has

epi σA = cl(epi σU + ⋃
λ∈C∗

epi(λg)∗) = cl ⋃
λ∈C∗

epi(λg)∗U .
The hypotheses of Lemma 1.3 are sufficient to guarantee that A is a closed convex set. When f and δA are proper convexlower semicontinuous functions, one has by Lemma 1.2, epi (f+δA)∗ = cl(epi f∗+ epi σA). By Lemma 1.3, this is furtherequal to cl(epi f∗ + cl⋃λ∈C∗ epi(λg)∗U), which is actually cl(epi f∗ +⋃λ∈C∗ epi(λg)∗U). Analogously, one can show thatunder these hypotheses there holds epi (f+δA)∗ = cl(epi f∗ +⋃λ∈C∗ epi (λg)∗ + epi σU).For x∗ ∈ X ∗ we also consider the linearly perturbed optimization problem

inf
x∈A

[
f(x) + 〈x∗, x〉]. (Px∗)

To (Px∗) one can attach the Lagrange dual problem
sup
λ∈C∗

inf
x∈U

[
f(x) + 〈x∗, x〉+ (λg)(x)], (DL

x∗)
which can be equivalently written as sup

λ∈C∗
−
(
f+(λg))∗U (−x∗). (DL

x∗)
For λ ∈ C ∗, the inner minimization problem that appears in the first formulation of (DL

x∗) can be rewritten as
inf
x∈X

[
f(x) + 〈x∗, x〉+ δU (x) + (λg)(x)].

To this problem one can attach different Fenchel type dual problems, obtaining via (DL
x∗) some Fenchel–Lagrange typedual problems to (Px∗). The name Fenchel–Lagrange is given to the below dual problems because they are thus
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“combinations” of the classical Fenchel and Lagrange dual problems. Keeping together δU and (λg) one gets thefollowing Fenchel–Lagrange type dual problem to (Px∗):
sup
λ∈C∗
β∈X∗

[
−f∗(β)− (λg)∗U (−x∗−β)]. (Dx∗)

When f , (λg) and δU are separated, the following Fenchel–Lagrange type dual problem to (Px∗) is obtained:
sup
λ∈C∗
β,α∈X∗

[
−f∗(β)− (λg)∗(α)− σU (−x∗−α−β)]. (Dx∗)

When x∗ = 0 these duals to (P) are denoted simply by (DL), (D) and (D), respectively. Note that when f and δU areput together, one can obtain a third Fenchel–Lagrange dual to (Px∗), namely
sup
λ∈C∗
β∈X∗

[
−f∗U (β)− (λg)∗(−x∗−β)]. (D̃x∗)

We will not use it further, but the results given in this paper can be easily adapted for it, too.Between (P) and (D) one always has weak duality, i.e. v(P) ≥ v(D). When v(P) = v(D) we say that there is zero
duality gap between (P) and (D) and if (D) has moreover an optimal solution, the situation is called strong duality. If
v(P) − v(D) ≤ ε, with ε ≥ 0, we have ε-duality gap for (P) and (D). If one of these situations holds for (Px∗) and (Dx∗)for all x∗ ∈ X ∗, it will be called stable.
2. ε-duality gap statements involving epigraphs for Lagrange and Fenchel–
Lagrange duality

Motivated by the characterizations of the stable strong duality from [6, 7] we begin this section with several equivalentrepresentations of various instances of ε-duality gap for (P) and its duals by means of epigraphs.
Theorem 2.1.
Let f : X → R be proper and fulfilling A ∩ dom f 6= ∅ and ε ≥ 0. Then the condition

epi (f + δA)∗ ⊆ ⋃
λ∈C∗

(epi f∗+ epi(λg)∗+ epi σU )− (0, ε) (RCE)
holds if and only if for all x∗ ∈ X ∗ there exist λ ∈ C ∗ and α, β ∈ X ∗ such that

v(Px∗) ≤ −f∗(β)− (λg)∗(α)− σU (−x∗−β−α) + ε. (1)
Proof. (⇒) Let x∗ ∈ X ∗. We have v(Px∗) = −(f + δA)∗(−x∗), thus (−x∗, −v(Px∗)) ∈ epi(f + δA)∗. From (RCE) thereexist λ ∈ C ∗ and α, β ∈ X ∗ such that (β, f∗(β)) ∈ epi f∗, (α, (λg)∗(α)) ∈ epi(λg)∗, (−x∗−α −β, σU (−x∗−α −β)) ∈epi σU fulfilling

f∗(β) + (λg)∗(α) + σU (−x∗−α −β)− ε ≤ −v(Px∗),which yields (1).(⇐) Take now (−x∗, u) ∈ epi(f + δA)∗. This is equivalent to (f + δA)∗(−x∗) ≤ u and further to −u ≤ v(Px∗). Becauseof (1), there are some λ ∈ C ∗ and α, β ∈ X ∗ such that
−u ≤ −f∗(β)− (λg)∗(α)− σU (−x∗−α −β) + ε,
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which is equivalent to f∗(β) + (λg)∗(α) + σU (−x∗−α −β) ≤ u+ ε. But
(β, f∗(β)) + (α, (λg)∗(α)) + (−x∗−α −β, σU (−x∗−α −β)) = (

−x∗, f∗(β) + (λg)∗(α) + σU (−x∗−α −β)).
So, (−x∗, u) ∈ epi f∗ + epi(λg)∗ + epi σU − (0, ε). As (−x∗, u) ∈ epi (f + δA)∗ was arbitrarily chosen, validity of (RCE)follows.
Analogously, one can prove the following similar statement concerning the dual (Dx∗).
Corollary 2.2.
Let f : X → R be proper and fulfilling A ∩ dom f 6= ∅ and ε ≥ 0. The condition

epi(f+δA)∗ ⊆ ⋃
λ∈C∗

(epi f∗+ epi(λg)∗U )− (0, ε) (RCE)
holds if and only if for all x∗ ∈ X ∗ there exist λ ∈ C ∗ and β ∈ X ∗ such that v(Px∗) ≤ −f∗(β)− (λg)∗U (−x∗−β) + ε.

Moreover, for the Lagrange dual one has the following characterization.
Corollary 2.3.
Let f : X → R be proper and fulfilling A ∩ dom f 6= ∅ and ε ≥ 0. The condition

epi (f + δA)∗ ⊆ ⋃
λ∈C∗

epi (f +(λg))∗U − (0, ε) (RCEL)
holds if and only if for all x∗ ∈ X ∗ there exists λ ∈ C ∗ such that v(Px∗) ≤ −(f + (λg))∗U (−x∗) + ε.

Remark 2.4.The quantity in the right-hand side of (1) is not necessarily v(Dx∗) + ε, as the suprema in (Dx∗) are not shown to beattained at λ, α and β, respectively. Though, (1) implies v(Px∗) ≤ v(Dx∗) + ε and (λ, α, β) is an ε-optimal solution to(Dx∗). This applies to Corollaries 2.2 and 2.3, with the corresponding modifications.
If we take f(x) = 0 for all x ∈ X , (RCE) becomes

epi σA ⊆ ⋃
λ∈C∗

epi(λg)∗ + epi σU − (0, ε). (RCE0)
From Theorem 2.1 we obtain the following result.
Corollary 2.5.
The condition (RCE0) holds if and only if for each x∗ ∈ X ∗ there exist λ ∈ C ∗ and α ∈ X ∗ such that −σA(x∗) ≤
−σU (−x∗−α)− (λg)∗(α) + ε.

Using it, one can show the following statement.
Corollary 2.6.
The condition (RCE0) holds if and only if when the constraint set A is closed convex for each proper convex lower
semicontinuous function f : X → R which satisfies A ∩ dom f 6= ∅ and

epi f∗ + epi σA is closed, (CC)
for each x∗ ∈ X ∗ there exist λ ∈ C ∗ and α, β ∈ X ∗ such that v(Px∗) ≤ −f∗(β)− (λg)∗(α)− σU (−x∗−α −β) + ε.
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Proof. The sufficiency follows from the previous corollary by taking f linear and continuous. To prove the necessity,note that since −v(Px∗) = (f + δA)∗(−x∗), we have (−x∗, −v(Px∗)) ∈ epi (f + δA)∗. From Lemma 1.2 and (CC) there is
β ∈ X ∗ such that (β, f∗(β)) ∈ epi f∗, (−x∗−β, σU (−x∗−β)) ∈ epi σA fulfilling f∗(β) + σA(−x∗−β) = −v(Px∗). ByCorollary 2.5, relation (RCE0) yields that there are some λ ∈ C ∗ and α ∈ X ∗ such that −σA(−x∗−β) ≤ −σU (−x∗−α)−(λg)∗(α −β) + ε. Consequently, v(Px∗) ≤ −f∗(β)− σU (−x∗−α)− (λg)∗(α −β) + ε.
Remark 2.7.When f(x) = 0 for all x ∈ X both (RCE) and (RCEL) collapse into the same condition, for which statements similar toCorollaries 2.5 and 2.6 can be analogously proven.
Adding convexity and topological hypotheses to the functions and sets considered in Theorem 2.1, one obtains the belowstatement. Analogously, one can derive similar statements from its consequences and analogous assertions for the otherduals presented above.
Theorem 2.8.
Let f : X → R be a proper convex lower semicontinuous function, g : X → Y • a proper C-convex and C-epi-closed vector
function and U ⊆ X a closed convex set fulfilling A∩dom f 6= ∅, and ε ≥ 0. Then the set

⋃
λ∈C∗ (epi f∗+ epi(λg)∗+ epi σU )

is ε-vertically closed if and only if for all x∗ ∈ X ∗ there exist λ ∈ C ∗ and α, β ∈ X ∗ such that (1) holds.

Remark 2.9.If ε = 0, Theorem 2.8 turns out to be [6, Theorem 1]. Adding the necessary topological and convexity hypotheses toCorollary 2.2, one rediscovers in case ε = 0 [6, Theorem 2], while after the same treatment Corollary 2.3 collapsesinto [7, Theorem 1]. Moreover, Corollary 2.6 rediscovers and extends towards stable strong duality [6, Theorem 4] andanalogously one can rediscover and sometimes generalize the similar statements from [6, 7] for the other consideredduals to (P).
Inspired by [15, 16] we give other regularity conditions which characterize ε-duality gap statements for (P) and its duals.For this, let us define the functions h�, h�U : X ∗ → R by h�(x∗) = infλ∈C∗ (λg)∗(x∗) and h�U (x∗) = infλ∈C∗ (λg)∗U (x∗), for
x∗ ∈ X ∗. From the definitions it follows that ⋃λ∈C∗ epi(λg)∗ ⊆ epih�, respectively ⋃λ∈C∗ epi(λg)∗U ⊆ epih�U .
Lemma 2.10.
If g is C-convex and U is convex, the function h�U is proper convex. Moreover, if g is also C-epi-closed and U additionally
closed, it holds epi σA = cl epih�U .

Proof. The properness and convexity of h�U follow analogously to the properties corresponding of h� shown in[15, Theorem 3.1]. As ⋃λ∈C∗ epi(λg)∗U ⊆ epih�U , Lemma 1.3 yields epi σA ⊆ cl epih�U .On the other hand, for any λ ∈ C ∗ we have δA(x) ≥ (λg)(x) + δU (x) for all x ∈ X , which implies σA(x∗) ≤ (λg)∗U (x∗) forall x∗ ∈ X ∗, followed by σA(x∗) ≤ infλ∈C∗ (λg)∗U (x∗) = h�U (x∗). This implies that epi σA ⊇ cl epih�U .
Using Lemma 2.10, for f proper convex lower semicontinuous, g moreover C-convex and C-epi-closed and U also closedconvex, we get epi (f + δA)∗ = cl (epi f∗+ epih�U ) = cl epi (f∗�h�U ) = cl epi (f∗�h��σU ). (2)Now let us give some other ε-duality gap characterizations by means of h� and h�U .
Theorem 2.11.
Let f : X → R be proper and fulfilling A ∩ dom f 6= ∅ and ε ≥ 0. The condition

epi(f + δA)∗ ⊆ epi (f∗�h��σU )− (0, ε) (RCI)
holds if and only if there is stable ε-duality gap for the problems (P) and (D), i.e. one has ε-duality gap for the pair of
problems (Px∗) and (Dx∗) for all x∗ ∈ X ∗.
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Proof. (⇒) Let x∗ ∈ X ∗. We have v(Px∗) = −(f + δA)∗(−x∗), thus (−x∗, −v(Px∗)) ∈ epi (f + δA)∗. From (RCI) wehave
(f∗�h��σU )(−x∗) = inf

α,β∈X∗

[
f∗(β) + h�(α) + σU (−x∗−α −β)]− ε ≤ −v(Px∗)

⇐⇒ inf
α,β∈X∗

[ inf
λ∈C∗

(
f∗(β) + (λg)∗(α) + σU (−x∗−α−β))]− ε ≤ −v(Px∗)

⇐⇒ − sup
λ∈C∗
α,β∈X∗

[
−f∗(β)− (λg)∗(α)− σU (−x∗−α −β)] ≤ −v(Px∗) + ε

⇐⇒ −v(Dx∗) ≤ −v(Px∗) + ε ⇐⇒ v(Px∗) ≤ v(Dx∗) + ε.

So, we get ε-duality gap for the pair of problems (Px∗) and (Dx∗).(⇐) Let x∗ ∈ X ∗. The ε-duality gap inequality for (Px∗) and (Dx∗) is equivalent to (f∗�h��σU )(−x∗)− ε ≤ −v(Px∗) =(f + δA)∗(−x∗). As x∗ ∈ X ∗ was arbitrarily taken one gets epi (f + δA)∗ ⊆ epi (f∗�h��σU )− (0, ε).
One can give a similar statement for (D).
Corollary 2.12.
Let f : X → R be proper and fulfilling A ∩ dom f 6= ∅ and ε ≥ 0. The condition

epi(f+ δA)∗ ⊆ epi(f∗�h�U )− (0, ε) (RCI)
holds if and only if there is stable ε-duality gap for the problems (P) and (D), i.e. one has ε-duality gap for the pair of
problems (Px∗) and (Dx∗) for all x∗ ∈ X ∗.

Remark 2.13.If X and Y are Fréchet spaces, f is proper convex lower semicontinuous, g is C-convex and positively C-lower semi-continuous, U closed convex and 0 ∈ sqri (dom f − domg ∩ U), where by sqri one denotes the strong quasi relative
interior of the corresponding set, then the condition (RCI) is satisfied if and only if there is stable ε-duality gap for theproblems (P) and (DL).
A characterization of the Lagrange ε-duality gap without the additional hypotheses from Remark 2.13 follows.
Corollary 2.14.
Let f : X → R be proper and fulfilling A ∩ dom f 6= ∅ and ε ≥ 0. The condition

epi(f+δA)∗ ⊆ epi inf
λ∈C∗

(f+λg)∗U − (0, ε) (RCIL)
holds if and only if there is stable ε-duality gap for the problems (P) and (DL), i.e. one has ε-duality gap for the pair
of problems (Px∗) and (DL

x∗) for all x∗ ∈ X ∗.

If we take f(x) = 0 for all x ∈ X , (RCI) becomes
epi σA ⊆ epi (h��σU )− (0, ε) (RCI0)

and we obtain the following results.

2026



H.-V. Boncea, S.-M. Grad

Corollary 2.15.
The condition (RCI0) holds if and only if for each x∗ ∈ X ∗,

−σA(x∗) ≤ sup
α∈C∗
{−σU (−x∗−α)− h�(α)}+ ε.

Corollary 2.16.
The condition (RCI0) holds if and only if when A is closed convex for each proper convex lower semicontinuous function
f : X → R satisfying A ∩ dom f 6= ∅ and f∗�δ∗A being lower semicontinuous, for all x∗ ∈ X ∗ one has

v(Px∗) ≤ sup
λ∈C∗
α,β∈X∗

{
−f∗(β)− (λg)∗(α)− σU (−x∗−α−β)} + ε.

Adding convexity and topological hypotheses to the functions and sets considered in Theorem 2.11, one obtains thebelow statement. Analogously, one can derive similar statements from its consequences and analogous assertions forthe other duals presented above.
Theorem 2.17.
Let f : X → R be a proper convex lower semicontinuous function, g : X → Y • a proper C-convex and C-epi-closed vector
function and U ⊆ X a closed convex set fulfilling A∩dom f 6= ∅, and ε ≥ 0. Then the set epi (f∗�h��σU ) is ε-vertically
closed if and only if there is stable ε-duality gap for the problems (P) and (D).
Remark 2.18.In case ε = 0 and U = X , Theorem 2.17 and the similar statement obtained when adding convexity and topologicalhypotheses to Corollary 2.12 extend the Fenchel–Lagrange analogous of [16, Theorem 3.1], while Remark 2.13 andCorollary 2.14 (with the corresponding convexity and topological hypotheses) show that [16, Theorem 3.1] actually holdsin a more general framework, i.e. without taking the function g continuous. Analogously, Corollary 2.16 extends andimproves, respectively, by dropping the strong nonempty domain interior and continuity hypotheses on the involvedfunctions, statements like [15, Theorem 4.1] and [16, Corollary 3.1].
Now, let us give other stable ε-duality gap statements for (P) and its duals, by making use of other regularity conditionsinspired by (2).
Theorem 2.19.
Let f : X → R be proper and fulfilling A ∩ dom f 6= ∅ and ε ≥ 0. The condition

epi (f + δA)∗ ⊆ epi f∗ + epih� + epi σU − (0, ε) (RCP)
holds if and only if for all x∗ ∈ X ∗ there exist α, β ∈ X ∗ such that

v(Px∗) ≤ sup
λ∈C∗

{
−f∗(β)− (λg)∗(α)− σU (−x∗−β−α)} + ε. (3)

Proof. Let x∗ ∈ X ∗. We have v(Px∗) = −(f+δA)∗(−x∗), thus (−x∗, −v(Px∗)) ∈ epi(f+δA)∗. From (RCP) there exist
α, β ∈ X ∗ such that (β, f∗(β)) ∈ epi f∗, (α, h�(α)) ∈ epih�, (−x∗−α −β, σU (−x∗−α − β)) ∈ epi σU fulfilling

f∗(β) + h�(α) + σU (−x∗−α −β)− ε ≤ −v(Px∗) (4)
and we obtain that v(Px∗) ≤ −f∗(β)− h�(α)− σU (−x∗−β−α) + ε if and only if
v(Px∗) ≤ −f∗(β) + sup

λ∈C∗
{−(λg)∗(α)} − σU (−x∗−β−α) + ε

⇐⇒ v(Px∗) ≤ sup
λ∈C∗

{
−f∗(β)− (λg)∗(α)− σU (−x∗−β−α)} + ε.

Vice versa, as the hypothesis means that (4) holds for all x∗ ∈ X ∗, the validity of (RCP) follows.
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A similar statement can be given for (D), too.
Corollary 2.20.
Let f : X → R be proper and fulfilling A ∩ dom f 6= ∅ and ε ≥ 0. The condition

epi (f+δA)∗ ⊆ epi f∗ + epih�U − (0, ε) (RCP)
holds if and only if for all x∗ ∈ X ∗ there exists β ∈ X ∗ such that

v(Px∗) ≤ sup
λ∈C∗

{
−f∗(β)− (λg)∗U (−x∗−β)} + ε.

Note that the analogous result for (DL) collapses into Corollary 2.14 and when ε = 0 it and both Theorem 2.19 andCorollary 2.20 become “pure” stable zero duality gap statements.Adding convexity and topological hypotheses to the functions and sets considered in Theorem 2.19, one obtains thebelow statement. Analogously, one can derive similar statements from its consequences and analogous assertions forthe other duals.
Theorem 2.21.
Let f : X → R be a proper convex lower semicontinuous function, g : X → Y • a proper C-convex and C-epi-closed vector
function and U ⊆ X a closed convex set fulfilling A ∩ dom f 6= ∅, and ε ≥ 0. Then the set epi f∗ + epih� + epi σU is
ε-vertically closed if and only if for all x∗ ∈ X ∗ there exist α, β ∈ X ∗ such that (3) holds.

3. ε-duality gap statements involving ε-subdifferentials for Lagrange and
Fenchel–Lagrange duality

We introduce regularity conditions to characterize ε-duality gap statements, using ε-subdifferentials, too, when theexistence of an ε-optimal solution to the primal problem is assumed. Recall that, for x∗ ∈ X ∗, x ∈ A ∩ dom f is an
ε-optimal solution to (Px∗) if and only if 0 ∈ ∂ε(f+ x∗+δA)(x), which is equivalent to −x∗ ∈ ∂ε(f+δA)(x).
Theorem 3.1.
Let for a proper function f : X → R, x ∈ A ∩ dom f and ε ≥ 0. Then

∂ε(f+δA)(x) = ⋃
λ∈C∗

εi≥0, i=1,2,3
ε1+ε2+ε3=ε+(λg)(x)

(
∂ε1 f(x) +Nε2

U (x) + ∂ε3 (λg)(x)) (RCL)

holds if and only if for all x∗ ∈ X ∗ for which x is an ε-optimal solution to (Px∗) there exist λ ∈ C ∗ and α, β ∈ X ∗ such
that

f(x) + 〈x∗, x〉 ≤ −f∗(β)− (λg)∗(α)− σU (−x∗−β−α) + ε. (5)
Proof. “⇒” Let x∗ ∈ X ∗ be such that −x∗ ∈ ∂ε(f+δA)(x). Because the condition (RCL) is satisfied at x, there aresome λ ∈ C ∗ and ε1, ε2, ε3 ≥ 0 such that −x∗ ∈ ∂ε1 f(x) +Nε2

U (x) + ∂ε3 (λg)(x) and ε1 + ε2 + ε3 = ε+ (λg)(x). Thus thereexist β ∈ ∂ε1 f(x) and α ∈ ∂ε3 (λg)(x) such that −x∗ − α − β ∈ Nε2
U (x), i.e.

f(x) + f∗(β) ≤ 〈β, x〉+ ε1, (λg)∗(α) + (λg)(x) ≤ 〈α, x〉+ ε3,
σU (−x∗ − β − α) + δU (x) ≤ 〈−x∗−β−α, x〉+ ε2. (6)
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Summing up these inequalities we get
f(x) + f∗(β) + (λg)∗(α) + (λg)(x) + σU (−x∗−β−α) + δU (x) ≤ −〈x∗, x〉+ ε1 + ε2 + ε3,

followed, as x ∈ U , by (5).“⇐” Take now −x∗ ∈ ∂ε(f+δA)(x). From (5) there are some λ ∈ C ∗ and α , β ∈ X ∗ such that
f(x) + 〈x∗, x〉 ≤ −f∗(β)− σU (−x∗−β−α)− (λg)∗(α) + ε.

This can be rewritten as
f(x) + f∗(β)− 〈β, x〉+ δU (x) + σU (−x∗−β−α)− 〈−x∗−β−α, x〉+ (λg)(x) + (λg)∗(α)− 〈α, x〉 ≤ ε + (λg)(x).

Using also the Young–Fenchel inequality, it follows that there exist ε1, ε2, ε3 ≥ 0, with ε1 + ε2 + ε3 = ε+ (λg)(x), suchthat (6) hold. Consequently, β ∈ ∂ε1 f(x), α ∈ ∂ε3 (λg)(x), −x∗ − β − α ∈ Nε2
U (x). Thus, the inclusion “⊆” in (RCL) holdsand, since, “⊇” is always true, we obtain the validity of (RCL).

Similar statements can be given for (D) and (DL), too.
Corollary 3.2.
Let a proper function f : X → R, x ∈ A ∩ dom f and ε ≥ 0. Then

∂ε(f + δA)(x) = ⋃
λ∈C∗

εi≥0, i=1,2
ε1+ε2=ε+(λg)(x)

(
∂ε1 f(x) + ∂ε2 (δU + (λg))(x)) (RCL)

holds if and only if for each x∗ ∈ X ∗ for which x is an ε-optimal solution to (Px∗) there exist λ ∈ C ∗ and β ∈ X ∗ such
that

f(x) + 〈x∗, x〉 ≤ −f∗(β)− (λg)∗U (−x∗−β) + ε.

Corollary 3.3.
Let for a proper function f : X → R, x ∈ A ∩ dom f and ε ≥ 0. Then

∂ε(f+δA)(x) = ⋃
λ∈C∗

∂ε+(λg)(x)(f+δU +(λg))(x) (RCLL)
holds if and only if for each x∗ ∈ X ∗ for which x is an ε-optimal solution to (Px∗) there exists λ ∈ C ∗ such that

f(x) + 〈x∗, x〉 ≤ (f+(λg))∗U (−x∗) + ε.

Remark 3.4.The quantity in the left-hand side of (5) is not necessarily v(P), while in the right-hand side one has something smallerthan v(Dx∗) + ε. However, (5) implies v(Px∗) ≤ v(Dx∗) + ε and (λ, α, β) is an ε-optimal solution to (Dx∗). This applies toCorollaries 3.2 and 3.3, with the corresponding modifications.
Remark 3.5.Taking ε = 0, Theorem 3.1 becomes [6, Theorem 5] without the topological and convexity assumptions on the involvedfunctions, Corollary 3.2 is [6, Theorem 6], while Corollary 3.3 turns into [7, Theorem 3]. Note also that by considering (RCL)for f(x) = 0 whenever x ∈ X one can extend (analogously to Theorem 3.12, see also Remarks 3.13 and 3.14) [6, Theorem 9]towards ε-duality gap and the same can be done for their counterparts corresponding to the other considered duals.
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As mentioned in Remark 3.4, the statements given above are not “pure” characterizations of the stable zero dualitygap for (P) and its corresponding dual problems. In the following we provide subdifferential formulae that characterize
ε-duality gap statements which have in the right-hand side the optimal objective value of the duals plus ε.
Theorem 3.6.
Let for a proper function f : X → R, x ∈ A ∩ dom f and ε ≥ 0. Then

∂ε(f + δA)(x) = ⋂
η>0

⋃
λ∈C∗

εi≥0, i=1,2,3
ε1+ε2+ε3=ε+η+(λg)(x)

(
∂ε1 f(x) +Nε2

U (x) + ∂ε3 (λg)(x)) (RCS)

holds if and only if for each x∗ ∈ X ∗ for which x is an ε-optimal solution to (Px∗),
f(x) + 〈x∗, x〉 ≤ sup

λ∈C∗
α,β∈X∗

{
−f∗(β)− σU (−x∗−β−α)− (λg)∗(α)} + ε. (7)

Proof. “⇒” Let x∗ ∈ X ∗ such that −x∗ ∈ ∂ε(f+δA)(x). Because the condition (RCS) is satisfied at x, for each η > 0there are some λη ∈ C ∗ and ε1, ε2, ε3 ≥ 0 such that −x∗ ∈ ∂ε1 f(x)+Nε2
U (x)+∂ε3 (ληg)(x) and ε1+ε2+ε3 = ε+η+(ληg)(x).Thus there are some βη ∈ ∂ε1 f(x) and αη ∈ ∂ε3 (ληg)(x) such that −x∗ − αη − βη ∈ Nε2

U (x), i.e.
f(x) + f∗(βη) ≤ 〈βη, x〉+ ε1, (ληg)∗(αη) + (ληg)(x) ≤ 〈αη, x〉+ ε3,
σU
(
−x∗−βη−αη

) + δU (x) ≤ 〈−x∗−βη−αη, x〉 + ε2. (8)
Summing up these inequalities we get

f(x) + f∗(βη) + (ληg)∗(αη) + (ληg)(x) + σU
(
−x∗−βη−αη

) + δU (x) ≤ −〈x∗, x〉+ ε1 + ε2 + ε3,
followed, as x ∈ U , by f(x) + 〈x∗, x〉 ≤ −f∗(βη)− (ληg)∗(αη)− σU(−x∗−βη−αη) + ε + η, which implies

f(x) + 〈x∗, x〉 ≤ sup
λ∈C∗
α,β∈X∗

{
−f∗(β)− (λg)∗(α)− σU (−x∗−β−α)} + ε + η.

Letting η converge towards 0, (7) follows.“⇐” Take now −x∗ ∈ ∂ε(f+δA)(x). Let η > 0. From (7) there are some λη ∈ C ∗ and αη, βη ∈ X ∗ such that
f(x) + 〈x∗, x〉 ≤ −f∗(βη)− σU(−x∗−βη−αη)− (ληg)∗(αη) + η+ ε. As x ∈ U , this can be rewritten as

f(x) + f∗(βη) + δU (x) + σU
(
−x∗−βη−αη

) + (ληg)(x) + (ληg)∗(αη) + 〈x∗, x〉 ≤ η+ ε + (ληg)(x),
which implies that

f(x) + f∗(βη)− 〈βη, x〉+ δU (x) + σU
(
−x∗−βη−αη

)
−
〈
−x∗−βη−αη, x

〉 + (ληg)(x) + (ληg)∗(αη)− 〈αη, x〉 ≤ η+ ε + (ληg)(x).
Using also the Young–Fenchel inequality, it follows that there exist ε1, ε2, ε3 ≥ 0, with ε1 + ε2 + ε3 = η+ ε+ (ληg)(x),such that (8) holds. So, we get that βη ∈ ∂ε1 f(x), αη ∈ ∂ε3 (ληg)(x), −x∗ − βη − αη ∈ Nε2

U (x). Thus, the inclusion “⊆”in (RCS) holds and, since, “⊇” is always true, (RCS) is valid.
Remark 3.7.Relation (7) implies v(Px∗) ≤ v(Dx∗) + ε, without being a consequence of it in general.
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Similar statements can be given for (D) and (DL), too.
Corollary 3.8.
Let for a proper function f : X → R, x ∈ A ∩ dom f and ε ≥ 0. Then

∂ε(f+δA)(x) = ⋂
η>0

⋃
λ∈C∗

εi≥0, i=1,2
ε1+ε2=ε+η+(λg)(x)

(
∂ε1 f(x) + ∂ε2 (δU + (λg))(x)) (RCS)

holds if and only if for each x∗ ∈ X ∗ for which x is an ε-optimal solution to (Px∗),
f(x) + 〈x∗, x〉 ≤ sup

λ∈C∗
β∈X∗

{
−f∗(β)− (λg)∗U (−x∗−β)} + ε.

Corollary 3.9.
Let for a proper function f : X → R, x ∈ A ∩ dom f and ε ≥ 0. Then

∂ε(f + δA)(x) = ⋂
η>0

⋃
λ∈C∗

∂ε+η+(λg)(x)(f + δU + (λg))(x) (RCSL)
holds if and only if for each x∗ ∈ X ∗ for which x is an ε-optimal solution to (Px∗),

f(x) + 〈x∗, x〉 ≤ sup
λ∈C∗

inf
x∈U

[
f(x) + 〈x∗, x〉+ (λg)(x)] + ε.

Remark 3.10.When f(x) = 0 for all x ∈ X , for x ∈ A the condition (RCS) becomes
Nε

A(x) = ⋂
η>0

⋃
λ∈C∗

εi≥0, i=1,2
ε1+ε2=ε+η+(λg)(x)

(
Nε1
U (x) + ∂ε2 (λg)(x)). (RCS0)

We also consider the condition
Nε′

A(x) = ⋂
η>0

⋃
λ∈C∗

εi≥0, i=1,2
ε1+ε2=ε′+η+(λg)(x)

(
Nε1
U (x) + ∂ε2 (λg)(x)), ε′ ∈ [0, ε]. (RCS′0)

We have the next result, as a direct consequence of Theorem 3.6, which characterizes the ε-Fenchel–Lagrange dualitygap for optimization problems consisting in minimizing linear functionals that have an ε-minimum over A at x.
Corollary 3.11.
For x ∈ A, the condition (RCS0) holds if and only if for each x∗ ∈ X ∗ which has an ε-minimum over A at x one has

〈x∗, x〉 ≤ sup
λ∈C∗
α∈X∗

{−σU (−x∗−α)− (λg)∗(α)}+ ε.

The next theorem gives via (RCS0) at some x ∈ A an ε-duality gap statement for convex optimization problems consistingin minimizing over the set A of proper convex lower semicontinuous functions f : X → R which attain an ε-minimum over
A at x and fulfil the condition

f∗�δ∗A is lower semicontinuous and exact at 0, (FRC)
and their Fenchel–Lagrange type dual problems.
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Theorem 3.12.
Let f : X → R be a proper convex lower semicontinuous function, A be closed convex and ε ≥ 0. When (FRC) is fulfilled,
x ∈ A ∩ dom f is an ε-optimal solution to (P) and the condition (RCS′0) holds, then

f(x) ≤ sup
λ∈C∗
α,β∈X∗

{
−f∗(β)− (λg)∗(α)− σU (−α −β)} + ε. (9)

Proof. Take a function f as requested in the hypothesis. We have f(x) ≤ −(f + δA)∗(0) + ε and (FRC) guaranteesthat there is some β ∈ X ∗ such that (f + δA)∗(0) = f∗(β) + σA(−β). Further we get
f(x) + f∗(β) + σA(−β) + δA(x) ≤ 〈β, x〉+ 〈−β, x〉+ ε,

therefore there exist ε1, ε2 ≥ 0 with ε1 + ε2 = ε such that β ∈ ∂ε1 f(x) and −β ∈ Nε2
A (x). By (RCS′0) for each η > 0there are some λη ∈ C ∗ and ε3, ε4 ≥ 0 with ε3 + ε4 = ε2 + (ληg)(x) + η such that −β ∈ ∂ε3 (ληg)(x) + Nε4

U (x). Thisimplies that there exists α ∈ X ∗ such that α ∈ ∂ε3 (ληg)(x) and −α − β ∈ Nε4
U (x), so we have

f(x) + f∗(β) + δU (x) + σU (−α−β) + (ληg)(x) + (ληg)∗(α)
≤ 〈β, x〉 − 〈α+β, x〉+ 〈α, x〉+ ε1 + ε3 + ε4 + η = ε1 + ε2 + (ληg)(x) + η.

Further f(x) ≤ −f∗(β)− (ληg)∗(α)− σU (−α−β) + ε + η, which yields
f(x) ≤ sup

λ∈C∗
α,β∈X∗

{
−f∗(β)− (λg)∗(α)− σU (−α−β)} + ε + η.

Letting η converge towards 0, the proof is complete.
Remark 3.13.In the preceding theorem, the relation (9) yields the condition (RCS0), without being implied by it in general. For theother duals one can obtain similar results with Theorem 3.12, too.
Remark 3.14.In case ε = 0 the assertion from Theorem 3.12 turns, via Remark 3.13, into an equivalence, improving [15, Theorem 4.2]by removing the continuity assumptions on the functions involved.
4. Conclusions and further research

We provided new characterizations for ε-duality gap statements (with ε ≥ 0) for a constrained optimization problemand its Lagrange and Fenchel–Lagrange dual problems, respectively, by means of epigraphs and ε-subdifferentials,respectively. After formulating the results in the most general frameworks, with the functions taken only proper, weadded to them convexity and topological hypotheses, which led to extending several recent results on stable strong andtotal duality for constrained optimization problems from [6–8, 15, 16] and in some cases to improving them by removingthe continuity and nonempty domain interior assumptions of the involved functions.We intend to extend our investigations to other classes of optimization problems, for instance the ones containingcompositions of functions as considered in [5]. Moreover, an extension of the notion of a set closed regarding anotherone (cf. [3–5]) in the direction of ε-vertical closedness can be considered, too. Note that one can formulate also
ε-optimality conditions statements for (P) and its considered dual problems, extending thus the corresponding optimalityconditions statements from [6, 7]. Moreover, ε-Farkas type results can be given for the considered problem by combiningthe statements from this paper with ideas from [10]. Nevertheless, by defining an (η, ε)-saddle point of a function
L : X ×Y → R, where η, ε ≥ 0, to be some (x, y) ∈ X×Y for which L(x, y)−η ≤ L(x, y) ≤ L(x, y)+ε for all (x, y) ∈ X×Y ,the connections between such points of the Lagrangian functions attached to the considered dual problems to (Px∗) andthe ε-duality gap for the corresponding primal-dual pair of problems can be investigated, too. An interesting questionposed to us by Dr. Radu I. Boţ refers to a possible convergence of the ε-optimal solutions of the dual problems towardsoptimal solutions of theirs when ε tends to 0. This, together with the ideas mentioned above, remains subject to futureresearch.
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