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1. Introduction

Algebraic Geometry entered adulthood when its intellectual energies, traditionally committed to find concrete solutions of
algebraic equations (i.e., points of an arithmetic space), began to wonder about the structure of the equations themselves
(i.e., ideals in rings over arithmetic fields). The theory of nonlinear PDEs underwent a similar development, though
highly ramified and dependent on the intermittent and diversified impulses coming from natural sciences, and it is still
inappropriate to speak about “the” theory of nonlinear PDEs, for none of the proposed frameworks was enthusiastically
embraced by the mainstream. The reader may find relevant historical information, as well as an exhaustive list of
references in the 2010 review [7].

This paper is committed to the perspective that (smooth) solutions of a (reqular enough) system of nonlinear PDEs in
n independent variables (henceforth called equation, for short) are to be interpreted as the maximal integral submanifolds
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(henceforth called leaves) of an n-dimensional involutive distribution on a pro-finite manifold, and adheres to the
philosophy that relevant invariants of the equation are encoded by an appropriate cohomological theory, possibly twisted
with nonlocal coefficients, called characteristic or leafwise cohomology (of the equation). In such a framework, the space
of leaves itself, which is (as a rule) quite bad-behaved, can be put aside, and the focus diverted to the characteristic
cohomologies of the foliation. We shall use the word “secondary” (following [15]) as a synonymous of “leafwise” in the
pro-finite context! and we adopt the same framework and terminology which can be found, e.g., in the introductory
section of [17] (for example, a secondary point is just a leaf, a secondary manifold is the leaf space of a foliation over a
pro-finite manifold, a secondary map is a map preserving leaves, etc.).

A —
NS

n-dimensional submanifolds of E <= leaves of J*(E, n) (1)

So, the “solution space” of an equation can be seen as a secondary submanifold of the empty equation? J*(E, n), since
the graphs of the solutions of the former correspond to the leaves of the latter (1). Nonetheless, it is quite evident that
the same equation dictates restrictions also on non-maximal integral submanifolds: indeed, by definition, a non-maximal
integral submanifold is contained into a leaf, and among leaves there are the solutions. In this paper we propose a very
natural geometric framework where (n —1)-dimensional integral submanifolds (henceforth called small leaves) coexist
with the maximal ones, study its structure, and reveal some interesting properties of its characteristic cohomology. Small
leaves are nothing but the geometric counterparts of infinite-order Cauchy data (Section 8), taking prominent roles in
the theory of nonlinear PDEs, calculus of variations, field theory, etc., and, in our approach, they can be treated on the
same footing as solutions. To this end, it is compulsory to “nest” one jet space into another (2), much as, in another
context, flag manifolds are constructed out of nested Grassmmannians.

= Y

(n —1)-dimensional submanifolds of a leaf L < J*(E, n) leaves of J*(L,n—1)

Once Cauchy data and solutions of a PDE are framed in the same secondary context, it becomes natural to perform
algebro-geometric manipulations which mix secondary notions of horizontal degree n with ones of horizontal degree
n—1. For example, a boundary variational integral (i.e., a secondary function of horizontal degree n—1) can be
combined with a variational integral (i.e., a secondary function of horizontal degree n), and from their interaction it
arises, in a surprisingly straightforward way, a general notion of transversality conditions (Section 11).

T We keep the distinction between foliations of finite and pro-finite manifolds, due to the failure of the key Frobenius

theorem on the latter.
2 This is the reason why, sometimes, a leaf of J* (E, n) is also called a “solution.”
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Structure of the paper

In Section 2 we define special subsets of the jet bundle, needed to associate with a map between manifolds a map
between the corresponding jet bundles. This will allow to speak of “projectable” and, in particular, of “horizontal” jets
later on, and hence to be able to deal with the jet bundles over pro-finite manifolds.

Section 3 contains the well-known material about Grassmannian and flag manifolds, with the focus on the universal
sequence associated to a Grassmannian and the canonical bundles over flag manifolds. These notions are at the heart
of the definition of 1°' order jet bundles and flag jet bundles, respectively.

In Section 4 we introduce a class of equations (given, in coordinates, by (14) and (15)) which, for n independent variables,
constitute the key ingredient to define higher-order jet bundles out of lower-order ones, and, for n —1 independent
variables, lead straightforwardly to the notion of a jet of a Cauchy datum. These are just examples of equations of
involutive planes of a distribution.

Inheritance of involutivity allows to mimic the definition of a flag manifold and to introduce, in a similar fashion, higher-
order flag jet bundles J¥(E, n,n —1). In Section 5, besides the conceptual definition, two natural coordinate systems are
proposed, stemming from the fundamental equation (20), which will be useful later on for the description of the canonical
bundles associated with J*(E,n,n—1).

The notion of the 1% jet of an (n — 1)-dimensional involutive plane is “almost” the same as the notion of a flag jet, were,
as usual in the theory of jet bundles, “almost” means that the desired property holds correctly only on the inverse limit,
i.e., for infinite jets. Section 6 clarifies this relationship through the fundamental diagram (26). The advantage with this
new point of view is that involutive planes, unlike flag jets, are naturally understood as solutions of an equation, which
we denote by in_1(6).

Having introduced flag jets was not a mere exercise, since they carry a natural normal bundle, which is essential to
discover the structure of the space of Cauchy data. The idea, sketched in Section 7 by introducing the bundle of infinite-
order normal directions, is that the space of Cauchy data can be seen as the space of sections of an (infinite-dimensional)
bundle over a fixed Cauchy value, whose fiber coordinates capture the ideas of “purely normal derivatives”.

In Section 8, after having given the formal definitions of finite and infinite-order Cauchy data, it is shown how a higher-
order Cauchy datum can be constructed “over” a lower-order one, by using a section of a suitable normal bundle, where
“over” means “projecting onto”. This is the next step towards the clarification of the structure of the space of infinite-order
Cauchy data.

The central result of the paper, Theorem 9.1, can be found in the last section of theoretical character, Section 9. It
()

implies that the pro-finite manifold J,”(C) gives rise to three distinct secondary manifolds, one whose points are the
Cauchy data, another whose points are the solutions, and the last whose points are (n — 1)-dimensional submanifolds
of solutions, thus providing a natural common framework for these three apparently heterogeneous entities. Most
importantly, it shows that the (secondary) fibers of the naturally defined maps from one secondary manifold to the
other, are, in turn, very simple secondary manifolds, namely empty equations. Handy coordinates, indispensable for
applications, are also introduced here. The final comments on Theorem 9.1 are collected in Section 10, together with

the envisaged consequences and applications.

In the last Section 11, we present a variational problem simultaneously involving Lagrangians with n and n —1 inde-
pendent variables, and we test it on the toy model given by a simple 1-dimensional variational problem with constrained
endpoints.

Notation and conventions

Even if we did our best to avoid proprietary notation, we must warn the reader about a somewhat extreme “slang” we are
going to use throughout this paper, in line with the most recent works on the subject (see, e.g., [17]). “P is an M-module”
means that P is the module of sections of a bundle 7 over M. Then the meaning of expressions like P®y Q and
Homy (P, Q) is clear. We use both 7, and E, as synonymous of 7' (x), where 7 is a fibration of £. By a “plane in V"
we mean just a vector subspace of V; similarly, a “plane in E” is a subspace of some tangent space to the manifold E.
The term “space” without modifier (like the one appearing in the title of this paper) always means “secondary manifold”.
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We use the term “leaf” for an n-dimensional integral submanifold of the Cartan distribution on J*(E, n), and we denote
it by L. A codimension-one submanifold of a leaf is called a “small leaf”, and denoted by X. The projection of any object
O associated with J* (with kK = 0,...,00) on a lower order jet J! is denoted by Oy; for instance, Ly is the submanifold
of E which corresponds to the leaf L (but, in this case, we even skip the index “0"). We allow [ to take the value —1,
assuming that £_; is an arbitrary choice of the manifold of independent variables (in which case we are considering a
so-called dffine chart in J”(E, n)), and we write “%" \when an equality holds in coordinates or affine charts, like, e.g.,
JZ(E, n) oy (). If 8 € J” is the jet of a section in some point, then 6_; is precisely that point. We use the word

“over” to indicate that one thing projects over another.

TE denotes the tangent bundle of E, and f, denotes the differential of f: E — E’. If E is fibered, VE is the vertical
tangent bundle (V/* means “vertical with respect to mm;x_1"). The R-dual of a vector space is denoted by Vv, and the
annihilator of a subspace W by WT. The same symbol PT is used, in different contexts, for the adjoint module to P. We
prefer to say that “L is a leaf of £(*)", rather than “Ly is a solution of & S J*(E, n)". The R-distribution on J* (see [1])
is called R¥, Cartan distribution on J* is denoted by C*, while that on J* simply C.

Modifier “local” in front of “section” or “coordinates” is skipped as a rule. All PDEs are assumed to be formally
integrable.

Greek and Latin indexes range in disjoint sets: this means that the sets of coefficients of {w,} and {w,} cannot have
any element in common. Latin indexes correspond to independent variables, and Greek ones to dependent variables.
Derivations are denoted by a semicolon: wg, means dw,/0u®. For iterated jet spaces we encapsulate into parentheses
the inner jet variables, before taking the outer derivatives, like in (u%), or (u),. Concerning multi-indices for partial
derivatives, uppercase Latin letters will always denote elements of the abelian group N0_1, even if we use multiplicative
notation for its operation and the symbol O for its zero (as in the “monoidal notation”, see [17]); the pair (A, l), where
[ € Ny, is an element of Nfj, namely the one having the first n —1 entries in common with A, and the last one equal to [

(hence, (A, )| = |A| + 1). For example,

oI+ ot tin—1+l :

= . : , A=(i1,...,i,_1)€ENy~, [€eNy. 3

XAl A1 - - A(xn—Tyin—1 g (x" ! (i1 in-1) € Ng 0 )

The number n is fixed throughout this paper, index « is always assumed to be ranging in 1,...,m, and index a
in1,...,n—1. The symbol Aa represents the multi-index A whose a™ entry has been increased by one.

All constructions are coordinate-free. Nonetheless, many concepts look more familiar when written down in coordinates,
so the reader will find several remarks labeled “coordinates” after any intrinsic definition.

We have chosen the notation J¥(E, n) for the space of k-jets of n-dimensional submanifolds of E, just to stress the
analogy with the linear case, when one works with Grassmann manifolds Gr(V,n) instead. Alternatively, one may
regard J*(E,n) as a sub-quotient of J*(R", E), the space of k-jets of smooth maps from R"” to £ ¢ la Michor [9),
namely the space of k-jets of embeddings, factorized by the group of diffeomorphisms of R”. Or, in a more “mechanical”
perspective, J*(E, n) may be seen as the space of k-jets of reqular, parameter—free n-velocities in £ & la Krupka [8]. No
matter which point of view is adopted, the definition is the same, viz,

L:L<E is n-di ional submanifold and L 3
J(E, n) = |_| j;(E,n), j;(E,n) _ { is n lmenSL02i submanifold an y}’
yeE y

where ~§ is the equivalence relation L4 ~’; L, & L, is tangent to L, at y with order k. The equivalence class of L w.r.t.

k& k — i, — — 1 m H a — caf,] n
~, is denoted by [L];. If E = {(x',u®)}, and L = graph(s), where s = (s',...,s"), with s* = s%(x',...,x"), then the
jet coordinate uf, ; is defined as
Pt Fing

i (L) = Hpya gy ®

It is worth recalling that the R-distribution is nothing but the jet-theoretic incarnation of the tautological (or universal)
bundle associated to a Grassmann manifold; it associates with a point 6 € /¥ the n-dimensional subspace of Tq,_, /="
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spanned by

Aoy + D Ui, (O g [=1,...n, (4)

i1 Fip+-+ip<k—1

Ok—1"

where 9, is a short for 0,i. The R-distribution “generates” the Cartan distribution, in the sense that C§ = 71,2,171*(R§);
as such, besides the n vectors (4), it takes also all the 7y ,_q-vertical vectors to span it.

2. Jetmaps

Obvious Definition 2.2 below is given just to simplify subsequent constructions. Let f: E — E’ be a smooth map.

Proposition 2.1.

The subsetjk(E, n) o {0 € JK(E, n) : Ro, nker f,, = 0} is an open sub-bundle. Moreover, the natural map f,: jk(E, n) —
JK(E', n) is smooth.

Proof. Notice that Ry, n ker f, is the kernel of the restriction

falRo, = Roy = Tr(an) E' ()

of fx to Re, S Tg,E. In turn, Ry, = {Oi|g, + uf(0) Ouelg, : i =1,...,n), where {x', u®} are local coordinates on E, and
0; is a short for 0,.. Hence, 8 € J*(E, n) belongs to J(E, n) if and only if (5) is injective, Le., if and only if the n tangent
vectors fy (0i|g, + u(6) Oue|e,) are linearly independent in Ty, E’, which means that the n-multivector

Y(0) = fu(d1loy+ uf(0)uclay) A -+ A fu(Oniley + ufi(0)ducley) € Ty E'

must be nonzero. The result follows from the fact that Y depends smoothly on 6, and that Y(6) # 0 is an open
condition. 0

Definition 2.2.
We call J¥(E, n) the bundle of f-mappable jets, and f, the induced jet map.

Example 2.3.
If 7 is a bundle of E over E_1, then sm-mappable jets are just jets of sections of m, i.e., JX(E, n) = J¥(s). In this case,
the map 74 is not very interesting, since J*(E_1,n) is a one-point manifold.

Example 2.4.
If f is an embedding, then all jets are f-mappable. In particular, if s is a section of s, then all jets in J/(E_4,r) are
jx(s)-mappable, so that there are well-defined smooth maps

je()a: JE1,7) = J'(J(E, ). r).
Similarly, for any n-dimensional submanifold L < E, and r < n, there is a well-defined smooth map
Je(L)se: J'(Lr) = J'(J(E, n),r). 6)

Map (6) is the key to “lift" an r-dimensional submanifold of E to a special submanifold of J(E, n), namely an involutive
one (Section 4).
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.
Remark 2.5.
It should be stressed that, as a rule, there is no natural embedding

JKE, n=1) = J*(E, n) (7)

and (6) has to be regarded as the closest way one has to (7), when the necessity arises to force jets of (n — 1)-dimensional
submanifolds into the jet bundle of n-dimensional submanifolds. Nonetheless, (7) can be accomplished in a local, non-
canonical way. Namely, equip E_1 with a metric g. Then each small submanifold ¥ S E can be seen as the graph of a

section ¢ of s over Z_4. So, [Z]; =[]y _,, and o can be extended to a constant section ¢, (o) along the orthogonal

direction to T, 4Z_4. Then (7) is given by [Z]} > [1,_, (0)]}_,-

Example 2.6.

All elements of J*(E, n), seen as a subset of J' (jk_1(E,n), n), are 7y_q x—p-mappable, and (7x—1x—2)% = Tk k—1.

Example 2.7.
Let E = lim E; be a pro-finite manifold. Then J"(E, n) = lim J'(Ey, r).

3. Grassmannians and flag manifolds

The following basic facts about flags manifolds and Grassmannians belong to the common knowledge, so that it is hard
to point an appropriate reference. Concerning the link between Grassmannians and jet spaces, a nice exposition can be
found in the classical book [4].

Definition 3.1.

Gr(V,n) o {L< V : Lis an n-dimensional plane in V} is the Grassmannian of n-dimensional planes in V.

Recall that over Gr(V, n) it grows the so-called universal sequence of vector bundles

R(V,n)“——= Gr(V,n)xV ——= N(V,n)

N i

Gr(V,n),
where 7 is the trivial bundle, R is the tautological bundle, and N is the normal bundle. By definition, R, = L (hence
the name “tautological”) and N, = V/L, for all L € Gr(V, n). In particular, rank R = n and rank N = dimV —n, and it
holds the non-canonical bundle isomorphism

TGr(V,n) ~ Hom (R, N) = Rv®cr(\/,n) N, (9)

incidentally showing that dim Gr(V,n) = (dim V —n)n.
Let now &: E — M be a vector bundle.

Lemma 3.2.
A smooth bundle Gr(E, n) over M exists, and a short exact sequence of vector bundles over Gr(E, n),

R(E,n)“——= Gr(E,n)xyE — N(E,n)

o~ om

Gr(E, n),

1965
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such that Gr(E, n), = Gr(E,, n) and the restriction of (10) to a point x € M equals (8), with V = E,, and the following
bundle isomorphism holds:

VGr(E,n) = Homgygn (R(E,n),N(E,n)) = R(E,n)" ®cren N(E, n).

Proof. The first statement follows straightforwardly (by using transition functions) from the fact that the universal
sequence (8) is well-behaved w.rt. linear transformations of V, ie., each ¢ € GL(V) induces a diffeomorphism ¢
of Gr(V, n), and bundle automorphisms of R(V,n), Gr(V,n) x V, and N(V, n), which cover ¢.

The second one is a consequence of (9), since V, Gr(E, n) coincides with T Gr(E,, n). O

Example 3.3.
Gr(TE, n) is one possible definition of J'(E, n) (see, e.g, [4)). An alternative one, given in term of tangency classes, can
be found, e.g., in [1].

Example 3.4 (definition of flag manifolds).
Gr(R(V,n),n—1) is the flag manifold Gr(V, n,n —1). The corresponding canonical sequence

R(R(V,n),n—=1) “—— Gr(R(V,n),n—=1) Xa(v,m R(V,n) —= N(R(V,n),n—1)

Gr(R(V,n),n—1)

is simply denoted by

rC

R n
\ i / (11)
Gr(V,n,n—=1).

By definition, if 6 = (L,X) € Gr(V,n,n—1), ro =%, Ry =L, and ng = L/L.

Example 3.4 shows that Gr(V, n, n —1) is naturally fibered over Gr(V, n), and that Gr(V,n,n—1), = Gr(L,n—1), for
all Le Gr(V,n).

Fact 3.5 (canonical fibrations of flag manifolds).
Gr(V,n,n—1) is naturally fibered over both Gr(V,n—1) and Gr(V,n), ie,

Gr(V,n,n—1)

/ \ (12

Gr(V,n) Gr(V,n—1)

where n} = P(X1) for all L€ Gr(V,n—1) and n] = P(LV) for all L € Gr(V, n).

The definition given by Example 3.4, the sequence (11) and the fibrations (12) are easily generalized to flags with more
indices and complete flags, but they will not play a relevant role in our analysis. The aim of this section was to stress
that, even if the family of all n-dimensional planes in V' has a natural smooth manifold structure, the same is not true
if in the same family enter (n —1)-dimensional planes, since, roughly speaking, the latter are more numerous than the
former. Then one is forced to introduce a certain redundancy in the information about n-dimensional planes, to get
something smooth: the result is Gr(V,n,n—1). A redundancy conceptually similar, but technically more involved, will
have to be introduced in the context of nonlinear PDEs, in order to treat leaves and small leaves “as members of the
same family”.
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4. The equation of involutive planes

Let P be an E-module, and suppose that A = ker Q is a distribution given by means of the P-valued 1-form Q. Let also

Me N (AY) ¢ % be the curvature form of A.

Definition 4.1.
A tangent plane R to E is called involutive if

Qg =0, Mrr =0. (13)

The totality of r-dimensional involutive planes of E is the equation of involutive r-dimensional planes of E, and denoted
by J,(A).

Example 4.3 below should convince the reader about the smoothness of the submanifold J,(A) of J1(E, r).

Remark 4.2.

Definition 4.1 is hereditary for linear subspaces, since so are conditions (13).

Example 4.3 (coordinates).
Let £ = {(x',u®)}, and A be given by means of 1-forms A = [, ker w*, with w* = w'dx' + wldu®. Then

(D) = {0€ ' (E,r) : w'lg, =0, dw’ g, = 0}

is locally given by the vanishing of the functions

A A A

' = Wi + wyuf, (14)
A A A A B

fii = Wi + i U] + Wlap U7 UL (15)

Remark 4.4.
Let &€ < J'(E,r) be given just by the vanishing of (14) alone. Then J,(A) = m4(EM), Le., (15) are differential
consequences of (14).

Example 4.5.

If € is the contact distribution on J*(E, n), then J,(C¥) is the closure of /**(E, n) in J'(J*(E, n), n). Adherence points
correspond to the so-called singular R-planes (firstly studied by Vinogradov in the context of singular and multivalued
solutions [11, 14]).

def

If E is fibered (see Example 2.3), then 5,(A) =17.(A) 071(E, r) is an open and dense subset of J.(A).

Definition 4.6.
J,(A) is the equation of horizontal involutive r-dimensional planes.

Example 4.7.
Let C* be as in Example 4.5. Then J,(C%) = J**1(E, n).

Remark 4.8.
Leaves of JSOO)(A) are in one-to-one correspondence with r-dimensional involutive submanifolds of A (see Remark 4.4).
In other words, 3¢ (A) is the secondary manifold whose points are the r-dimensional involutive submanifolds of A.

1967
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5. Flags jet bundles

Remark 4.2 motivates the key Definition 5.2 below. Let n = ny > ny—1 > ... > ny > ny > 0 be integers, and consider
the fibered product

X & JKE, n) Xjk—1(E,n)\j1 (JS=UE n), ng_q) x -+ ></k*“(E.n)71 () (E n), ).

A point © € X can be seen as a d-tuple of planes in /*""(E, n), whose dimension decreases from ny to nq, only whose
first entry is required to be involutive.

Proposition 5.1.
Denote by Ré the ith plane in ©, i.e., the one of dimension n;. Then the subset

JE, ng,ngy,....nn0) E{0ex:RE2RY ", i=2,...,d} (16)

is a smooth sub-bundle of X.

This can be easily checked in coordinates (see Remark 5.4 below).

Definition 5.2.
JY(E,ng,ng_1,...,n2,n) defined as (16) is the k-order flag jet bundle over J*'(E,n). J*(E,n,n—1,...,2,1) is the
k-order complete flag jet bundle.

Fact 5.3.
JY(E,n,n=1,...,2,1) projects naturally over any J*(E,i).

From now on, the focus will be on J¥(E,n,n—1). An element © € J*(E, n,n —1) is written as a pair (Re, re).

Remark 5.4 (coordinates I).
Let © € J(E, n) X ji—1(g,yJ' (/7" (E, n), n = 1), and consider its coordinate expression

O=u%t ui,  te (Uap)a)
. Al ISk A+ <k—1
into an adapted chart. Then

Ro = (B + Ui, + 0 =T n =1 )+ 0+ U511 un, ), (17)

r9=<6u+t08,+(u2,’,,)a6a :a=1,...,n—‘|>, (18)

Ual

are the corresponding planes in J*=1(E, n). Observe that (17) contains (18) if and only if each generator of the latter is
a linear combination of generators of the former, viz,,

Qo + 101 + (U )aOug, = 0o + Ul Qg + ta (O + Uf 11 0uy,) for all a, (19)

“A,l

where |A| + [ < k — 1. In their turn, vector equalities (19) are equivalent to the system of equations

(Ud)a = Udgy + Lol 41, Al+ 1< k-1 (20
Hence,
X%t uS, ot (21)
[Al+I<k

can be assumed as coordinates on J*(E,n,n —1). A rough interpretation of (20) is the following: in J*(E,n,n —1) the
independent variable t has become a dependent one, so that u§, depends on x? not only directly (first summand in the
right-hand side), but also through t (second summand).
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Remark 5.5 (coordinates Il).
Equations (20) furnish another coordinate system on JX(E,n,n —1), which will be handier than (21) in the study of
normal bundles (see Remark 9.2 later on), namely

a a a a
Xt uz; L, UQta, (Uxp)a (22)
Al +(<k—1 |A |41 =k =1

Remark 5.6.

Observe that, equations (14) coincide with (20), for the forms wj, o dug, —ug, dx* —ug 1dt, JA|+ 1 < k—2, defining
Ck=1. On the other hand, equations (15), which read (Uie)s = (Uae1)1ater,
of (20).

A|+ 1 < k—2, are algebraic consequences

Lemma 5.7.
Coordinates (21) represent a local diffeomorphism

JNE, n,n—1) & JKE, n) xe_ J'(E_1,n—1). (23)

Proof. Let (0,0) € J5(E,n)x¢_J'(E_1,n—1), with & = [s]%, where s is a section of 7: E — E_; and &' €
JI(E_4,n—1). Consider the jet map ji(s)x: J'(E_1,n—1) — J'(J*"(E,n),n—1) (Definition 2.2). It is easy to see
that ji(s)x(0’) is a small plane contained in Ry, whose definition is independent on the choice of s. Correspondence
(23) is given precisely by

(Ro. jk(s)£(6") < (6.9 (24)

O

Paraphrasing (24), 6 has been used to “lift" the small plane Ry in E_4, i.e., the 15! jet of a Cauchy surface, to a small
involutive (horizontal) plane in /*='(E, n) (see also Example 2.4). However, since Ry is small, for the purpose of lifting,
it is not necessarily the whole jet 8 = [s]¥, but rather the k — 1 jet of s, plus the k™ derivatives of s along Ry So,
elements of J*(E, n,n — 1) cannot yet be called 1! jets of k —1°! order Cauchy surfaces (see Section 8 below) since they
contain extra information. As we show in Section 6 below, this extra information is discarded by the natural projection
of J5(E,n,n—1) over J,_1(C=").

Corollary 5.8.
dimJ*(E,n,n—1) =dimJ*(E,n,n—1) + dimJ'"(E_1,n—1) — n.

This is a direct consequence of Remark 5.4.

6. Flag jets and involutive planes

The notions of a flag jet (introduced in Section 5) and that of an involutive plane (introduced in Section 4) are tightly
interrelated in view of two simple facts. The first is that an element r € J,_1(C¥) can be seen as a “relative” flag of
planes in J¥, in a sense elucidated by Lemma 6.1.

Lemma 6.1. .
The map §H,1(Gk) L JS=YE, n,n=1), € 2 r > (Rg, rc_1), is a bundle.

Proof. By definition, r = Cy is horizontal, so r,_; is an (n —1)-dimensional subspace of Ry, i.e., r determines the
flag (Ra, rr) on J*=1. Smoothness follows from Remark 6.8. O
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The second is that a flag projects over the space of involutive small planes, as shown by Lemma 6.2 which follows directly
from Remark 4.2.

Lemma 6.2. _ 5
The canonical bundle J*(E, n) X u—1(g J'(J<=(E, n),n=1) — J'(J*="(E, n),n—1) restricts to a bundle

JE nn—1) 5 T e, (25)

As we shall see, taking the inverse limit, “relative” becomes “absolute”, and the two sides of (25) will coincide (Theo-
rem 6.9). The key tool is provided by diagram (26) below.

Lemma 6.3. _ _
The bundle J*(E,n) x j—1g ) (ST (E,n),n—=1) — JS=UE, n) xp—2e S (JF72(E, n),n=1), © = (Ro,re) —

0, ¢ ((Ro)k—1, (re)x—1), restricts to a bundle

g
T k—1

JYE, n,n—1) —= J*<=(E,n,n—1).

Let (7k—14—2)4 be the jet map of mmy_q4—2 (see Definition 2.2).

Lemma 6.4.
The bundle J'(J*="(E, n),n—1) N1 (J¥=2(E, n), n—1) restricts to a bundle

(@) M 5 ek,

Remark 6.5. _
The bundle of JX(E, n) X y—1(gJ' (J*7'(E,n),n—1) over the first factor determines a bundle p*: J*(E,n,n—1) —
JK(E, n).

In view of the above lemmas, it makes sense to construct the below diagram (26), where unlabeled arrows are canonical
embeddings/bundles.

JKE, n,n—1)C——= J5(E,n) x s 1(5,,)] (J&="(E.n),n—1)

JK(E, n) P 1(Gk=T) jk "(E.n),n—1)
q 1o

k—

T k—1 JYE, n,n=1) . o o (Th—1,k—2)
pk—1 ’n1;71
JUEM T Jy 1(€k2)C T F2(E, n),n—1)
Corollary 6.6.

Diagram (26) is commutative.
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Proof. Commutativity of the rightmost square follows from Lemma 6.4, much as commutativity of the upper paral-
lelepiped is a consequence of Lemma 6.2. Commutativity of the leftmost parallelepiped follows from Lemma 6.3 and
Example 2.6. Commutativity of the central triangle follows from Lemmas 6.1 and 6.3, while Lemma 6.4, together with
Lemma 6.1 and 6.2, guarantees commutativity of the lower triangle. Finally, by applying the composition p*~'o g* to
an element r € J,_1(€¥), in view of Lemma 6.1 and Remark 6.5, one gets the unique 6 € J*'(E, n) such that r < €5~ ',
i.e, i o(r). This proves that p*~'o g is the restriction of 7 : J' (JS"YE, n),n=1) > J<(E, n). O

Remark 6.7 (coordinates on J,_; (CA=1).
A point
0= (x%t uy te Wyyp)a )€ (JT(E ), n=1)

[Al+I<k—=1 ||+ <k—1

determines the small plane rq (see (18)), which, in view of Remark 5.6, is involutive iff (20) are satisfied. So,

a a a
X%, t, uA,l , ta, (uA’,[’)H (27)
[Al+I<k=1 |A7|+1/=k—1

can be taken as coordinates on J,_ (G*=™). Hence, by comparing (27) with (22), one sees that the ug, are fiber
coordinates of n*. Observe also that
nk={0eJ5(E,n): R D ro} (28)

is a subset of JT,:/371 (60), which is parametrized by top derivatives, i.e. coordinates
uag Al + L =k, (29)

and, thanks again to (20), any ug, in (29) with A # O can be expressed in terms of u§, with |A'| = |A| — 1, so that

A1
the ug, must be coordinates along n*.

Remark 6.8 (fiber coordinates of g*).
Comparing (27) with (21), one sees that (ua,)%, |A| + [ = k — 1, are coordinates along the fibers of g*.

An easy consequence of Corollary 6.6 is Theorem 6.9 below, which establishes that the tower of flag jets carry the same
information as the tower of equations of involutive small planes, i.e., that the tangent space to a small leaf of J*(E, n)
is the same as a flag.

Theorem 6.9.
lim 7%, = 9,4(C).

7. Normal bundles and finite-order Cauchy data

Importance of Theorem 6.9 for the geometrical theory of Cauchy data is twofold. First, it shows that the flag jet
construction is just an alternative description of the 1°' order nonlinear PDE J,_4(C), which can be discarded if one is
merely interested in the secondary manifold .'J,(,;)(G) (Le., the space of Cauchy data according to Definition 8.2). One
the other hand, JE,Q (©) would be rather difficult to work with, without some important insights on its structure (see
Theorem 9.1), which follows from the factorization

Mooy = q on*. (30)
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.
Remark 7.1.

Since, in view of Corollary 6.6, coordinates along JrLl’akgf1 are the same as those along my k1, e, “Z,l' with [A|+[ =k, a
suggestive paraphrase of (30) is that it allows to add to the coordinates of J/*=1(E, n), separately, first the k'" derivatives
with at least one internal direction (i.e., the coordinates (ua;), |A| + [ = k — 1, along g¥) and, then, the k™ purely
normal derivative (i.e., the coordinates ug , along n*), thus obtaining J*(E, n). However, “internal” and “normal’, are to
be understood in a universal sense, that it, valid for any given (infinitesimal) “space-time splitting” of the independent
variables, i.e., a point of J'(E_;,n —1) (Lemma 5.7). This is why (locally), the above passage from the bundle /*~'(E, n)
to the bundle J*(E, n) is valid only if we fiber-multiply them by J"(E_;,n —1).

Remark 7.2.
For k =1, diagram (26) yields

J(E, n,n—=1)
JY( JYE, n—1),
Le,
r(TE,n,n—1)
Gr(TE,n) r(TE,n—1),

so that p, = P(R¥) and n! = P(r!) (see Fact 3.5) for any R € J'(E, n) and r € J'(E,n—1). In this sense, (26) is but a
generalization of the canonical double fibered structure of flag manifolds.

Definition 7.3.
n* is the k™ normal bundle.

Unlike n', which is a smooth bundle with abstract fiber RP™ (see Remark 7.2), n¥, with k > 2, are affine bundles, of
dimension m. Indeed, (28) can be made more precise.

Corollary 7.4.
Letr C 8271 be a point of J,_4 (Gk_1). Then nf is an dffine subspace of VoJ*=1 modeled by

# (@) e

Corollary 7.4 provides a link between the true normal bundle n', i.e., the one which formalizes the idea of the normal
derivative to an embedded manifold, and the higher-order ones. This raises the possibility to join together all normal

bundles. Indeed, in virtue of Theorem 6.9, J,_1(C) inherits a canonical sequence, to be thought of as the limit of
sequences (11) over finite-order flag jet bundles,

%

jn—1 (e)r

and n' can be considered as a bundle over J,_1(€) since the latter is, in turn, a bundle over J'(E,n —1).
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Definition 7.5. .

7 H Sk g) ® nq is the bundle of (infinite-order) normal directions.
keNp

Remark 7.6.
Let r = C, be a point of J,_1(C). Then the k™ homogeneous component of i7,, denoted by i

space over which nf*" is modeled.

k

r

is precisely the linear

8. Finite and infinite order Cauchy data

We show now that the familiar definition of a Cauchy datum of order k is naturally framed in diagram (26). To begin
with, let us call a small submanifold £ € E a Cauchy value, or a 0" order Cauchy datum. The reason is obvious: £_; is
a Cauchy surface in the manifold E_; of independent variables, and £ may be (locally) thougth of as the graph (i.e., the
set of values) of an (R”-valued) function on X¥_4. Then, it is natural to give the next Definition 8.1, for k =0,1,..., c0.

Definition 8.1.
A small involutive submanifold £ < J*(E, n) is called a k™ order Cauchy datum (or, simply, a Cauchy datum, if k = o0).
L, is the Cauchy value corresponding to £ and £_1, if any, is the corresponding Cauchy surface.

We introduce now a secondary manifold whose secondary points (i.e., leaves) are in a natural one-to-one correspondence
with small leaves of J¥(E, n).

Definition 8.2.
Jgﬂ(@k) is the space of k" order Cauchy data. When k = o, we obtain J,(,Q (@), simply called the space of Cauchy
data.

Observe that, thanks to jet projections, a Cauchy datum I determines a tower of k™ order Cauchy data Z;:
Y e Lge— . L e L. L (31)
Since terms of (31) project diffeomorphically one onto the other, so do the terms of the sequence (32) below:
- < E)ay - = Gy« Em < - . (32)

On the other hand, the first prolongation L) is a small submanifold in /*(E, n,n—1), and, thanks to flag-jet projections
(see Lemma 6.3), it determines a tower

Eoh <« Eml ...« -1 < Emh < ... < L), (33)

where (X(1))x = JTil,jgk(Zm)). Again, terms of (33) project diffeomorphically one onto the other. Lemma 8.3 below clarifies

the relationship between the two towers, (32) and (33), having the common inverse limit ).

Lemma 8.3.
(Zn))« is the graph of a section of n* over (Lx_1)(1)-
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Proof. If 2(1) = {((3@, TQZ) :0¢€ ):)}, then ():k,1)(1) = {Tgk_1 Zk71 . 9k71 € Zk7‘|)}, while
Em)k = A{(Re,, To,_ Zk—1) : Ok—1 € Ly—1} (34)

It remains to be noticed that, in (34), Ry, belongs to the fiber of n* over To 1 Zk—1. O

Lemma 8.3 shows that a section vk of n* is the only “additional information” needed to produce a k™ order Cauchy
datum out of a (k—1)*' order one. Schematically,

i1 = (T ) = V(E) @) — P (S ) (35)

Fact 8.4.

Fix a section v& for any n*. Then for any Cauchy value Ty there is a unique Cauchy datum T over Ly such that

Emyk = graph(vk|(zk_1)(1)), k=1,2,... (36)

The proof goes inductively making use of (35).

Remark 8.5.

A valuable generalization of Fact 8.4 would be that the space of Cauchy data over a given Cauchy value is the same
as the space of sections of 7. This cannot be achieved, since higher-order homogeneous components of i cannot be
defined without the knowledge of lower-order Cauchy data. However, much as affine spaces are modeled by linear ones,
the space of Cauchy data we are interested in can be “modeled” by the space of sections of 7, in a sense clarified by
Proposition 8.6 below, which is fundamental to prove the structural Theorem 9.1.

Proposition 8.6.
Let ¥y be a Cauchy value, and fix a Cauchy datum ¥ over it. Then sections of ﬁ|z(1) are in one-to-one correspondence
with Cauchy data over X.

Proof.  First of all, thanks to the chain of diffeomorphisms (32), the bundle Az,
any k. Hence, a section v of |z ,, may be thought of as a family {vk}en, where vk

can be identified with iz, . for
. . =k
is a section of 7|(z, ;-

Because of Lemma 8.3, (£(1))1 is the graph of a section o' of n' over (Zo)(1, so, in view of Remark 7.6, it makes sense
to define

T4 = graph(a'+9). (37)

Now (37) can be used as the induction basis to subsequently “adjust” the given Cauchy datum by means of the sections
of 7 (much as in the proof of Fact 8.4). Indeed (see also (36)), (p"(£7))(1) is a small submanifold over (£o)(1), and as
such identifies diffeomorphically with (£1)(1). Hence, v' can be understood as a bundle over (p'(Z£}))(1), and (37) can
be used again to define L}. Continuing the iteration, one defines the Cauchy datum ¥’. O

9. The space of infinite-order Cauchy data
Let ¢: 3°)(€) — J* (J*(E, n),n — 1) be the canonical inclusion, and

p % 0 [j(g})(e), where  70: /% (JZ(E,n),n—1) = J*(E,n),

n—

def _
n=E (M00)s rj(“f?(e)' where  7.9: JC(E,n) > E
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(see Definition 2.2 for the meaning of (70)%). Maps ¢, p and n are conveniently depicted in the star-shaped dia-
gram (38).

J2 (P (E,n),n—1)

5(©) (38)
/ \
J*(E, n) JZ(E,n—1).
Introduce the lifted distributions
C=p*©), D=n*D), = 5(D),

where D (resp., D) is the ((n—1)-dimensional) structural distribution on J*(E,n—1) (resp., J* (J#(E.n),n—=1)).
Notice that, unlike D, which has dimension n —1, both C and D are infinite-dimensional, though they are well-behaved,
in the sense that, homotopically, they are finite-dimensional.

Observe that p maps a D-leaf (i.e,, a Cauchy datum) L, into the small leaf L of C. The same Cauchy datum is mapped
by n into the leaf (Xo)(x) of D (which is the corresponding Cauchy value). Hence, the secondary maps

(929©), D) & (7 (E,n),€),  (I52)(€), D) 5 (J7(E,n=1),D),

are well defined. Recall that the inclusion L € J*(E, n) determines an inclusion J*(L,n—1) € J®(J*(E,n),n—1)

(see Example 2.4).

Theorem 9.1 (structural).
Let L (resp., ¥’) be a leaf of J/*(E, n) (resp., J*(E,n—1)). Then the following identifications:

p~H (L) = (Ln=1), (39)
n—1 (Z/) = J* (r_f|z(1)), (40)

hold, where ¥ is a Cauchy datum over (Z'),.

Proof. (40) is just a paraphrase of Proposition 8.6. Consider now the commutative diagram

j(w)(e) o jw(]‘f‘(E,n),n—1)

n—1

AN

J7(E, n) ~ Jp1(€) & JS'(J*(E,n),n—1),

where p* is the limit of the p* and the vertical unlabeled arrow is 7 ¢ [g(m @’
n—1

Observe that planes in J'(L, n — 1) are involutive, being contained in the tangent planes to L, which is C-integral. Hence,
J'(L,n—=1) is also a subset of J,_1(C). Moreover,

(p™) (L) = {(ToL,r) : rS Tyl, O L}
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is a bundle over L whose fiber at 6 € L equals Gr(TgL,n —1) (see Remark 7.2), hence it coincides with J'(L,n—1). It
remains to be observed that

7L =1)) A3 (©) = J2(Ln—=1), (42)

where the latter is understood (see again Example 2.4) as a subset of /*(J*(E,n),n—1). Inclusion “2" is obvious,
since L is involutive and so are all its small submanifolds. Conversely, a point [Z’]g° in the left-hand side of (42) must
be such that 6 = [Lo]g,. On the other hand, being not maximal, £’ must be contained into a leaf L{ ), where L has the
same infinite jet as Ly at 6. So, there exist a small submanifold £ S Ly, which is tangent to infinite order to £’ at 6.

o0

Correspondingly, a small submanifold (denoted by the same symbol) £ = L exists, such that [Z]§ = [Z']7. O

Observe that, unlike (40), (39) is canonical.

Remark 9.2 (coordinates).
By definition, the equations of ng)((?) are the infinite prolongations of the equations of J,_;(€), which are just (20),
rewritten with arbitrarily long multi-indexes, viz.,

(US)a = Ubey + tali 141, AeNy™',  [eN,. (43)
It is a simple computation to show that all differential consequences of (43) read as

(uds = Z tatgy - - tal Uk 4o ABeNy ', leN. (44)
B|B)..BLB" =B

In view of (44), the (infinite) set of functions
X' toub,ts, ABeN;T, B#0, leN, (45)

j(’fi‘)

n—1

can be taken as coordinates on (@), the infinite-order analog of (27). By using (45) and standard coordinates
on J(E, n), it looks obvious that tg, with B € Ng_1, B # O, are the fiber coordinates of p. Now, similarly as for (22),
use (44) to produce a new coordinate system

X%, t,uo (Ud s ta, ABeNj', A#0, IleN, (46)

n—1

from which one sees that (ug )z, with Be Ny~ and [ € N are the fiber coordinates of n.

Coordinates (45) can be recovered from (46) by the formulas

up = Z (=1)"ts, ts, - - 15, (Ug,11.5)B. AeNg ' leN. (47)
B1B,...BsB=A

Remark 9.3 (affine case).
The infinite-order generalization of Lemma 5.7 reads

9873(@) & J=(E, n) xe_, S (E_,n=1). (48)

Correspondence (48) takes a point ([0], [£]y), where ¢ is a section of E — E_j, to the point j.(0)«([Z]), where
Joo (0)s: JP(E—1,n—=1) — J*(J®(E,n),n—1) is the jet map associated to j,,(o) (Definition 2.2). If coordinates (45)

are split into x“, ¢, ug, and tg, one gets precisely the coordinates of a point in the right-hand side of (48).

Remark 9.4.

A global analog of (48) can be constructed by replacing, in the structural bundle € over J*(E, n), each fiber Gy by
J5°(Cq, n —1). This shows that JEQ (€) is an infinite-dimensional bundle over J*(E, n), with generic fiber Ji°(R", n —1),
in strict analogy with flag bundles (Fact 3.5).
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Corollary 9.5.
Let L (resp., ') be a leaf of J(E, n) (resp., /”(E,n —1)). Then the following identifications of secondary manifolds:
p~' (L) =J"(Ln—=1), (49)
_1(21) :jﬁ(ﬁh:m))' (50)
(7,21(8). €) = J* (E.n), (51)
(9,79(€), D) = /" (E,n =1), (52)

hold, where ¥ is a Cauchy datum over (Z')o.

Corollary 9.6 (transversality).
Projections p and n are leafwise transversal each other, i.e.,

e p projects diffeomorphically n='(X) onto J*(E, n), for any leaf T of J*(E,n —1);
e n projects diffeomorphically p~' (L) onto J*(E,n —1), for any leaf L of J*(E, n).

Proof. The second assertion is an immediate consequence of the fact that /* (L, n —1) is embedded into J*(E,n—1)
(see the proof of Theorem 9.1). For the first assertion, it is convenient to use the local coordinates from Remark 9.2.
Namely, let & be given by functions f, g°,

o8 A
r: CtB:ﬁf, UA:%g. (53)
Then n=1(Z) is given, in the coordinates (46), by the same equations (53). Passing now to the coordinates (45),
aA
: Ug’[:Wga, l=0,
n—'(X): B ok o5 (54)
Uar = (Vo 55 [ a5 ((Wos)s  [#0,
5, BZ%]S Bn oxB1~ oxB2 OxBs
one sees that n=1(Z) is parametrized by
(x 1, (Ug,115)8), (35)
while the other coordinates are obtained via (54). So, the projection p(n~'(X)) is given by the same equations (54), in
the standard coordinates (x°, t, u§,) of J*(E, n). Hence, p(n~' (X)) is again parametrized by (55). O

Remark 9.7.
(50) and (49) might be seen as the secondary analog of the 1°' order projections of flag manifolds (see Fact 3.5 and
Remark 7.2).

10. Concluding remarks and perspectives

Secondary ODEs

Identifications (51) and (52) allow to regard J*(E, n) and J*(E,n—1) as secondary quotients of the same secondary
manifold ‘JEQ (©). Indeed, C can be understood as the distribution generated by D and by a p-vertical secondary
distribution (and similarly for D), as firstly pointed out by Vitagliano [18]. Since the leaves of C are canonically
identified with the leaves of €, any equation in n independent variables is the same as a (secondary) distribution on
the space of admissible Cauchy data. Such a perspective seems to be evidence of a (formal) analogy with Hamiltonian
formalism in mechanics.
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Twisted characteristic cohomology

Theorem 9.1 is the natural departing point to define a twisted generalization of the characteristic cohomology of an
equation (first of all, the empty one), where the coefficients belong to the p- or n-vertical characteristic cohomology
of the corresponding space of Cauchy data, in analogy with the differential Leray—Serre spectral sequence associated
with a fiber bundle. In particular, among terms of the twisted characteristic cohomology it can be found the one which
corresponds to an “action-valued action”, i.e., an action integral whose value on a leaf L (resp., X) is an action integral
on p~'(L) (resp., n7'(X)). In Section 11 below we propose a toy model for such an action, and derive the corresponding
Euler-Lagrange equations.

The theory of twisted characteristic cohomology should be a source of simplification techniques in Calculus of Variations,
and of methods to compute characteristic cohomology of nonlinear PDEs, much as the Kiinnet formula does in Algebraic
Topology.

Fact 10.1, stemming from Theorem 9.1, provides a basic understanding of the characteristic cohomology of the space of
Cauchy data.

Fact 10.1.

The D-spectral sequence is 1-line.

To see it, embed J*(E,n—1) into J*(E,n) (see Remark 2.5), and then observe that J,(,Q (@) is locally the space of
horizontal infinite jets /~ (ﬁ|/w(5,,,,1)(1)) (see Proposition 8.6).

Invariance of the framework

From a mere set-theoretical point of view, n='(Z’) is but the inverse image of the submanifold £j S E via the projection
T JC(E,n) — E. The main virtue of Theorem 9.1 is to reveal that n='(Z’) is an empty equation, a fact which
is essential if one is interested in special subsets of n=1(Z’), which arise from the analysis of nonlinear PDEs, and
compute their characteristic cohomology, by using the traditional geometrical and cohomological methods for PDEs. In
a sense, the whole machinery developed in this paper was aimed at the proof of (40), but perhaps a key feature of our
treatment was not given enough attention. Namely, the whole framework is invariant, i.e., well-behaved with respect to
transformations, which gives a total freedom in the choice of coordinates for computational purposes (as in the toy model
proposed in the last Section 11).

Higher codimension and complete flags

It is advisable to develop the theory for higher codimension flag jets, i.e., replace n —1 by any ng < n in the constructions
presented here. The so-obtained formalism may have interesting applications, e.g., in the context of quasi-local Hamil-
tonians (see, e.g., [6] concerning quasi-local mass in General Relativity). If complete flags are taken as the departing
point, then the theory for the twisted characteristic cohomology of the so-obtained space of complete jet flag should be
particularly rich, and play the same role, in the context of nonlinear PDEs, as the CW-complexes in Algebraic Topology.

11.  An applicative example

In view of Theorem 9.1, every leaf of /*(E, n —1) produces an empty equation over the leaf itself,

R (). (56)

leaf of /% (E,n — 1) space of infinite jets of the infinite normal bundle

Moreover, thanks to Corollary 9.6, the empty equation n~'(Z’) can be seen as a closed subset of J*(E, n). Hence,
if some equation and/or variational principle is imposed on J*(E, n), it will reflect on n="(Z’). This phenomenon has
been originally noticed by Vinogradov in 1984 (see [13, Section 8.5]), but its cohomological analysis was carried out in
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detail by Vinogradov and the author in the 2006 paper [16] (see also [10]), where the relationship between the C-spectral
sequence associated with n="(Z’) and the relative C-spectral sequence of the surrounding jet space J*(E, n) is clarified.

The example developed below, which shows how a variational principle determines a natural equation on n='(¥’), is
also a case where two action integrals of different horizontal degree are summed up.

Suppose that E is a closed domain in R"*™, such that an m-dimensional submanifold G of R"*" exists, and E is a
tubular neighborhood of it. Then E is (globally) a bundle over G with fiber D", and (locally) a bundle over D" with
fiber R™. Observe that the (graphs of the) sections of the latter belong to the larger class of submanifolds

AL {LS E:Ln0E =0L, Lis oriented and connected}.

Put also 0A & {0L : L € A}. Observe that A is nothing but a subset of the space J*(E, n), made of leaves which

are well-behaved with respect to integration (in the terminology of Calculus of Variations, they would be referred to as
“admissible”, see also [13, Section 8.5] on this concern), and 0A is a subset of the space J(0E, n—1). Let

SeH"(J*(E, n), ;4 (0F)), Seed"!

(J(E,n—1)), (57)
be two action integrals, i.e., secondary real-valued functions on A and 0A, respectively,

S:leAw j,(L)*SeH"(L,0L) =R, S::ZedA s j(D)*e H (X)) =R,
where the last identifications are an elementary fact of differential topology (see [2]). (57) define a secondary function

As L2 S(L) + S;(0L) € R. Expectedly, the set of critical points of Sy is smaller than a mere (suitably defined)

intersection of the critical points of S and S;, because an “interaction term” arises. Namely, for any L € A, consider

the module of cosymmetries (see [1)) (37); & 5t (p(n~"((0L) (1)) of p(n~"((8L)(sr))), the canonical splitting

3 (7 (B n), 7y () & o' (U7 (E, ) @ ()1,
and the corresponding decomposition? of the relative Euler-Lagrange differential* of S,
dS = (dS, (deS)1). (58)

It turns out that (d,S), = 0 is a differential equation in p (n="'((9L)(x))). i.e., imposed on the sections of 7|(a
which formalizes precisely the above idea of interaction.

L) (o)) (1)

Theorem 11.1.
L, € {dS =0} < J*(E,n),
L is critical for Sy~ <> Ly N7 5(0L) € {(draS)e = 0} < I (] o1y o0y 1) ) (59)
(0L) (o) € {dSs = 0} < J*(OE, n—1).

3 In [13, Section 8.5] equations (d,S), are denoted by I (w), where @ is a representative of S, while in [16] they are
denoted by 0.
* Introduced in [16, Section 3.4], where it is denoted by E.q.
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Proof. Obviously, L is critical for Sy if an only if L is a solution of the relative Euler—Lagrange equations,
daS=0, (60)

and OL is a solution of dS; = 0, i.e,, the last equation of the list (59). It remains to observe that the first two equations
are synthetically expressed by (60), thanks to (58). O

When (57) are volume integrals, critical points of Sy, are the least-volume and least-boundary-area submanifolds of E.

Apparently, (59) is just a clean way to write down the so-called natural boundary conditions in the Calculus of Variations,
and all the machinery exploited to obtain (59) is but a paraphrase of the classical analytical manipulations on variational
integral (see, e.g., [3, 5]) exploited to derive the natural boundary conditions. In fact, a very important feature of (59),
their invariance, does not show at a superficial look. Such a property allows, for instance, to derive the correct expression
of the transversality conditions, for any “tubular” manifold — which are not known to date — just by a wise choice of
coordinates. We will not go into the details of the general construction, but present a simple toy model with n = m = 1.

Example 11.2 (the problem of Columbus).

Given the curves 'y and ", in R?, consider the problem of finding, among the (non self-intersecting) (smooth) curves
which start from a point of [y and end to a point of I'; (without crossing ['1 U ', in any other point), those whose length
is (locally) minimal. Obviously, a curve y is a solution of the problem at hand if and only if

(EL) y is a straight line;

(TC) vy hits at a right angle I'1 U 5.

The problem can be formalized by means of a Lagrangian density f dx, where f = f(x, y,y’), on a tubular submanifold
E = R?, with 0E =Ty U .. In this setting, condition (TC) for a curve y = (x, y(x)) read

of N\ o
(1= 5 )%+ 2 =0 o

where (x", y") is a vector tangent to OE.

Proof. Equation (61) can be obtained in few lines (see [3]). We propose an alternative way, which stresses the
role of invariance of (59). To this end, choose a diffeomorphism between E and the cylinder [0,1] xR, and denote by
w = g dx the pull-back of fdx to such a cylinder. Then S = [w] is an element of H'(J*(x), 7' ({0,1})), where
w:[0,1 xR — [0,1], and

dg
(deiS) oy = 2 . (62)
OV 0y Lo

By pulling back (62) on E, one obtains (61). O
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