

Central European Journal of Mathematics

Isometry groups of non standard metric products

Research Article

Bogdana Oliynyk1*

1 Department of Mechanics and Mathematics, Kyiv Taras Shevchenko University, Volodymyrska 64/13, Kyiv, 01601, Ukraine

Received 27 October 2011; accepted 4 April 2012

Abstract: We consider isometry groups of a fairly general class of non standard products of metric spaces. We present

sufficient conditions under which the isometry group of a non standard product of metric spaces splits as a per-

mutation group into direct or wreath product of isometry groups of some metric spaces.

MSC: 54E40, 54B10, 54H15, 20E22

Keywords: Isometry group • Metric space • Non standard metric product • Direct product • Wreath product

© Versita Sp. z o.o.

1. Introduction

Let (X_i, d_i) , i = 1, ..., n, be metric spaces. To define a metric on their cartesian product $X = \prod_{i=1}^n X_i$ one can use, for instance, one of the following equalities:

$$d((x_1,\ldots,x_n),(y_1,\ldots,y_n)) = d_1(x_1,y_1) + \cdots + d_n(x_n,y_n), \quad \widetilde{d}((x_1,\ldots,x_n),(y_1,\ldots,y_n)) = \sqrt{d_1^2(x_1,y_1) + \cdots + d_n^2(x_n,y_n)}.$$

There are different generalizations of these constructions. In the case n=2 they include μ -products [1], f-products [5], warped products [3], etc. Following A. Bernig, T. Foertsch, V. Schroeder [2] we consider *non standard metric products* or Φ -products of metric spaces. Let us recall the precise definition. A function $\Phi: [0, \infty)^n \to [0, \infty)$ is called *admissible* if it satisfies the following conditions:

(A)
$$\Phi(p_1, p_2, \dots, p_n) = 0$$
 iff $p_1 = p_2 = \dots = p_n = 0$;

(B)
$$\Phi(q_1,\ldots,q_n) \leq \Phi(r_1,\ldots,r_n) + \Phi(p_1,\ldots,p_n)$$
 for any $q_i,r_i,p_i \in [0,\infty)$ such that $q_i \leq r_i+p_i$, $1 \leq i \leq n$.

^{*} E-mail: boqdana.oliynyk@qmail.com

Then the function

$$d_{\Phi}((x_1,\ldots,x_n),(y_1,\ldots,y_n)) = \Phi(d_1(x_1,y_1),\ldots,d_n(x_n,y_n))$$

is a metric on X [2].

Definition 1.1.

The metric space (X, d_{Φ}) is called the Φ -product of metric spaces X_1, \ldots, X_n .

Wreath products of metric spaces [6] arise as a special case of Φ -products of metric spaces. The aim of this article is to describe the isometry group of the Φ -product of X_1, \ldots, X_n , under certain conditions for Φ . We will show the relation

$$(\operatorname{Isom} X, X) \ge (\operatorname{Isom} X_1, X_1) \times \cdots \times (\operatorname{Isom} X_n, X_n). \tag{1}$$

For n=2 we describe a family of functions Φ for which the relation (1) is an equality. More generally, we show that for certain Φ -products of two metric spaces, its isometry group splits as a permutation group into the direct product of isometry groups of naturally defined subspaces. We also present sufficient conditions on Φ under which the isometry group of the Φ -product of X_1, \ldots, X_n is isomorphic as a permutation group to the wreath product of the isometry groups of spaces X_1, \ldots, X_n .

2. Preliminaries

We will need the following.

Proposition 2.1.

Let $\Phi: [0,\infty)^n \to [0,\infty)$ be an admissible function. Then

$$\Phi(q_1,\ldots,q_{i-1},0,q_{i+1},\ldots,q_n) \leq \Phi(q_1,\ldots,q_{i-1},q_i,q_{i+1},\ldots,q_n),$$

for all $q_i \in [0, \infty)$, $1 \le i \le n$.

Proof. If we replace q_j, r_j, p_j by $q_j, q_j, 0, 1 \le j \le n, j \ne i$, and q_i, r_i, p_i by $0, q_i, 0$ respectively in condition (B), then we obtain

$$\Phi(q_1,\ldots,q_{i-1},0,q_{i+1},\ldots,q_n) \leq \Phi(q_1,\ldots,q_{i-1},q_i,q_{i+1},\ldots,q_n) + \Phi(0,\ldots,0) = \Phi(q_1,\ldots,q_{i-1},q_i,q_{i+1},\ldots,q_n). \quad \Box$$

Let q be a positive real number. It is easy to see that the function

$$\widetilde{\Phi}(p_1, p_2, \dots, p_n) = \begin{cases} 0 & \text{if } p_1 = p_2 = \dots = p_n = 0, \\ q & \text{otherwise,} \end{cases}$$

is admissible. Therefore, for arbitrary metric spaces X_1, \ldots, X_n one can consider their $\widetilde{\Phi}$ -product. The isometry group of $(X, d_{\widetilde{\Phi}})$ is isomorphic as a permutation group to the symmetric group $S_{|X|}$. This is the largest possible isometry group of Φ -products of X_1, \ldots, X_n .

In general, we obtain the following statement describing a candidate for the smallest possible isometry group of a Φ -product.

Proposition 2.2.

Let X be a Φ -product of metric spaces X_1, \ldots, X_n , $n \geq 2$. Then the transformation group (Isom X, X) contains a subgroup isomorphic to the direct product of transformation groups

$$(\operatorname{Isom} X_1, X_1) \times \cdots \times (\operatorname{Isom} X_n, X_n).$$

Thus, the direct product $\prod_{i=1}^{n}(\operatorname{Isom} X_i, X_i)$ is contained in the isometry group of the Φ -product of X_1, \ldots, X_n for any admissible Φ . In the next section, we consider conditions on Φ so that the isometry group of the space (X, d_{Φ}) is the smallest possible.

3. Direct product of transformation groups and Φ -products of metric spaces

In this section, we consider Φ -products $(X_1 \times X_2, d_{\Phi})$ of two metric spaces $(X_1, d_1), (X_2, d_2)$. We will use the following notation. For each $a_1 \in X_1$, $a_2 \in X_2$ let

$$X_{a_1}^2 = \{(a_1, x_2) : x_2 \in X_2\}, \qquad X_{a_2}^1 = \{(x_1, a_2) : x_1 \in X_1\}$$

be subspaces of $(X_1 \times X_2, d_{\Phi})$. The points of $X_{a_1}^2$ are in natural one-to-one correspondence with the points of X_2 , while the points of spaces $X_{a_2}^1$ are in natural one-to-one correspondence with the points of X_1 . With these identifications, let the group Isom $X_{a_1}^2$ act on X_2 and Isom $X_{a_2}^1$ act on X_1 .

Lemma 3.1.

- (i) For arbitrary $a_1, b_1 \in X_1$ the spaces $X_{a_1}^2$ and $X_{b_1}^2$ are isometric.
- (ii) For arbitrary $a_2, b_2 \in X_2$ the spaces $X_{a_2}^1$ and $X_{b_2}^1$ are isometric.

Proof. (i) Let $g: X_{a_1}^2 \to X_{b_1}^2$ be a one-to-one correspondence between $X_{a_1}^2$ and $X_{b_1}^2$ given by the equality $g((a_1, x_2)) = (b_1, x_2)$ for all $x_2 \in X_2$. For different y_2 and z_2 from x_2 the equalities

$$d_{\Phi}\big(g((a_1,y_2)),g((a_1,z_2))\big) = d_{\Phi}((b_1,y_2),(b_1,z_2)) = \Phi\big(d_1(b_1,b_1),d_2(y_2,z_2)\big) = \Phi(0,d_2(y_2,z_2))$$

hold. As $d_{\Phi}((a_1, y_2), (a_1, z_2)) = \Phi(0, d_2(y_2, z_2))$,

$$d_{\Phi}(g((a_1, y_2)), g((a_1, z_2))) = d_{\Phi}((a_1, y_2), (a_1, z_2)).$$

Therefore, g is an isometry between $X_{a_1}^2$ and $X_{b_1}^2$.

(ii) The proof of this statement is similar to the proof of (i).

Note that groups (Isom $X_{a_1}^2$, X_2) and (Isom X_2 , X_2) (respectively (Isom $X_{a_2}^1$, X_1) and (Isom X_1 , X_1)) are not necessarily isomorphic. Moreover, the spaces $X_{a_1}^2$ and X_2 (resp. $X_{a_2}^1$ and X_1) are not necessarily isometric, see Example 3.5 below.

Denote by C_i the set of values of the metric d_i , i = 1, 2. Assume that

$$\inf_{q_1 \in C_1, \, q_1 \neq 0} \Phi(q_1, 0) > \sup_{q_2 \in C_2} \Phi(0, q_2), \qquad \inf_{q_2 \in C_2, \, q_2 \neq 0} \Phi(0, q_2) > \frac{1}{2} \sup_{q_1 \in C_1} \Phi(q_1, 0). \tag{2}$$

Note that the estimates

$$\sup_{q_1 \in C_1} \Phi(q_1, 0) < \infty, \quad \sup_{q_2 \in C_2} \Phi(0, q_2) < \infty \quad \text{and} \quad \inf_{q_1 \in C_1, \, q_1 \neq 0} \Phi(q_1, 0) > 0, \quad \inf_{q_2 \in C_2, \, q_2 \neq 0} \Phi(0, q_2) > 0$$

follow from the inequalities (2).

Theorem 3.2.

Let $\Phi: [0, \infty)^2 \to [0, \infty)$ be an admissible function, and let (X_1, d_1) , (X_2, d_2) be metric spaces. Assume that Φ satisfies (2) and the following condition holds:

$$\Phi(q_1, q_2) = \Phi(q_1, 0) + \Phi(0, q_2). \tag{3}$$

Then

$$(\operatorname{Isom} X, X) \simeq (\operatorname{Isom} X_{a_2}^1, X_1) \times (\operatorname{Isom} X_{a_1}^2, X_2)$$

for any $(a_1, a_2) \in X_1 \times X_2$.

Proof. We shall show that each $(g_1, g_2) \in \operatorname{Isom} X_{a_2}^1 \times \operatorname{Isom} X_{a_1}^2$ is an isometry of (X, d_{Φ}) . The element (g_1, g_2) acts on $X_1 \times X_2$ coordinate-wise. Therefore, it suffices to show that this transformation preserves the metric d_{Φ} :

$$d_{\Phi}((x_1, x_2)^{(g_1, g_2)}, (y_1, y_2)^{(g_1, g_2)}) = d_{\Phi}((x_1^{g_1}, x_2^{g_2}), (y_1^{g_1}, y_2^{g_2})) = \Phi(d_1(x_1^{g_1}, y_1^{g_1}), d_2(x_2^{g_2}, y_2^{g_2})).$$

From (3) we have

$$\Phi\left(d_{1}(x_{1}^{g_{1}}, y_{1}^{g_{1}}), d_{2}(x_{2}^{g_{2}}, y_{2}^{g_{2}})\right) = \Phi\left(d_{1}(x_{1}^{g_{1}}, y_{1}^{g_{1}}), 0\right) + \Phi\left(0, d_{2}(x_{2}^{g_{2}}, y_{2}^{g_{2}})\right) \\
= \Phi\left(d_{1}(x_{1}^{g_{1}}, y_{1}^{g_{1}}), d_{2}(a_{2}, a_{2})\right) + \Phi\left(d_{1}(a_{1}, a_{1}), d_{2}(x_{2}^{g_{2}}, y_{2}^{g_{2}})\right) \\
= d_{\Phi}\left((x_{1}^{g_{1}}, a_{2}), (y_{1}^{g_{1}}, a_{2})\right) + d_{\Phi}\left((a_{1}, x_{2}^{g_{2}}), (a_{1}, y_{2}^{g_{2}})\right).$$

As $g_1 \in \operatorname{Isom} X_{a_2}^1$, $g_2 \in \operatorname{Isom} X_{a_1}^2$, the following equalities hold:

$$d_{\Phi}((x_1^{g_1}, a_2), (y_1^{g_1}, a_2)) = d_{\Phi}((x_1, a_2), (y_1, a_2)), \qquad d_{\Phi}((a_1, x_2^{g_2}), (a_1, y_2^{g_2})) = d_{\Phi}((a_1, x_2), (a_1, y_2)).$$

Therefore,

$$d_{\Phi}((x_1, x_2)^{(g_1, g_2)}, (y_1, y_2)^{(g_1, g_2)}) = d_{\Phi}((x_1, a_2), (y_1, a_2)) + d_{\Phi}((a_1, x_2), (a_1, y_2))$$

= $\Phi(d_1(x_1, y_1), 0) + \Phi(0, d_2(x_2, y_2)) = d_{\Phi}((x_1, x_2), (y_1, y_2)).$

Hence,

$$(\operatorname{Isom} X, X) \ge (\operatorname{Isom} X_{a_2}^1, X_1) \times (\operatorname{Isom} X_{a_1}^2, X_2).$$

Let $\varphi \in \operatorname{Isom} X$. We show that there exist $g_1 \in \operatorname{Isom} X_{a_2}^1$ and $g_2 \in \operatorname{Isom} X_{a_1}^2$, such that φ acts on $X_1 \times X_2$ as $(g_1, g_2) \in \operatorname{Isom} X_{a_2}^1 \times \operatorname{Isom} X_{a_1}^2$ does. Let (y_1, y_2) be a point from $X_1 \times X_2$, u_1 a point from X_1 . Then

$$d_{\Phi}((y_1, y_2), (u_1, y_2)) = \Phi(d_1(y_1, u_1), d_2(y_2, y_2)) = \Phi(d_1(y_1, u_1), 0) \leq \sup_{q_1 \in C_1} \Phi(q_1, 0).$$

Denote by (z_1, z_2) the value $\varphi(y_1, y_2)$ and by (w_1, w_2) the value $\varphi(u_1, y_2)$. Using (3) we get

$$d_{\Phi}(\varphi(y_1, y_2), \varphi(u_1, y_2)) = d_{\Phi}((z_1, z_2), (w_1, w_2)) = \Phi(d_1(z_1, w_1), d_2(z_2, w_2)) = \Phi(d_1(z_1, w_1), 0) + \Phi(0, d_2(z_2, w_2)).$$

Assume that $z_2 \neq w_2$. Then using (2) we obtain

$$\Phi(d_1(z_1, w_1), 0) + \Phi(0, d_2(z_2, w_2)) \ge \inf_{q_1 \in C_1, q_1 \neq 0} \Phi(q_1, 0) + \inf_{q_2 \in C_2, q_2 \neq 0} \Phi(0, q_2) > \frac{1}{2} \sup_{q_1 \in C_1} \Phi(q_1, 0) + \frac{1}{2} \sup_{q_1 \in C_1} \Phi(q_1, 0)$$

$$= \sup_{q_1 \in C_1} \Phi(q_1, 0).$$

We have

$$d_{\Phi}(\varphi(y_1, y_2), \varphi(u_1, y_2)) > \sup_{q_1 \in C_1} \Phi(q_1, 0).$$

But φ is an isometry of the space X. Hence $z_2 = w_2$, i.e. $\varphi(u_1, y_2) = (w_1, z_2)$. Then the mapping φ acts as an isometry between subspaces of the form $X_{a_2}^1$, $a_2 \in X_2$.

Denote by g_1 the restriction of φ on $X_{g_2}^1$. Then $z_1 = g_1(y_1)$. We shall show that φ acts on each subspace of the form $X_{a_2}^1$, $a_2 \in X_2$, as g_1 . Fix arbitrary $(b_1, b_2) \in X_1 \times X_2$. Assume that $\varphi(b_1, b_2) = (h_1, h_2)$. We shall show that $h_1 = g_1(b_1)$. Indeed, in the opposite case from (2) it follows

$$d_{\Phi}((b_1, y_2), (b_1, b_2)) = \Phi(0, d_2(y_2, b_2)) < \inf_{q_1 \in C_1, q_1 \neq 0} \Phi(q_1, 0)$$

and

$$d_{\Phi}(\varphi(b_1, y_2), \varphi(b_1, b_2)) = d_{\Phi}((b_1^{g_1}, z_2), (h_1, h_2)) = \Phi(d_1(b_1^{g_1}, h_1), d_2(z_2, h_2)) = \Phi(d_1(b_1^{g_1}, h_1), 0) + \Phi(0, d_2(z_2, h_2))$$

$$\geq \inf_{q_1 \in C_1, q_1 \neq 0} \Phi(q_1, 0).$$

Therefore, the isometry φ acts on each subspace $X_{a_2}^1$, $a_2 \in X_2$, as g_1 .

Let now u_2 be a point from X_2 . Then

$$d_{\Phi}((y_1, y_2), (y_1, u_2)) = \Phi(0, d_2(y_2, u_2)) \le \sup_{q_2 \in C_2} \Phi(0, q_2) < \inf_{q_1 \in C_1, q_1 \neq 0} \Phi(q_1, 0). \tag{4}$$

Suppose that $\varphi(y_1, u_2) = (v_1, v_2)$. Using (3) we obtain

$$d_{\Phi}(\varphi(y_1, y_2), \varphi(y_1, u_2)) = d_{\Phi}((z_1, z_2), (v_1, v_2)) = \Phi(d_1(z_1, v_1), d_2(z_2, v_2)) = \Phi(d_1(z_1, v_1), 0) + \Phi(0, d_2(z_2, v_2)).$$

Assume that $z_1 \neq v_1$. We have

$$d_{\Phi}(\varphi(y_1, y_2), \varphi(y_1, u_2)) \ge \inf_{q_1 \in C_1, q_1 \neq 0} \Phi(q_1, 0). \tag{5}$$

Combining (4) and (5), we obtain $z_1 = v_1$. Therefore, φ acts as an isometry between subspaces of the form $X_{a_1}^2$, $a_1 \in X_1$. Denote by g_2 the restriction of φ on $X_{g_1}^2$. Then $z_2 = g_2(g_2)$. Assume now that $h_2 \neq g_2(b_2)$. Using (2) we get

$$d_{\Phi}((y_1, b_2), (b_1, b_2)) = \Phi(d_1(y_1, b_1), 0) \le \sup_{q_1 \in C_1, q_1 \neq 0} \Phi(q_1, 0), \tag{6}$$

$$d_{\Phi}(\varphi(y_{1}, b_{2}), \varphi(b_{1}, b_{2})) = d_{\Phi}((z_{1}, b_{2}^{g_{2}}), (h_{1}, h_{2})) = \Phi(d_{1}(z_{1}, h_{1}), d_{2}(b_{2}^{g_{2}}, h_{2})) = \Phi(d_{1}(z_{1}, h_{1}), 0) + \Phi(0, d_{2}(b_{2}^{g_{2}}, h_{2}))$$

$$\geq \inf_{q_{1} \in C_{1}, q_{1} \neq 0} \Phi(q_{1}, 0) + \sup_{q_{2} \in C_{2}} \Phi(0, q_{2}) > \frac{1}{2} \sup_{q_{1} \in C_{1}} \Phi(q_{1}, 0) + \frac{1}{2} \sup_{q_{1} \in C_{1}} \Phi(q_{1}, 0) = \sup_{q_{1} \in C_{1}} \Phi(q_{1}, 0).$$
(7)

Combining (6) and (7), we obtain $h_2 = g_2(b_2)$. Therefore, the isometry φ acts on each subspace of the form $X_{a_1}^2$, $a_1 \in X_1$, as g_2 . From Lemma 3.1 it follows, that $g_1 \in \operatorname{Isom} X_{a_2}^1$, $g_2 \in \operatorname{Isom} X_{a_1}^2$ for any $(a_1, a_2) \in X_1 \times X_2$. Finally, for arbitrary $(x_1, x_2) \in X_1 \times X_2$ we have

$$\varphi(x_1, x_2) = (x_1, x_2)^{(g_1, g_2)} = (x_1^{g_1}, x_2^{g_2}).$$

Corollary 3.3.

Let $\Phi: [0, \infty)^2 \to [0, \infty)$ be an admissible function, and let (X_1, d_1) , (X_2, d_2) be metric spaces. Assume that Φ satisfies (2) and the following condition holds:

$$\Phi(q_1, q_2) = \Phi(q_1, 0) + \Phi(0, q_2).$$

If $\text{Isom } X_{a_2}^1 = \text{Isom } X_1$, $\text{Isom } X_{a_1}^2 = \text{Isom } X_2$ for some $(a_1, a_2) \in X_1 \times X_2$, then

$$(\operatorname{Isom} X, X) \simeq (\operatorname{Isom} X_1, X_1) \times (\operatorname{Isom} X_2, X_2)$$

Example 3.4.

Let (X_1, d_1) and (X_2, d_2) be uniformly discrete metric spaces of finite diameters D_1, D_2 respectively. And let r_1, r_2 be positive numbers, such that for arbitrary points $x_i, y_i \in X_i, x_i \neq y_2$, the inequalities $d_i(x_i, y_i) \geq r_i$ hold, i = 1, 2. Denote $\Phi_1(q_1, q_2) = q_1 + q_2$. Then the function $\Phi_1(q_1, q_2)$ is admissible. If the inequalities

$$r_1 > D_2 \ge r_2 > \frac{1}{2} D_1$$
 or $r_2 > D_1 \ge r_1 > \frac{1}{2} D_2$

hold, then the inequalities (2) hold as well. Therefore

$$\operatorname{Isom}(X_1 \times X_2, d_{\Phi_1}) \simeq \operatorname{Isom} X_1 \times \operatorname{Isom} X_2.$$

Example 3.5.

Let (X_1, d_1) and (X_2, d_2) be metric spaces. Let

$$\Phi_2(q_1, q_2) = \begin{cases} 0 & \text{if} \quad q_1 = q_2 = 0, \\ 4 & \text{if} \quad q_1 \neq 0, q_2 = 0, \\ 3 & \text{if} \quad q_1 = 0, q_2 \neq 0, \\ 7 & \text{in other cases.} \end{cases}$$

Then

Isom
$$(X_1 \times X_2, d_{\Phi_2}) \simeq S_{|X_1|} \times S_{|X_2|}$$
.

4. Wreath products of groups and Φ-products

In this section we consider Φ -products $(X_1 \times \cdots \times X_n, d_{\Phi})$ of n metric spaces $(X_1, d_1), \ldots, (X_n, d_n), n \geq 2$. Let us recall the definition of the wreath product of transformation groups. Let $(G_1, X_1), \ldots, (G_n, X_n)$ be a sequence of transformation groups. Following [7], the transformation group $(G, \prod_{i=1}^n X_i)$ is called the *wreath products of groups* $(G_1, X_1), \ldots, (G_n, X_n)$ if for all elements $u \in G$ the following conditions hold:

- 1) if $(x_1, \ldots, x_n)^u = (y_1, \ldots, y_n)$, then for all $i, 1 \le i \le n$, the value of y_i depends only on x_1, \ldots, x_i ;
- 2) for fixed x_1, \ldots, x_{i-1} the mapping $g_i(x_1, \ldots, x_{i-1})$ defined by the equality

$$q_i(x_1,\ldots,x_{i-1})(x_i)=q_i, \qquad x_i\in X_i,$$

is a permutation on the set X_i which belongs to G_i . Denote the wreath products of groups $(G_1, X_1), \ldots, (G_n, X_n)$ by $\mathcal{C}_{i=1}^n(G_i, X_i)$.

It follows from this definition that each element $u \in G$ can be represented as a so-called table $u = [g_1, g_2(x_1), \ldots, g_n(x_1, \ldots, x_{n-1})]$, where $g_1 \in G_1$, $g_i(x_1, \ldots, x_{i-1}) \in G_i^{X_1 \times \cdots \times X_{i-1}}$, $2 \le i \le n$. An element $u \in G$ acts on $(x_1, \ldots, x_n) \in \prod_{i=1}^n X_i$ by the rule

$$(x_1,\ldots,x_n)^u=(x_1^{g_1},x_2^{g_2(m_1)},\ldots,x_n^{g_n(x_1,\ldots,x_{n-1})}).$$

We can consider the space δT of paths in a rooted level homogeneous tree T as some Φ -product of discrete metric spaces. Indeed, let T be a finite n-levels rooted tree with root v_0 . Recall that a rooted tree T is called *level homogenous* [4] if it is homogenous on every level. Such a tree is uniquely determined by its *level index*, i.e. by a finite sequence of cardinal numbers $[k_0; k_1; k_2; \ldots; k_n]$, where k_i is the number of edges joining a vertex of the i-th level with vertices of the (i+1)-st level. A rooted path is a finite sequence of vertices (v_0, v_1, \ldots, v_n) such that $\{v_i, v_{i+1}\} \in E(T)$ for every i, $0 \le i \le n-1$. The metric space δT is defined to be the set of all rooted paths of T equipped with a natural ultrametric

$$\rho(\gamma_1,\gamma_2)=\frac{1}{m+1},$$

where m is the length of the maximal common part of rooted paths y_1 and y_2 .

Let now $(X_1, d_1), \ldots, (X_n, d_n)$ be discrete spaces, i.e., for different points $u, v \in X_i$, $d_i(u, v) = 1$, $1 \le i \le n$. And let $|X_i| = k_i$, $1 \le i \le n$. We can introduce the function $\Phi_3 : [0, \infty)^n \to [0, \infty)$ putting

$$\Phi_{3}(q_{1},\ldots,q_{n}) = \begin{cases} q_{1} & \text{if} \quad q_{1} \neq 0, \\ \frac{1}{2}q_{2} & \text{if} \quad q_{1} = 0 \text{ and } q_{2} \neq 0, \\ \dots & \\ \frac{1}{n}q_{n} & \text{if} \quad q_{1} = \dots = q_{n-1} = 0 \text{ and } q_{n} \neq 0, \\ 0 & \text{if} \quad q_{1} = \dots = q_{n} = 0. \end{cases}$$

It is clear that Φ_3 is admissible. Therefore, one can consider the Φ_3 -product of the spaces X_1, \ldots, X_n .

It is easy to see that the space δT of paths in the rooted level homogeneous tree T and the Φ_3 -product of discrete metric spaces X_1,\ldots,X_n are isometric. It is well known that the isometry group of the space δT is isomorphic as a permutation group to the wreath product of symmetric groups S_{k_i} , $i=1,\ldots,n$. Therefore, the isometry group of the space $(X_1\times\cdots\times X_n,d_{\Phi_3})$ is isomorphic as a permutation group to the wreath product of isometry groups of discrete spaces X_i , $i=1,\ldots,n$. In this section we generalize this result by extending the class of metric spaces and introducing restrictions on the function Φ .

Let now (X_i, d_i) , i = 1, ..., n, be arbitrary metric spaces. And let as before C_i be the set of values of the metric d_i , $1 \le i \le n$. Assume that there exist functions $f_i : [0, \infty) \to [0, \infty)$, $1 \le i \le n$, such that

$$\Phi(q_1, \dots, q_n) = \begin{cases}
f_1(q_1) & \text{if } q_1 \neq 0, \\
f_2(q_2) & \text{if } q_1 = 0 \text{ and } q_2 \neq 0, \\
\dots & \\
f_n(q_n) & \text{if } q_1 = \dots = q_{n-1} = 0 \text{ and } q_n \neq 0, \\
0 & \text{if } q_1 = \dots = q_n = 0,
\end{cases}$$
(8)

for arbitrary $q_i \ge 0$, $1 \le i \le n$. For each $i, 1 \le i \le n$, denote by \widehat{X}_i the space (X_i, \widehat{d}_i) , where for $u, v \in X_i$,

$$\widehat{d}_i(u,v) = \begin{cases} f_i(d_i(u,v)) & \text{if } u \neq v, \\ 0 & \text{otherwise.} \end{cases}$$

Assume that for all i, $1 \le i \le n-1$,

$$\inf_{q_i \in C_i, \ q_i \neq 0} f_i(q_i) > \sup_{q_{i+1} \in C_{i+1}} f_{i+1}(q_{i+1}). \tag{9}$$

Theorem 4.1.

Let $\Phi: [0,\infty)^n \to [0,\infty)$ be an admissible function such that conditions (8) and (9) hold. Then the isometry group of the Φ -product X of metric spaces X_1, X_2, \ldots, X_n is isomorphic as a permutation group to the wreath product of isometry groups of spaces \widehat{X}_i , $i=1,\ldots,n$,

$$(\operatorname{Isom}(X, d_{\Phi}), X) \simeq {}_{i=1}^{n}(\operatorname{Isom}\widehat{X}_{i}, X_{i}).$$

Proof. Consider arbitrary

$$\varphi = [g_1, g_2(x_1), \dots, g_n(x_1, \dots, x_{n-1})] \in \mathcal{I}_{i=1}^n \operatorname{Isom} \widehat{X}_i.$$

We shall show that φ is an isometry of (X, d_{Φ}) . By the definition of the wreath product of permutation groups [7] the element φ acts on $\prod_{i=1}^{n} X_i$. Therefore, it is sufficient to show that φ preserves the metric d_{Φ} . Indeed,

$$d_{\Phi}(\varphi(x_{1}, x_{2}, \dots, x_{n}), \varphi(y_{1}, y_{2}, \dots, y_{n})) = d_{\Phi}((x_{1}^{g_{1}}, x_{2}^{g_{2}(x_{1})}, \dots, x_{n}^{g_{n}(x_{1}, \dots, x_{n-1})}), (y_{1}^{g_{1}}, y_{2}^{g_{2}(y_{1})}, \dots, y_{n}^{g_{n}(y_{1}, \dots, y_{n-1})}))$$

$$= \Phi(d_{1}(x_{1}^{g_{1}}, y_{1}^{g_{1}}), d_{2}(x_{2}^{g_{2}(x_{1})}, y_{2}^{g_{2}(y_{1})}), \dots, d_{n}(x_{n}^{g_{n}(x_{1}, \dots, x_{n-1})}, y_{n}^{g_{n}(y_{1}, \dots, y_{n-1})})).$$

Using (8), we have

$$d_{\Phi}(\varphi(x_{1}, x_{2}, \dots, x_{n}), \varphi(y_{1}, y_{2}, \dots, y_{n})) = \begin{cases} f_{1}(d_{1}(x_{1}^{g_{1}}, y_{1}^{g_{1}})) & \text{if } x_{1}^{g_{1}} \neq y_{1}^{g_{1}}, \\ f_{2}(d_{2}(x_{2}^{g_{2}(x_{1})}, y_{2}^{g_{2}(y_{1})})) & \text{if } x_{1}^{g_{1}} = y_{1}^{g_{1}}, x_{2}^{g_{2}(x_{1})} \neq y_{2}^{g_{2}(y_{1})}, \\ \dots & \\ 0 & \text{if } x_{1}^{g_{1}} = y_{1}^{g_{1}}, \dots, x_{n}^{g_{n}(x_{1}, \dots, x_{n-1})} = y_{n}^{g_{n}(y_{1}, \dots, y_{n-1})}. \end{cases}$$

$$(10)$$

But $g_1 \in \text{Isom } \widehat{X}_1$. Then $x_1^{g_1} = y_1^{g_1}$ iff $x_1 = y_1$. Hence, $x_1^{g_1} = y_1^{g_1}$ iff $g_2(x_1) = g_2(y_1)$, and so on. With similar reasoning, using (10), we get

$$d_{\Phi}(\varphi(x_{1},...,x_{n}),\varphi(y_{1},...,y_{n})) = \begin{cases} f_{1}(d_{1}(x_{1}^{g_{1}},y_{1}^{g_{1}})) & \text{if } x_{1} \neq y_{1}, \\ f_{2}(d_{2}(x_{2}^{g_{2}(x_{1})},y_{2}^{g_{2}(x_{1})})) & \text{if } x_{1} = y_{1} \text{ and } x_{2} \neq y_{2}, \\ ... \\ 0 & \text{if } x_{1} = y_{1},...,x_{n} = y_{n}. \end{cases}$$

As g_1 is an isometry of \widehat{X}_1 , $f_1(d_1(x_1^{g_1}, y_1^{g_1})) = f_1(d_1(x_1, y_1))$. Since $g_i(x_1, \dots, x_{i-1}) \in \text{Isom } \widehat{X}_i$ the following equalities hold:

$$f_i(d_i(x_i^{g_i(x_1,...,x_{i-1})}, y_i^{g_i(x_1,...,x_{i-1})})) = f_i(d_i(x_i, y_i)), \qquad 2 \le i \le n.$$

Therefore,

$$d_{\Phi}(\varphi(x_{1},...,x_{n}),\varphi(y_{1},...,y_{n})) = \begin{cases} f_{1}(d_{1}(x_{1},y_{1})) & \text{if } x_{1} \neq y_{1}, \\ f_{2}(d_{2}(x_{2},y_{2})) & \text{if } x_{1} = y_{1} \text{ and } x_{2} \neq y_{2}, \\ ... \\ f_{n}(d_{n}(x_{n},y_{n})) & \text{if } x_{1} = y_{1},...,x_{n-1} = y_{n-1},x_{n} \neq y_{n}, \\ 0 & \text{if } x_{1} = y_{1},...,x_{n} = y_{n}, \end{cases}$$

$$= d_{\Phi}((x_{1},...,x_{n}),(y_{1},...,y_{n})).$$

Let now φ be an isometry of (X, d_{Φ}) . Fix a point (x_1, \ldots, x_n) from X and assume that $\varphi(x_1, \ldots, x_n) = (z_1, \ldots, z_n)$. Let $\varphi(y_1, y_2, \ldots, y_n) = (w_1, w_2, \ldots, w_n)$ for some $y_i \in X_i$, $1 \le i \le n$, $(y_1, \ldots, y_n) \ne (x_1, \ldots, x_n)$. We have

$$d_{\Phi}((x_1, x_2, \dots, x_n), (y_1, y_2, \dots, y_n)) = \Phi(d_1(x_1, y_1), d_2(x_2, y_2), \dots, d_n(x_n, y_n)) = f_i(d_i(x_i, y_i)), \tag{11}$$

where j is the smallest number such that $y_1 = x_1, \ldots, y_{j-1} = x_{j-1}, y_j \neq x_j$. Using (8), we obtain

$$d_{\Phi}(\varphi(x_1, x_2, \dots, x_n), \varphi(x_1, y_2, \dots, y_n)) = d_{\Phi}((z_1, z_2, \dots, z_n), (w_1, w_2, \dots, w_n))$$

$$= \Phi(d_1(z_1, w_1), d_2(z_2, w_2), \dots, d_n(z_n, w_n)) = f_k(d_k(x_k, y_k)),$$
(12)

where k is the smallest number such that $z_1 = w_1, \ldots, z_{k-1} = w_{k-1}, z_k \neq w_k$. Combining (11), (12) and (9), we get j = k. This means that for all i, $1 \leq i \leq n$, the value y_i depends only on x_1, \ldots, x_i and for fixed x_1, \ldots, x_{i-1} the mapping φ acts on X_i as some isometry $g_i(x_1, \ldots, x_{i-1})$. Therefore, there exists a table

$$[g_1, g_2(x_1), \ldots, g_n(x_1, \ldots, x_{n-1})]$$

such that $g_1 \in \text{Isom } \widehat{X}_1, g_i(x_1, \dots, x_{i-1}) \in (\text{Isom } \widehat{X}_i)^{X_1 \times \dots \times X_{i-1}}$. And the table $[g_1, g_2(x_1), \dots, g_n(x_1, \dots, x_{n-1})]$ acts on X as φ does. This completes the proof.

Corollary 4.2.

Let $\Phi: [0,\infty)^n \to [0,\infty)$ be an admissible function such that conditions (8) and (9) hold. If

$$\mathsf{Isom}\,(X_i, f_i(d_i)) = \mathsf{Isom}\,(X_i, d_i)$$

for all i, 1 < i < n, then

$$(\operatorname{Isom} X, X) \simeq \bigcup_{i=1}^{n} (\operatorname{Isom} X_{i}, X_{i}).$$

Example 4.3.

Let (X_1, d_1) and (X_2, d_2) be metric spaces of finite diameters D_1, D_2 . Assume that there exists a positive number r such that for arbitrary points $x_1, x_2 \in X_1$, $x_1 \neq x_2$, the inequality $d_1(x_1, x_2) \geq r$ holds. Let $\Phi_3(q_1, q_2) = \max(q_1, q_2)$. If $r > D_2$, then $\operatorname{Isom}(X_1 \times X_2, d_{\Phi_3}) \simeq (\operatorname{Isom} X_1) \wr (\operatorname{Isom} X_2)$.

Example 4.4.

Let $X_i = \mathbb{Z}$ and d_i be the Euclidean distance, $1 \le i \le n$. It is easy to see that the function

$$\Phi_{5}(q_{1},...,q_{n}) = \begin{cases} n+1-\frac{1}{q_{1}+1} & \text{if } q_{1} \neq 0, \\ n-\frac{1}{q_{2}+1} & \text{if } q_{1} = 0 \text{ and } q_{2} \neq 0, \\ ... \\ 2-\frac{1}{q_{n}+1} & \text{if } q_{1} = ... = q_{n-1} = 0 \text{ and } q_{n} \neq 0, \\ 0 & \text{if } q_{1} = ... = q_{n} = 0, \end{cases}$$

is admissible and satisfies (8) and (9). Therefore, one can consider the Φ_5 -product $(\mathbb{Z} \times \cdots \times \mathbb{Z}, d_{\Phi_5})$ of X_i , $1 \le i \le n$. The set of values of the metric d_{Φ_5} is bounded, while each d_i takes arbitrary large values.

It follows from Theorem 4.1 that the isometry group of $(\mathbb{Z} \times \cdots \times \mathbb{Z}, d_{\Phi_5})$ is isomorphic as a permutation group to the wreath product of isometry groups of (X_i, \hat{d}_i) , $i = 1, \ldots, n$, where for arbitrary $u, v \in X_i$,

$$\widehat{d}_i(u,v) = \begin{cases} n+2-i - \frac{1}{d_i(u,v)+1} & \text{if } u \neq v, \\ 0 & \text{in other cases.} \end{cases}$$

Recall, metric spaces (Y, d_1) and (Y, d_2) are called *isomorphic* [8] if there exists a *scale*, that is a strictly increasing continuous function $s: \mathbb{R}^+ \to \mathbb{R}^+$, s(0) = 0, such that $d_1 = s(d_2)$. It is easy to observe that if metric spaces (Y, d_1) and (Y, d_2) are isomorphic then their isometry groups Isom (Y, d_1) and Isom (Y, d_2) are equal.

For each i, $1 \le i \le n$, the spaces $(\mathbb{Z}, \widehat{d}_i)$ and (\mathbb{Z}, d_i) are isomorphic. Indeed, if we consider a scale $s : \mathbb{R}^+ \to \mathbb{R}^+$ given by the equality

$$s(t) = \begin{cases} n + 2 - i - \frac{1}{t+1} & \text{if } t \ge 1, \\ \left(n + \frac{3}{2} - i\right)t & \text{if } 0 \le t \le 1, \end{cases}$$

then $\widehat{d}_i = s(d_i)$ on \mathbb{Z} . Therefore, the isometry group of the space $(\mathbb{Z}, \widehat{d}_i)$ is isomorphic to the infinite dihedral group D_{∞} . Hence, the isometry group of $(\mathbb{Z} \times \cdots \times \mathbb{Z}, d_{\Phi_5})$ is isomorphic as a permutation group to the wreath product of n infinite dihedral groups D_{∞} :

$$(\operatorname{Isom}(\mathbb{Z}\times\cdots\times\mathbb{Z},d_{\Phi_{5}}),\,\mathbb{Z}\times\cdots\times\mathbb{Z})\simeq \ell_{i=1}^{n}(D_{\infty},\,\mathbb{Z}).$$

References

- [1] Avgustinovich S., Fon-Der-Flaass D., Cartesian products of graphs and metric spaces, European J. Combin., 2000, 21(7), 847–851
- [2] Bernig A., Foertsch T., Schroeder V., Non standard metric products, Beiträge Algebra Geom., 2003, 44(2), 499–510
- [3] Chen C.-H., Warped products of metric spaces of curvature bounded from above, Trans. Amer. Math. Soc., 1999, 351(12), 4727–4740
- [4] Gawron P.W., Nekrashevych V.V., Sushchansky V.I., Conjugation in tree automorphism groups, Internat. J. Algebra Comput., 2001, 11(5), 529–547
- [5] Moszyńska M., On the uniqueness problem for metric products, Glas. Mat. Ser. III, 1992, 27(47)(1), 145–158
- [6] Oliynyk B., Wreath product of metric spaces, Algebra Discrete Math., 2007, 4, 123–130
- [7] Kalužnin L.A., Beleckij P.M., Fejnberg V.Z., Kranzprodukte, Teubner-Texte Math., 101, Teubner, Leipzig, 1987
- [8] Schoenberg I.J., Metric spaces and completely monotone functions, Ann. Math., 1938, 39(4), 811–841