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Abstract: Two-term semi-linear and two-term nonlinear fractional differential equations (FDEs) with sequential Caputo
derivatives are considered. A unique continuous solution is derived using the equivalent norms/metrics method
and the Banach theorem on a fixed point. Both, the unique general solution connected to the stationary function
of the highest order derivative and the unique particular solution generated by the initial value problem, are explic-
itly constructed and proven to exist in an arbitrary interval, provided the nonlinear terms fulfil the corresponding
Lipschitz condition. The existence—uniqueness results are given for an arbitrary order of the FDE and an arbitrary
partition of orders between the components of sequential derivatives.

MSC: 26A33, 34A08, 45Jxx

Keywords: Fractional derivative « Fractional differential equation « Fixed point condition « Equivalent norms/metrics - Initial
value problem

© Versita Sp. z o.o.

1. Introduction

The paper is devoted to studying and solving a class of nonlinear sequential differential equations of an arbitrary order.
The results will be presented for a two-term semi-linear fractional differential equation (FDE)

Dex(t) = D% ay (t)x(t) + W(t, x(1)), (1)
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where orders a; > a; > 0 are arbitrary positive real numbers, fractional derivatives D2, D are Caputo derivatives in
a sequential formulation (type | — Definition 2.4) and the above equation is fulfilled for any t € [0, b]. This problem will
be generalised to a two-term nonlinear FDE of the form

D%x(t) = W (t, x(t), D x(1)). )

We shall explicitly construct unique general solutions of equation (1)—(2), formulate an initial value problem and derive
the corresponding particular solutions.

Fractional differential equations are an interesting and fast developing area of mathematical investigations, both in the
theory and applications. We refer the reader to a summary of fractional differential equations theory in monographs
and review papers [1, 6, 8-11, 16-18]. Many solution methods have been transferred here from differential and integral
equations theory, including the application of fixed point theorems, integral transforms and operator theory. Here, we
consider a class of equations written in terms of sequential Caputo derivatives. Essentially, the two types of composed
Caputo derivatives given in Definition 2.4 can be considered. Equations with type Il derivatives can be easily converted
into a system of one-term FDEs and were studied earlier, compare the monograph by Diethelm [6] and references given
therein. In the present paper, we shall solve equations with type | derivatives and show how the partition of order a,
between the component derivatives influences the transformation into an equivalent fractional integral equation, the
subsequent solution and formulation of an initial value problem (IVP). The solution method developed in the paper
consists of the construction of new metrics on C[0, b] (equivalent to the standard supremum metric), reformulation of
equations (1)—(2) as fixed point conditions for contractive mappings on C[0, b] with a new metric, and finally application
of the Banach contraction principle. This approach is very effective, producing a unique solution in an arbitrarily long
interval. Earlier results for sequential FDEs of order in (0, 1) can be found in papers [4, 5, 12-15, 19].

The paper is organised as follows. In the next section we quote all necessary definitions from fractional calculus as
well as theorems on the properties of fractional derivatives and integrals. Here, we also introduce a class of norms and
metrics on the space of continuous functions, equivalent to each other and to the standard supremum norm. We also
prove a technical lemma on fractional integration which will be further applied in the derivation of the general solution
of considered SFDEs. Section 3 contains main results which include two theorems on the existence and uniqueness
of the solution of a two-term SFDE. We shall separately consider the case of semi-linear and nonlinear equations as
the transformation into a fixed point condition and formulation of the initial value problem (IVP) are different in both
cases. Similarly to differential equations theory, each admissible stationary function of the highest order derivative
generates a unique continuous solution of the considered equations (1)—(2). Then, initial value problems are formulated
and solved by showing the explicit form of the stationary function connected to the given IVP. The paper closes with a
short conclusion section.

2. Preliminaries

In this section, we recall basic definitions and theorems from fractional calculus, which we shall apply to formulate and
solve a two-term SFDE. The left-sided Riemann-Liouville integral and Caputo derivative are defined as follows [8, 20].

Definition 2.1.
The left-sided Riemann-Liouville integral of order a, denoted as If,, is given by the following formula for Re a > 0:

" 1 Y f(u)du
6,10 =g | o

where [ is the Euler gamma function.

Definition 2.2.
Let Rea € (n—1,n). The left-sided Caputo derivative of order a, denoted as Df,, is given by
1 © M (u) du
Dy, f(t) = = 1770 f(3).
5010 = gy | o = 810
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Property 2.3.
The following differentiation rule is valid, provided Rea € (n—1,n) and Re B > n — 1 in the case Re B ¢ Ny:
re+1 -
cna B _ . 4B—a
Di. t T T(B—a+1) e

Definition 2.4.
Let0 < a1 < o < ... < au. Sequential Caputo derivatives of type | and Il are given respectively as follows: D = Dy’
and, for j=2,...,m,

—a;

D = D=1 Dy ()
DY — CD —9j-1 D1, (“)

Next, we quote the property describing the composition rules for fractional integrals and derivatives [8, 20].

Property 2.5.
Let f € C([0, b], R) and a > 0. The following equalities hold at any point t € [0, b]:

Vil A0 =10, I, f(1) = [F (o). ()
If additionally B > a, then we have at any point t € [0, b],

Dg. 15, F(t) = 15, “£(1).
In the proof of existence and uniqueness results for equations (1)—(2) we shall apply the new metrics introduced below.

Definition 2.6.
The following formulas define a new norm and metric on C[0, b] for k, y € R,

lg(t)]
« = Su dy«(g,h) = —h K
lglly..= S B (ki) yilg, h) = llg—h],

where E, 1 denotes a one-parameter Mittag-Leffler function given in general as the series

/:ZOFV/+1)

Lemma 2.7.
Let y,yj k. k; € Ry for j=1,2.

(i) Metrics dy, ., and d,, ., on C[0, b] are equivalent.

(it) Each metric d, . on C[0, b] is equivalent to metric doo generated by the supremum norm.

Proof. Let us observe that for the norm || - ||, the following inequalities are valid for any function g € C[0, b]:

lgll lg(?)]
IR | | B = _ IV l‘ —
o o) < 190 = st 220 < sup lgt01 = lol,
te(0,b]
where we denoted as || - || the supremum norm on C[0, b]. Thus, norms || - || and || - ||,.« are equivalent and so are metrics
dopo and d, . The first part of the lemma is a straightforward corollary. O
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.
Remark 2.8.

Each function space (C[0, b], d ) is a metric complete space.

The constructed equivalent norms and the respective metrics will be the main tools in the proof of some existence and
uniqueness results for the general and particular solution of two-term sequential FDEs given in (1)—(2). The method of
equivalent norms/metrics was originally introduced by Bielecki in [3] in the theory of differential equations. It allows one
to express the corresponding differential equation as the fixed point condition of a mapping on the function space. The
equivalent norm and metric are chosen so that the mapping becomes a contraction on a new complete metric space. This
approach was extended to fractional differential equations by El-Raheem in [7], where he considered a one-term FDE
of order a € (0, 1). Then, Lakshmikantham et al. in [16] applied in the modification/scaling of the norm a Mittag-Leffler
function considering the same class of FDEs. Baleanu and Mustafa [2] applied the equivalent norm/metric method in
order to derive a global solution for a one-term FDE of an arbitrary fractional order. The Bielecki method can also
be extended to FDEs in a sequential version. Some results on multi-term SFDEs with a basic fractional derivative
— Riemann-Liouville, Caputo or Hadamard — can be found in [12, 13]. Preliminary results on semi-linear SFDEs of
type (1) are enclosed in [4, 14], where the general solution is derived for arbitrary orders of sequential Caputo derivatives
but the initial value problem is solved in the case of an equation of order in (0, 1).

The proof of existence-uniqueness result for the general solution of equations (1)—(2) will be based on the technical
lemma given below.

Lemma 2.9.
The following integration formula is valid for any B,k € R,:

18, Ega(xtf) = %(EBJ(M) —1). (4)

Let B> a > 0. Then, there exists a constant A (dependent on a and B) such that the following inequality is valid for
any value of parameter k € R, :
15, Ep_o1(ktPe b?A
sup A‘;) < A
te(0,b] EB or1(Kt ) K

)

Proof. As the series defining the Mittag-Leffler function is uniformly convergent in any finite subinterval of R, we
can integrate it term by term and obtain formula (4):

K tB[ o K tﬁ(l+1) s [/ 1tB[/
iE LG
pa(kt?) ZF([B+1 T ({(+1)B+ 1) ,Z rB+1) ZFIB+1)

Now, applying the semigroup property (3) and formula (4), we transform the integral on the left-hand side of (5) and
express it as a quotient:

I ' Ep_aq(ktP) . 1§, (Ep—a1(ktP2) —1) tEp_gar1(KtEF%) — t9 [ (a+1)

Ep o1 (ktP~9) N KEg_q1(ktF=) N KEg_q1(ktP=)

K[t[(Bfo() o o

KLlE—a)
;F(I(B—aHaH)_F(aH) ZF(!B o) +a+1)

s Kl ¢lB—a) ad k! ¢l(B—a)

K) ——— K) ————
g F{B—a)+1) = F(B=a)+1)
It is clear that there exists a unique integer number s € N such that

- —1
ymln < B —a < ymln ,
s —1
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where yui, denotes the local and global minimum of the Euler gamma function on the positive half-axis. The above
estimation leads to the following inequalities for the Euler gamma function valid for [ > s:

MB—a)l+a+1)>T(B—a)l+1).

Using the value of parameter s, determined for any two fixed values of a and B in (7), and the above inequalities for the
Euler gamma function, we rewrite equality (6) in the form of an inequality for the supremum

sup
teo,h] Ep—ar (ktf=<)

B B—a a B—a
los Ep—an(kt )S%( P (ktt=) 1)' ®)

1+ P,(ktf™)

where we denoted as P, and l3S the following polynomials:

s—1

fo) = ! (1)) 5 ey S K6
Py (ktf )_[;r(l(ﬁ—a)—i—a+1)' P, (kt? )_gr([(ﬁ_a)ﬁ).

The values of the polynomials above and in formula (8) are calculated at a point t, at which the rational function
P, (ktB=) /(1 4 P, (xtP~9)) attains its maximum in the finite interval [0, b] (for any given value of parameter x € R, ). Two
cases should be considered. First, let us assume that kt£=¢ is bounded above by 1:

0< th“’ <1.
Using this assumption, we note that P; is also bounded,

s—1
f-a I
Pq(ktf=) < ; FiB—a 77 = A,

which yields the inequality

b [ Py(ktf)

— =« 7 1) < b® (Po(ktf)+1) < ’L(A5+1). (9)
K \ 14 P, (ktf™) K K

When value «t#=¢ is bounded below by constant 1, we can estimate the arguments of the polynomials as follows: for
[=1,2,...,s—1,
0 < (th—a)l—s+1 S 1’

and these inequalities lead to the estimation of rational function P (ktf=%)/(1 + ﬁs(xtf“’)),

be [ Py(xtf~) ) b"( ZT(UB—a)+a+1)

ba
K\ Py G e ) R GG CRU U RS

Summarising, estimations (9)—(10) lead to a general inequality, valid for all values of arguments k=% (thus, also when
we consider a sequence lim k;, = 00)
m—0Q

a B—a a
T PN
K \ 1+ Py(xtf™) K
where the constant A is defined as

A= max{A5+1;A5r((s—1)(B—a)+1)+1}.

Let us point out that from the construction of constant A, it follows that it depends solely on the values of orders a, B
and parameter s given in (7). This ends the proof of Lemma 2.9. O
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Similarly to differential equations theory, where the stationary functions of integer order derivatives are polynomials,
we use in FDE theory the stationary functions of fractional derivatives. For sequential Caputo derivatives from (1)—(2),
these functions are described in the lemma below. We shall apply them further in the transformation of FDEs into
equivalent fractional integral equations.

Lemma 2.10.
(i) Let a4 € (n1—1,m). Then the following equivalence is valid in C[0, b]:

n—1

D¢i(t)=0 < $i(t)=) qtl.
j=0

(it) Let oy € (m—1,m4) and ay — a4 € (n2—1, n2). Then the following equivalence is valid in C[0, b]:

ny—1 ny—1
D2¢y(1) =0 =  alt) =) ot + 152" Y cjatl.
j=0 j=0
(it) Let aj — aj—1 € (n;—1,n}) for j =1,...,m. Then the following equivalence is valid in C[0, b]:
np—1 m—1 ng—1

D" gu(t) =0 =  dult) =) ot/ +Y "> cutl.
j=0 1 j=0

k=

3. Main results

We shall study and solve the FDEs given in (1) and (2) in the case when the nonlinear terms fulfil the Lipschitz condition.
The form of this condition is given in the definition below.

Definition 3.1.
(L1) A function W: [0, b]x R — R fulfils the Lipschitz condition if

|qJ(t,X1) - LI’J(t,XZ)| S M(t) . |X1 — X2

for any t € [0, b] and x4, x; € R.
(L2) A function W: [0, b]x R xR — R fulfils the Lipschitz condition if

[W(t xa, y1) — W(t, x2, y2)| < Mi(t) - [xi — x| + Ma(t) - |y1 — yo]

forany t €[0,b] and (x;,y;) ER? j=1,2.

Example 3.2.
The following simple rational and trigonometric functions fulfil (L1) Lipschitz condition:
bq(t
Y(t, x) = 1 J_(|))(| , b, € C[0, b], W(t, x) = by(t) sin(B1(t)x)+ba(t) cos(Ba(t)x), b, B; € C[0,b], j=1,2,

with M(t) = |by(t)| in the first and M(t) = |b1(t)B1(t)| + |b2(t) B2(t)] in the second case. Similarly it can be shown that
functions

b1(t)
T+ X+ 1yl
W(t,x,y) = bi(t)sin[Bi(t)(x + y)] + ba(f) cos[Ba(t)(x +y)]. b, B € C[0,b], j=1,2,

Yt x,y) = by € C[0, b],

obey (L2) Lipschitz condition with M;(t) = M (t) = |b1(t)| in the first and My (t) = Ma(t) = |b1(t) B1(t)| + |b2(t) Ba(1)] in
the second case.
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3.1. Two-term semi-linear SFDE

First, we give results on existence and uniqueness of the solution of semi-linear fractional differential equation (1), where
the sequential Caputo derivatives of arbitrary order are included. The reason we solve this less general case separately
is due to its transformation into a fixed point condition which allows us to consider the general initial value problem.
The two theorems enclosed in this section yield a unique general solution generated by the stationary function of the
highest order derivative and a unique particular solution fulfilling the respective initial conditions. In the construction
of the solution we shall apply the following mapping on C[0, b]:

Tog(t) = I " ar(t)g(t) + I3 W(t. g(1) + ¢a(0)- (1)

Theorem 3.3.

Let & > o > 0 and ay € C"7'(0,b],R), function W € C(0,b]xR,R) fulfils Lipschitz condition (L1) given in
Definition 3.1 with M € C[0, b]. Each stationary function ¢, of sequential derivative D® generates a unique solution
of equation (1) continuous in [0, b]. This solution is a limit of iterations of mapping T,, defined in (11),

() = lim (o)1),
where x is an arbitrary function continuous on [0, b].

Proof. Equation (1) can be rewritten using the composition rules from Property 2.5 in the form of an equation for a
stationary function of the highest order derivative,

D% [x(t) — g2 " a1 (t)x(t) — lg2 W(t, x(t)] = 0
which leads to the following fractional integral equation:
x() — 12 aq (8)x(t) — 2 W(t, x(2)) = ¢a(t) (12)

equivalent to FDE (1) on the space of functions continuous on [0, b]. Function ¢, in the above equation is an arbitrary
stationary function of sequential derivative D described in Lemma 2.10. Each such stationary function generates a
mapping on C[0, b] defined as

To,g(t) = lgi " ar(t)g(t) + 2 W(t, g(1)) + (1)

for arbitrary g € C[0, b]. Thus, equation (1) can be transformed into a fixed point condition for mapping Tg,,
x(t) = Tg,x(2). (13)

Our aim is to prove that this mapping is a contraction on a respective space (C[0, b], d,.). In the proof we shall apply
metric d, generated by the norm given in Definition 2.6 with scaling function Eq,_ 1,

g(t)
19l = sup 100 02(9.0) = g~ hlly o,

te(0.b] Eay—ay 1 (Kt271)

From Lemma 2.7, it follows that (C[0, b], dx) is a complete metric space for each value k € R,. Let us estimate the
d,-distance between the images for an arbitrary pair of functions g, h € C[0, b]:

16,9 = Toshllo-arx = |[l6; " arlg —h) + (W (t, g(1) = Wit O],
22—
< an(0)] - lg(t) = h(O)] + M- g1 g(6) = h(B)l]],, .

gl sup 1L B ey 270) 4 R 2 By (270
- e t€l0,b] Egyay 1 (kt2) ’
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where we denoted |aq| = sup a;(t)| and M = sup t)|. Applying the technical Lemma 2.9 introduced in the
h d d 1€[0.6] dM te0.5] IM Appl h h L L 29 duced h
previous section, we obtain

|G1| +b M- A

. g hlloy-arv

[ Ts,9 — T¢2h”02*a1#< <
Let us observe that « is a free parameter and the following inequality is valid for an arbitrary pair g, h € C[0, b]:

|01 | +bM-A
d(Tg,q, Ty, h) < Led(g, h), L,= —_—
Setting the value of parameter x so that L, € (0,1), we conclude that mapping Ty, is a contraction on (C[0, b], d,).
Then, from the Banach theorem on a fixed point, it follows that a unique solution x € C[0, b] exists so that the fixed
point condition (13) is fulfilled. This function also solves equations (1) and (12), and is given as the limit of iterations of
mapping Tg,. O

The above theorem describes the general solutions of (1). As we note, they are generated by the stationary function of
the highest order derivative, similarly as in the theory of classical differential equations. To determine the constants, one
can use different sets of initial/boundary conditions. In this paper, we shall discuss the initial value problem (IVP) for
equation (1) with derivatives of arbitrary real order. First, we consider the case ni < n;, and set the initial conditions as

D*x(0)=C,  k=0,...,n—1, (14)
D/ Dgx " x(0) = C, j=0,....,nm—1. (15)

jr

The case ny > n, is more complicated as the corresponding initial conditions are

D*x(0) = Gy, k=0,...,n,—1, (16)
DI “Dg2~"'x(0) = C;, j=0,...,n—1, (17)
D/[CDg_Z*_ia1—U1]X(O):f/, j:nz,...,m—‘l. (18)

In the theorem below, we prove that the continuous solution of equation (1) exists and fulfils the respective initial
conditions. This solution is unique provided a certain assumption on the mapping generated by the stationary function
connected to the above IVP is fulfilled.

Theorem 3.4.

Let the assumptions of Theorem 3.3 be fulfilled. Then, a unique solution of equation (1), fulfilling IVP (14)—(15)
or (16)—(18) respectively, exists in C[0,b]. This solution is a limit of iterations of mapping Ty, generated by the
following stationary function ¢,:

ny—1 k n—1 ) . i
t a—a = TR t/
= v o <
$a(1) ;Ckr(kﬂ)ﬂﬂ ;(C, 1=o(l)a1 0)G e (19)
a1 £k =1 j i\ y ny—1 o
=Y G+ C,— =0)¢ Ci——rol|. >n,. (20
0= L Gy R [Zo / g(!)‘” O TGt L SRy Mo @

Proof. Using Theorem 3.3, we note that equation (1) is solved by the solution of the fractional integral equation

x(t) = 127 aq (t)x(8) + 2 W(t, x(1)) + ¢a(t). (21)
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In the case ny < n,, we can differentiate the above equation and obtain for 0 < j < n,

ny—1

. O —a k+1 tk_ 0( a m
Dix(t) = ,z 1 /01(t)X(t)+IOZ llp (t, x(t)) +ZC/<0 +1) z 1 ]%Cmt (22)

n—1

Calculating the value of the above at t = 0, we arrive at the system of equations connecting the initial values and
coefficients c;o of the stationary function for j =0,...,n, -1,

C = Dix(0) = [(j+1)cjp. (23)

Thanks to the properties of fractional integration, the derivatives calculated in formula (22) are continuous on [0, b]. This
means that x € C"271(0, b).

The second part of the calculations begins with the fractional differentiation of both parts of (21),

nm—1

D x(1) = ar(B)x(t) + LWt x(0) + Y cuat™

Next, we differentiate both sides, j =0,...,n; — 1, and obtain

ny—1

. . _ r 1 m—j
DD x(t) = Dlaq(t)x(1) + I5 T W(t, x(t) +Zcm1 (m+1)t

Fn=j+11 i

Assuming t = 0, we again derive the system of equations connecting the initial values and coefficients c;; of the
stationary function for j=0,...,ny —1,

i .
T, = DD x(0 Z( ) 0)C + T+ 1)¢a. (25)

Using relations (23)—(25), we obtain the explicit formula for stationary function (19) generating the solution fulfilling
initial conditions (14)—(15), valid in the case ni < n,.

In the case ny > ny, the calculations and the results determining coefficients c;o for j = 0,...,n; — 1 coincide with
the ones presented above. Thus, we only need to derive coefficients c;;. Using formula (24), for j = 0,...,n, — 1,
we again obtain relations (25). Then, we take j = nj,...,n1 — 1 and we observe that D/x(0) is not determined by

conditions (16)—(17). Therefore we reformulate (15) as follows:

n—1
i ay—a F(m+1)t’” l
DD~ — aq ()| x(t) = 17 W(¢, x(¢t) ml ————————,
[DE ! = ar(t)] (1) ( x()+§c1 P )
and in consequence, we have at t = 0 the following formulas determining c;1 for j =n,...,ny —1:
G = DD —ar(O]x()| = TG+ Ne.

The above result, together with (23)—(25), fully determines stationary function (20) generating the unique continuous
solution in the case ny > n». O
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3.2. Nonlinear two-term SFDE

In this section, we consider a nonlinear fractional differential equation of the form (2) with sequential Caputo derivatives
of arbitrary order. The transformation of the FDE into a fixed point condition on the space of continuous functions will
be here more complex than for equation (1). To this aim, we should introduce the notion of an admissible stationary
function, given below.

Definition 3.5.
The stationary function ¢, described in Lemma 2.10 will be called admissible for equation (2) when derivative D ¢,
exists and is continuous on [0, b].

Let us observe that two cases are relevant here. First, from Property 2.3 it follows that when n; < n;, then all stationary
functions of derivative D® are admissible. In the case ni > n,, we observe that the derivative is

ny—1

e FG+1)
D* ¢y(t) = D™ At e
¢(0) ; i Mj+a—a+1)
According to Property 2.3, we should have ¢;; =0 for j=0,...,n; —n, —1 and the derivative becomes
ny—1 .
FG+1)

D% y(t) = Z C“tf+{02*a1}*{a1}+nz*n1

j=n1—n2

Mj+om—2a+1)"

where {B} denotes the fractional part of real number B € R, and we conclude that ¢, is admissible if we assume
{az—a} > {}. Inthe case {a;— a1} < {}, we can also study the solutions of equation (2) but we should extend the
function space of solutions as they will belong to the space of weighted continuous functions [8]. We leave this problem
for a subsequent paper. Assuming that the stationary function ¢, is admissible, we are able to prove the following result
on existence and uniqueness of the solution of equation (2) by using in the construction the mapping /7\—¢2:

To,g(t) = W(t, I52g(1) + $a(1), I5. g (1) + D ¢a(1)), (26)
defined on CJ[0, b].

Theorem 3.6.

Let a; > a4 > 0, and {2 — v} > {a} in the case ni > n,. Assume a function ¥ € C([0, b]x R xR, R) fulfils
the Lipschitz condition (L2) given in Definition 3.1 with My, M, € CJ0, b] and 7’¢2 is defined as in (26). Then, each
stationary function ¢, of sequential derivative D*?, admissible in the sense of Definition 3.5, generates a unique solution
of equation (2) continuous on [0, b]. This solution is determined by a limit of iterations of mapping Ty, in the following
way:

x(t) = Ig2z(t) + $a(1), (27)
2(t) = lim (T, V()

where x is an arbitrary function continuous on [0, b].

Proof. We can rewrite equation (2) in the vector form

D2x(t) = z(t), (28)
z(t) = W(t, x(t), D x(1)). (29)



M. Klimek, M. Btasik

The first of the above equations is, in C[0, b], equivalent to the fractional integral equation
x(t) = Ig2z(t) + ¢a(2), (30)

where by ¢, we have denoted an arbitrary stationary function of derivative D% described in Lemma 2.10 and admissible
in the sense of Definition 3.5. Now, we differentiate the obtained integral equation by applying the composition rule
from Property 2.5 and obtain

D% x(t) = Ig2 ' z(t) + D" (1) (31)

We observe that in order to correctly calculate the required derivative, the derivative of stationary function D* ¢, should
exist. It does, thanks to the assumption on the admissible stationary function, and it is continuous on [0, b]. Thus, the
left-hand side of equation (29) also is continuous. For these stationary functions, system (28)—(29) can be formulated as
an equivalent system of fractional integral equations

x(t) = I2z(t) + ¢a(t),
z(t) = W(t, [522(1) + $a(1), I52 " 2(t) + D a(t)), (32)
Targ(t) = W (t, [2g(t) + a(t), 2" g(t) + D" (1)) (33)

Clearly, to derive the solution x we must solve the nonlinear fractional integral equation (32). Using the mapping (33),
we observe that in fact it is a fixed point condition on CJ[0, b],

7(t) = Tgyz(t),  t€[0,b]. (34)

In the proof, we shall again apply metric d, generated by the norm given in Definition 2.6 with scaling function Eq,_q, 1.
Let us estimate the d,-distance between images Ty,g and T4, h for an arbitrary pair of functions g, h € C[0, b]:

1To.9 = Tarhll,, o = 1W (2 I3 9(0) + G2(0), I g(0) + D 65(1)
= W(t, I3 h(t) + (1), Iz " h(t) + D da(t)) ||, _,,
< [Mifsilg —hl +Molg™ g = hlll,, o, . < Mill21g =hlll,, g, c + Mol 6219 =]l

— 162 Egyay (kt2701) I8 E g (k292701
<M —h B . 0+—xm— +M —h B . 0+ apR—a
S Millg =hllor-ar- sup == qemary T Mallg = Ao sup T e

< Mib A+ M,

K : ”g_h”azfoq,w

where M; = Supep,p [IMi(1)], i = 1,2. Concluding, we see that for any k € Ry, the following inequality is fulfilled for
an arbitrary pair g, h € C[0, b]:

~ ~ ~ ~  MibA+M
||T¢2-q - T¢2h||o(zfaw,:< S LK ’ ||g_h||02—0{1v‘<' LK = %2

Setting the value of parameter k so that L. € (0,1), we observe that mapping ?@ is the contraction on (C[0, b], d,). Then,
from the Banach theorem on a fixed point, it follows that the unique solution z € C[0, b] of the fixed point condition (34)
and equation (30) exists and is given as the limit of the iterations of 7’¢2. Using (30), we obtain the unique solution of
SFDE (2) generated by ¢;. O

We observe that the solution described in the above theorem depends on ny + n, constants in the case ny < n; and
on 2n, constants when ny > n,. To determine their value, we formulate an initial value problem (IVP) for nonlinear
SFDE (2). First, we consider the case nq < n, and find a unique continuous solution fulfilling the conditions

D*x(0) = Gy, k=0,...,n,—1,
DI Dy x(0) = C

jr

35
j=0,...,n1—1. ( )

1981
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In the case ny > ny, we know that in the explicit formula for admissible stationary function ¢,, some of the coefficients
must vanish. Thus we formulate the respective IVP as follows:

kX(O)ZCk, k:O,...,n2—1,
D”Dgfmx(O) =0, j=0,....,n—ny—1, (36)
D/ D2~ " x(0) :Ej, j=nm—ny...,n—1.

In the theorem below, we give a receipt for the unique continuous solution of (2) fulfilling the above initial conditions.

Theorem 3.7.
Let the assumptions of Theorem 3.6 be fulfilled. Then a unique solution of equation (2), obeying IVP (35) or respec-
tively (36), exists in C[0, b]. This solution is given as

x(t) = I3 z(1) + ¢a(t),

with the corresponding stationary function ¢,

ny—1 & n—1 :
t - ral v
= — <
(1) k;ck e ,-:Zoc' Fene M (37)
ny—1 I< n—1 tj
t) = G + 2 Ci——, > ny, 38
$a(1) kZ Fler) ,:;HZ’F(HU ni > n (38)

where z is the limit of iterations of mapping /7\_¢2 given in (26) and (33).

Proof. From Theorem 3.6 and its proof, it follows that the unique solution x € C[0, b] of equation (2), generated by
admissible stationary function ¢,, fulfils the fractional integral equation (27). First, we consider the case ny < n, and
differentiate both sides of this equality for j =1,...,n, —1:

Dix(t) = I3 2(t) + D/ (0). (39)

Setting t = 0 in formula (39), we obtain equations connecting initial conditions C; and coefficients ¢; of the stationary
function,

G = DIx(0) = T(j+1)cjo- (40)
Thanks to properties of fractional integration and the assumption on admissibility of the stationary function, all derivatives
calculated in formula (39) are continuous on [0, b]. Thus, x € C"271(0, b).

Similarly as the proof of Theorem 3.6, the second part of calculations begins with the fractional differentiation of both
sides of (27),

n1—1
Dy x(t) = liz(t) + ) cpat".
m=0
Next, we differentiate, j =0,...,n1 — 1, and obtain the relations
A C(m+1)¢t"
DD x(t) = Iy 2(t m, 41
) = 20+ ) i gy (41)
which yield the system of equations connecting initial values fj and coefficients ¢; 4,
Cj = DD "x(0) = T(j +1)¢j. (42)
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Let us observe that the system of equations (40)—(42) is fully determined — the obtained coefficients are unique, thus the
stationary function given in (37) generates a unique continuous solution of (2) described fully in Theorems 3.6 and 3.7.

| e case > ny, we aga' art Wﬂ (39) anc obt.c" e fl_ st set Of relations ( ) he , W d iate Using he
actlonal de ivative DO2 1: e fferent
n—1

D x(1) = Ighz(t) + ) cmat".

m=n1—ny

We observe that only n; coefficients ¢;1 should be determined. We shall obtain the system of equations using the
derivatives of integer order for j =0,...,n1 — 1, as in (41), and setting t =0,

0=C; =D D2 x(0) = 0, j=0,...,n—ny—1, 3)

fj = D”Dgfmx(O) =T({+1c1, j=n—ny...,n—1.
Formulas (40) and (43) uniquely determine the coefficients of the admissible stationary function (38) which generates
the continuous solution of (2) solving IVP (36). O

4. Conclusions

In the paper, we constructed a unique continuous solution of the two-term semi-linear and two-term nonlinear FDE with
sequential Caputo derivatives. The considered equations contain derivatives of arbitrary fractional order. Additionally,
as follows from the equivalent fractional integral forms of equations (1)—(2), the derived solution belongs to the C"271(0, b)
class (remarks in proofs of Theorems 3.4 and 3.7).

We also discussed in detail how the partition of the fractional order between the orders of the component derivatives
in (I) influences the formulation of the IVP (14)—(18), (35)—(36), and the form of the particular solution determined by
the initial conditions. The introduced method of proof consists of the extension of the equivalent norms/metrics method
known from differential equations theory and the subsequent use of the contraction principle. Here, we apply in the
scaling norms and construction of a new metric, Mittag—Leffler functions dependent on the lowest order of fractional
derivatives and on a free positive parameter. Using the new metric and technical Lemma 2.9, we were able to reformulate
the problem as a fixed point condition of a contractive mapping on the complete metric function space. Analysing the
presented results, we note that they can be generalised to derive the solutions of multi-term SFDEs and systems of
SFDEs, provided the nonlinear terms obey the respective Lipschitz condition. Such a nonlinearity is not the general
case but it yields an immediate global continuous solution of the considered equations as it exists in arbitrary long
interval [0, b]. These problems will be studied in a subsequent paper.
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