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1. Introduction

n

Let (X;, d;), i =1,...,n, be metric spaces. To define a metric on their cartesian product X = [];_; X; one can use, for
instance, one of the following equalities:

(0, %), (1,0 ya)) = it yn) o o, 0) @ (10X, (G0 ya)) =3 B0, y2) + -+ s Yo

There are different generalizations of these constructions. In the case n = 2 they include p-products [1], f-products [5],
warped products [3], etc. Following A.Bernig, T.Foertsch, V.Schroeder [2] we consider non standard metric products or
®-products of metric spaces. Let us recall the precise definition. A function ®: [0, 00)" — [0, 00) is called admissible if
it satisfies the following conditions:

(A) ®(p1,p2,-.. pn)=0iff pr=pa=...=p, =0

(B) ®(q1,...,q,) S P(r1,...,r)+ P(p1,...,pn) for any g;, ri, p; €[0,00) such that g; < r; +p;, 1 <i < n.
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Then the function
do((X1, - %) (Y1, - yn)) = @ (di(x1,y1), ... dulXn, Yn)

is a metric on X [2].

Definition 1.1.
The metric space (X, do) is called the ®-product of metric spaces Xi, ..., X,.

Wreath products of metric spaces [6] arise as a special case of ®-products of metric spaces. The aim of this article is to
describe the isometry group of the ®-product of Xj, ..., X,, under certain conditions for ®. We will show the relation

(Isom X, X) > (Isom X7, Xj) x - - x (Isom X, X},). (1)

For n = 2 we describe a family of functions @ for which the relation (1) is an equality. More generally, we show that
for certain ®-products of two metric spaces, its isometry group splits as a permutation group into the direct product of
isometry groups of naturally defined subspaces. We also present sufficient conditions on ® under which the isometry
group of the ®-product of X, ..., X, is isomorphic as a permutation group to the wreath product of the isometry groups
of spaces Xi,..., X,.

2. Preliminaries

We will need the following.

Proposition 2.1.
Let ®: [0, 00)" — [0, 00) be an admissible function. Then

®(q1,....qi=1,0, g1, .. qn) < P(G1, -2 Gicr. Gir Gisa - - -4 G,
for all g; €10,00), 1< i< n.

Proof, If we replace g;,rj,pj by q;,q;,0,1 < j<n,j+#1i and g, r;,p; by 0,q;, 0 respectively in condition (B), then
we obtain

S(g1,--..qi=1,0,qix1, ... qn) < P(g1, .-, Gi=1, i, Gis1, - Gn) + PO, ...,0) = D(g1,--..Gi=1,Gi, Gix1, - -, Gn). O
Let g be a positive real number. It is easy to see that the function

0 if pp=p2=...=p, =0,

¢(p1,pz,.-.,pn)={ .
q otherwise,

is admissible. Therefore, for arbitrary metric spaces Xj, ..., X, one can consider their 5—product. The isometry group
of (X, d) is isomorphic as a permutation group to the symmetric group Six|. This is the largest possible isometry group
of ®-products of Xi,..., X,,.

In general, we obtain the following statement describing a candidate for the smallest possible isometry group of a
®-product.
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Proposition 2.2.
Let X be a ®-product of metric spaces Xy, ..., X,, n > 2. Then the transformation group (Isom X, X) contains a subgroup
isomorphic to the direct product of transformation groups

(Isom Xq, X7) x - - - x (Isom X, X,,).

Thus, the direct product [];_;(Isom X;, X;) is contained in the isometry group of the ®-product of Xj,..., X, for any
admissible ®. In the next section, we consider conditions on ® so that the isometry group of the space (X, ds) is the
smallest possible.

3. Direct product of transformation groups and ®-products of metric spaces

In this section, we consider ®-products (Xj x X3, do) of two metric spaces (Xi, d1), (X2, d2). We will use the following
notation. For each ay € Xj, a; € X5 let

ng Z{(G1,X2)ZX2€X2}, X1 ={(X1,02)2X1 EX1}

az

be subspaces of (X; x X3, do). The points of X31 are in natural one-to-one correspondence with the points of X, while
the points of spaces X;z are in natural one-to-one correspondence with the points of X;. With these identifications, let
the group Isom X31 act on X5 and Isom XJ,Z act on Xj.

Lemma 3.1.
(i) For arbitrary a1, by € Xy the spaces X§1 and X§1 are isometric.

(i) For arbitrary ay, b, € X, the spaces X;z and X;z are isometric.

Proof. (i) Letg: Xg1 - X§1 be a one-to-one correspondence between X; and X,i given by the equality g((a1, x2)) =
(b1, x2) for all x, € X5. For different y, and z, from X; the equalities

do(g((a1,92)), g((a1,22))) = do((b1,y2), (b1, 22)) = S (d1(b1, b1), da(y2, 22)) = P(0, da(y2, 22))

hold. As do((ay, y2), (a1, z2)) = ®(0, d2(y2, 22)),

do(g((a1,y2)), g((a1, 22))) = do((a1, y2), (a1, 22)).

Therefore, g is an isometry between ng and X;.

(i) The proof of this statement is similar to the proof of (). O

Note that groups (Isom XgW,Xz) and (Isom X3, X3) (respectively (Isom X;z,X1) and (Isom X7, X;)) are not necessarily iso-
morphic. Moreover, the spaces Xuz1 and X, (resp. X;z and X;) are not necessarily isometric, see Example 3.5 below.

Denote by C; the set of values of the metric d;, i = 1,2. Assume that

1
inf  ®(gq,0) > sup 9(0, q2), inf &0, > = sup P(g4,0). 2
et ®(a1.0) Sup 0, 92) et ®0.q2) 2w (q1,0) 2
Note that the estimates
sup ®(g1,0) < oo, sup $(0, g2) < o0 and inf  ®(q4,0) >0, inf  ®(0,g,) >0
g€ 7266 G1€6y,q1#0 926G, 4240

follow from the inequalities (2).
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Theorem 3.2.
Let ®: [0, 00)?> — [0, 00) be an admissible function, and let (X1, d+), (X3, d2) be metric spaces. Assume that ® satisfies (2)
and the following condition holds:

®(g1, g2) = ®(g1,0) + ®(0, q2). 3)

Then
(Isom X, X) =~ (Isom X} , X1) x (Isom X7 , X)

for any (a4, ;) € X; x Xa.

Proof. We shall show that each (g1, g>) € lsom ng x Isom X31 is an isometry of (X, d¢). The element (g1, g2) acts
on X; x X, coordinate-wise. Therefore, it suffices to show that this transformation preserves the metric dg:

d¢((x1 XZ)g1 92), s (yn, !/2)(91 92) = d¢((x1 ,X2 %), (91 '92 ) = ¢(d1 X1 rU1 '), dZ(ng'ygz))-

From (3) we have

(d1(X1 rU1 "), dZ(Xz ryz ) = ¢(d1 X1 r!/1 "), 0) +¢(O o Xz ryzz))
= O (di(x]", y]"). da(az, a2)) + ®(di(aq, a1), da(x3%, y5?))
= d¢((X1 ,a2), (y7' :‘72)) +d¢( (a1,x5%), (a1, 45 ))'

As g; € Isom X , g, € Isom X31, the following equalities hold:

do((", 02), (y', a2)) = do((x1, 02), (y1, 02)), do((ar,x3%), (a1, 43%)) = do((a1,x2), (a1, y2)).

Therefore,

do((x1, %) 79, (41, 42)99)) = do((x1, 02), (Y1, 02)) + do((a1, x2). (a1, y2))
= ®(d1(x1,y1),0) + (0, da(x2, y2)) = dol(x1,x2), (Y1, y2)).

Hence,
(Isom X, X) > (IsomXJZ,X1) (Isom X2, X5).

ay’

Let ¢ € Isom X. We show that there exist g; € Isom X;z and g, € Isom X§1, such that ¢ acts on Xj x X, as (g1, g2) €
Isom X;z x lsom X31 does. Let (y1, y2) be a point from X; x X5, uy a point from X;. Then

do((y1, y2), (u1, y2)) = ®(di(yq, ur), da(y2, y2)) = P(d1(ys,ur),0) < sup ®(q4,0).
qeG

Denote by (z1, z;) the value ¢(y1, y2) and by (wq, ws) the value ¢(uy, y2). Using (3) we get
do(p(y1,y2), p(ur, y2)) = do((21, 22), (W1, w2)) = B (d1(21, w1), d2(22, w2)) = P(d1(21, w1), 0) + ®(0, da(22, w2))-

Assume that z, # wy. Then using (2) we obtain

1 1
&(di(z1, wy),0) + (0, da(z2, W) > inf  d(gq,0) + inf  ®(0,g2) > = sup ®(g1,0) + = sup P(qg4,0)
q1€Cy,q1#0 426G, q2#0 2 q1eCy q1€Cy

= sup $(g1,0).

q1€Cy
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We have
do(@(y1, y2), @(u1, y2)) > sup ®(q1,0).

1€
But ¢ is an isometry of the space X. Hence z, = wy, L.e. ¢(u1, y2) = (wy, z2). Then the mapping ¢ acts as an isometry
between subspaces of the form XJ,Z, a; € X.

Denote by g4 the restriction of ¢ on X;Z. Then z; = g1(y1). We shall show that ¢ acts on each subspace of the form
ng, a; € X;, as gq. Fix arbitrary (b1, by) € X1 x X,. Assume that @(b1, by) = (hy, hy). We shall show that hy = g4(b1).
Indeed, in the opposite case from (2) it follows

do((b1,y2), (b1, b2)) = (0, da(y2, b2)) < _inf  ®(gy,0)
1€, q1#0

and

do(@(b1,y2), (b1, b2)) = do((b]', 25), (1, h2)) = ®(d1(b]", hy), da(z2, h2)) = ®(d1(b]", hy),0) + B(0, (22, hy))

inf  ®(qgq,0).
91€G, q1#0 (61,0)

[\

Therefore, the isometry ¢ acts on each subspace X;Z, a; € Xy, as gi.

Let now u; be a point from X;. Then

do((y1,y2), (Y1, u2)) = ®(0, d2(y2, u2)) < sup ®(0,g2) < inf  ®(qy,0). (4)
q1€Cy, q1#0

026G

Suppose that ¢(y1, u2) = (v1, 12). Using (3) we obtain

do(@(y1, y2), p(y1, u2)) = do((21, 22), (1, v2)) = ®(d1(21,w1), da(22,v2)) = P(d1(21, 1), 0) + (0, d>(22, v2)).

Assume that z; # vi. We have

do(@(y1, y2), @(yr, uz)) > inf  &(qq,0). )
q1€C1,q1#0

Combining (4) and (5), we obtain z; = vq. Therefore, ¢ acts as an isometry between subspaces of the form Xu21, a; € X.

Denote by g, the restriction of ¢ on Xy21. Then z; = g2(y2). Assume now that hy # ga(b,). Using (2) we get

do((y1, b2), (b1, b2)) = ®(di(y1,b1),0) < sup  ¥(gy,0), (6)
q1€Cy, q1#0

do(@(yr, ba), @(b, by)) = do((z1,b3?), (h1, h2)) = ®(d1(z1, h1), da(b?, hy)) = D(d1(z1, 1), 0) + (0, do (b7, hy))
7)

1 1
> inf d(gy,0) + sup P(0,g2) > = sup P(g1,0) + = sup P(qq,0) = sup P(gq,0).
MEG, 140 926G, 2 1€y 2 el GEG

Combining (6) and (7), we obtain h, = g2(b2). Therefore, the isometry ¢ acts on each subspace of the form X31, a; € Xy,
as g. From Lemma 3.1 it follows, that g4 € Isongz, g2 € Isong1 for any (ay, a2) € Xix X5, Finally, for arbitrary
(x1,x2) € Xj x X5 we have

o(x1, %) = (X“XZ)(ngz) — (X1911X§2). O

Corollary 3.3.
Let ®: [0, 00)? — [0, 00) be an admissible function, and let (X1, d1), (X2, d2) be metric spaces. Assume that & satisfies (2)
and the following condition holds:

®(q1, g2) = ®(g1,0) + P(0, q2).

If Isom X;z = Isom X, Isom X§1 = Isom X, for some (a4, az) € Xy x Xy, then

(Isom X, X) =~ (Isom Xj, Xj) x (Isom X3, X3).
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[
Example 3.4.

Let (X7, dq) and (X3, d2) be uniformly discrete metric spaces of finite diameters Dy, D, respectively. And let ry, r; be
positive numbers, such that for arbitrary points x;, y; € X, x; # ya, the inequalities d;(x;, y;) > r; hold, i = 1,2. Denote
®1(g1,g2) = g1 + g2. Then the function ®¢(q+, g2) is admissible. If the inequalities

1 1
r1>D22r2>§D1 or f2>D1ZI’1>§D2

hold, then the inequalities (2) hold as well. Therefore

Isom (X1 x X5, do,) =~ Isom X; x Isom X;.

Example 3.5.
Let (X7, d1) and (X3, d2) be metric spaces. Let
0 if q1 =gz = O,
4 if 0,g,=0,
®3(q1,q2) = Lo 70
3 if qi = 0, q> # 0,
7 in other cases.

Then
|som(X1 ><X2,d¢2) >~ S\X1| X 5|X2\~

4. Wreath products of groups and $-products

In this section we consider ®-products (X; x - -+ x X;,, do) of n metric spaces (Xi,d1),...,(X,,d,), n > 2. Let us recall
the definition of the wreath product of transformation groups. Let (Gy, X1),...,(G,, X,) be a sequence of transformation
groups. Following [7], the transformation group (G, M, X,~) is called the wreath products of groups (G, X1), . .., (Gn, X))
if for all elements u € G the following conditions hold:

1) f(xi,....x)" = (y1,...,ys), then for all i, 1 < i < n, the value of y; depends only on xy, ..., x;;
2) for fixed x4, ..., x,_1 the mapping g;(x1,...,x;—1) defined by the equality

gi(x1, ..., xi-1)(x) = Y, xi € X,

is a permutation on the set X; which belongs to G;. Denote the wreath products of groups (G1, X1), ..., (G,, X;,) by
U (Giy Xi).

It follows from this definition that each element u € G can be represented as a so-called table u = [g1, g2(x1), ...,
gn(X1, ..., Xn_1)], where g1 € Gy, gi(xa, ..., xi1) € Gi)(1x”'xx"", 2<i<n. Anelement u € G acts on (xq,...,x,) €
[T, X: by the rule

(X1, o an)u — (X191 ,X292(m1), o 'Xrgy”()q ,,,,, X”,1)).

We can consider the space 0T of paths in a rooted level homogeneous tree T as some ®-product of discrete metric spaces.
Indeed, let T be a finite n-levels rooted tree with root vy. Recall that a rooted tree T is called level homogenous [4]
if it is homogenous on every level. Such a tree is uniquely determined by its level index, i.e. by a finite sequence of
cardinal numbers [ko; ki; k2; . . .; k,], where k; is the number of edges joining a vertex of the i-th level with vertices of
the (i+1)-st level. A rooted path is a finite sequence of vertices (vp, vi, ..., v,) such that {v;, vi;1} € E(T) for every i,
0 < i< n—1. The metric space 0T is defined to be the set of all rooted paths of T equipped with a natural ultrametric

1

plvi,v2) = ol
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where m is the length of the maximal common part of rooted paths y; and y..

Let now (Xi,d4), ..., (X, d,) be discrete spaces, i.e., for different points u,v € X;, di(u,v) =1, 1 < i < n. And let
|Xi| = ki, 1 < i < n. We can introduce the function ®3: [0, 00)” — [0, 00) putting

q if g1#0,
1iqz if gg6=0 and g, #0,
®3(ga, oo qa) =9 ...
%q,, if g1=...=g,-1=0 and g, #0,
L0 f g1=...=¢qg,=0.
It is clear that @5 is admissible. Therefore, one can consider the ®3-product of the spaces Xj, ..., X,.

It is easy to see that the space 0T of paths in the rooted level homogeneous tree T and the ®s-product of discrete
metric spaces Xi,..., X, are isometric. It is well known that the isometry group of the space 0T is isomorphic as a
permutation group to the wreath product of symmetric groups S, i = 1,...,n. Therefore, the isometry group of the
space (Xix ---x X, de,) is isomorphic as a permutation group to the wreath product of isometry groups of discrete
spaces X;, i =1,...,n. In this section we generalize this result by extending the class of metric spaces and introducing
restrictions on the function .

Let now (X;, d;), i = 1,...,n, be arbitrary metric spaces. And let as before C; be the set of values of the metric d;,
1 < i < n. Assume that there exist functions f;: [0, 00) — [0, 00), 1 < i < n, such that

filgr) & g1 #0,
f2(q2) if go=0 and g, #0,
(qr, o qn) =1 (8)
folqn) f g1=...=¢g,-1=0 and q, #0,
0 if g

..=q,=0,
for arbitrary g; > 0,1 < i < n. For each i,1 < i < n, denote by )A(i the space (X[,Hi), where for u,v € X;,

o[ 1 vee

0 otherwise.

Assume that forall i, 1 <i<n-—1,

inf  fi(g;)) > sup f; 1) .
qi€C;, qi#0 (q:) qu%H +1(qix1) )

Theorem 4.1.
Let ®:[0,00)" — [0,00) be an admissible function such that conditions (8) and (9) hold. Then the isometry group of
the ®-product X of metric spaces X1, X, ..., X, is isomorphic as a permutation group to the wreath product of isometry
groups of spaces X;, i =1,...,n,

(Isom (X, do), X) =~ 1, (Isom X;, X).

Proof. Consider arbitrary
@ =[g1,g20x1), ... gn(x1, ..., xp—1)] € V_4lsom X:.

We shall show that ¢ is an isometry of (X, ds). By the definition of the wreath product of permutation groups [7] the
element @ acts on []_; X;. Therefore, it is sufficient to show that ¢ preserves the metric do. Indeed,

d®(‘P(X1rX2r~~-:Xn)r<P(U1yyz,...,yn)) d¢((X$1,X§2(X1),...,X,?”(X1 """ X”*”),(y1g1,y32(y”,,,,,ygn(y1 ----- yn—‘\)))

® (d1 9T,y dz(ngzm)’ ng(W), L d, (Xngn(x1,...,x,,,1)’ ygn(w,...,y,,,ﬂ) )
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Using (8), we have

fi(di (", y? )) if ’(11 # i,

Hld ng(X1) 2(y1) if x93 = z(Xw)aé 92(5/1)’
dq>((P(X1,X2,...,Xn),tp(y1,y2,...,yn))= 2( 2( )) 1 91 X2 Y2 (10)

0 it X9 =yd xInbarxa) ygn(m ----- Yn-1)

But g1 € Isom X. Then x9' = 9" iff x; = y;. Hence, x?
using (10), we get

7!/

fi(dr(x]", y7")

fz( ( g2(x1) ygz(X1)))

do (@1, xa), (Y1, -1 Yn)) =

As g, is an isometry of X1, f1(dy (x1 ,y1 ") = f(d1(x1, y1)). Since gi(x1, ...,

fi(dl_(xigi(xu--«rxiq)' ygi(xw ''''' XH)))

L

fildi(xi, y3)),

Therefore,

f1(d1(X1,y1)) if
fz(dz(Xz,yz)) I.f

' iff g2(x1) = g2(y1), and so on. With similar reasoning,

it xi #yq,
it x1=y1 and x2 # yo,

it xi =y ..., Xy =y

Xi—1) € lsom )A([ the following equalities hold:

2<i<n.

X1 #yh
x1 =y and x; # yo,

do (et %) @Y1, ya)) = 1 ...
fn(dn(xnr yn)) Lf X1 =Y1, -y Xn=1 = Yp-1, Xn 56 Yn,
0 if X1 =Y, ---» Xn = Ynp,
= do((1,- . xa). (Y1 ya))-
Let now ¢ be an isometry of (X, ds). Fix a point (x1,...,x,) from X and assume that ¢(xi,...,x,) = (z1,...,2,). Let
@Y1, Y2, ..., 4n) = (Wi, wa, ..., w,) for some y; € X;, 1 <i<n, (y1,...,yn) # (¥1,..., Xy). We have
do((x1, %2, - %a), (U1, Y2, - yn)) = P(d1(x1, y1), da(x2, Y2), - ., dnlxa, yn)) = Fi(dj(x;, ;). (11)
where j is the smallest number such that y1 =Xy, ..., yj—1 = xj_1, y; # x;. Using (8), we obtain
do (@01, X2, Xa), @(x1, Y2+ Ya)) = do((21,22, . 2a), (w1, w2, . W) (12)

= ¢>(d1(z1,w1), da(z2, W), . ..,

where k is the smallest number such that z; = wyq, ...

@ acts on X; as some isometry g;(x1, . ..
(X1, .o

[91, g2(x1), -

such that g4 € Isom )A(1, gilx, ...
¢ does. This completes the proof.

V Zk—1 = Wk, Zk F Wi
j = k. This means that for all i, 1 < i < n, the value y; depends only on x, ...
,Xi—1). Therefore, there exists a table

,Xi—1) € (Isom )?i)X1 xxXi-1And the table [g1, g2(x1), . . .

du(zn, wa)) = fildi(xe, yu)),

Combining (11), (12) and (9), we get

,x; and for fixed x1, ..., x;_1 the mapping

Xn-1)]

xn—1)] acts on X as
O

,gn(X1:-~-,

1=
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Corollary 4.2.
Let ®:[0,00)" — [0, 00) be an admissible function such that conditions (8) and (9) hold. If

Isom (X, fi(d;)) = Isom (X;, d;)

forall i, 1 < i< n, then
(Isom X, X) ~ i, (Isom X;, X;).

Example 4.3.

Let (X7, dq) and (X3, d3) be metric spaces of finite diameters Dy, D,. Assume that there exists a positive number r such
that for arbitrary points x1, x2 € Xi, x; # x2, the inequality dq(x7, x2) > r holds. Let ®3(q+, g2) = max(q1, q2). If r > D,,
then Isom (X7 x X5, do,) = (Isom Xj) 1 (Isom X5).

Example 4.4.
Let X; = Z and d; be the Euclidean distance, 1 < i < n. It is easy to see that the function
(1 — it g1 40
1 g+ 1 a '
- if =0 and 0,
P if g and g, #
¢5(Q1y---,ql1) = 9
1
i it g1=...=g,-1=0 and g, #0,
[ 0 f g1=...=qg,=0,

is admissible and satisfies (8) and (9). Therefore, one can consider the ®s-product (Z x --- X Z, d¢g) of X;, 1 < i < n.
The set of values of the metric do, is bounded, while each d, takes arbitrary large values.

It follows from Theorem 4.1 that the isometry group of (Z x --- X Z, de) is isomorphic as a permutation group to the

wreath product of isometry groups of (X, 3,-), i=1,...,n, where for arbitrary u,v € X,
n+2—i . if u#v
di(u,v) = di(u, v) + 1 ’

0 in other cases.

Recall, metric spaces (Y, dq) and (Y, d;) are called isomorphic [8] if there exists a scale, that is a strictly increasing
continuous function s: Rt — R*, s(0) = 0, such that dy = s(d). It is easy to observe that if metric spaces (Y, d4)
and (Y, d,) are isomorphic then their isometry groups Isom (Y, dy) and Isom (Y, d,) are equal.

For each i, 1 <i < n, the spaces (Z,a,-) and (Z, d;) are isomorphic. Indeed, if we consider a scale s : R™ — R* given
by the equality

n-i—Z—i—1—1 if t>1,
s(t) = ( t+

n+§—i)t if 0<t<,

then d; = s(d;) on Z. Therefore, the isometry group of the space (Z, 8,-) is isomorphic to the infinite dihedral group D..
Hence, the isometry group of (Z x --- X Z, do,) is isomorphic as a permutation group to the wreath product of n infinite
dihedral groups Dy:

(Isom(Zx -+ X Z,dog), Zx -+ X Z) ~ V4 (Deo, Z).



B. Oliynyk
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