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1. Introduction

Algebraic Geometry entered adulthood when its intellectual energies, traditionally committed to find concrete solutions of
algebraic equations (i.e., points of an arithmetic space), began to wonder about the structure of the equations themselves
(i.e., ideals in rings over arithmetic fields). The theory of nonlinear PDEs underwent a similar development, though
highly ramified and dependent on the intermittent and diversified impulses coming from natural sciences, and it is still
inappropriate to speak about “the” theory of nonlinear PDEs, for none of the proposed frameworks was enthusiastically
embraced by the mainstream. The reader may find relevant historical information, as well as an exhaustive list of
references in the 2010 review [7].

This paper is committed to the perspective that (smooth) solutions of a (regular enough) system of nonlinear PDEs in
n independent variables (henceforth called equation, for short) are to be interpreted as the maximal integral submanifolds
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(henceforth called leaves) of an n-dimensional involutive distribution on a pro-finite manifold, and adheres to the
philosophy that relevant invariants of the equation are encoded by an appropriate cohomological theory, possibly twisted
with nonlocal coefficients, called characteristic or leafwise cohomology (of the equation). In such a framework, the space
of leaves itself, which is (as a rule) quite bad-behaved, can be put aside, and the focus diverted to the characteristic
cohomologies of the foliation. We shall use the word “secondary” (following [15]) as a synonymous of “leafwise” in the
pro-finite context 1 and we adopt the same framework and terminology which can be found, e.g., in the introductory
section of [17] (for example, a secondary point is just a leaf, a secondary manifold is the leaf space of a foliation over a
pro-finite manifold, a secondary map is a map preserving leaves, etc.).

n-dimensional submanifolds of E leaves of J E, n (1)

So, the “solution space” of an equation can be seen as a secondary submanifold of the empty equation 2 J E, n , since
the graphs of the solutions of the former correspond to the leaves of the latter (1). Nonetheless, it is quite evident that
the same equation dictates restrictions also on non-maximal integral submanifolds: indeed, by definition, a non-maximal
integral submanifold is contained into a leaf, and among leaves there are the solutions. In this paper we propose a very
natural geometric framework where n 1 -dimensional integral submanifolds (henceforth called small leaves) coexist
with the maximal ones, study its structure, and reveal some interesting properties of its characteristic cohomology. Small
leaves are nothing but the geometric counterparts of infinite-order Cauchy data (Section 8), taking prominent roles in
the theory of nonlinear PDEs, calculus of variations, field theory, etc., and, in our approach, they can be treated on the
same footing as solutions. To this end, it is compulsory to “nest” one jet space into another (2), much as, in another
context, flag manifolds are constructed out of nested Grassmmannians.

n 1 -dimensional submanifolds of a leaf L J E, n leaves of J L, n 1 (2)

Once Cauchy data and solutions of a PDE are framed in the same secondary context, it becomes natural to perform
algebro-geometric manipulations which mix secondary notions of horizontal degree n with ones of horizontal degree
n 1. For example, a boundary variational integral (i.e., a secondary function of horizontal degree n 1) can be
combined with a variational integral (i.e., a secondary function of horizontal degree n), and from their interaction it
arises, in a surprisingly straightforward way, a general notion of transversality conditions (Section 11).

1 We keep the distinction between foliations of finite and pro-finite manifolds, due to the failure of the key Frobenius
theorem on the latter.
2 This is the reason why, sometimes, a leaf of J E, n is also called a “solution.”
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Structure of the paper

In Section 2 we define special subsets of the jet bundle, needed to associate with a map between manifolds a map
between the corresponding jet bundles. This will allow to speak of “projectable” and, in particular, of “horizontal” jets
later on, and hence to be able to deal with the jet bundles over pro-finite manifolds.

Section 3 contains the well-known material about Grassmannian and flag manifolds, with the focus on the universal
sequence associated to a Grassmannian and the canonical bundles over flag manifolds. These notions are at the heart
of the definition of 1st order jet bundles and flag jet bundles, respectively.

In Section 4 we introduce a class of equations (given, in coordinates, by (14) and (15)) which, for n independent variables,
constitute the key ingredient to define higher-order jet bundles out of lower-order ones, and, for n� 1 independent
variables, lead straightforwardly to the notion of a jet of a Cauchy datum. These are just examples of equations of
involutive planes of a distribution.

Inheritance of involutivity allows to mimic the definition of a flag manifold and to introduce, in a similar fashion, higher-
order flag jet bundles JkpE, n, n� 1q. In Section 5, besides the conceptual definition, two natural coordinate systems are
proposed, stemming from the fundamental equation (20), which will be useful later on for the description of the canonical
bundles associated with JkpE, n, n� 1q.

The notion of the 1st jet of an pn� 1q-dimensional involutive plane is “almost” the same as the notion of a flag jet, were,
as usual in the theory of jet bundles, “almost” means that the desired property holds correctly only on the inverse limit,
i.e., for infinite jets. Section 6 clarifies this relationship through the fundamental diagram (26). The advantage with this
new point of view is that involutive planes, unlike flag jets, are naturally understood as solutions of an equation, which
we denote by qIn�1pCq.

Having introduced flag jets was not a mere exercise, since they carry a natural normal bundle, which is essential to
discover the structure of the space of Cauchy data. The idea, sketched in Section 7 by introducing the bundle of infinite-
order normal directions, is that the space of Cauchy data can be seen as the space of sections of an (infinite-dimensional)
bundle over a fixed Cauchy value, whose fiber coordinates capture the ideas of “purely normal derivatives”.

In Section 8, after having given the formal definitions of finite and infinite-order Cauchy data, it is shown how a higher-
order Cauchy datum can be constructed “over” a lower-order one, by using a section of a suitable normal bundle, where
“over” means “projecting onto”. This is the next step towards the clarification of the structure of the space of infinite-order
Cauchy data.

The central result of the paper, Theorem 9.1, can be found in the last section of theoretical character, Section 9. It
implies that the pro-finite manifold I

p8q
n�1pCq gives rise to three distinct secondary manifolds, one whose points are the

Cauchy data, another whose points are the solutions, and the last whose points are pn� 1q-dimensional submanifolds
of solutions, thus providing a natural common framework for these three apparently heterogeneous entities. Most
importantly, it shows that the (secondary) fibers of the naturally defined maps from one secondary manifold to the
other, are, in turn, very simple secondary manifolds, namely empty equations. Handy coordinates, indispensable for
applications, are also introduced here. The final comments on Theorem 9.1 are collected in Section 10, together with
the envisaged consequences and applications.

In the last Section 11, we present a variational problem simultaneously involving Lagrangians with n and n� 1 inde-
pendent variables, and we test it on the toy model given by a simple 1-dimensional variational problem with constrained
endpoints.

Notation and conventions

Even if we did our best to avoid proprietary notation, we must warn the reader about a somewhat extreme “slang” we are
going to use throughout this paper, in line with the most recent works on the subject (see, e.g., [17]). “P is an M-module”
means that P is the module of sections of a bundle π over M. Then the meaning of expressions like PbMQ and
HomMpP,Qq is clear. We use both πx and Ex as synonymous of π�1pxq, where π is a fibration of E . By a “plane in V ”
we mean just a vector subspace of V ; similarly, a “plane in E” is a subspace of some tangent space to the manifold E .
The term “space” without modifier (like the one appearing in the title of this paper) always means “secondary manifold”.
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We use the term “leaf” for an n-dimensional integral submanifold of the Cartan distribution on J8pE, nq, and we denote
it by L. A codimension-one submanifold of a leaf is called a “small leaf”, and denoted by Σ. The projection of any object
O associated with Jk (with k � 0, . . . ,8) on a lower order jet Jl is denoted by Ol; for instance, L0 is the submanifold
of E which corresponds to the leaf L (but, in this case, we even skip the index “0”). We allow l to take the value �1,
assuming that E�1 is an arbitrary choice of the manifold of independent variables (in which case we are considering a
so-called affine chart in J8pE, nq), and we write “ loc

� ” when an equality holds in coordinates or affine charts, like, e.g.,
J8pE, nq loc

� J8pπq. If θ P J8 is the jet of a section in some point, then θ�1 is precisely that point. We use the word
“over” to indicate that one thing projects over another.

TE denotes the tangent bundle of E , and f� denotes the differential of f : E Ñ E 1. If E is fibered, VE is the vertical
tangent bundle (V Jk means “vertical with respect to πk,k�1”). The R-dual of a vector space is denoted by V_, and the
annihilator of a subspace W by W :. The same symbol P: is used, in different contexts, for the adjoint module to P. We
prefer to say that “L is a leaf of Ep8q”, rather than “Lk is a solution of E � JkpE, nq”. The R-distribution on Jk (see [1])
is called Rk , Cartan distribution on Jk is denoted by C k , while that on J8 simply C.

Modifier “local” in front of “section” or “coordinates” is skipped as a rule. All PDEs are assumed to be formally
integrable.

Greek and Latin indexes range in disjoint sets: this means that the sets of coefficients of tωau and tωαu cannot have
any element in common. Latin indexes correspond to independent variables, and Greek ones to dependent variables.
Derivations are denoted by a semicolon: ωa;α means Bωa{Buα . For iterated jet spaces we encapsulate into parentheses
the inner jet variables, before taking the outer derivatives, like in puαaq

β
b , or puqa. Concerning multi-indices for partial

derivatives, uppercase Latin letters will always denote elements of the abelian group Nn�1
0 , even if we use multiplicative

notation for its operation and the symbol O for its zero (as in the “monoidal notation”, see [17]); the pair pA, lq, where
l P N0, is an element of Nn

0 , namely the one having the first n� 1 entries in common with A, and the last one equal to l
(hence, |pA, lq| � |A| � l). For example,

B|A|�l

BxA,l �
Bi1�����in�1�l

Bpx1qi1 � � � Bpxn�1qin�1Bpxnql , A � pi1, . . . , in�1q P Nn�1
0 , l P N0. (3)

The number n is fixed throughout this paper, index α is always assumed to be ranging in 1, . . . , m, and index a
in 1, . . . , n� 1. The symbol Aa represents the multi-index A whose ath entry has been increased by one.

All constructions are coordinate-free. Nonetheless, many concepts look more familiar when written down in coordinates,
so the reader will find several remarks labeled “coordinates” after any intrinsic definition.

We have chosen the notation JkpE, nq for the space of k-jets of n-dimensional submanifolds of E , just to stress the
analogy with the linear case, when one works with Grassmann manifolds GrpV , nq instead. Alternatively, one may
regard JkpE, nq as a sub-quotient of JkpRn, Eq, the space of k-jets of smooth maps from Rn to E à la Michor [9],
namely the space of k-jets of embeddings, factorized by the group of diffeomorphisms of Rn. Or, in a more “mechanical”
perspective, JkpE, nq may be seen as the space of k-jets of regular, parameter-free n-velocities in E à la Krupka [8]. No
matter which point of view is adopted, the definition is the same, viz.,

JkpE, nq �
§
yPE

JkypE, nq, JkypE, nq �
tL : L � E is n-dimensional submanifold and L Q yu

�k
y

,

where �k
y is the equivalence relation L1 �

k
y L2 ô L1 is tangent to L2 at y with order k . The equivalence class of L w.r.t.

�k
y is denoted by rLsky. If E � tpxi, uαqu, and L � graphpsq, where s � ps1, . . . , smq, with sα � sαpx1, . . . , xnq, then the

jet coordinate uαi1...in is defined as

uαi1...in
�
rLskspxq

�
�

Bi1�����ins
Bpx1qi1 � � � Bpxnqin pxq, x � px1, . . . , xnq.

It is worth recalling that the R-distribution is nothing but the jet-theoretic incarnation of the tautological (or universal)
bundle associated to a Grassmann manifold; it associates with a point θ P Jk the n-dimensional subspace of Tθk�1 Jk�1
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spanned by
Bl|θk�1 �

¸
i1�i2�����in¤k�1

uαi1���il�1���inpθqBuαi1 i2���in
��
θk�1

, l � 1, . . . , n, (4)

where Bl is a short for Bxl . The R-distribution “generates” the Cartan distribution, in the sense that Ckθ � π�1
k,k�1�pRk

θ q;
as such, besides the n vectors (4), it takes also all the πk,k�1-vertical vectors to span it.

2. Jet maps

Obvious Definition 2.2 below is given just to simplify subsequent constructions. Let f : E Ñ E 1 be a smooth map.

Proposition 2.1.
The subsetqJkpE, nq def

� tθ P JkpE, nq : Rθ1Xker f� � 0u is an open sub-bundle. Moreover, the natural map f� : qJkpE, nq Ñ
JkpE 1, nq is smooth.

Proof. Notice that Rθ1 X ker f� is the kernel of the restriction

f�æRθ1 : Rθ1 Ñ Tfpθ0qE
1 (5)

of f� to Rθ1 � Tθ0E . In turn, Rθ1 � xBi|θ0�uαi pθqBuα |θ0 : i � 1, . . . , n y, where txi, uαu are local coordinates on E , and
Bi is a short for Bxi . Hence, θ P JkpE, nq belongs to qJkpE, nq if and only if (5) is injective, i.e., if and only if the n tangent
vectors f�

�
Bi|θ0� uαi pθqBuα |θ0

�
are linearly independent in Tfpθ0qE 1, which means that the n-multivector

Y pθq � f�
�
B1|θ0� u

α
1 pθqBuα |θ0

�
^ � � � ^ f�

�
Bni|θ0� u

α
npθqBuα |θ0

�
P T^nfpθ0q

E 1

must be nonzero. The result follows from the fact that Y depends smoothly on θ, and that Y pθq � 0 is an open
condition.

Definition 2.2.
We call qJkpE, nq the bundle of f-mappable jets, and f� the induced jet map.

Example 2.3.
If π is a bundle of E over E�1, then π-mappable jets are just jets of sections of π, i.e., qJkpE, nq � Jkpπq. In this case,
the map π� is not very interesting, since JkpE�1, nq is a one-point manifold.

Example 2.4.
If f is an embedding, then all jets are f-mappable. In particular, if s is a section of π, then all jets in JlpE�1, rq are
jkpsq-mappable, so that there are well-defined smooth maps

jkpsq� : JlpE�1, rq Ñ Jl
�
JkpE, nq, r

�
.

Similarly, for any n-dimensional submanifold L � E , and r ¤ n, there is a well-defined smooth map

jkpLq� : JlpL, rq Ñ Jl
�
JkpE, nq, r

�
. (6)

Map (6) is the key to “lift” an r-dimensional submanifold of E to a special submanifold of JkpE, nq, namely an involutive
one (Section 4).

1964



G. Moreno

Remark 2.5.
It should be stressed that, as a rule, there is no natural embedding

JkpE, n�1q ãÑ JkpE, nq (7)

and (6) has to be regarded as the closest way one has to (7), when the necessity arises to force jets of pn� 1q-dimensional
submanifolds into the jet bundle of n-dimensional submanifolds. Nonetheless, (7) can be accomplished in a local, non-
canonical way. Namely, equip E�1 with a metric g. Then each small submanifold Σ � E can be seen as the graph of a
section σ of π over Σ�1. So, rΣsky � rσsky�1

, and σ can be extended to a constant section ιy�1pσq along the orthogonal
direction to Ty�1Σ�1. Then (7) is given by rΣsky ÞÑ rιy�1pσqsky�1

.

Example 2.6.
All elements of JkpE, nq, seen as a subset of J1

�
Jk�1pE, nq, n

�
, are πk�1,k�2-mappable, and pπk�1,k�2q� � πk,k�1.

Example 2.7.
Let E � limEk be a pro-finite manifold. Then JrpE, nq � limqJrpEk , rq.

3. Grassmannians and flag manifolds

The following basic facts about flags manifolds and Grassmannians belong to the common knowledge, so that it is hard
to point an appropriate reference. Concerning the link between Grassmannians and jet spaces, a nice exposition can be
found in the classical book [4].

Definition 3.1.
GrpV , nq def

� tL � V : L is an n-dimensional plane in V u is the Grassmannian of n-dimensional planes in V .

Recall that over GrpV , nq it grows the so-called universal sequence of vector bundles

R pV , nq �
� //

R & &

GrpV , nq�V

τ

��

// // NpV , nq

Nxx
GrpV , nq,

(8)

where τ is the trivial bundle, R is the tautological bundle, and N is the normal bundle. By definition, RL � L (hence
the name “tautological”) and NL � V {L, for all L P GrpV , nq. In particular, rankR � n and rankN � dimV � n, and it
holds the non-canonical bundle isomorphism

τGrpV ,nq � HompR,Nq � R_bGrpV ,nqN, (9)

incidentally showing that dim GrpV , nq � pdimV � nqn.

Let now ξ : E Ñ M be a vector bundle.

Lemma 3.2.
A smooth bundle GrpE, nq over M exists, and a short exact sequence of vector bundles over GrpE, nq,

RpE, nq �
� //

''

GrpE, nq�M E

��

// // NpE, nq

ww
GrpE, nq,

(10)
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such that GrpE, nqx � GrpEx , nq and the restriction of (10) to a point x P M equals (8), with V � Ex , and the following
bundle isomorphism holds:

V GrpE, nq � HomGrpE,nq
�
RpE, nq, NpE, nq

�
� RpE, nq_bGrpE,nq NpE, nq.

Proof. The first statement follows straightforwardly (by using transition functions) from the fact that the universal
sequence (8) is well-behaved w.r.t. linear transformations of V , i.e., each φ P GLpV q induces a diffeomorphism φ
of GrpV , nq, and bundle automorphisms of RpV , nq, GrpV , nq�V , and NpV , nq, which cover φ.
The second one is a consequence of (9), since Vx GrpE, nq coincides with T GrpEx , nq.

Example 3.3.
GrpTE, nq is one possible definition of J1pE, nq (see, e.g, [4]). An alternative one, given in term of tangency classes, can
be found, e.g., in [1].

Example 3.4 (definition of flag manifolds).
GrpRpV , nq, n� 1q is the flag manifold GrpV , n, n� 1q. The corresponding canonical sequence

R pRpV , nq, n� 1q �
� //

**

GrpRpV , nq, n� 1q �GrpV ,nq RpV , nq

��

// // NpRpV , nq, n� 1q

tt
GrpRpV , nq, n� 1q

is simply denoted by

r �
� //

%%

R

��

// // n

xx
GrpV , n, n� 1q.

(11)

By definition, if θ � pL,Σq P GrpV , n, n� 1q, rθ � Σ, Rθ � L, and nθ � L{Σ.

Example 3.4 shows that GrpV , n, n� 1q is naturally fibered over GrpV , nq, and that GrpV , n, n� 1qL � GrpL, n� 1q, for
all L P GrpV , nq.

Fact 3.5 (canonical fibrations of flag manifolds).
GrpV , n, n� 1q is naturally fibered over both GrpV , n� 1q and GrpV , nq, i.e.,

GrpV , n, n� 1q
n1

((

p1

ww
GrpV , nq GrpV , n� 1q

(12)

where n1
Σ � PpΣ:q for all Σ P GrpV , n� 1q and n1

L � PpL_q for all L P GrpV , nq.

The definition given by Example 3.4, the sequence (11) and the fibrations (12) are easily generalized to flags with more
indices and complete flags, but they will not play a relevant role in our analysis. The aim of this section was to stress
that, even if the family of all n-dimensional planes in V has a natural smooth manifold structure, the same is not true
if in the same family enter pn� 1q-dimensional planes, since, roughly speaking, the latter are more numerous than the
former. Then one is forced to introduce a certain redundancy in the information about n-dimensional planes, to get
something smooth: the result is GrpV , n, n� 1q. A redundancy conceptually similar, but technically more involved, will
have to be introduced in the context of nonlinear PDEs, in order to treat leaves and small leaves “as members of the
same family”.
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4. The equation of involutive planes

Let P be an E-module, and suppose that ∆ � ker Ω is a distribution given by means of the P-valued 1-form Ω. Let also
Π P Λ2p∆_qbE

∆p1q
∆ be the curvature form of ∆.

Definition 4.1.
A tangent plane R to E is called involutive if

ΩæR � 0, ΠæR � 0. (13)

The totality of r-dimensional involutive planes of E is the equation of involutive r-dimensional planes of E , and denoted
by Irp∆q.

Example 4.3 below should convince the reader about the smoothness of the submanifold Irp∆q of J1pE, rq.

Remark 4.2.
Definition 4.1 is hereditary for linear subspaces, since so are conditions (13).

Example 4.3 (coordinates).
Let E � tpxi, uαqu, and ∆ be given by means of 1-forms ∆ �

�
APA kerωA, with ωA � ωAi dxi � ωAαduα. Then

Irp∆q �
 
θ P J1pE, rq : ωAæRθ � 0, dωAæRθ � 0

(
is locally given by the vanishing of the functions

fAi � ωAi � ωAαuαi , (14)

fAij � ωAri;js � ωArri;αsuαjs � ωArα;βsuαj u
β
i . (15)

Remark 4.4.
Let E � J1pE, rq be given just by the vanishing of (14) alone. Then Irp∆q � π2,1pE

p1qq, i.e., (15) are differential
consequences of (14).

Example 4.5.
If Ck is the contact distribution on JkpE, nq, then InpC

kq is the closure of Jk�1pE, nq in J1
�
JkpE, nq, n

�
. Adherence points

correspond to the so-called singular R-planes (firstly studied by Vinogradov in the context of singular and multivalued
solutions [11, 14]).

If E is fibered (see Example 2.3), then qIrp∆q def
� Irp∆q XqJ1pE, rq is an open and dense subset of Irp∆q.

Definition 4.6.qIrp∆q is the equation of horizontal involutive r-dimensional planes.

Example 4.7.
Let Ck be as in Example 4.5. Then qInpCkq � Jk�1pE, nq.

Remark 4.8.
Leaves of Ip8q

r p∆q are in one-to-one correspondence with r-dimensional involutive submanifolds of ∆ (see Remark 4.4).
In other words, Ip8q

r p∆q is the secondary manifold whose points are the r-dimensional involutive submanifolds of ∆.
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5. Flags jet bundles

Remark 4.2 motivates the key Definition 5.2 below. Let n � nd ¡ nd�1 ¡ . . . ¡ n2 ¡ n1 ¡ 0 be integers, and consider
the fibered product

X def
� JkpE, nq�Jk�1pE,nq

qJ1�Jk�1pE, nq, nd�1
�
� � � � �Jk�1pE,nq

qJ1�Jk�1pE, nq, n1
�
.

A point Θ P X can be seen as a d-tuple of planes in Jk�1pE, nq, whose dimension decreases from nd to n1, only whose
first entry is required to be involutive.

Proposition 5.1.
Denote by R i

Θ the ith plane in Θ, i.e., the one of dimension ni. Then the subset

JkpE, nd, nd�1, . . . , n2, n1q
def
�

 
Θ P X : R i

Θ � R i�1
Θ , i � 2, . . . , d

(
(16)

is a smooth sub-bundle of X.

This can be easily checked in coordinates (see Remark 5.4 below).

Definition 5.2.
JkpE, nd, nd�1, . . . , n2, n1q defined as (16) is the k-order flag jet bundle over Jk�1pE, nq. JkpE, n, n� 1, . . . , 2, 1q is the
k-order complete flag jet bundle.

Fact 5.3.
JkpE, n, n� 1, . . . , 2, 1q projects naturally over any JkpE, iq.

From now on, the focus will be on JkpE, n, n� 1q. An element Θ P JkpE, n, n� 1q is written as a pair pRΘ, rΘq.

Remark 5.4 (coordinates I).
Let Θ P JkpE, nq�Jk�1pE,nq

qJ1pJk�1pE, nq, n� 1q, and consider its coordinate expression

Θ � pxa, t, uαA,l
|A|�l¤k

, ta, puαA1 ,l1qa
|A1|�l1¤k�1

q

into an adapted chart. Then
RΘ �

A
Ba � uαAa,lBuαA,l : a � 1, . . . , n� 1

E
�
@
Bt � uαA,l�1BuA,l

D
, (17)

rΘ �
A
Ba � taBt � puαA1 ,l1qaBuαA,l : a � 1, . . . , n� 1

E
, (18)

are the corresponding planes in Jk�1pE, nq. Observe that (17) contains (18) if and only if each generator of the latter is
a linear combination of generators of the former, viz.,

Ba � taBt � puαA,lqaBuαA,l � Ba � uαAa,lBuαA,l � ta
�
Bt � uαA,l�1BuA,l

�
for all a, (19)

where |A| � l ¤ k � 1. In their turn, vector equalities (19) are equivalent to the system of equations

puαA,lqa � uαAa,l � tauαA,l�1, |A| � l ¤ k � 1. (20)

Hence,
xa, t, uαA,l

|A|�l¤k
, ta (21)

can be assumed as coordinates on JkpE, n, n� 1q. A rough interpretation of (20) is the following: in JkpE, n, n� 1q the
independent variable t has become a dependent one, so that uαA,l depends on xa not only directly (first summand in the
right-hand side), but also through t (second summand).
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Remark 5.5 (coordinates II).
Equations (20) furnish another coordinate system on JkpE, n, n� 1q, which will be handier than (21) in the study of
normal bundles (see Remark 9.2 later on), namely

xa, t, uαA,l
|A|�l¤k�1

, uαO,k , ta, puαA1 ,l1qa
|A1|�l1�k�1

. (22)

Remark 5.6.
Observe that, equations (14) coincide with (20), for the forms ωαA,l

def
� duαA,l�uαAa,ldxa�uαA,l�1dt, |A|� l ¤ k�2, defining

Ck�1. On the other hand, equations (15), which read puαAra,lqbs � puαA,l�1qratbs, |A|�l ¤ k�2, are algebraic consequences
of (20).

Lemma 5.7.
Coordinates (21) represent a local diffeomorphism

JkpE, n, n� 1q loc
� JkpE, nq�E�1 J

1pE�1, n� 1q. (23)

Proof. Let pθ, θ1q P JkpE, nq�E�1 J1pE�1, n� 1q, with θ � rsskx , where s is a section of π : E Ñ E�1 and θ1 P
J1x pE�1, n� 1q. Consider the jet map jkpsq� : J1pE�1, n� 1q Ñ J1

�
Jk�1pE, nq, n� 1

�
(Definition 2.2). It is easy to see

that jkpsq�pθ1q is a small plane contained in Rθ , whose definition is independent on the choice of s. Correspondence
(23) is given precisely by

pRθ, jkpsq�pθ1qq ðñ pθ, θ1q. (24)

Paraphrasing (24), θ has been used to “lift” the small plane Rθ1 in E�1, i.e., the 1st jet of a Cauchy surface, to a small
involutive (horizontal) plane in Jk�1pE, nq (see also Example 2.4). However, since Rθ1 is small, for the purpose of lifting,
it is not necessarily the whole jet θ � rsskx , but rather the k�1st jet of s, plus the k th derivatives of s along Rθ1 . So,
elements of JkpE, n, n� 1q cannot yet be called 1st jets of k�1st order Cauchy surfaces (see Section 8 below) since they
contain extra information. As we show in Section 6 below, this extra information is discarded by the natural projection
of JkpE, n, n� 1q over qIn�1pC

k�1q.

Corollary 5.8.
dim JkpE, n, n� 1q � dim JkpE, n, n� 1q � dim J1pE�1, n� 1q � n.

This is a direct consequence of Remark 5.4.

6. Flag jets and involutive planes

The notions of a flag jet (introduced in Section 5) and that of an involutive plane (introduced in Section 4) are tightly
interrelated in view of two simple facts. The first is that an element r P qIn�1pC

kq can be seen as a “relative” flag of
planes in Jk , in a sense elucidated by Lemma 6.1.

Lemma 6.1.
The map qIn�1pC

kq
qk
ÝÑ Jk�1pE, n, n� 1q, Ckθ � r ÞÑ pRθ, rk�1q, is a bundle.

Proof. By definition, r � Cθ is horizontal, so rk�1 is an pn� 1q-dimensional subspace of Rθ , i.e., r determines the
flag pRθ, rrq on Jk�1. Smoothness follows from Remark 6.8.
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The second is that a flag projects over the space of involutive small planes, as shown by Lemma 6.2 which follows directly
from Remark 4.2.

Lemma 6.2.
The canonical bundle JkpE, nq�Jk�1pE,nq

qJ1�Jk�1pE, nq, n�1
�
Ñ qJ1pJk�1pE, nq, n�1q restricts to a bundle

JkpE, n, n�1q nk
ÝÑ qIn�1pC

k�1q. (25)

As we shall see, taking the inverse limit, “relative” becomes “absolute”, and the two sides of (25) will coincide (Theo-
rem 6.9). The key tool is provided by diagram (26) below.

Lemma 6.3.
The bundle JkpE, nq�Jk�1pE,nq

qJ1�Jk�1pE, nq, n� 1
�
Ñ Jk�1pE, nq�Jk�2pE,nq

qJ1�Jk�2pE, nq, n� 1
�
, Θ � pRΘ, rΘq ÞÑ

Θk�1
def
� ppRΘqk�1, prΘqk�1q, restricts to a bundle

JkpE, n, n�1q
πflag
k,k�1
ÝÝÝÑ Jk�1pE, n, n�1q.

Let pπk�1,k�2q� be the jet map of πk�1,k�2 (see Definition 2.2).

Lemma 6.4.
The bundle qJ1�Jk�1pE, nq, n�1

� pπk�1,k�2q�
ÝÝÝÝÝÝÝÑ qJ1�Jk�2pE, nq, n�1

�
restricts to a bundle

qIn�1pC
k�1q

πinv.
k,k�1
ÝÝÝÑ qIn�1pC

k�2q.

Remark 6.5.
The bundle of JkpE, nq�Jk�1pE,nq

qJ1�Jk�1pE, nq, n�1
�

over the first factor determines a bundle pk : JkpE, n, n�1q Ñ
JkpE, nq.

In view of the above lemmas, it makes sense to construct the below diagram (26), where unlabeled arrows are canonical
embeddings/bundles.

JkpE, n, n� 1q

πflag
k,k�1

����

nk

**

pk

ww

� � // JkpE, nq� Jk�1pE,nq
qJ1�Jk�1pE, nq, n�1

�

** **
JkpE, nq

πk,k�1

����

qIn�1pC
k�1q

πinv.
k,k�1

� ���

� � //

qktt

qJ1�Jk�1pE, nq, n� 1
�

ss

pπk�1,k�2q�

� ���

Jk�1pE, n, n� 1q
nk�1

* *

pk�1

w w
Jk�1pE, nq qIn�1pC

k�2q
� � // qJ1�Jk�2pE, nq, n� 1

�

(26)

Corollary 6.6.
Diagram (26) is commutative.
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Proof. Commutativity of the rightmost square follows from Lemma 6.4, much as commutativity of the upper paral-
lelepiped is a consequence of Lemma 6.2. Commutativity of the leftmost parallelepiped follows from Lemma 6.3 and
Example 2.6. Commutativity of the central triangle follows from Lemmas 6.1 and 6.3, while Lemma 6.4, together with
Lemma 6.1 and 6.2, guarantees commutativity of the lower triangle. Finally, by applying the composition pk�1 �qk to
an element r P qIn�1pC

kq, in view of Lemma 6.1 and Remark 6.5, one gets the unique θ P Jk�1pE, nq such that r � Ck�1
θ ,

i.e., π1,0prq. This proves that pk�1 �qk is the restriction of π1,0 : qJ1�Jk�1pE, nq, n�1
�
Ñ Jk�1pE, nq.

Remark 6.7 (coordinates on qIn�1pC
k�1q).

A point
θ �

�
xa, t, uαA,l

|A|�l¤k�1
, ta, puαA1 ,l1qa

|A1|�l1¤k�1

�
P J1

�
Jk�1pE, nq, n�1

�
determines the small plane rθ (see (18)), which, in view of Remark 5.6, is involutive iff (20) are satisfied. So,

xa, t, uαA,l
|A|�l¤k�1

, ta, puαA1 ,l1qa
|A1|�l1�k�1

(27)

can be taken as coordinates on qIn�1pC
k�1q. Hence, by comparing (27) with (22), one sees that the uαO,k are fiber

coordinates of nk . Observe also that
nkθ � tΘ P JkpE, nq : RΘ � rθu (28)

is a subset of π�1
k,k�1pθ0q, which is parametrized by top derivatives, i.e. coordinates

uαA,l, |A| � l � k, (29)

and, thanks again to (20), any uαA,l in (29) with A � O can be expressed in terms of uαA1 ,l�1, with |A1| � |A| � 1, so that
the uαO,k must be coordinates along nk .

Remark 6.8 (fiber coordinates of qk ).
Comparing (27) with (21), one sees that puA,lqαa , |A| � l � k � 1, are coordinates along the fibers of qk .

An easy consequence of Corollary 6.6 is Theorem 6.9 below, which establishes that the tower of flag jets carry the same
information as the tower of equations of involutive small planes, i.e., that the tangent space to a small leaf of J8pE, nq
is the same as a flag.

Theorem 6.9.
lim
Ð
πflag
k,k�1 � In�1pCq.

7. Normal bundles and finite-order Cauchy data

Importance of Theorem 6.9 for the geometrical theory of Cauchy data is twofold. First, it shows that the flag jet
construction is just an alternative description of the 1st order nonlinear PDE In�1pCq, which can be discarded if one is
merely interested in the secondary manifold I

p8q
n�1pCq (i.e., the space of Cauchy data according to Definition 8.2). One

the other hand, Ip8q
n�1pCq would be rather difficult to work with, without some important insights on its structure (see

Theorem 9.1), which follows from the factorization

πflag
k,k�1 � qk �nk . (30)
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Remark 7.1.
Since, in view of Corollary 6.6, coordinates along πflag

k,k�1 are the same as those along πk,k�1, i.e., uαA,l, with |A| � l � k , a
suggestive paraphrase of (30) is that it allows to add to the coordinates of Jk�1pE, nq, separately, first the k th derivatives
with at least one internal direction (i.e., the coordinates puA,lqαa , |A| � l � k � 1, along qk ) and, then, the k th purely
normal derivative (i.e., the coordinates uαO,k along nk ), thus obtaining JkpE, nq. However, “internal” and “normal”, are to
be understood in a universal sense, that it, valid for any given (infinitesimal) “space-time splitting” of the independent
variables, i.e., a point of J1pE�1, n� 1q (Lemma 5.7). This is why (locally), the above passage from the bundle Jk�1pE, nq
to the bundle JkpE, nq is valid only if we fiber-multiply them by J1pE�1, n�1q.

Remark 7.2.
For k � 1, diagram (26) yields

J1pE, n, n� 1q
n1

''

p1

xx
J1pE, nq J1pE, n� 1q,

i.e.,
GrpTE, n, n� 1q

n1

( (

p1

ww
GrpTE, nq GrpTE, n� 1q,

so that p1
R � PpR_q and n1

r � Ppr:q (see Fact 3.5) for any R P J1pE, nq and r P J1pE, n�1q. In this sense, (26) is but a
generalization of the canonical double fibered structure of flag manifolds.

Definition 7.3.
nk is the k th normal bundle.

Unlike n1, which is a smooth bundle with abstract fiber RPm (see Remark 7.2), nk , with k ¥ 2, are affine bundles, of
dimension m. Indeed, (28) can be made more precise.

Corollary 7.4.
Let r � Ck�1

θ be a point of qIn�1pC
k�1q. Then nkr is an affine subspace of VθJk�1 modeled by

Sk�1
��

Rθ
prqk�2


_

bRn1

r0 .

Corollary 7.4 provides a link between the true normal bundle n1, i.e., the one which formalizes the idea of the normal
derivative to an embedded manifold, and the higher-order ones. This raises the possibility to join together all normal
bundles. Indeed, in virtue of Theorem 6.9, In�1pCq inherits a canonical sequence, to be thought of as the limit of
sequences (11) over finite-order flag jet bundles,

r �
� //

!!

C

��

// // C
r

}}
In�1pCq,

and n1 can be considered as a bundle over In�1pCq since the latter is, in turn, a bundle over J1pE, n�1q.
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Definition 7.5.
~n def
�

¹
kPN0

Sk
�
C

r


_
b n1 is the bundle of (infinite-order) normal directions.

Remark 7.6.
Let r � Cθ be a point of In�1pCq. Then the k th homogeneous component of ~nr , denoted by ~nkr , is precisely the linear
space over which nk�1

rk is modeled.

8. Finite and infinite order Cauchy data

We show now that the familiar definition of a Cauchy datum of order k is naturally framed in diagram (26). To begin
with, let us call a small submanifold Σ � E a Cauchy value, or a 0th order Cauchy datum. The reason is obvious: Σ�1 is
a Cauchy surface in the manifold E�1 of independent variables, and Σ may be (locally) thougth of as the graph (i.e., the
set of values) of an (Rm-valued) function on Σ�1. Then, it is natural to give the next Definition 8.1, for k � 0, 1, . . . ,8.

Definition 8.1.
A small involutive submanifold Σ � JkpE, nq is called a k th order Cauchy datum (or, simply, a Cauchy datum, if k � 8).
Σ0 is the Cauchy value corresponding to Σ and Σ�1, if any, is the corresponding Cauchy surface.

We introduce now a secondary manifold whose secondary points (i.e., leaves) are in a natural one-to-one correspondence
with small leaves of JkpE, nq.

Definition 8.2.
I
p8q
n�1pC

kq is the space of k th order Cauchy data. When k � 8, we obtain I
p8q
n�1pCq, simply called the space of Cauchy

data.

Observe that, thanks to jet projections, a Cauchy datum Σ determines a tower of k th order Cauchy data Σk :

Σ�1 Ð Σ0 Ð . . .Ð Σk�1 Ð Σk Ð . . .Ð Σ. (31)

Since terms of (31) project diffeomorphically one onto the other, so do the terms of the sequence (32) below:

pΣ�1qp1q Ð pΣ0qp1q Ð . . .Ð pΣk�1qp1q Ð pΣkqp1q Ð . . .Ð Σp1q. (32)

On the other hand, the first prolongation Σp1q is a small submanifold in J8pE, n, n�1q, and, thanks to flag-jet projections
(see Lemma 6.3), it determines a tower

pΣp1qq1 Ð pΣp1qq2 Ð . . .Ð pΣp1qqk�1 Ð pΣp1qqk Ð . . .Ð Σp1q, (33)

where pΣp1qqk � πflag
8,kpΣp1qq. Again, terms of (33) project diffeomorphically one onto the other. Lemma 8.3 below clarifies

the relationship between the two towers, (32) and (33), having the common inverse limit Σp1q.

Lemma 8.3.
pΣp1qqk is the graph of a section of nk over pΣk�1qp1q.
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Proof. If Σp1q � tpCθ, TθΣq : θ P Σqu, then pΣk�1qp1q � tTθk�1Σk�1 : θk�1 P Σk�1qu, while

pΣp1qqk � tpRθk , Tθk�1Σk�1q : θk�1 P Σk�1u. (34)

It remains to be noticed that, in (34), Rθk belongs to the fiber of nk over Tθk�1Σk�1.

Lemma 8.3 shows that a section νk of nk is the only “additional information” needed to produce a k th order Cauchy
datum out of a pk�1qst order one. Schematically,

Σk�1 ÞÑ pΣk�1qp1q ÞÑ νkppΣk�1qp1qq ÞÑ pk
�
νkppΣk�1qp1qq

�
. (35)

Fact 8.4.
Fix a section νk for any nk . Then for any Cauchy value Σ0 there is a unique Cauchy datum Σ over Σ0 such that

pΣp1qqk � graph
�
νk |pΣk�1qp1q

�
, k � 1, 2, . . . (36)

The proof goes inductively making use of (35).

Remark 8.5.
A valuable generalization of Fact 8.4 would be that the space of Cauchy data over a given Cauchy value is the same
as the space of sections of ~n. This cannot be achieved, since higher-order homogeneous components of ~n cannot be
defined without the knowledge of lower-order Cauchy data. However, much as affine spaces are modeled by linear ones,
the space of Cauchy data we are interested in can be “modeled” by the space of sections of ~n, in a sense clarified by
Proposition 8.6 below, which is fundamental to prove the structural Theorem 9.1.

Proposition 8.6.
Let Σ0 be a Cauchy value, and fix a Cauchy datum Σ over it. Then sections of ~n|Σp1q are in one-to-one correspondence
with Cauchy data over Σ0.

Proof. First of all, thanks to the chain of diffeomorphisms (32), the bundle ~n|Σp1q can be identified with ~n|pΣk qp1q , for
any k . Hence, a section v of ~n|Σp1q may be thought of as a family tνkukPN, where νk is a section of ~nk |pΣk�1qp1q .

Because of Lemma 8.3, pΣp1qq1 is the graph of a section σ 1 of n1 over pΣ0qp1q, so, in view of Remark 7.6, it makes sense
to define

Σ11 � graphpσ 1� ν0q. (37)

Now (37) can be used as the induction basis to subsequently “adjust” the given Cauchy datum by means of the sections
of ~n (much as in the proof of Fact 8.4). Indeed (see also (36)), pp1pΣ11qqp1q is a small submanifold over pΣ0qp1q, and as
such identifies diffeomorphically with pΣ1qp1q. Hence, ν1 can be understood as a bundle over pp1pΣ11qqp1q, and (37) can
be used again to define Σ12. Continuing the iteration, one defines the Cauchy datum Σ1.

9. The space of infinite-order Cauchy data

Let ι : Ip8q
n�1pCq Ñ J8

�
J8pE, nq, n� 1

�
be the canonical inclusion, and

p def
� π8,0æIp8q

n�1 pCq
, where π8,0 : J8

�
J8pE, nq, n�1

�
Ñ J8pE, nq,

n def
� pπ8,0q�æIp8q

n�1 pCq
, where π8,0 : J8pE, nq Ñ E
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(see Definition 2.2 for the meaning of pπ8,0q�). Maps ι, p and n are conveniently depicted in the star-shaped dia-
gram (38).

J8
�
J8pE, nq, n�1

�

I
p8q
n�1pCq

p

ww

n

((

� ?
ι

OO

J8pE, nq J8pE, n�1q.

(38)

Introduce the lifted distributions

C def
� p�pCq, D def

� n�pDq, D
def
� ι�prDq,

where D (resp., rD) is the (pn�1q-dimensional) structural distribution on J8pE, n�1q (resp., J8
�
J8pE, nq, n�1

�
).

Notice that, unlike D, which has dimension n�1, both C and D are infinite-dimensional, though they are well-behaved,
in the sense that, homotopically, they are finite-dimensional.

Observe that p maps a D-leaf (i.e., a Cauchy datum) Σp8q into the small leaf Σ of C. The same Cauchy datum is mapped
by n into the leaf pΣ0qp8q of D (which is the corresponding Cauchy value). Hence, the secondary maps

�
I
p8q
n�1pCq,D

� p
ÝÑ pJ8pE, nq,Cq,

�
I
p8q
n�1pCq,D

� n
ÝÑ

�
J8pE, n�1q,D

�
,

are well defined. Recall that the inclusion L � J8pE, nq determines an inclusion J8pL, n�1q � J8pJ8pE, nq, n�1q
(see Example 2.4).

Theorem 9.1 (structural).
Let L (resp., Σ1) be a leaf of J8pE, nq (resp., J8pE, n�1q). Then the following identifications:

p�1pLq � J8pL, n� 1q, (39)
n�1pΣ1q � J8

�
~n|Σp1q

�
, (40)

hold, where Σ is a Cauchy datum over pΣ1q0.

Proof. (40) is just a paraphrase of Proposition 8.6. Consider now the commutative diagram

I
p8q
n�1pCq

��
p

zz

� � // J8
�
J8pE, nq, n�1

�
π8,0

� �
J8pE, nq In�1pCqp8

oo � � / / J1
�
J8pE, nq, n�1

�
,

(41)

where p8 is the limit of the pk and the vertical unlabeled arrow is π8,0æIp8q
n�1 pCq

.

Observe that planes in J1pL, n�1q are involutive, being contained in the tangent planes to L, which is C-integral. Hence,
J1pL, n�1q is also a subset of In�1pCq. Moreover,

pp8q�1pLq � tpTθL, rq : r � TθL, θ P Lu
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is a bundle over L whose fiber at θ P L equals GrpTθL, n� 1q (see Remark 7.2), hence it coincides with J1pL, n�1q. It
remains to be observed that

π�1
8,0

�
J1pL, n�1q

�
X I

p8q
n�1pCq � J8pL, n�1q, (42)

where the latter is understood (see again Example 2.4) as a subset of J8
�
J8pE, nq, n� 1

�
. Inclusion “�” is obvious,

since L is involutive and so are all its small submanifolds. Conversely, a point rΣ1s8θ in the left-hand side of (42) must
be such that θ � rL0s

8
θ0

. On the other hand, being not maximal, Σ1 must be contained into a leaf L1p8q, where L1 has the
same infinite jet as L0 at θ0. So, there exist a small submanifold Σ � L0, which is tangent to infinite order to Σ1 at θ0.
Correspondingly, a small submanifold (denoted by the same symbol) Σ � L exists, such that rΣs8θ � rΣ1s8θ .

Observe that, unlike (40), (39) is canonical.

Remark 9.2 (coordinates).
By definition, the equations of Ip8q

n�1pCq are the infinite prolongations of the equations of In�1pCq, which are just (20),
rewritten with arbitrarily long multi-indexes, viz.,

puαA,lqa � uαAa,l � tauαA,l�1, A P Nn�1
0 , l P N0. (43)

It is a simple computation to show that all differential consequences of (43) read as

puαA,lqB �
¸

B11B
1
2...B

1sB2�B

tB11 tB12 � � � tB1su
α
AB2,l�s, A, B P Nn�1

0 , l P N0. (44)

In view of (44), the (infinite) set of functions

xa, t, uαA,l, tB, A, B P Nn�1
0 , B � O, l P N0, (45)

can be taken as coordinates on I
p8q
n�1pCq, the infinite-order analog of (27). By using (45) and standard coordinates

on J8pE, nq, it looks obvious that tB , with B P Nn�1
0 , B � O, are the fiber coordinates of p. Now, similarly as for (22),

use (44) to produce a new coordinate system

xa, t, uαA,0, puαO,lqB, tB, A, B P Nn�1
0 , A � O, l P N, (46)

from which one sees that puαO,lqB , with B P Nn�1
0 and l P N are the fiber coordinates of n.

Coordinates (45) can be recovered from (46) by the formulas

uαA,l �
¸

B1B2...BsB�A
p�1qs tB1 tB2 � � � tBspu

α
O,l�sqB, A P Nn�1

0 , l P N. (47)

Remark 9.3 (affine case).
The infinite-order generalization of Lemma 5.7 reads

I
p8q
n�1pCq

loc
� J8pE, nq�E�1 J

8pE�1, n�1q. (48)

Correspondence (48) takes a point prσs8x , rΣs8x q, where σ is a section of E Ñ E�1, to the point j8pσq�prΣs8x q, where
j8pσq� : J8pE�1, n�1q Ñ J8

�
J8pE, nq, n�1

�
is the jet map associated to j8pσq (Definition 2.2). If coordinates (45)

are split into xa, t, uαA,l and tB , one gets precisely the coordinates of a point in the right-hand side of (48).

Remark 9.4.
A global analog of (48) can be constructed by replacing, in the structural bundle C over J8pE, nq, each fiber Cθ by
J80 pCθ, n�1q. This shows that Ip8q

n�1pCq is an infinite-dimensional bundle over J8pE, nq, with generic fiber J80 pRn, n�1q,
in strict analogy with flag bundles (Fact 3.5).
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Corollary 9.5.
Let L (resp., Σ1) be a leaf of J8pE, nq (resp., J8pE, n�1q). Then the following identifications of secondary manifolds:

p�1pLq � J8pL, n� 1q, (49)
n�1pΣ1q � J8

�
~n|Σp1q

�
, (50)�

I
p8q
n�1pCq,C

�
� J8pE, nq, (51)�

I
p8q
n�1pCq,D

�
� J8pE, n� 1q, (52)

hold, where Σ is a Cauchy datum over pΣ1q0.

Corollary 9.6 (transversality).
Projections p and n are leafwise transversal each other, i.e.,

• p projects diffeomorphically n�1pΣq onto J8pE, nq, for any leaf Σ of J8pE, n� 1q;

• n projects diffeomorphically p�1pLq onto J8pE, n� 1q, for any leaf L of J8pE, nq.

Proof. The second assertion is an immediate consequence of the fact that J8pL, n�1q is embedded into J8pE, n�1q
(see the proof of Theorem 9.1). For the first assertion, it is convenient to use the local coordinates from Remark 9.2.
Namely, let Σ be given by functions f, gα,

Σ : ctB �
BB

BxB f, uαA �
BA

BxA g
α . (53)

Then n�1pΣq is given, in the coordinates (46), by the same equations (53). Passing now to the coordinates (45),

n�1pΣq :

$''&
''%
uαA,l �

BA

BxA g
α , l � 0,

uαA,l �
¸

B1B2...BsB�A
p�1qs B

B1

BxB1
f B

B2

BxB2
f � � � B

Bs

BxBs fpu
α
O,l�sqB, l � 0,

(54)

one sees that n�1pΣq is parametrized by
pxa, t, puαO,l�sqBq, (55)

while the other coordinates are obtained via (54). So, the projection ppn�1pΣqq is given by the same equations (54), in
the standard coordinates pxa, t, uαA,lq of J8pE, nq. Hence, ppn�1pΣqq is again parametrized by (55).

Remark 9.7.
(50) and (49) might be seen as the secondary analog of the 1st order projections of flag manifolds (see Fact 3.5 and
Remark 7.2).

10. Concluding remarks and perspectives

Secondary ODEs

Identifications (51) and (52) allow to regard J8pE, nq and J8pE, n�1q as secondary quotients of the same secondary
manifold I

p8q
n�1pCq. Indeed, C can be understood as the distribution generated by D and by a p-vertical secondary

distribution (and similarly for D), as firstly pointed out by Vitagliano [18]. Since the leaves of C are canonically
identified with the leaves of C, any equation in n independent variables is the same as a (secondary) distribution on
the space of admissible Cauchy data. Such a perspective seems to be evidence of a (formal) analogy with Hamiltonian
formalism in mechanics.
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Twisted characteristic cohomology

Theorem 9.1 is the natural departing point to define a twisted generalization of the characteristic cohomology of an
equation (first of all, the empty one), where the coefficients belong to the p- or n-vertical characteristic cohomology
of the corresponding space of Cauchy data, in analogy with the differential Leray–Serre spectral sequence associated
with a fiber bundle. In particular, among terms of the twisted characteristic cohomology it can be found the one which
corresponds to an “action-valued action”, i.e., an action integral whose value on a leaf L (resp., Σ) is an action integral
on p�1pLq (resp., n�1pΣq). In Section 11 below we propose a toy model for such an action, and derive the corresponding
Euler–Lagrange equations.

The theory of twisted characteristic cohomology should be a source of simplification techniques in Calculus of Variations,
and of methods to compute characteristic cohomology of nonlinear PDEs, much as the Künnet formula does in Algebraic
Topology.

Fact 10.1, stemming from Theorem 9.1, provides a basic understanding of the characteristic cohomology of the space of
Cauchy data.

Fact 10.1.
The D-spectral sequence is 1-line.

To see it, embed J8pE, n�1q into J8pE, nq (see Remark 2.5), and then observe that I
p8q
n�1pCq is locally the space of

horizontal infinite jets J8
�
~n|J8pE,n�1qp1q

�
(see Proposition 8.6).

Invariance of the framework

From a mere set-theoretical point of view, n�1pΣ1q is but the inverse image of the submanifold Σ10 � E via the projection
π8,0 : J8pE, nq Ñ E . The main virtue of Theorem 9.1 is to reveal that n�1pΣ1q is an empty equation, a fact which
is essential if one is interested in special subsets of n�1pΣ1q, which arise from the analysis of nonlinear PDEs, and
compute their characteristic cohomology, by using the traditional geometrical and cohomological methods for PDEs. In
a sense, the whole machinery developed in this paper was aimed at the proof of (40), but perhaps a key feature of our
treatment was not given enough attention. Namely, the whole framework is invariant, i.e., well-behaved with respect to
transformations, which gives a total freedom in the choice of coordinates for computational purposes (as in the toy model
proposed in the last Section 11).

Higher codimension and complete flags

It is advisable to develop the theory for higher codimension flag jets, i.e., replace n�1 by any n0   n in the constructions
presented here. The so-obtained formalism may have interesting applications, e.g., in the context of quasi-local Hamil-
tonians (see, e.g., [6] concerning quasi-local mass in General Relativity). If complete flags are taken as the departing
point, then the theory for the twisted characteristic cohomology of the so-obtained space of complete jet flag should be
particularly rich, and play the same role, in the context of nonlinear PDEs, as the CW-complexes in Algebraic Topology.

11. An applicative example

In view of Theorem 9.1, every leaf of J8pE, n�1q produces an empty equation over the leaf itself,

Σ1
leaf of J8pE,n� 1q

ÞÝÑ n�1pΣ1q.
space of infinite jets of the infinite normal bundle

(56)

Moreover, thanks to Corollary 9.6, the empty equation n�1pΣ1q can be seen as a closed subset of J8pE, nq. Hence,
if some equation and/or variational principle is imposed on J8pE, nq, it will reflect on n�1pΣ1q. This phenomenon has
been originally noticed by Vinogradov in 1984 (see [13, Section 8.5]), but its cohomological analysis was carried out in
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detail by Vinogradov and the author in the 2006 paper [16] (see also [10]), where the relationship between the C-spectral
sequence associated with n�1pΣ1q and the relative C-spectral sequence of the surrounding jet space J8pE, nq is clarified.

The example developed below, which shows how a variational principle determines a natural equation on n�1pΣ1q, is
also a case where two action integrals of different horizontal degree are summed up.

Suppose that E is a closed domain in Rn�m, such that an m-dimensional submanifold G of Rn�m exists, and E is a
tubular neighborhood of it. Then E is (globally) a bundle over G with fiber Dn, and (locally) a bundle over Dn with
fiber Rm. Observe that the (graphs of the) sections of the latter belong to the larger class of submanifolds

A
def
�

 
L � E : LX BE � BL, L is oriented and connected

(
.

Put also BA def
� tBL : L P Au. Observe that A is nothing but a subset of the space J8pE, nq, made of leaves which

are well-behaved with respect to integration (in the terminology of Calculus of Variations, they would be referred to as
“admissible”, see also [13, Section 8.5] on this concern), and BA is a subset of the space J8pBE, n�1q. Let

S P H n�J8pE, nq, π�1
8,0pBEq

�
, SB P H

n�1
pJ8pE, n�1qq, (57)

be two action integrals, i.e., secondary real-valued functions on A and BA, respectively,

S : L P A ÞÑ j8pLq�S P HnpL, BLq � R, SB : Σ P BA ÞÑ j8pΣq� P Hn�1pΣq � R,

where the last identifications are an elementary fact of differential topology (see [2]). (57) define a secondary function
A Q L StotÞÝÑ SpLq � SBpBLq P R. Expectedly, the set of critical points of Stot is smaller than a mere (suitably defined)
intersection of the critical points of S and SB , because an “interaction term” arises. Namely, for any L P A, consider
the module of cosymmetries (see [1]) pκ:qL

def
� κ:

�
p
�
n�1ppBLqp8qq

��
of p

�
n�1ppBLqp8qq

�
, the canonical splitting

κ:
�
J8pE, nq, π�1

8,0pBEq
� loc
� κ:pJ8pE, nqq`pκ:qL,

and the corresponding decomposition 3 of the relative Euler–Lagrange differential 4 of S,

drelS � pdS, pdrelSqLq. (58)

It turns out that pdrelSqL � 0 is a differential equation in p
�
n�1ppBLqp8qq

�
, i.e., imposed on the sections of ~n|ppBLqp8qqp1q ,

which formalizes precisely the above idea of interaction.

Theorem 11.1.

L is critical for Stot ðñ

$''&
''%

L8 P tdS � 0up8q � J8pE, nq,
Lp8q X π�1

8,0pBLq P tpdrelSqL � 0up8q � J8
�
~n|ppBLqp8qqp1q

�
,

pBLqp8q P tdSB � 0up8q � J8pBE, n�1q.

(59)

3 In [13, Section 8.5], equations pdrelSqL are denoted by Γpωq, where ω is a representative of S, while in [16] they are
denoted by θ1ω.
4 Introduced in [16, Section 3.4], where it is denoted by Erel.
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Proof. Obviously, L is critical for Stot if an only if L is a solution of the relative Euler–Lagrange equations,

drelS � 0, (60)

and BL is a solution of dSB � 0, i.e., the last equation of the list (59). It remains to observe that the first two equations
are synthetically expressed by (60), thanks to (58).

When (57) are volume integrals, critical points of Stot are the least-volume and least-boundary-area submanifolds of E .

Apparently, (59) is just a clean way to write down the so-called natural boundary conditions in the Calculus of Variations,
and all the machinery exploited to obtain (59) is but a paraphrase of the classical analytical manipulations on variational
integral (see, e.g., [3, 5]) exploited to derive the natural boundary conditions. In fact, a very important feature of (59),
their invariance, does not show at a superficial look. Such a property allows, for instance, to derive the correct expression
of the transversality conditions, for any “tubular” manifold  which are not known to date  just by a wise choice of
coordinates. We will not go into the details of the general construction, but present a simple toy model with n � m � 1.

Example 11.2 (the problem of Columbus).
Given the curves Γ1 and Γ2 in R2, consider the problem of finding, among the (non self-intersecting) (smooth) curves
which start from a point of Γ1 and end to a point of Γ2 (without crossing Γ1YΓ2 in any other point), those whose length
is (locally) minimal. Obviously, a curve γ is a solution of the problem at hand if and only if

(EL) γ is a straight line;

(TC) γ hits at a right angle Γ1 Y Γ2.

The problem can be formalized by means of a Lagrangian density f dx, where f � fpx, y, y1q, on a tubular submanifold
E � R2, with BE � Γ1 Y Γ2. In this setting, condition (TC) for a curve γ � px, ypxqq read

�
f � Bf

By1



xΓ �

Bf
By1 y

Γ � 0, (61)

where pxΓ, yΓq is a vector tangent to BE .

Proof. Equation (61) can be obtained in few lines (see [3]). We propose an alternative way, which stresses the
role of invariance of (59). To this end, choose a diffeomorphism between E and the cylinder r0, 1s�R, and denote by
ω � gdx the pull-back of f dx to such a cylinder. Then S � rωs is an element of H 1�J8pπq, π�1

8 pt0, 1uq
�
, where

π : r0, 1s�RÑ r0, 1s, and

pdrelSqt0,1u �
Bg
By1

����
π�1
8 pt0,1uq

. (62)

By pulling back (62) on E , one obtains (61).

Acknowledgements

We belong to a privileged community which can play with theoretical nonsense without caring about life, thanks to the
hard work of many good people whose existence is often forgotten  to them goes the author’s deepest gratitude. He
is thankful for the indispensable hints and nudges coming from Luca Vitagliano, who first proposed Definition 8.2 for
k � 8, and Michael Bächtold, with whom he started the study of the variational problems with free boundary which
describe the “flight of dead vipers”, and for the friendly and stimulating environment of the Silesian University in Opava.
It is his pleasure to thank to the the Grant Agency of the Czech Republic (GA ČR) for financial support under the project
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