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1. Introduction

The paper is devoted to studying and solving a class of nonlinear sequential differential equations of an arbitrary order.The results will be presented for a two-term semi-linear fractional differential equation (FDE)
Dα2x(t) = Dα1a1(t)x(t) + Ψ(t, x(t)), (1)
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Existence and uniqueness of solution for a class of nonlinear sequential differential equations of fractional order

where orders α2 > α1 > 0 are arbitrary positive real numbers, fractional derivatives Dα2 , Dα1 are Caputo derivatives ina sequential formulation (type I – Definition 2.4) and the above equation is fulfilled for any t ∈ [0, b]. This problem willbe generalised to a two-term nonlinear FDE of the form
Dα2x(t) = Ψ(t, x(t), Dα1x(t)). (2)

We shall explicitly construct unique general solutions of equation (1)–(2), formulate an initial value problem and derivethe corresponding particular solutions.Fractional differential equations are an interesting and fast developing area of mathematical investigations, both in thetheory and applications. We refer the reader to a summary of fractional differential equations theory in monographsand review papers [1, 6, 8–11, 16–18]. Many solution methods have been transferred here from differential and integralequations theory, including the application of fixed point theorems, integral transforms and operator theory. Here, weconsider a class of equations written in terms of sequential Caputo derivatives. Essentially, the two types of composedCaputo derivatives given in Definition 2.4 can be considered. Equations with type II derivatives can be easily convertedinto a system of one-term FDEs and were studied earlier, compare the monograph by Diethelm [6] and references giventherein. In the present paper, we shall solve equations with type I derivatives and show how the partition of order α2between the component derivatives influences the transformation into an equivalent fractional integral equation, thesubsequent solution and formulation of an initial value problem (IVP). The solution method developed in the paperconsists of the construction of new metrics on C [0, b] (equivalent to the standard supremum metric), reformulation ofequations (1)–(2) as fixed point conditions for contractive mappings on C [0, b] with a new metric, and finally applicationof the Banach contraction principle. This approach is very effective, producing a unique solution in an arbitrarily longinterval. Earlier results for sequential FDEs of order in (0, 1) can be found in papers [4, 5, 12–15, 19].The paper is organised as follows. In the next section we quote all necessary definitions from fractional calculus aswell as theorems on the properties of fractional derivatives and integrals. Here, we also introduce a class of norms andmetrics on the space of continuous functions, equivalent to each other and to the standard supremum norm. We alsoprove a technical lemma on fractional integration which will be further applied in the derivation of the general solutionof considered SFDEs. Section 3 contains main results which include two theorems on the existence and uniquenessof the solution of a two-term SFDE. We shall separately consider the case of semi-linear and nonlinear equations asthe transformation into a fixed point condition and formulation of the initial value problem (IVP) are different in bothcases. Similarly to differential equations theory, each admissible stationary function of the highest order derivativegenerates a unique continuous solution of the considered equations (1)–(2). Then, initial value problems are formulatedand solved by showing the explicit form of the stationary function connected to the given IVP. The paper closes with ashort conclusion section.
2. Preliminaries

In this section, we recall basic definitions and theorems from fractional calculus, which we shall apply to formulate andsolve a two-term SFDE. The left-sided Riemann–Liouville integral and Caputo derivative are defined as follows [8, 20].
Definition 2.1.The left-sided Riemann–Liouville integral of order α , denoted as Iα0+, is given by the following formula for Re α > 0:

Iα0+f(t) = 1Γ(α)
∫ t

0
f(u)du(t − u)1−α ,where Γ is the Euler gamma function.

Definition 2.2.Let Re α ∈ (n−1, n). The left-sided Caputo derivative of order α , denoted as cDα0+, is given by
cDα0+f(t) = 1Γ(n−α)

∫ t

0
f (n)(u)du(t −u)α−n+1 = In−α0+ f (n)(t).
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Property 2.3.The following differentiation rule is valid, provided Re α ∈ (n−1, n) and Reβ > n − 1 in the case Reβ /∈ N0:
cDα0+tβ = Γ(β+1)Γ(β−α+1) · tβ−α .

Definition 2.4.Let 0 < α1 < α2 < . . . < αm. Sequential Caputo derivatives of type I and II are given respectively as follows: Dα1 = cDα10+and, for j = 2, . . . , m,
Dαj = Dαj−1 cDαj−αj−10+ , (I)
Dαj = cDαj−αj−10+ Dαj−1. (II)

Next, we quote the property describing the composition rules for fractional integrals and derivatives [8, 20].
Property 2.5.Let f ∈ C ([0, b], R) and α > 0. The following equalities hold at any point t ∈ [0, b]:

cDα0+Iα0+f(t) = f(t), Iα0+Iβ0+f(t) = Iβ+α0+ f(t). (3)
If additionally β > α , then we have at any point t ∈ [0, b],

cDα0+Iβ0+f(t) = Iβ−α0+ f(t).
In the proof of existence and uniqueness results for equations (1)–(2) we shall apply the new metrics introduced below.
Definition 2.6.The following formulas define a new norm and metric on C [0, b] for κ, γ ∈ R+:

‖g‖γ,κ = sup
t∈[0,b]

|g(t)|
Eγ,1(κtγ) , dγ,κ(g, h) = ‖g−h‖γ,κ ,

where Eγ,1 denotes a one-parameter Mittag-Leffler function given in general as the series
Eγ,1(z) = ∞∑

j=0
zjΓ(γj + 1) .

Lemma 2.7.
Let γ, γj , κ, κj ∈ R+ for j = 1, 2.(i) Metrics dγ1,κ1 and dγ2,κ2 on C [0, b] are equivalent.(ii) Each metric dγ,κ on C [0, b] is equivalent to metric d0,0 generated by the supremum norm.

Proof. Let us observe that for the norm ‖ · ‖γ,κ , the following inequalities are valid for any function g ∈ C [0, b]:
‖g‖max

t∈[0,b]Eγ,1(κtγ) ≤ ‖g‖γ,κ = sup
t∈[0,b]

|g(t)|
Eγ,1(κtγ) ≤ sup

t∈[0,b] |g(t)| = ‖g‖,
where we denoted as ‖ · ‖ the supremum norm on C [0, b]. Thus, norms ‖ · ‖ and ‖ · ‖γ,κ are equivalent and so are metrics
d0,0 and dγ,κ . The first part of the lemma is a straightforward corollary.
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Remark 2.8.Each function space 〈C [0, b], dγ,κ〉 is a metric complete space.
The constructed equivalent norms and the respective metrics will be the main tools in the proof of some existence anduniqueness results for the general and particular solution of two-term sequential FDEs given in (1)–(2). The method ofequivalent norms/metrics was originally introduced by Bielecki in [3] in the theory of differential equations. It allows oneto express the corresponding differential equation as the fixed point condition of a mapping on the function space. Theequivalent norm and metric are chosen so that the mapping becomes a contraction on a new complete metric space. Thisapproach was extended to fractional differential equations by El-Raheem in [7], where he considered a one-term FDEof order α ∈ (0, 1). Then, Lakshmikantham et al. in [16] applied in the modification/scaling of the norm a Mittag-Lefflerfunction considering the same class of FDEs. Baleanu and Mustafa [2] applied the equivalent norm/metric method inorder to derive a global solution for a one-term FDE of an arbitrary fractional order. The Bielecki method can alsobe extended to FDEs in a sequential version. Some results on multi-term SFDEs with a basic fractional derivative Riemann–Liouville, Caputo or Hadamard  can be found in [12, 13]. Preliminary results on semi-linear SFDEs oftype (1) are enclosed in [4, 14], where the general solution is derived for arbitrary orders of sequential Caputo derivativesbut the initial value problem is solved in the case of an equation of order in (0, 1).The proof of existence-uniqueness result for the general solution of equations (1)–(2) will be based on the technicallemma given below.
Lemma 2.9.
The following integration formula is valid for any β, κ ∈ R+:

Iβ0+Eβ,1(κtβ) = 1
κ
(
Eβ,1(κtβ)− 1). (4)

Let β > α > 0. Then, there exists a constant A (dependent on α and β) such that the following inequality is valid for
any value of parameter κ ∈ R+:

sup
t∈[0,b]

Iβ0+Eβ−α,1(κtβ−α )
Eβ−α,1(κtβ−α ) ≤ bαA

κ . (5)
Proof. As the series defining the Mittag-Leffler function is uniformly convergent in any finite subinterval of R, wecan integrate it term by term and obtain formula (4):
Iβ0+Eβ,1(κtβ) = Iβ0+

∞∑
l=0

κltβlΓ(lβ+1) = ∞∑
l=0

κltβ(l+ 1)Γ((l+1)β + 1) = Iβ0+
∞∑
l′=1

κl′−1tβl′Γ(lβ+1) = Iβ0+ 1
κ

∞∑
l′=1

κl′ tβl′Γ(lβ+1) = 1
κ
(
Eβ,1(κtβ)−1).

Now, applying the semigroup property (3) and formula (4), we transform the integral on the left-hand side of (5) andexpress it as a quotient:
Iβ0+Eβ−α,1(κtβ−α )
Eβ−α,1(κtβ−α ) = Iα0+(Eβ−α,1(κtβ−α )−1)

κEβ−α,1(κtβ−α ) = tαEβ−α,α+1(κtβ−α )− tα /Γ(α+1)
κEβ−α,1(κtβ−α )

=
∞∑
l=0

κltl(β−α)tαΓ(l(β−α) + α + 1) − tαΓ(α+1)
κ
∞∑
l=0

κltl(β − α)Γ(l(β−α) + 1)
= tα

∞∑
l=1

κltl(β − α)Γ(l(β−α) + α + 1)
κ
∞∑
l=0

κltl(β−α)Γ(l(β−α) + 1)
.

(6)

It is clear that there exists a unique integer number s ∈ N such that
γmin − 1

s ≤ β − α < γmin − 1
s − 1 , (7)
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where γmin denotes the local and global minimum of the Euler gamma function on the positive half-axis. The aboveestimation leads to the following inequalities for the Euler gamma function valid for l ≥ s:
Γ((β−α)l+ α + 1) > Γ((β−α)l+ 1).

Using the value of parameter s, determined for any two fixed values of α and β in (7), and the above inequalities for theEuler gamma function, we rewrite equality (6) in the form of an inequality for the supremum
sup
t∈[0,b]

Iβ0+Eβ−α,1(κtβ−α )
Eβ−α,1(κtβ−α ) ≤ bα

κ

(
Ps(κtβ−ακ )1 + P̂s(κtβ−ακ ) + 1), (8)

where we denoted as Ps and P̂s the following polynomials:
Ps(κtβ−ακ ) = s−1∑

l=1
κl(tκ)l(β−α)Γ(l(β−α) + α + 1) , P̂s(κtβ−ακ ) = s−1∑

l=1
κl(tκ)l(β−α)Γ(l(β−α) + 1) .

The values of the polynomials above and in formula (8) are calculated at a point tκ at which the rational function
Ps(κtβ−ακ )/(1+ P̂s(κtβ−ακ )) attains its maximum in the finite interval [0, b] (for any given value of parameter κ ∈ R+). Twocases should be considered. First, let us assume that κtβ−ακ is bounded above by 1:

0 < κtβ−ακ ≤ 1.
Using this assumption, we note that Ps is also bounded,

Ps(κtβ−ακ ) ≤ s−1∑
l=1

1Γ(l(β−α) + 1) = As ,

which yields the inequality
bα
κ

(
Ps(κtβ−ακ )1 + P̂s(κtβ−ακ ) + 1) ≤ bα

κ
(
Ps(κtβ−ακ )+1) ≤ bα

κ (As+1). (9)
When value κtβ−ακ is bounded below by constant 1, we can estimate the arguments of the polynomials as follows: for
l = 1, 2, . . . , s − 1, 0 < (κtβ−ακ )l−s+1 ≤ 1,and these inequalities lead to the estimation of rational function Ps(κtβ−ακ )/(1 + P̂s(κtβ−ακ )),

bα
κ

(
Ps(κtβ−ακ )1 + P̂s(κtβ−ακ ) + 1) ≤ bα

κ

(∑s−1
l=1 1/Γ(l(β−α) + α + 1)1/Γ((s−1)(β−α) + 1) + 1) = bα

κ
(
AsΓ((s−1)(β−α) + 1) + 1). (10)

Summarising, estimations (9)–(10) lead to a general inequality, valid for all values of arguments κtβ−ακ (thus, also whenwe consider a sequence lim
m→∞

κm =∞)
bα
κ

(
Ps(κtβ−ακ )1 + P̂s(κtβ−ακ ) + 1) ≤ bα

κ A,

where the constant A is defined as
A = max {As+1; AsΓ((s−1)(β−α) + 1) + 1}.

Let us point out that from the construction of constant A, it follows that it depends solely on the values of orders α, βand parameter s given in (7). This ends the proof of Lemma 2.9.
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Similarly to differential equations theory, where the stationary functions of integer order derivatives are polynomials,we use in FDE theory the stationary functions of fractional derivatives. For sequential Caputo derivatives from (1)–(2),these functions are described in the lemma below. We shall apply them further in the transformation of FDEs intoequivalent fractional integral equations.
Lemma 2.10.(i) Let α1 ∈ (n1−1, n1). Then the following equivalence is valid in C [0, b]:

Dα1φ1(t) = 0 ⇐⇒ φ1(t) = n1−1∑
j=0 cjt

j .

(ii) Let α1 ∈ (n1−1, n1) and α2 − α1 ∈ (n2−1, n2). Then the following equivalence is valid in C [0, b]:
Dα2φ2(t) = 0 ⇐⇒ φ2(t) = n2−1∑

j=0 cj,0t
j + Iα2−α10+

n1−1∑
j=0 cj,1t

j .

(iii) Let αj − αj−1 ∈ (nj−1, nj ) for j = 1, . . . , m. Then the following equivalence is valid in C [0, b]:
Dαmφm(t) = 0 ⇐⇒ φm(t) = nm−1∑

j=0 cj,0t
j + m−1∑

k=1 I
αm−αk0+

nk−1∑
j=0 cj,k t

j .

3. Main results

We shall study and solve the FDEs given in (1) and (2) in the case when the nonlinear terms fulfil the Lipschitz condition.The form of this condition is given in the definition below.
Definition 3.1.(L1) A function Ψ: [0, b]×R→ R fulfils the Lipschitz condition if

|Ψ(t, x1)−Ψ(t, x2)| ≤ M(t) · |x1 − x2|
for any t ∈ [0, b] and x1, x2 ∈ R.(L2) A function Ψ: [0, b]×R×R→ R fulfils the Lipschitz condition if

|Ψ(t, x1, y1)−Ψ(t, x2, y2)| ≤ M1(t) · |x1 − x2|+M2(t) · |y1 − y2|
for any t ∈ [0, b] and (xj , yj ) ∈ R2, j = 1, 2.

Example 3.2.The following simple rational and trigonometric functions fulfil (L1) Lipschitz condition:
Ψ(t, x) = b1(t)1 + |x| , b1 ∈ C [0, b], Ψ(t, x) = b1(t) sin(β1(t)x)+b2(t) cos(β2(t)x), bj , βj ∈ C [0, b], j = 1, 2,
with M(t) = |b1(t)| in the first and M(t) = |b1(t)β1(t)|+ |b2(t)β2(t)| in the second case. Similarly it can be shown thatfunctions

Ψ(t, x, y) = b1(t)1 + |x|+ |y| , b1 ∈ C [0, b],
Ψ(t, x, y) = b1(t) sin[β1(t)(x+y)] + b2(t) cos[β2(t)(x+y)], bj , βj ∈ C [0, b], j = 1, 2,

obey (L2) Lipschitz condition with M1(t) = M2(t) = |b1(t)| in the first and M1(t) = M2(t) = |b1(t)β1(t)|+ |b2(t)β2(t)| inthe second case.
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3.1. Two-term semi-linear SFDE

First, we give results on existence and uniqueness of the solution of semi-linear fractional differential equation (1), wherethe sequential Caputo derivatives of arbitrary order are included. The reason we solve this less general case separatelyis due to its transformation into a fixed point condition which allows us to consider the general initial value problem.The two theorems enclosed in this section yield a unique general solution generated by the stationary function of thehighest order derivative and a unique particular solution fulfilling the respective initial conditions. In the constructionof the solution we shall apply the following mapping on C [0, b]:
Tφ2g(t) = Iα2−α10+ a1(t)g(t) + Iα20+Ψ(t, g(t)) + φ2(t). (11)

Theorem 3.3.
Let α2 > α1 > 0 and a1 ∈ Cn1−1([0, b],R), function Ψ ∈ C ([0, b]×R,R) fulfils Lipschitz condition (L1) given in
Definition 3.1 with M ∈ C [0, b]. Each stationary function φ2 of sequential derivative Dα2 generates a unique solution
of equation (1) continuous in [0, b]. This solution is a limit of iterations of mapping Tφ2 defined in (11),

x(t) = lim
j→∞

(Tφ2 )jχ(t),
where χ is an arbitrary function continuous on [0, b].
Proof. Equation (1) can be rewritten using the composition rules from Property 2.5 in the form of an equation for astationary function of the highest order derivative,

Dα2[x(t)− Iα2−α10+ a1(t)x(t)− Iα20+Ψ(t, x(t))] = 0
which leads to the following fractional integral equation:

x(t)− Iα2−α10+ a1(t)x(t)− Iα20+Ψ(t, x(t)) = φ2(t) (12)
equivalent to FDE (1) on the space of functions continuous on [0, b]. Function φ2 in the above equation is an arbitrarystationary function of sequential derivative Dα2 described in Lemma 2.10. Each such stationary function generates amapping on C [0, b] defined as

Tφ2g(t) = Iα2−α10+ a1(t)g(t) + Iα20+Ψ(t, g(t)) + φ2(t)for arbitrary g ∈ C [0, b]. Thus, equation (1) can be transformed into a fixed point condition for mapping Tφ2 ,
x(t) = Tφ2x(t). (13)

Our aim is to prove that this mapping is a contraction on a respective space 〈C [0, b], dκ〉. In the proof we shall applymetric dκ generated by the norm given in Definition 2.6 with scaling function Eα2−α1,1,
‖g‖α2−α1,κ = sup

t∈[0,b]
|g(t)|

Eα2−α1,1(κtα2−α1 ) , dκ(g, h) = ‖g−h‖α2−α1,κ .

From Lemma 2.7, it follows that 〈C [0, b], dκ〉 is a complete metric space for each value κ ∈ R+. Let us estimate the
dκ-distance between the images for an arbitrary pair of functions g, h ∈ C [0, b]:

‖Tφ2g − Tφ2h‖α2−α1,κ = ∥∥Iα2−α10+ a1(g−h) + Iα20+(Ψ(t, g(t))−Ψ(t, h(t)))∥∥α2−α1,κ
≤
∥∥Iα2−α10+ |a1(t)| · |g(t)−h(t)|+M · Iα20+|g(t)−h(t)|∥∥α2−α1,κ

≤ ‖g−h‖α2−α1,κ · sup
t∈[0,b]

|a1| · Iα2−α10+ Eα2−α1,1(κtα2−α1 ) +M · Iα20+Eα2−α1,1(κtα2−α1 )
Eα2−α1,1(κtα2−α1 ) ,
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where we denoted |a1| = supt∈[0,b] |a1(t)| and M = supt∈[0,b] |M(t)|. Applying the technical Lemma 2.9 introduced in theprevious section, we obtain
‖Tφ2g − Tφ2h‖α2−α1,κ ≤ |a1|+ bα1M · A

κ · ‖g−h‖α2−α1,κ .

Let us observe that κ is a free parameter and the following inequality is valid for an arbitrary pair g, h ∈ C [0, b]:
dκ(Tφ2g, Tφ2h) ≤ Lκdκ(g, h), Lκ = |a1|+ bα1M · A

κ .

Setting the value of parameter κ so that Lκ ∈ (0, 1), we conclude that mapping Tφ2 is a contraction on 〈C [0, b], dκ〉.Then, from the Banach theorem on a fixed point, it follows that a unique solution x ∈ C [0, b] exists so that the fixedpoint condition (13) is fulfilled. This function also solves equations (1) and (12), and is given as the limit of iterations ofmapping Tφ2 .
The above theorem describes the general solutions of (1). As we note, they are generated by the stationary function ofthe highest order derivative, similarly as in the theory of classical differential equations. To determine the constants, onecan use different sets of initial/boundary conditions. In this paper, we shall discuss the initial value problem (IVP) forequation (1) with derivatives of arbitrary real order. First, we consider the case n1 ≤ n2 and set the initial conditions as

Dkx(0) = Ck , k = 0, . . . , n2 − 1, (14)
Dj cDα2−α10+ x(0) = C j , j = 0, . . . , n1 − 1. (15)

The case n1 > n2 is more complicated as the corresponding initial conditions are
Dkx(0) = Ck , k = 0, . . . , n2 − 1, (16)

Dj cDα2−α10+ x(0) = C j , j = 0, . . . , n2 − 1, (17)
Dj[cDα2−α10+ −a1]x(0) = C j , j = n2, . . . , n1 − 1. (18)

In the theorem below, we prove that the continuous solution of equation (1) exists and fulfils the respective initialconditions. This solution is unique provided a certain assumption on the mapping generated by the stationary functionconnected to the above IVP is fulfilled.
Theorem 3.4.
Let the assumptions of Theorem 3.3 be fulfilled. Then, a unique solution of equation (1), fulfilling IVP (14)–(15)
or (16)–(18) respectively, exists in C [0, b]. This solution is a limit of iterations of mapping Tφ2 , generated by the
following stationary function φ2:

φ2(t) = n2−1∑
k=0 Ck

tkΓ(k + 1) + Iα2−α10+
n1−1∑
j=0
(
C j −

j∑
l=0
(
j
l

)
a(j−l)1 (0)Cl) tjΓ(j + 1) , n1 ≤ n2, (19)

φ2(t) = n2−1∑
k=0 Ck

tkΓ(k + 1) + Iα2−α10+
[n2−1∑
j=0
(
C j −

j∑
l=0
(
j
l

)
a(j−l)1 (0)Cl) tjΓ(j + 1) + n1−1∑

j=n2
C j

tjΓ(j + 1)
]
, n1 > n2. (20)

Proof. Using Theorem 3.3, we note that equation (1) is solved by the solution of the fractional integral equation
x(t) = Iα2−α10+ a1(t)x(t) + Iα20+Ψ(t, x(t)) + φ2(t). (21)
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In the case n1 ≤ n2, we can differentiate the above equation and obtain for 0 ≤ j < n2

Djx(t) = Iα2−α1−j0+ a1(t)x(t) + Iα2−j0+ Ψ(t, x(t)) + n2−1∑
k=j ck,0

Γ(k + 1)tk−jΓ(k − j + 1) + Iα2−α1−j0+
n1−1∑
m=0 cm,1t

m. (22)
Calculating the value of the above at t = 0, we arrive at the system of equations connecting the initial values andcoefficients cj,0 of the stationary function for j = 0, . . . , n2 − 1,

Cj = Djx(0) = Γ(j+1)cj,0. (23)
Thanks to the properties of fractional integration, the derivatives calculated in formula (22) are continuous on [0, b]. Thismeans that x ∈ Cn2−1(0, b).The second part of the calculations begins with the fractional differentiation of both parts of (21),

cDα2−α10+ x(t) = a1(t)x(t) + Iα10+Ψ(t, x(t)) + n1−1∑
m=0 cm,1t

m.

Next, we differentiate both sides, j = 0, . . . , n1 − 1, and obtain
Dj cDα2−α10+ x(t) = Dja1(t)x(t) + Iα1−j0+ Ψ(t, x(t)) + n1−1∑

m=j cm,1
Γ(m+1)tm−jΓ(m−j+1) . (24)

Assuming t = 0, we again derive the system of equations connecting the initial values and coefficients cj,1 of thestationary function for j = 0, . . . , n1 − 1,
C j = Dj cDα2−α10+ x(0) = j∑

l=0
(
j
l

)
a(j−l)1 (0)Cl + Γ(j+1)cj,1. (25)

Using relations (23)–(25), we obtain the explicit formula for stationary function (19) generating the solution fulfillinginitial conditions (14)–(15), valid in the case n1 ≤ n2.In the case n1 > n2, the calculations and the results determining coefficients cj,0 for j = 0, . . . , n2 − 1 coincide withthe ones presented above. Thus, we only need to derive coefficients cj,1. Using formula (24), for j = 0, . . . , n2 − 1,we again obtain relations (25). Then, we take j = n2, . . . , n1 − 1 and we observe that Djx(0) is not determined byconditions (16)–(17). Therefore we reformulate (15) as follows:
Dj[cDα2−α10+ −a1(t)]x(t) = Iα1−jΨ(t, x(t)) + n1−1∑

m=j cm,1
Γ(m+1)tm−jΓ(m−j+1) ,

and in consequence, we have at t = 0 the following formulas determining cj,1 for j = n2, . . . , n1 − 1:
C j = Dj[cDα2−α10+ − a1(t)]x(t)∣∣∣

t=0 = Γ(j+1)cj,1.
The above result, together with (23)–(25), fully determines stationary function (20) generating the unique continuoussolution in the case n1 > n2.
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3.2. Nonlinear two-term SFDE

In this section, we consider a nonlinear fractional differential equation of the form (2) with sequential Caputo derivativesof arbitrary order. The transformation of the FDE into a fixed point condition on the space of continuous functions willbe here more complex than for equation (1). To this aim, we should introduce the notion of an admissible stationaryfunction, given below.
Definition 3.5.The stationary function φ2 described in Lemma 2.10 will be called admissible for equation (2) when derivative Dα1φ2exists and is continuous on [0, b].
Let us observe that two cases are relevant here. First, from Property 2.3 it follows that when n1 < n2, then all stationaryfunctions of derivative Dα2 are admissible. In the case n1 ≥ n2, we observe that the derivative is

Dα1φ2(t) = Dα1 n1−1∑
j=0 cj,1t

j+α2−α1 Γ(j+1)Γ(j+α2−α1 +1) .
According to Property 2.3, we should have cj,1 = 0 for j = 0, . . . , n1 − n2 − 1 and the derivative becomes

Dα1φ2(t) = n1−1∑
j=n1−n2

cj,1tj+{α2−α1}−{α1}+n2−n1 Γ(j+1)Γ(j+α2−2α1 +1) ,
where {β} denotes the fractional part of real number β ∈ R+, and we conclude that φ2 is admissible if we assume
{α2−α1} ≥ {α1}. In the case {α2−α1} < {α1}, we can also study the solutions of equation (2) but we should extend thefunction space of solutions as they will belong to the space of weighted continuous functions [8]. We leave this problemfor a subsequent paper. Assuming that the stationary function φ2 is admissible, we are able to prove the following resulton existence and uniqueness of the solution of equation (2) by using in the construction the mapping T̂φ2 :

T̂φ2g(t) = Ψ(t, Iα20+g(t) +φ2(t), Iα10+g(t) +Dα1φ2(t)), (26)
defined on C [0, b].
Theorem 3.6.
Let α2 > α1 > 0, and {α2 − α1} ≥ {α1} in the case n1 ≥ n2. Assume a function Ψ ∈ C ([0, b]×R×R,R) fulfils
the Lipschitz condition (L2) given in Definition 3.1 with M1,M2 ∈ C [0, b] and T̂φ2 is defined as in (26). Then, each
stationary function φ2 of sequential derivative Dα2 , admissible in the sense of Definition 3.5, generates a unique solution
of equation (2) continuous on [0, b]. This solution is determined by a limit of iterations of mapping T̂φ2 in the following
way:

x(t) = Iα20+z(t) + φ2(t), (27)
z(t) = lim

j→∞
(T̂φ2 )jχ(t),

where χ is an arbitrary function continuous on [0, b].
Proof. We can rewrite equation (2) in the vector form

Dα2x(t) = z(t), (28)
z(t) = Ψ(t, x(t), Dα1x(t)). (29)
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The first of the above equations is, in C [0, b], equivalent to the fractional integral equation
x(t) = Iα20+z(t) + φ2(t), (30)

where by φ2 we have denoted an arbitrary stationary function of derivative Dα2 described in Lemma 2.10 and admissiblein the sense of Definition 3.5. Now, we differentiate the obtained integral equation by applying the composition rulefrom Property 2.5 and obtain
Dα1x(t) = Iα2−α10+ z(t) +Dα1φ2(t). (31)We observe that in order to correctly calculate the required derivative, the derivative of stationary function Dα1φ2 shouldexist. It does, thanks to the assumption on the admissible stationary function, and it is continuous on [0, b]. Thus, theleft-hand side of equation (29) also is continuous. For these stationary functions, system (28)–(29) can be formulated asan equivalent system of fractional integral equations

x(t) = Iα20+z(t) + φ2(t),
z(t) = Ψ(t, Iα20+z(t) + φ2(t), Iα2−α10+ z(t) +Dα1φ2(t)), (32)

T̂φ2g(t) = Ψ(t, Iα20+g(t) + φ2(t), Iα2−α10+ g(t) +Dα1φ2(t)). (33)
Clearly, to derive the solution x we must solve the nonlinear fractional integral equation (32). Using the mapping (33),we observe that in fact it is a fixed point condition on C [0, b],

z(t) = T̂φ2z(t), t ∈ [0, b]. (34)
In the proof, we shall again apply metric dκ generated by the norm given in Definition 2.6 with scaling function Eα2−α1,1.Let us estimate the dκ-distance between images T̂φ2g and T̂φ2h for an arbitrary pair of functions g, h ∈ C [0, b]:∥∥T̂φ2g − T̂φ2h

∥∥
α2−α1,κ = ∥∥Ψ(t, Iα20+g(t) + φ2(t), Iα2−α10+ g(t) +Dα1φ2(t))

−Ψ(t, Iα20+h(t) + φ2(t), Iα2−α10+ h(t) +Dα1φ2(t))∥∥α2−α1,κ
≤
∥∥M1Iα20+|g−h|+M2Iα2−α10+ |g − h|

∥∥
α2−α1,κ ≤ M1∥∥Iα20+|g−h|∥∥α2−α1,κ +M2∥∥Iα2−α10+ |g−h|

∥∥
α2−α1,κ

≤ M1‖g−h‖α2−α1,κ · sup
t∈[0,b]

Iα20+Eα2−α1 (κtα2−α1 )
Eα2−α1 (κtα2−α1 ) +M2‖g−h‖α2−α1,κ · sup

t∈[0,b]
Iα2−α10+ Eα2−α1 (κtα2−α1 )
Eα2−α1 (κtα2−α1 )

≤ M1bα1A+M2
κ · ‖g−h‖α2−α1,κ ,

where Mi = supt∈[0,b] |Mi(t)|, i = 1, 2. Concluding, we see that for any κ ∈ R+, the following inequality is fulfilled foran arbitrary pair g, h ∈ C [0, b]:
∥∥T̂φ2g − T̂φ2h

∥∥
α2−α1,κ ≤ L̂κ · ‖g−h‖α2−α1,κ , L̂κ = M1bα1A+M2

κ .

Setting the value of parameter κ so that L̂κ ∈ (0, 1), we observe that mapping T̂φ2 is the contraction on 〈C [0, b], dκ〉. Then,from the Banach theorem on a fixed point, it follows that the unique solution z ∈ C [0, b] of the fixed point condition (34)and equation (30) exists and is given as the limit of the iterations of T̂φ2 . Using (30), we obtain the unique solution ofSFDE (2) generated by φ2.
We observe that the solution described in the above theorem depends on n1 + n2 constants in the case n1 ≤ n2 andon 2n2 constants when n1 > n2. To determine their value, we formulate an initial value problem (IVP) for nonlinearSFDE (2). First, we consider the case n1 ≤ n2 and find a unique continuous solution fulfilling the conditions

Dkx(0) = Ck , k = 0, . . . , n2 − 1,
Dj cDα2−α10+ x(0) = C j , j = 0, . . . , n1 − 1. (35)
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In the case n1 > n2, we know that in the explicit formula for admissible stationary function φ2, some of the coefficientsmust vanish. Thus we formulate the respective IVP as follows:
Dkx(0) = Ck , k = 0, . . . , n2 − 1,

Dj cDα2−α10+ x(0) = 0, j = 0, . . . , n1 − n2 − 1,
Dj cDα2−α10+ x(0) = C j , j = n1 − n2, . . . , n1 − 1. (36)

In the theorem below, we give a receipt for the unique continuous solution of (2) fulfilling the above initial conditions.
Theorem 3.7.
Let the assumptions of Theorem 3.6 be fulfilled. Then a unique solution of equation (2), obeying IVP (35) or respec-
tively (36), exists in C [0, b]. This solution is given as

x(t) = Iα20+z(t) + φ2(t),
with the corresponding stationary function φ2,

φ2(t) = n2−1∑
k=0 Ck

tkΓ(k+1) + Iα2−α10+
n1−1∑
j=0 C j

tjΓ(j+1) , n1 ≤ n2, (37)
φ2(t) = n2−1∑

k=0 Ck
tkΓ(k+1) + Iα2−α10+

n1−1∑
j=n1−n2

C j
tjΓ(j+1) , n1 > n2, (38)

where z is the limit of iterations of mapping T̂φ2 given in (26) and (33).
Proof. From Theorem 3.6 and its proof, it follows that the unique solution x ∈ C [0, b] of equation (2), generated byadmissible stationary function φ2, fulfils the fractional integral equation (27). First, we consider the case n1 ≤ n2 anddifferentiate both sides of this equality for j = 1, . . . , n2 − 1:

Djx(t) = Iα2−j0+ z(t) +Djφ2(t). (39)
Setting t = 0 in formula (39), we obtain equations connecting initial conditions Cj and coefficients cj,0 of the stationaryfunction,

Cj = Djx(0) = Γ(j+1)cj,0. (40)
Thanks to properties of fractional integration and the assumption on admissibility of the stationary function, all derivativescalculated in formula (39) are continuous on [0, b]. Thus, x ∈ Cn2−1(0, b).Similarly as the proof of Theorem 3.6, the second part of calculations begins with the fractional differentiation of bothsides of (27),

cDα2−α10+ x(t) = Iα10+z(t) + n1−1∑
m=0 cm,1t

m.

Next, we differentiate, j = 0, . . . , n1 − 1, and obtain the relations
Dj cDα2−α10+ x(t) = Iα1−j0+ z(t) + n1−1∑

m=j cm,1
Γ(m+1)tm−jΓ(m−j+1) (41)

which yield the system of equations connecting initial values C j and coefficients cj,1,
C j = Dj cDα2−α10+ x(0) = Γ(j+1)cj,1. (42)
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Let us observe that the system of equations (40)–(42) is fully determined  the obtained coefficients are unique, thus thestationary function given in (37) generates a unique continuous solution of (2) described fully in Theorems 3.6 and 3.7.In the case n1 > n2, we again start with (39) and obtain the first set of relations (40). Then, we differentiate using thefractional derivative cDα2−α10+ :
cDα2−α10+ x(t) = Iα10+z(t) + n1−1∑

m=n1−n2
cm,1tm.

We observe that only n2 coefficients cj,1 should be determined. We shall obtain the system of equations using thederivatives of integer order for j = 0, . . . , n1 − 1, as in (41), and setting t = 0,
0 = C j = Dj cDα2−α10+ x(0) = 0, j = 0, . . . , n1 − n2 − 1,
C j = Dj cDα2−α10+ x(0) = Γ(j+1)cj,1, j = n1 − n2, . . . , n1 − 1. (43)

Formulas (40) and (43) uniquely determine the coefficients of the admissible stationary function (38) which generatesthe continuous solution of (2) solving IVP (36).
4. Conclusions

In the paper, we constructed a unique continuous solution of the two-term semi-linear and two-term nonlinear FDE withsequential Caputo derivatives. The considered equations contain derivatives of arbitrary fractional order. Additionally,as follows from the equivalent fractional integral forms of equations (1)–(2), the derived solution belongs to the Cn2−1(0, b)class (remarks in proofs of Theorems 3.4 and 3.7).We also discussed in detail how the partition of the fractional order between the orders of the component derivativesin (I) influences the formulation of the IVP (14)–(18), (35)–(36), and the form of the particular solution determined bythe initial conditions. The introduced method of proof consists of the extension of the equivalent norms/metrics methodknown from differential equations theory and the subsequent use of the contraction principle. Here, we apply in thescaling norms and construction of a new metric, Mittag–Leffler functions dependent on the lowest order of fractionalderivatives and on a free positive parameter. Using the new metric and technical Lemma 2.9, we were able to reformulatethe problem as a fixed point condition of a contractive mapping on the complete metric function space. Analysing thepresented results, we note that they can be generalised to derive the solutions of multi-term SFDEs and systems ofSFDEs, provided the nonlinear terms obey the respective Lipschitz condition. Such a nonlinearity is not the generalcase but it yields an immediate global continuous solution of the considered equations as it exists in arbitrary longinterval [0, b]. These problems will be studied in a subsequent paper.
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