

Central European Journal of Mathematics

Lorentzian similarity manifolds

Research Article

Yoshinobu Kamishima¹*

1 Department of Mathematics, Tokyo Metropolitan University, Minami-Ohsawa 1-1, Hachioji, Tokyo 192-0397, Japan

Received 4 October 2011; accepted 27 February 2012

Abstract: An (m+2)-dimensional Lorentzian similarity manifold M is an affine flat manifold locally modeled on (G, \mathbb{R}^{m+2}) ,

where $G = \mathbb{R}^{m+2} \rtimes (O(m+1,1) \times \mathbb{R}^+)$. M is also a conformally flat Lorentzian manifold because G is isomorphic to the stabilizer of the Lorentzian group PO(m+2,2) of the Lorentz model $S^{m+1,1}$. We discuss the properties of

compact Lorentzian similarity manifolds using developing maps and holonomy representations.

MSC: 53C55, 57S25, 51M10

Keywords: Lorentzian similarity structure • Conformally flat Lorentzian structure • Uniformization • Holonomy group •

Developing map

© Versita Sp. z o.o.

1. Introduction

Let $A(m+2) = \mathbb{R}^{m+2} \rtimes GL(m+2,\mathbb{R})$ be the affine group of the (m+2)-dimensional Euclidean space \mathbb{R}^{m+2} . An (m+2)-manifold M is an affinely flat manifold if M is locally modeled on \mathbb{R}^{m+2} with coordinate changes lying in A(m+2). When \mathbb{R}^{m+2} is endowed with a Lorentz inner product, we obtain Lorentz similarity geometry

$$\operatorname{Sim}_{L}(\mathbb{R}^{m+2}) = \mathbb{R}^{m+2} \times (\operatorname{O}(m+1,1) \times \mathbb{R}^{+})$$

as a subgeometry of A(m+2). If an affinely flat manifold M is locally modeled on $\mathrm{Sim}_L(\mathbb{R}^{m+2})$, then M is said to be a *Lorentzian similarity manifold*. Lorentzian similarity geometry contains *Lorentzian flat geometry* $(\mathsf{E}(m+1,1),\mathbb{R}^{m+2})$, where $\mathsf{E}(m+1,1)=\mathbb{R}^{m+2} \rtimes \mathsf{O}(m+1,1)$.

We start with the following result.

^{*} E-mail: kami@tmu.ac.jp

Theorem A.

If M is a compact complete Lorentzian similarity manifold, then M is a Lorentzian flat space form. Furthermore, M is diffeomorphic to an infrasolvmanifold.

The first part of Theorem A has been proved by T. Aristide [1]. Once M is a compact Lorentzian flat space form, it is shown by Y. Carrière and F. Dal'bo [5] that M is diffeomorphic to an infrasolvmanifold. In particular, the Auslander–Milnor conjecture is true for compact complete Lorentzian similarity manifolds, cf. [24]. In this direction, we have obtained a new characterization of compact Lorentzian flat space forms.

Theorem B.

If M is a compact Lorentzian flat space form, then the fundamental group admits a nontrivial translation subgroup.

We prove Theorem B in Section 2. As an application, we study compact Lorentzian flat Seifert manifolds in Section 3; see [10, 23].

Let $(PO(m+2,2), S^{m+1,1})$ be a conformally flat Lorentzian geometry. If a point $\widehat{\infty} \in S^{m+1,1}$ is defined as the projectivization of a null vector in \mathbb{R}^{m+4} , the stabilizer $PO(m+2,2)_{\widehat{\infty}}$ is isomorphic to $Sim_L(\mathbb{R}^{m+2})$ for which there is a suitable conformal Lorentzian embedding of \mathbb{R}^{m+2} into $S^{m+1,1} - \{\widehat{\infty}\}$ that is equivariant with respect to $Sim_L(\mathbb{R}^{m+2}) = PO(m+2,2)_{\widehat{\infty}}$, cf. [17]. In contrast to conformally flat Riemannian geometry, \mathbb{R}^{m+2} is properly contained in the complement $S^{m+1,1} - \{\widehat{\infty}\}$, cf. [2]. A Lorentzian similarity geometry $(Sim_L(\mathbb{R}^{m+2}), \mathbb{R}^{m+2})$ is a sort of subgeometry of conformally flat Lorentzian geometry $(PO(m+2,2), S^{m+1,1})$.

For m=2n, there is the natural embedding $U(n+1,1) \to O(2n+2,2)$ such that $\left(U(n+1,1), S^1 \times S^{2n+1}\right)$ is a subgeometry of $\left(O(2n+2,2), S^1 \times S^{2n+1}\right)$. Here $S^1 \times S^{2n+1}$ is a two-fold covering of $S^{2n+1,1}$. A (2n+2)-dimensional manifold M is said to be a *conformally flat Fefferman–Lorentz parabolic* manifold if M is uniformized with respect to $\left(U(n+1,1), S^1 \times S^{2n+1}\right)$, cf. [18]. In Section 5, we consider when the developing map of a compact conformally flat Fefferman–Lorentz parabolic manifold becomes a covering map onto its image; see [15]. Let

$$\mathbb{Z} \to \left(\cup (n+1,1)^{\sim}, \, \widetilde{S}^{2n+1,1} \right) \xrightarrow{(Q,q)} \left(\cup (n+1,1), \, S^1 \times S^{2n+1} \right)$$

be the equivariant covering map. In Section 5 we prove

Theorem C.

Let M be a (2n+2)-dimensional compact conformally flat Fefferman–Lorentz parabolic manifold and

$$(\rho, \text{dev}): (\pi_1(M), \widetilde{M}) \rightarrow (\bigcup (n+1, 1)^{\sim}, \mathbb{R} \times S^{2n+1})$$

the developing pair. Suppose that the holonomy image $Q(\rho(\pi_1(M)))$ is discrete in U(n+1,1). If the developing map $q \circ \text{dev} \colon \widetilde{M} \to S^1 \times S^{2n+1}$ is not surjective and such that the complement $\Lambda = S^1 \times S^{2n+1} - q \circ \text{dev}(\widetilde{M})$ is S^1 -invariant, then $q \circ \text{dev}$ is a covering map onto the image.

For noncompact complete Lorentzian case, i.e., properly discontinuous actions of free groups on complete simply connected Lorentzian flat manifolds, the behavior changes drastically. See [2, 6, 13] for details.

2. Lorentzian similarity manifold

Consider the following exact sequence:

$$1 \to \mathbb{R}^{m+2} \times \mathbb{R}^+ \to \operatorname{Sim}_{L}(\mathbb{R}^{m+2}) \xrightarrow{P} \operatorname{O}(m+1,1) \to 1. \tag{1}$$

Lemma 2.1.

Let $M = \mathbb{R}^{m+2}/\Gamma$ be a compact complete Lorentzian similarity manifold where $\Gamma \leq \mathrm{Sim}_L(\mathbb{R}^{m+2})$. Suppose that $P(\Gamma)$ is discrete in O(m+1,1). If $\Delta = (\mathbb{R}^{m+2} \rtimes \mathbb{R}^+) \cap \Gamma$, then $\Delta \leq \mathbb{R}^{m+2}$ which is nontrivial.

Proof. Since $P(\Gamma)$ is discrete, it acts properly discontinuously on the (m+1)-dimensional hyperbolic space $\mathbb{H}_{\mathbb{R}}^{m+1} = (O(m+1) \times O(1)) \setminus O(m+1,1)$. The (virtually) cohomological dimension vcd of $P(\Gamma)$ satisfies vcd $P(\Gamma) \le m+1$. On the other hand, the cohomological dimension cd $\Gamma = m+2$, the intersection Δ of (1) is nontrivial. Let

$$1 \to \mathbb{R}^{m+2} \to \mathbb{R}^{m+2} \times \mathbb{R}^+ \xrightarrow{p} \mathbb{R}^+ \to 1$$

be the exact sequence. If $p(\Delta)$ is nontrivial, then we may assume that there exists an element $\gamma = (a, \lambda) \in \Delta$ such that $p(\gamma) = \lambda < 1$. A calculation shows

$$\gamma^n = \left(\frac{1-\lambda^n}{1-\lambda}a, \lambda^n\right), \quad n \in \mathbb{Z}.$$

The sequence of the orbits $\{\gamma^n \cdot \mathbf{0} : n \in \mathbb{Z}\}$ at the origin $\mathbf{0} \in \mathbb{R}^{m+2}$ converges when $n \to \infty$,

$$\mathbf{y}^n \cdot \mathbf{0} = \frac{1 - \lambda^n}{1 - \lambda} a + \lambda^n \cdot \mathbf{0} = \frac{1 - \lambda^n}{1 - \lambda} a \rightarrow \frac{1}{1 - \lambda} a.$$

As Δ acts properly discontinuously on \mathbb{R}^{m+2} , $\{\gamma^n: n=1,2,\dots\}$ is a finite set. Since Δ is torsion-free, $\gamma=1$ which is a contradiction. So $p(\Gamma)$ must be trivial.

Proposition 2.2.

Let $M = \mathbb{R}^{m+2}/\Gamma$ be a compact complete Lorentzian similarity manifold. Then Γ is virtually solvable in $\operatorname{Sim}_{L}(\mathbb{R}^{m+2})$.

Proof. (1) When $P(\Gamma)$ is discrete, we obtain the following exact sequences from (1).

$$1 \longrightarrow \mathbb{R}^{m+2} \longrightarrow \operatorname{Sim}_{L}(\mathbb{R}^{m+2}) \xrightarrow{L} \operatorname{O}(m+1,1) \times \mathbb{R}^{+} \longrightarrow 1$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$1 \longrightarrow \Delta \longrightarrow \Gamma \xrightarrow{L} L(\Gamma) \longrightarrow 1$$
(2)

If $\Delta \cong \mathbb{Z}^k$, then the span \mathbb{R}^k of Δ in \mathbb{R}^{m+2} is normalized by Γ . Let $\langle \cdot, \cdot \rangle$ be the Lorentz inner product on \mathbb{R}^{m+2} . The rest of the argument is similar to that of [12]. In fact, $L(\Gamma)$ of (2) induces a properly discontinuous affine action ρ on \mathbb{R}^{m+2-k} with finite kernel Ker ρ :

$$\rho \colon L(\Gamma) \to \mathrm{Aff}(\mathbb{R}^{m+2-k}),$$

cf. Lemma 3.1. If necessary, we can find a torsion-free normal subgroup of finite index in $\rho(L(\Gamma))$ by Selberg's lemma. Passing to a finite index subgroup if necessary, the quotient $\mathbb{R}^{m+2-k}/\rho(L(\Gamma))$ is a compact complete affinely flat manifold.

Suppose that $\langle \cdot, \cdot \rangle \upharpoonright_{\mathbb{R}^k}$ is nondegenerate. According to whether $\langle \cdot, \cdot \rangle \upharpoonright_{\mathbb{R}^k}$ is positive definite or indefinite, $\mathbb{R}^{m+2-k}/\rho(L(\Gamma))$ is a compact complete Lorentzian similarity manifold or Riemannian similarity manifold respectively.

If $\mathbb{R}^{m+2-k}/\rho(L(\Gamma))$ is a Lorentzian similarity manifold, by induction hypothesis, $L(\Gamma)$ is virtually solvable. When $\mathbb{R}^{m+2-k}/\rho(L(\Gamma))$ is a Riemannian similarity manifold, i.e., $\rho(L(\Gamma)) \leq \operatorname{Sim}(\mathbb{R}^{m+2-k})$ which is an amenable Lie group, a discrete subgroup $\rho(L(\Gamma))$ is virtually solvable by Tits' theorem (cf. [24]; furthermore, $\mathbb{R}^{m+2-k}/\rho(L(\Gamma))$ is a Riemannian flat manifold by Fried's theorem [9]). In each case, Γ is virtually solvable.

If $\langle \cdot, \cdot \rangle \upharpoonright_{\mathbb{R}^k}$ is degenerate, then $\mathbb{R}^k = R$ consisting of a lightlike vector as a basis. The holonomy group $L(\Gamma)$ leaves invariant R. The subgroup of $O(m+1,1) \times \mathbb{R}^+$ preserving R is isomorphic to $Sim^*(\mathbb{R}^m) \times \mathbb{R}^+ = (\mathbb{R}^m \rtimes (O(m) \times \mathbb{R}^*)) \times \mathbb{R}^+$ which is an amenable Lie group. As $L(\Gamma) \leq Sim^*(\mathbb{R}^m) \times \mathbb{R}^+$, $L(\Gamma)$ is virtually solvable, and so is Γ .

(2) When $P(\Gamma)$ is indiscrete, it follows from [25, Theorem 8.24] that the identity component of the closure $\overline{P(\Gamma)}^0$ is solvable in O(m+1,1). It belongs to the maximal amenable subgroup up to conjugate:

$$\overline{P(\Gamma)}^0 \leq \mathbb{R}^m \rtimes (O(m) \times \mathbb{R}^*).$$

It is easy to check that the normalizer of $\overline{P(\Gamma)}^0$ is still contained in $\mathbb{R}^m \rtimes (\mathrm{O}(m) \times \mathbb{R}^*)$ because the normalizer leaves invariant at most two points $\{0, \infty\}$ on the boundary $S^m = \partial \mathbb{H}^{m+1}_{\mathbb{R}}$ for which $\mathrm{O}(m+1,1)_{\infty} = \mathbb{R}^m \rtimes (\mathrm{O}(m) \times \mathbb{R}^*)$. Hence $P(\Gamma) \leq \mathbb{R}^m \rtimes (\mathrm{O}(m) \times \mathbb{R}^*)$. There is an exact sequence induced from (1):

$$1 \to \mathbb{R}^{m+2} \times \mathbb{R}^+ \to P^{-1}(\mathbb{R}^m \times (O(m) \times \mathbb{R}^*)) \xrightarrow{P} \mathbb{R}^m \times (O(m) \times \mathbb{R}^*) \to 1$$

in which $P^{-1}(\mathbb{R}^m \times (O(m) \times \mathbb{R}^*))$ is an amenable Lie subgroup. Hence, Γ is virtually solvable.

Proposition 2.3.

Let M be a compact complete Lorentzian similarity manifold \mathbb{R}^{m+2}/Γ . Then M is diffeomorphic to an infrasolvmanifold \mathbb{U}/Γ .

Proof. As $\Gamma \leq \mathbb{R}^{m+2} \times (O(m+1,1) \times \mathbb{R}^+)$ is a virtually solvable group, take the real algebraic hull $A(\Gamma) = U \cdot T$, where U is a unipotent radical and T is a reductive d-subgroup such that T/T^0 is finite. Then each element $r = u \cdot t \in U \cdot T$ acts on U by $\gamma x = utxt^{-1}$, $x \in U$. It follows from the result of [3] that Γ acts properly discontinuously on U so that U/Γ is compact. Furthermore, U/Γ is diffeomorphic to an infrasolvmanifold by [3, Theorem 1.2].

Since U/Γ is compact, we choose a compact subset $D \subset U$ such that $U = \Gamma \cdot D$. As Γ acts properly discontinuously on \mathbb{R}^{m+2} and $U \cdot T \leq \mathbb{R}^{m+2} \rtimes (O(m+1,1) \times \mathbb{R}^+)$, it is easily checked that U acts properly on \mathbb{R}^{m+2} . Since T is reductive, we may assume that $T \cdot \mathbf{0} = \mathbf{0} \in \mathbb{R}^{m+2}$. Define a map

$$\rho \colon U \to \mathbb{R}^{m+2}, \qquad \rho(x) = x \cdot \mathbf{0}.$$

Noting that U acts freely on \mathbb{R}^{m+2} , ρ is a simply transitive action. For $\gamma = u \cdot t \in \Gamma$, $\gamma x = utxt^{-1}$ as above. Then $\rho(\gamma x) = utxt^{-1} \cdot \mathbf{0} = utx \cdot \mathbf{0} = \gamma \rho(x)$. So ρ is Γ -equivariant, ρ induces a diffeomorphism on the quotients $U/\Gamma \cong \mathbb{R}^{m+2}/\Gamma$.

In particular, a compact (and hence complete) Lorentzian flat space form is diffeomorphic to an infrasolvmanifold. Moreover, we have a new characterization on compact complete Lorentzian flat space forms. First, let $\{\ell_1, e_2, \ldots, e_{m+1}, \ell_{m+2}\}$ be the basis on \mathbb{R}^{m+2} such that

$$\langle \ell_1, \ell_1 \rangle = \langle \ell_{m+2}, \ell_{m+2} \rangle = 0, \qquad \langle e_i, e_i \rangle = \delta_{ii}, \qquad \langle \ell_1, \ell_{m+2} \rangle = 1.$$

The subgroup $Sim(\mathbb{R}^m)$ of O(m+1,1) with respect to the above basis has the following form:

$$\operatorname{Sim}(\mathbb{R}^{m}) = \left\{ A = \begin{pmatrix} \lambda & x - \lambda^{-1} |x|^{2} / 2 \\ \mathbf{0} & B & -\lambda^{-1} B^{t} x \\ \mathbf{0} & \mathbf{0} & \lambda^{-1} \end{pmatrix} : \lambda \in \mathbb{R}^{+}, B \in \operatorname{O}(m), x \in \mathbb{R}^{m} \right\}.$$
(3)

Here |x| is the orthogonal norm for $x \in \mathbb{R}^m$. See [18] for details.

Let $M = \mathbb{R}^{m+2}/\Gamma$ be a compact Lorentzian flat space form. As Γ is a virtually polycyclic group, cf. [12], we assume that Γ is a discrete polycyclic group in $E(m+1,1) = \mathbb{R}^{m+2} \rtimes O(m+1,1)$. Let $A(\Gamma) = U \cdot T$ be the real algebraic hull for Γ for which there is the following commutative diagram:

$$\mathbb{R}^{m+2} \longrightarrow \mathsf{E}(m+1,1) \xrightarrow{L} \mathsf{O}(m+1,1)$$

$$A(\Gamma) \xrightarrow{L} L(A(\Gamma))$$

$$\Gamma \xrightarrow{L} L(\Gamma).$$
(4)

As $A(\Gamma)$ is solvable, it is contained in the maximal amenable group

$$\mathbb{R}^{m+2} \rtimes (\mathbb{R}^m \rtimes (T^k \times \mathbb{R}^+)) \leq \mathbb{R}^{m+2} \rtimes \operatorname{Sim}(\mathbb{R}^m). \tag{5}$$

Here T^k is a k-torus in O(m). Since $\mathbb{R}^{m+2} \times \mathbb{R}^m$ is a maximal normal unipotent subgroup in the group (5), it follows

$$U \leq \mathbb{R}^{m+2} \rtimes \mathbb{R}^m \qquad \Longrightarrow \qquad L(U) \leq \mathbb{R}^m. \tag{6}$$

Let $\operatorname{Fitt}(\Gamma)$ denote the $\operatorname{Fitting}$ subgroup which is the maximal nilpotent normal subgroup of Γ . Then $\operatorname{Fitt}(\Gamma) = U \cap \Gamma$. See, e.g., [3, 14]. It follows $\operatorname{Fitt}(\Gamma) \leq \mathbb{R}^{m+2} \rtimes \mathbb{R}^m$. The $\operatorname{Fitting}$ hull $\operatorname{F}(\Gamma)$ is the Zariski-closure A(Fitt(Γ)) of $\operatorname{Fitt}(\Gamma)$ in U. Then $\operatorname{Fitt}(\Gamma)$ is a uniform subgroup of $\operatorname{F}(\Gamma)$ such that $V = U/\operatorname{F}(\Gamma)$ is a vector group.

Lemma 2.4.

Suppose that there exists an element $\gamma = (a, A) \in \Gamma$, where the form A in (3) has nontrivial $\lambda \neq 1$. Then at least one of the following holds.

- (i) Fitt(Γ) $\cap \mathbb{R}^{m+2}$ is nontrivial.
- (ii) There is an element $y_1 \in Fitt(\Gamma)$ such that

$$\gamma_1 = \left(\begin{bmatrix} c_1 \\ c_2 \\ 0 \end{bmatrix}, \begin{pmatrix} 1 & y - |y|^2 / 2 \\ 0 & l & -^t y \\ 0 & 0 & 1 \end{pmatrix} \right) \in \mathbb{R}^{m+2} \rtimes \mathbb{R}^m.$$

Proof. Suppose that the holonomy homomorphism

$$L \colon \mathsf{Fitt}(\Gamma) \to L(\mathsf{Fitt}(\Gamma)) (\leq \mathbb{R}^m)$$

is isomorphic (if not, then (i) holds). Then Fitt(Γ) is a free abelian group so that the Fitting hull $F(\Gamma) \leq \mathbb{R}^{m+2} \rtimes \mathbb{R}^m$ becomes a simply connected abelian Lie subgroup. Note that $F(\Gamma)$ has a nontrivial summand in \mathbb{R}^m of $\mathbb{R}^{m+2} \rtimes \mathbb{R}^m$. Every 1-parameter subgroup of $F(\Gamma)$ has the following form in $\mathbb{R}^{m+2} \rtimes \mathbb{R}^m$:

$$\{\varphi_t\}_{t\in\mathbb{R}} = \left(\begin{bmatrix} f_1(t) \\ f_2(t) \\ t \end{bmatrix}, \begin{pmatrix} 1 \ g(t) - |g(t)|^2/2 \\ \mathbf{0} \ I \ -^t g(t) \\ \mathbf{0} \ \mathbf{0} \ \mathbf{1} \end{pmatrix} \right) \le \mathbb{R}^{m+2} \rtimes \mathbb{R}^m. \tag{7}$$

Case 1. If dim $F(\Gamma) \ge 2$, then we can choose a 1-parameter subgroup $\{\psi_t\}_{t\in\mathbb{R}}$ such that

$$\psi_t = \left(\begin{bmatrix} q_1(t) \\ q_2(t) \\ 0 \end{bmatrix}, \begin{pmatrix} 1 \ p(t) - |p(t)|^2/2 \\ \mathbf{0} \ I \ -^t p(t) \\ \mathbf{0} \ \mathbf{0} \ 1 \end{pmatrix} \right).$$

Since $F(\Gamma)$ is abelian, the commutativity $g_s \circ \psi_t = \psi_t \circ g_s$ for any $\{g_s\} \leq F(\Gamma)$ shows

$$g_s = \left(\begin{bmatrix} h_1(s) \\ h_2(s) \\ 0 \end{bmatrix}, \begin{pmatrix} 1 & r(t) & -|r(t)|^2/2 \\ \mathbf{0} & I & -t & r(t) \\ \mathbf{0} & \mathbf{0} & 1 \end{pmatrix} \right).$$

Hence

$$\mathsf{F}(\Gamma) \leq \begin{bmatrix} \mathbb{R}^{m+1} \\ 0 \end{bmatrix} \rtimes \mathbb{R}^m.$$

Case 2. Suppose that $\dim F(\Gamma) = 1$. Then $\operatorname{Fitt}(\Gamma)$ is an infinite cyclic group $\{\gamma_1\}$. Passing to a subgroup of index 2 if necessary, Γ centralizes $\operatorname{Fitt}(\Gamma)$:

$$\gamma \gamma_1 \gamma^{-1} = \gamma_1 \qquad \gamma \in \Gamma. \tag{8}$$

Let

$$\gamma_{1} = \left(\begin{bmatrix} c_{1} \\ c_{2} \\ c_{3} \end{bmatrix}, \begin{pmatrix} 1 \ y - |y|^{2}/2 \\ \mathbf{0} \ I \ -^{t}y \\ \mathbf{0} \ \mathbf{0} \ 1 \end{pmatrix} \right), \qquad \gamma = \left(\begin{bmatrix} a_{1} \\ a_{2} \\ a_{3} \end{bmatrix}, \begin{pmatrix} \lambda \ x - \lambda^{-1}|x|^{2}/2 \\ \mathbf{0} \ B \ -\lambda^{-1}B^{t}x \\ \mathbf{0} \ \mathbf{0} \ \lambda^{-1} \end{pmatrix} \right)$$

in which $\mathbb{R}^+ \ni \lambda \neq 1$ by the hypothesis. Then the equality (8) shows $\lambda^{-1}c_3 = c_3$. Hence $c_3 = 0$ for γ_1 .

Lemma 2.5

A maximal connected abelian subgroup of $\mathbb{R}^{m+2} \rtimes \mathbb{R}^m$ which has a nontrivial summand in \mathbb{R}^m is isomorphic to $\mathbb{R}^k \times \mathbb{R}^{m-k+1}$, $1 \leq k \leq m$.

Proof. By calculation, a maximal connected abelian subgroup with nontrivial summand in \mathbb{R}^m is as follows:

$$\mathbb{R}^{k} \times \mathbb{R}^{m-k+1} = \left\{ \begin{bmatrix} x_{1} \\ \vdots \\ x_{k} \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \begin{pmatrix} 1 & 0 & y_{k+1} & \dots & y_{m+1} & -|y|^{2}/2 \\ 0 & I & 0 & 0 \\ & & & y_{k+1} \\ 0 & 0 & I & \vdots \\ & & & y_{m+1} \\ 0 & 0 & \dots & 0 & 1 \end{pmatrix} \right\}.$$

Theorem 2.6.

The fundamental group Γ of a compact Lorentzian flat space form \mathbb{R}^{m+2}/Γ admits a nontrivial translation subgroup.

Proof. Let $\gamma = (a, A) \in \Gamma$ be such that $A \in \text{Sim}(\mathbb{R}^m)$. Take $\gamma_1 \in \text{Fitt}(\Gamma)$ so that $\gamma_1 = (c, C) \in \mathbb{R}^{m+2} \times \mathbb{R}^m$. As

$$yy_1y^{-1} = (a + Ac - ACA^{-1}a, ACA^{-1}),$$

a calculation shows

$$\gamma^{\ell} \gamma_{1} \gamma^{-\ell} = \left(\left(I - A^{\ell} C A^{-\ell} \right) \sum_{i=0}^{\ell-1} A^{i} a + A^{\ell} c, \ A^{\ell} C A^{-\ell} \right). \tag{9}$$

We put

$$P(\ell) = \left(I - A^{\ell} C A^{-\ell}\right) \sum_{i=0}^{\ell-1} A^{i} a.$$
 (10)

Case I. Suppose that A of (3) satisfies $\lambda \neq 1$ (say $\lambda < 1$). Conjugating γ by a translation, we can assume for $\gamma = (a, A)$ that $a = {}^t[a_1 \, a_2 \, 0]$. As we described, $A = (x, \lambda B) \in \text{Sim}(\mathbb{R}^m)$, cf. (3), and $C = (y, I) \in \mathbb{R}^m$, a calculation shows that

$$A^{\ell}CA^{-\ell} = (\lambda^{\ell}B^{\ell}y, I) = \begin{pmatrix} 1 & \lambda^{\ell}B^{\ell}y & z \\ \mathbf{0} & I & -{}^{t}(\lambda^{\ell}B^{\ell}y) \\ \mathbf{0} & \mathbf{0} & 1 \end{pmatrix}, \tag{11}$$

where $z = -\lambda^{2\ell} |y|^2/2$. It is easy to see that if $\ell \to \infty$,

$$A^{\ell}CA^{-\ell} \to I. \tag{12}$$

Similarly for $A = (x, \lambda B) \in \text{Sim}(\mathbb{R}^m)$,

$$A^{\ell} = \left((I - (\lambda B)^{\ell})(I - \lambda B)^{-1} x, \lambda^{\ell} B^{\ell} \right) = \begin{pmatrix} \lambda^{\ell} & w & u \\ \mathbf{0} & B^{\ell} - \lambda^{-\ell} B^{\ell t} w \\ \mathbf{0} & \mathbf{0} & \lambda^{-\ell} \end{pmatrix}, \tag{13}$$

where

$$w = (I - (\lambda B)^{\ell})(I - \lambda B)^{-1}x, \qquad u = -\frac{\lambda^{-\ell}|w|^2}{2}.$$

Furthermore, a calculation shows

$$b_{1} = (1 - \lambda^{\ell})(1 - \lambda)^{-1}a_{1} + ((\ell - 1)I - (I - (\lambda B)^{\ell}(I - \lambda B)^{-1}))(I - \lambda B)^{-1}x \cdot a_{2},$$

$$\sum_{i=0}^{\ell-1} A^{i}a = {}^{t}[b_{1}b_{2}0], \qquad b_{2} = \sum_{i=0}^{\ell-1} B^{i}a_{2}.$$
(14)

In our case, $B \in T^k \leq O(m)$ for some $k \geq 0$, we may put

Noting that $x \cdot y = \langle x, y \rangle$ is O(m)-invariant, substitute (11), (14) into (10):

$$P(\ell) = \begin{bmatrix} -\lambda^{\ell} B^{\ell} y \cdot b_2 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} -\lambda^{\ell} \langle (I + B + \dots + B^{\ell}) y, a_2 \rangle \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} -\lambda^{\ell} \left\langle \begin{pmatrix} (\ell+1) I_k & \mathbf{0} \\ \mathbf{0} & (I - S_k^{\ell+1}) (I - S_k)^{-1} \end{pmatrix} y, a_2 \right\rangle \\ 0 \\ 0 \\ 0 \end{bmatrix}.$$

As $\lambda < 1$ can be sufficiently small (if necessary), it follows

$$\lambda^{\ell}(\ell+1) \to 0, \qquad \ell \to \infty$$

Similarly $S_k^{\ell+1} \to I$. Hence if $\ell \to \infty$, we have

$$P(\ell) \to \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}. \tag{15}$$

We choose an element $y_1=(c,C)\in Fitt(\Gamma)$ from Lemma 2.4 such that $c={}^t[c_1\,c_2\,0]$. By (13), when $\ell\to\infty$, we have

$$A^{\ell}c = \begin{bmatrix} \lambda^{\ell}c_1 + w \cdot c_2 \\ B^{\ell}c_2 \\ 0 \end{bmatrix} \rightarrow \begin{bmatrix} (I - \lambda B)^{-1}x \cdot c_2 \\ c_2 \\ 0 \end{bmatrix}.$$
 (16)

Using (12), (15) and (16),

$$\gamma^{\ell}\gamma_{1}\gamma^{-\ell} = \left(P(\ell) + A^{\ell}c, A^{\ell}CA^{-\ell}\right) \rightarrow \begin{pmatrix} \left[(I - \lambda B)^{-1}x \cdot c_{2} \\ c_{2} \\ 0 \end{pmatrix}, I \end{pmatrix} = \gamma_{2}.$$

Since Fitt(Γ) is closed (discrete) and normal in Γ , the limit γ_2 exists in Fitt(Γ). If $c_2 \neq 0$, then γ_2 is a nontrivial translation in \mathbb{R}^{m+2} . (Otherwise, $\gamma_2 = 1$. By discreteness of Fitt(Γ), $\gamma^{\ell}\gamma_1\gamma^{-\ell} = 1$ for sufficiently large ℓ , or $\gamma_1 = 1$ which is impossible.) This proves **Case I**.

Case II. Suppose that the \mathbb{R}^+ -summand λ is trivial for every element of Γ . Then it follows

$$\Gamma \leq U \rtimes T \leq \mathbb{R}^{m+2} \rtimes (\mathbb{R}^m \rtimes T^k).$$

In particular, we have $T \leq T^k$ so that U/Γ is an infranilmanifold by Proposition 2.2. By the Auslander–Bieberbach theorem, Γ has a finite index maximal normal nilpotent subgroup Γ_0 . By maximality, $\Gamma_0 = \text{Fitt}(\Gamma)$. Note that $L(\text{Fitt}(\Gamma))$ is abelian because $L(\text{Fitt}(\Gamma)) \leq L(U) \leq \mathbb{R}^m$ by (6).

Suppose that $L: \operatorname{Fitt}(\Gamma) \to L(\operatorname{Fitt}(\Gamma))$ is isomorphic. (If not, $\mathbb{R}^{m+2} \cap \Gamma$ is nontrivial.) Then $\operatorname{Fitt}(\Gamma)$ is a free abelian subgroup of finite index in Γ . In particular, $\mathbb{R}^{m+2}/\operatorname{Fitt}(\Gamma)$ is a compact manifold with Rank $\operatorname{Fitt}(\Gamma) = m+2$. On the other hand, the Fitting hull $\operatorname{F}(\Gamma) = U$ becomes a unipotent abelian Lie subgroup in $\mathbb{R}^{m+2} \times \mathbb{R}^m$. By Lemma 2.5, $\operatorname{F}(\Gamma) \leq \mathbb{R}^k \times \mathbb{R}^{m-k+1}$. This implies Rank $\operatorname{Fitt}(\Gamma) \leq m+1$ which is a contradiction. Therefore Γ admits a translation subgroup.

T. Aristide has shown the following in [1]. The proof here is much the same as that of [1] except for the final part. We retain the notations of Theorem 2.6.

Theorem 2.7.

Every compact complete Lorentzian similarity manifold is a Lorentzian flat space form.

Proof. Let $\Gamma \leq \mathrm{Sim}_L(\mathbb{R}^{m+2})$ be the fundamental group of a compact complete Lorentzian similarity manifold. Suppose that there is an element $\gamma = (a, \mu A) \in \Gamma$ such that $\mu \neq 1$ and

$$A = \begin{pmatrix} \lambda & x & -\lambda^{-1}|x|^2/2 \\ \mathbf{0} & B & -\lambda^{-1}B^tx \\ \mathbf{0} & \mathbf{0} & \lambda^{-1} \end{pmatrix} \in \operatorname{Sim}(\mathbb{R}^m)$$

from (3). As Γ acts freely on \mathbb{R}^{m+2} , we can assume $\mu = \lambda^{-1}$. Since

$$\begin{pmatrix} \lambda^{-1}B - \lambda^{-2}B^t x \\ \mathbf{0} & \lambda^{-2} \end{pmatrix}$$

has no eigenvalue 1, conjugating by a translation we may assume that

$$\gamma = \left(\begin{bmatrix} a_1 \\ 0 \end{bmatrix}, \begin{pmatrix} 1 & \lambda^{-1}x & -\lambda^{-2}|x|^2/2 \\ \mathbf{0} & \lambda^{-1}B & -\lambda^{-2}B^tx \\ \mathbf{0} & \mathbf{0} & \lambda^{-2} \end{pmatrix} \right).$$
 (17)

Let $\gamma_1 = (c, C) \in \text{Fitt}(\Gamma) \leq \mathbb{R}^{m+2} \rtimes \mathbb{R}^m$ be an element such that

$$C = (y, I) = \begin{pmatrix} 1 & y - |y|^2 / 2 \\ \mathbf{0} & I & -^t y \\ \mathbf{0} & \mathbf{0} & 1 \end{pmatrix}.$$

Similarly as in (9), it follows

$$\gamma^{\ell} \gamma_1 \gamma^{-\ell} = \left(\left(I - D^{\ell} C D^{-\ell} \right) \sum_{i=0}^{\ell-1} D^i d + D^{\ell} c, D^{\ell} C D^{-\ell} \right), \tag{18}$$

where

$$I - D^{\ell}CD^{-\ell} = \begin{pmatrix} 0 - \lambda^{\ell}B^{\ell}y & \lambda^{2\ell}|y|^{2}/2 \\ \mathbf{0} & \mathbf{0} & {}^{t}(\lambda^{\ell}B^{\ell}y) \\ \mathbf{0} & \mathbf{0} & 0 \end{pmatrix}$$
(19)

and

$$D^{\ell} = \lambda^{-\ell} \left((I - (\lambda B)^{\ell})(I - \lambda B)^{-1} x, \ \lambda^{\ell} B^{\ell} \right) = \begin{pmatrix} 1 \ (\lambda^{-\ell} I - B^{\ell})(I - \lambda B)^{-1} x & u \\ \mathbf{0} & \lambda^{-\ell} B^{\ell} & w \\ \mathbf{0} & \mathbf{0} & \lambda^{-\ell} \end{pmatrix}, \tag{20}$$

where

$$2u = -\lambda^{-\ell} |(\lambda^{-\ell}I - B^{\ell})(I - \lambda B)^{-1}x|^2, \qquad w = -\lambda^{-\ell}B^{\ell} \cdot {}^{t} ((\lambda^{-\ell}I - B^{\ell})(I - \lambda B)^{-1}x).$$

Since $d = {}^t[a_1\,0]$ from (17), $\sum_{i=0}^{\ell-1} D^i d = {}^t[\ell a_1\,0\,0]$. In particular, we obtain $(I-D^\ell CD^{-\ell})\sum_{i=0}^{\ell-1} D^{\mathrm{id}} = 0$. It follows from (18) that $\gamma^\ell \gamma_1 \gamma^{-\ell} = (D^\ell c, D^\ell CD^{-\ell})$.

We suppose $\mu = \lambda^{-1} < 1$ as usual. Put $c = {}^t[c_1 c_2 c_3]$. We evaluate at the origin $\mathbf{0} \in \mathbb{R}^{m+2}$:

$$\gamma^{\ell}\gamma_{1}\gamma^{-\ell}\cdot\mathbf{0}=D^{\ell}c\rightarrow\begin{bmatrix}c_{1}-(I-\lambda B)^{-1}x\cdot c_{2}\\0\\0\end{bmatrix},\qquad\ell\rightarrow\infty.$$

As Γ acts properly discontinuously and freely, there exists $k \in \mathbb{Z}$ such that $\gamma^k \gamma_1 \gamma^{-k} = \gamma_1$. Since

$$\gamma_1 = (c, C) = \left(\begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix}, \begin{pmatrix} 1 & y & -|y|^2/2 \\ \mathbf{0} & I & -^t y \\ \mathbf{0} & \mathbf{0} & 1 \end{pmatrix} \right) \in \mathbb{R}^{m+2} \times \mathbb{R}^m,$$

it follows $D^kCD^{-k}=C$, which shows $\lambda^{2k}|y|=|y|$ from (19). As $\lambda\neq 1$, y=0. This implies $\gamma_1=(c,I)\in\mathbb{R}^{m+2}$. Thus $\gamma^k\gamma_1\gamma^{-k}=(D^kc,I)$ and so $D^kc=c$. Noting $|B^\ell c_2|=|c_2|$, it is easy to see that $c_3=c_2=0$ which shows

$$\gamma_1 = \left(\begin{bmatrix} c_1 \\ 0 \\ 0 \end{bmatrix}, I \right).$$

Thus by (20),

$$\gamma \gamma_1 \gamma^{-1} = (Dc, I) = \begin{pmatrix} \begin{bmatrix} c_1 \\ 0 \\ 0 \end{bmatrix}, I \end{pmatrix} = \gamma_1.$$

As long as $\lambda \neq 1$, this is true for any element γ_1 of $\operatorname{Fitt}(\Gamma)$, i.e., γ commutes with every element of $\operatorname{Fitt}(\Gamma)$. Consider the nilpotent subgroup $\Gamma_0 = \{\gamma, \operatorname{Fitt}(\Gamma)\}$ of Γ . Since $L(\Gamma) \leq \mathbb{R}^m \rtimes (T^k \times \mathbb{R}^+)$, it follows $[L(\Gamma), L(\Gamma)] \leq \mathbb{R}^m$, i.e., $[\Gamma, \Gamma] \leq \mathbb{R}^m + 2 \rtimes \mathbb{R}^m$ which is a nilpotent normal subgroup. By maximality, $[\Gamma, \Gamma] \leq \operatorname{Fitt}(\Gamma)$. Moreover, this implies that Γ_0 is a nilpotent normal subgroup containing $\operatorname{Fitt}(\Gamma)$. Hence $\Gamma_0 = \operatorname{Fitt}(\Gamma)$ and so $\gamma \in \operatorname{Fitt}(\Gamma) \leq \mathbb{R}^{m+2} \rtimes \mathbb{R}^m$. This contradicts the hypothesis that $\gamma = \lambda^{-1} \neq 1$. Therefore, every element of Γ has *trivial summand* in \mathbb{R}^+ , i.e., $\Gamma \leq \operatorname{E}(m+1,1)$.

Remark 28

There is a compact incomplete Lorentzian similarity (m+2)-manifold whose fundamental group is isomorphic to $\Gamma \times \mathbb{Z}$, where Γ is a torsion-free discrete cocompact isometry subgroup of the hyperboloid $\mathbb{H}^{m+1}_{\mathbb{R}}$. This is easily obtained by taking the interior of the cone in \mathbb{R}^{m+2} which is identified with the product $\mathbb{H}^{m+1}_{\mathbb{R}} \times \mathbb{R}^+$ on which the holonomy group $O(m+1,1) \times \mathbb{R}^+$ acts transitively. In particular, the virtual solvability of $\pi_1(M)$ does not follow from compactness for a Lorentzian similarity manifold M, cf. [4, 24].

3. Lorentzian flat Seifert manifolds

Let $M = \mathbb{R}^{m+2}/\Gamma$ be a compact complete Lorentzian similarity manifold. It follows from Proposition 2.6 that $\Gamma \cap \mathbb{R}^{m+2}$ is nontrivial, say \mathbb{Z}^k . Then Γ normalizes its span \mathbb{R}^k of \mathbb{Z}^k in \mathbb{R}^{m+2} . As \mathbb{R}^k acts properly on \mathbb{R}^{m+2} as translations, we have an equivariant principal bundle

$$(\mathbb{Z}^k, \mathbb{R}^k) \to (\Gamma, \mathbb{R}^{m+2}) \stackrel{\nu}{\to} (Q, \mathbb{R}^\ell),$$

where $\ell = m + 2 - k$ and $Q = \Gamma/\mathbb{Z}^k$. In this case each element γ of Γ has the form

$$\gamma = \left(\begin{bmatrix} a \\ b \end{bmatrix}, \begin{pmatrix} A & C \\ 0 & B \end{pmatrix} \right), \tag{21}$$

where

$$v(\gamma) = \begin{pmatrix} A & C \\ 0 & B \end{pmatrix}, \qquad A \in GL(k, \mathbb{Z}), \qquad B \in GL(\ell, \mathbb{R}).$$

If we put

$$\rho(\nu(\gamma)) = (b, B) \in A(\ell), \tag{22}$$

then it is easy to see that $\rho \colon Q \to \mathsf{A}(\ell)$ is a well-defined homomorphism. The quotient group Q acts on \mathbb{R}^{ℓ} through ρ :

$$\alpha \cdot w = \rho(v(\gamma))w, \qquad v(\gamma) = \alpha \in Q, \quad w \in \mathbb{R}^{\ell}.$$

Recall the following lemma [12]:

Lemma 3.1.

The group ho(Q) is a properly discontinuous affine action on \mathbb{R}^ℓ such that

- Ker ρ is a finite subgroup,
- $\mathbb{R}^{\ell}/\rho(Q)$ is a compact affine orbifold.

Proof. We show that Q acts properly discontinuously. Consider the pushout

As both \mathbb{R}^k and Γ act freely and properly on \mathbb{R}^{m+2} with $\mathbb{R}^k/\mathbb{Z}^k=T^k$, it follows that $\mathbb{R}^k\cdot\Gamma$ acts properly on \mathbb{R}^{m+2} . Since $\mathbb{R}^k\to\mathbb{R}^{m+2}\stackrel{\nu}{\to}\mathbb{R}^\ell$ is a principal bundle, choose a *continuous* section $s\colon\mathbb{R}^\ell\to\mathbb{R}^{m+2}$ of ν . Let $\{\alpha_i\}_{i\in\mathbb{N}}$ be a sequence of Q such that

$$\alpha_i \cdot w_i \to z$$
, $w_i \to w$, $i \to \infty$.

Choose a sequence $\{\gamma_i\}_{i\in\mathbb{N}}$ from Γ such that $\nu(\gamma_i)=\alpha_i$. As

$$v(\gamma_i s(w_i)) = \alpha_i \cdot w_i = v(s(\alpha_i w_i)),$$

there is a sequence $\{t_i\}_{i\in\mathbb{N}}\leq\mathbb{R}^k$ such that

$$t_i \gamma_i s(w_i) = s(\alpha_i w_i), \qquad s(\alpha_i \cdot w_i) \to s(z), \qquad s(w_i) \to s(w).$$

Since $\mathbb{R}^k \cdot \Gamma$ acts properly on \mathbb{R}^{m+2} , there is an element $g \in \mathbb{R}^k \cdot \Gamma$ such that $t_i \gamma_i \to g$ and so $\alpha_i = \nu(t_i \gamma_i) \to \nu(g) \in \Gamma$. Thus Q acts properly discontinuously on \mathbb{R}^ℓ .

We check that $\operatorname{Ker} \rho$ is finite. Let $1 \to \mathbb{Z}^k \to \Gamma_1 \to \operatorname{Ker} \rho \to 1$ be the induced extension by the inclusion $\operatorname{Ker} \rho \leq Q$. Then Γ_1 acts invariantly in the inverse image $\mathbb{R}^k = \nu^{-1}(\operatorname{pt})$. As Γ acts freely and properly, the quotient \mathbb{R}^k/Γ_1 is a closed submanifold in M. Since $\mathbb{R}^k/\mathbb{Z}^k = T^k$ covers \mathbb{R}^k/Γ_1 , $\operatorname{Ker} \rho$ is finite.

By the definition [22], we obtain

Proposition 3.2.

 $T^k \to M \to \mathbb{R}^\ell/\rho(Q)$ is an injective Seifert fiber space with typical fiber a torus T^k and exceptional fiber a Euclidean space form T^k/F .

In [10] Fried has found all simply transitive Lie group actions on 4-dimensional Lorentzian flat space \mathbb{R}^4 and applied them to classify 4-dimensional compact (complete) Lorentzian flat manifolds M up to a finite cover. As a consequence, each such M is finitely covered by a solvmanifold.

We take a different approach to determine 4-dimensional compact complete Lorentzian flat manifolds M from the existence of *causal actions*.

Definition 3.3.

A circle S^1 (respectively \mathbb{R}) is a *causal action on* M if the vector field induced by S^1 (respectively \mathbb{R}) is a timelike, spacelike or lightlike vector field on M; cf. [2, 16].

We have the following result which occurs in dimension 4 but not in general.

Proposition 3.4.

The fundamental group Γ of a compact complete Lorentzian flat manifold M has a finite index subgroup which contains a central translation subgroup. In particular, some finite cover of M admits a causal circle action.

Proof. Let $\mathbb{Z}^k = \Gamma \cap \mathbb{R}^4$ which is a nontrivial translation subgroup by Theorem 2.6. If k = 1, then \mathbb{Z} is central in a subgroup of finite index in Γ .

Case 1. Suppose that $\mathbb{Z}^2 = \Gamma \cap \mathbb{R}^4$ (which is maximal). Let

$$G = \mathbb{R}^4 \times (\mathbb{R}^2 \times (SO(2) \times \mathbb{R}^+))$$

be the maximal connected solvable Lie subgroup of E(3,1). (See part (2) of the proof of Proposition 2.2.) Then Γ lies in the following exact sequences up to finite index:

$$1 \longrightarrow \mathbb{R}^{4} \longrightarrow E(3,1) \xrightarrow{L} O(3,1) \longrightarrow 1$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$1 \longrightarrow \mathbb{Z}^{2} \longrightarrow \Gamma \xrightarrow{L} L(\Gamma) \longrightarrow 1$$

$$\downarrow^{\mu_{P}} \qquad \downarrow^{\mu_{P}} \qquad \downarrow^{\mu_{P}}$$

$$1 \longrightarrow \mathbb{R}^{4} \longrightarrow G \xrightarrow{L} \mathbb{R}^{2} \times (SO(2) \times \mathbb{R}^{+}) \longrightarrow 1$$

$$(23)$$

Here μ_P is the conjugate homomorphism by some matrix $P \in GL(4,\mathbb{R})$. For $\gamma \in \Gamma$, we write

$$\gamma = \left(\begin{bmatrix} a_1 \\ a_2 \end{bmatrix}, \begin{pmatrix} A & C \\ 0 & B \end{pmatrix} \right) \quad \text{so that} \quad L(\gamma) = \begin{pmatrix} A & C \\ 0 & B \end{pmatrix}.$$

The conjugation homomorphism $\phi: L(\Gamma) \to \operatorname{Aut} \mathbb{Z}^2$ is given by

$$\phi(L(\gamma)) = A \in GL(2, \mathbb{Z}).$$

As $L(\Gamma)$ is a free abelian group of rank 2, $\phi(L(\Gamma))$ belongs to A or N up to conjugacy, where $SL(2,\mathbb{R})=KAN$. Since $GL(2,\mathbb{Z})$ is discrete, $\phi(L(\Gamma))$ is isomorphic to \mathbb{Z} , and so $Ker \phi=\mathbb{Z}$. Choose a generator γ_0 from $Ker \phi$ and $\gamma \in \Gamma$ for which $\phi(L(\gamma))$ generates $\phi(L(\Gamma))$. Note that γ_0 , γ and \mathbb{Z}^2 generate Γ .

Recall the homomorphism $\rho: L(\Gamma) \to A(2)$ from (22) defined by $\rho(L(\gamma)) = (a_2, B)$. Since $\rho(L(\Gamma))$ is a properly discontinuous action of A(2) with compact quotient, the holonomy group of $\rho(L(\Gamma))$ is a *unipotent subgroup* of $GL(2, \mathbb{R})$. In particular, each B has two eigenvalues 1 and so $L(\gamma)$ has at least two eigenvalues 1. From (23), $\mu_P(L(\Gamma)) \leq \mathbb{R}^2 \rtimes (SO(2) \times \mathbb{R}^+)$ and

$$\mu_P(L(\mathbf{y})) = PL(\mathbf{y})P^{-1} = \begin{pmatrix} \lambda^{-1} & x & -\lambda |x|^2/2 \\ 0 & T & -\lambda T^t x \\ 0 & 0 & \lambda \end{pmatrix}, \tag{24}$$

where $T \in SO(2)$. Since $L(\Gamma)$ is a free abelian group of rank 2, it follows either $\mu_P(L(\Gamma)) \leq \mathbb{R}^2$ or $\mu_P(L(\Gamma)) \leq SO(2) \times \mathbb{R}^+$. If $\mu_P(L(\Gamma)) \leq SO(2) \times \mathbb{R}^+$, applying $\gamma_0 \in \text{Ker } \phi$,

$$PL(\gamma_0)P^{-1} = \begin{pmatrix} \lambda^{-1} & 0 & 0 \\ 0 & T & 0 \\ 0 & 0 & \lambda \end{pmatrix}. \tag{25}$$

As $\phi(L(\gamma_0)) = A = I$ in this case, $L(\gamma_0)$ has all eigenvalues 1. (25) shows $\lambda = 1$, T = I. Hence $PL(\gamma_0)P^{-1} = I$ or $L(\gamma_0) = I$. So $\gamma_0 \in \Gamma \cap \mathbb{R}^4$ which contradicts a maximality of the translation subgroup \mathbb{Z}^2 . It then follows $\mu_P(L(\Gamma)) \leq \mathbb{R}^2$. In this case

$$PL(\gamma)P^{-1} = \begin{pmatrix} 1 & x - |x|^2/2 \\ 0 & l & -tx \\ 0 & 0 & 1 \end{pmatrix}.$$

Then A of (21) has two eigenvalues 1 so $[\gamma, \mathbb{Z}^2] = (A - I)\mathbb{Z}^2$ has rank less than 2. Hence there is an element $m \in \mathbb{Z}^2$ such that $[\gamma, m] = 1$. As $\phi(\gamma_0) = 1$, $\gamma_0 m \gamma_0^{-1} = m$. Hence m is a central element of $\Gamma \cap \mathbb{R}^4$.

Case 2. Suppose that $\mathbb{Z}^3 = \Gamma \cap \mathbb{R}^4$. There is an induced affine action $\rho \colon L(\Gamma) \to A(1)$ in this case so that $\rho(L(\Gamma))$ consists of a translation group up to finite index. As above we obtain

$$\gamma = \left(\begin{bmatrix} a \\ b \end{bmatrix}, \begin{pmatrix} A & C \\ 0 & 1 \end{pmatrix} \right),$$

where $A \in GL(3, \mathbb{Z})$. Since $L(\gamma)$ has the eigenvalue 1, in view of (24), it follows either T = I or $\lambda = 1$. If T = I, A has at least one eigenvalue 1. As $\Gamma = \mathbb{Z}^3 \rtimes \mathbb{Z}$, it follows $Rank[\gamma, \mathbb{Z}^3] < 3$. Again there exists an element $n \in \mathbb{Z}^3$ such that $\gamma n \gamma^{-1} = n$. Hence n is a central element in Γ .

Let $\mathbb Z$ be a central translation subgroup of Γ . Put $Q = \Gamma/\mathbb Z$. As every element $\gamma \in \Gamma$ has the form

$$\gamma = \left(\begin{bmatrix} a \\ b \end{bmatrix}, \begin{pmatrix} 1 & C \\ 0 & B \end{pmatrix} \right),$$

where $B \in GL(3, \mathbb{R})$, there is an induced action

$$\varphi \colon Q \to A(3), \qquad \varphi(\bar{\gamma}) = (b, B).$$

Although $\mathbb Z$ is not necessarily equal to $\Gamma \cap \mathbb R^4$, it can be easily checked that $\varphi \colon Q \to \mathsf{A}(3)$ is a properly discontinuous action such that $\mathbb R^3/\varphi(Q)$ is compact and $\operatorname{Ker} \varphi$ is finite as in Lemma 3.1. If $\mathbb R$ is the span of $\mathbb Z$ in $\mathbb R^4$, then $\mathbb R$ is a causal action on $\mathbb R^4$.

Proposition 3.5.

Every compact complete Lorentzian flat 4-manifold admits a causal circle bundle M in its finite cover.

- (i) S^1 is a timelike circle. $M = T^4 = S^1 \times T^3$, where T^3 is a Riemannian flat torus.
- (ii) S^1 is a spacelike circle.
 - (ii.1) $M = S^1 \times T^3$.
 - (ii.2) $M = S^1 \times \mathcal{N}^3 / \Delta$.
 - (ii.3) $M = S^1 \times \Re/\pi$. Each 3-dimensional factor is a Lorentzian flat manifold.
- (iii) S^1 is a lightlike circle. $M = S^1 \times N^3/\Delta$, where $S^1 \to M \to S^1 \times T^2$ is a nontrivial principal bundle over the affine torus with Euler number $k \in \mathbb{Z}$. Moreover, S^1 is spacelike so M coincides with (ii.2).

Proof. According to whether \mathbb{R} is timelike or spacelike, we see that the induced action is Euclidean $\varphi \colon Q \to \mathsf{E}(3)$ or Lorenztian $\varphi \colon Q \to \mathsf{E}(2,1)$, respectively. Moreover, we have a decomposition $\mathbb{R}^4 = \mathbb{R} \times \mathbb{R}^3$ with respect to the Lorentz inner product. Then the formula of (21) becomes

$$\gamma = \left(\begin{bmatrix} a \\ b \end{bmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & B \end{pmatrix} \right).$$

For $\varphi(Q) \leq \mathsf{E}(3)$, it follows $\varphi(Q) \leq \mathbb{R}^3$ up to finite index by the Bieberbach theorem and hence

$$\gamma = \left(\begin{bmatrix} a \\ b \end{bmatrix}, I \right).$$

As a consequence, $\Gamma \leq \mathbb{R}^4$. This shows (i).

For $\varphi(Q) \leq \mathbb{E}(2,1)$, we assume $\varphi(Q)$ is torsion-free. It is known that a compact Lorentzian flat 3-manifold $\mathbb{R}^3/\varphi(Q)$ is T^3 , a Heisenberg nilmanifold \mathbb{N}/Δ or a solvmanifold \mathbb{R}/π . See, for example, [11, 18]. When $\mathbb{R}^3/\varphi(Q) = \mathbb{N}/\Delta$, the center \mathbb{R} of \mathbb{N} is the translation subgroup consisting of

$$\left\{ \begin{bmatrix} b_1 \\ 0 \\ 0 \end{bmatrix} \right\}.$$

The corresponding subgroup Δ in Γ belongs to the translation subgroup

$$\left\{ \left(\begin{bmatrix} a \\ b_1 \\ 0 \\ 0 \end{bmatrix}, \ I \right) \right\}.$$

It is easy to see that Δ is a central subgroup of rank 2.

On the other hand, there are two isomorphism classes of 4-dimensional (compact) nilmanifolds which are Nil^4/Γ or $S^1 \times \mathcal{N}/\Delta$. They are characterized as whether the center $C(Nil^4) = \mathbb{R}$ or $C(\mathbb{R} \times \mathcal{N}) = \mathbb{R}^2$. (See [26] for the classification of 4-dimensional Riemannian geometric manifolds in the sense of Thurston and Kulkarni.) By this classification, $\mathbb{R}^4/\Gamma = S^1 \times \mathcal{N}/\Delta$.

When $\mathbb{R}^3/\varphi(Q)=\mathcal{R}/\pi$, it follows that $[\pi,\pi]=\mathbb{Z}^2$. As $\mathbb{Z}\leq \Gamma$ is central, it implies $[\Gamma,\Gamma]=\mathbb{Z}^2$. By the classification [26] of 4-dimensional solvmanifolds, the universal covering group G is either one of solvable Lie groups of Inoue type: $\mathrm{Sol}_1^4=\mathcal{N}\rtimes\mathbb{R}$, $\mathrm{Sol}_0^4=\mathbb{R}^3\rtimes\mathbb{R}$, or $\mathrm{Sol}_{m,n}^4=\mathbb{R}^3\rtimes\mathbb{R}$, $m\neq n$, $\mathbb{R}\times\mathcal{R}$, m=n. Therefore $[G,G]=\mathcal{N}$ or \mathbb{R}^3 except for $\mathbb{R}\times\mathcal{R}$. As $[G,G]=[\mathcal{R},\mathcal{R}]=\mathbb{R}^2$ for $\mathbb{R}\times\mathcal{R}$, we obtain $\mathbb{R}^4/\Gamma=S^1\times\mathcal{R}/\pi$.

We treat the last case of $\mathbb R$ being lightlike. By an ad-hoc argument or using the result of [10], it is shown that Γ is nilpotent with Rank $C(\Gamma)=2$. So $\mathbb R^4/\Gamma=S^1\times \mathcal N/\Delta$ again. The universal cover $R\times \mathcal N$ is isomorphic to the semidirect product of the translation subgroup $\mathbb R^3$ with $\mathbb R$;

$$\mathbb{R}^{3} = \begin{pmatrix} \begin{bmatrix} a \\ b \\ c \\ 0 \end{bmatrix}, I \end{pmatrix}, \qquad \mathbb{R} = \begin{pmatrix} \begin{bmatrix} -t^{3}/6 \\ -t^{2}/2 \\ 0 \\ t \end{bmatrix}, \begin{pmatrix} 1 & t & 0 & -t^{2}/2 \\ 0 & 1 & 0 & -t \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \right).$$

Hence the lightlike action

$$\mathbb{R} = \begin{bmatrix} a \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

lies in N and there is another central group

$$R = \begin{bmatrix} 0 \\ 0 \\ c \\ 0 \end{bmatrix}$$

which constitutes a principal bundle and its quotient:

$$\mathbb{R} \to \mathbb{R} \times \mathbb{N} \to \mathbb{R} \times \mathbb{R}^2$$
, $S^1 \to \mathbb{R}^4/\Gamma \to S^1 \times T^2$.

As $[\Delta, \Delta] = k\mathbb{Z}$, $k \in \mathbb{Z}$, $S^1 \to \mathcal{N}/\Delta \to T^2$ is a circle bundle with Euler number k.

Remark 3.6.

For the last case, the translation group is the same $\mathbb{R}^3 = \mathbb{R}^3 \times 0$, but for $\mathbb{R} = \{\varphi_t\}_{t \in \mathbb{R}}$ there are other possibilities. Namely, φ_t has the following form:

$$\left(\begin{bmatrix} -t^3/6 \\ 0 \\ -t^2/2 \\ t \end{bmatrix}, \begin{pmatrix} 1 & 0 & t & -t^2/2 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -t \\ 0 & 0 & 0 & 1 \end{pmatrix}\right), \qquad \left(\begin{bmatrix} -t^3/6 \\ -t^2/2 \\ -t^2/2 \\ t \end{bmatrix}, \begin{pmatrix} 1 & t & t & -t^2/2 \\ 0 & 1 & 0 & -t \\ 0 & 0 & 1 & -t \\ 0 & 0 & 0 & 1 \end{pmatrix}\right).$$

4. Fefferman-Lorentz parabolic structure

Let \mathbb{Z}_2 be the subgroup of the center S^1 in U(n+1,1). Put $\widehat{U}(n+1,1) = U(n+1,1)/\mathbb{Z}_2$. The inclusion $U(n+1,1) \to O(2n+2,2)$ defines a natural embedding $\widehat{U}(n+1,1) \to PO(2n+2,2)$. Then $\widehat{U}(n+1,1)$ acts transitively on $S^{2n+1,1}$ so that $(\widehat{U}(n+1,1), S^{2n+1,1})$ is a subgeometry of $(PO(2n+2,2), S^{2n+1,1})$.

As in Introduction, a conformally flat Fefferman–Lorentz parabolic manifold M is a (2n+2)-dimensional smooth manifold locally modeled on the geometry $(U(n+1,1), S^1 \times S^{2n+1})$. See [18] for details. We first observe which subgroup in $Sim_L(\mathbb{R}^{2n+2})$ corresponds to conformally flat Fefferman–Lorentz parabolic structure. Let $q: S^{2n+1,1} \to S^{2n+1}$ be the projection and $\{\widehat{\infty}\} \in S^{2n+1,1}$ as before. Put $q(\widehat{\infty}) = \{\infty\} \in S^{2n+1}$ which is a point at infinity. As a spherical CR-manifold, $S^{2n+1} - \{\infty\}$ is identified with the Heisenberg Lie group \mathbb{N} . Since the stabilizer is

$$PO(2n+2,2)_{\widehat{\infty}} = \mathbb{R}^{2n+2} \times (O(2n+1,1) \times \mathbb{R}^+) = Sim_I(\mathbb{R}^{2n+2}),$$

the intersection $\widehat{U}(n+1,1) \cap PO(2n+2,2)_{\widehat{\infty}}$ becomes

$$\widehat{U}(n+1,1)_{\widehat{\infty}} = \mathcal{N} \rtimes (U(n) \times \mathbb{R}^+).$$

Noting that $\operatorname{Sim}^*(\mathbb{R}^{2n}) = \mathbb{R}^{2n} \times (\operatorname{O}(2n) \times \mathbb{R}^*) \leq \operatorname{O}(2n+1,1)$, it follows

$$\mathcal{N} \rtimes (\mathsf{U}(n) \times \mathbb{R}^+) < \mathbb{R}^{2n+2} \rtimes (\mathsf{Sim}^*(\mathbb{R}^{2n}) \times \mathbb{R}^+) = (\mathbb{R}^{2n+2} \rtimes \mathbb{R}^{2n}) \rtimes (\mathsf{O}(2n) \times \mathbb{R}^*) \times \mathbb{R}^+,$$

where $\mathbb{R}^{2n+2} \times \mathbb{R}^{2n}$ is a nilpotent Lie group such that $\mathcal{N} \leq \mathbb{R}^{2n+2} \times \mathbb{R}^{2n}$. We have shown in [18], cf. [8], that

Theorem 4.1.

A Fefferman-Lorentz manifold $S^1 \times N$ is conformally flat if and only if N is a spherical CR-manifold.

Note that S^1 acts as lightlike isometries on Fefferman–Lorentz manifolds $S^1 \times N$ so does its lift \mathbb{R} on $\mathbb{R} \times N$. If $(U(n+1,1)^{\sim}, \mathbb{R} \times S^{2n+1})$ is an infinite covering of $(\widehat{U}(n+1,1), S^{2n+1,1})$, then the subgroup $\mathbb{R} \times (\mathbb{N} \times U(n))$ of $U(n+1,1)^{\sim}$ acts transitively on the complement $\mathbb{R} \times S^{2n+1} - \mathbb{R} \cdot \infty = \mathbb{R} \times \mathbb{N}$. If $\mathbb{Z} \times \Delta$ is a discrete cocompact subgroup of $\mathbb{R} \times (\mathbb{N} \times U(n))$, then we obtain, cf. [18],

Proposition 4.2.

 $S^1 \times N/\Delta$ is a conformally flat Lorentzian parabolic manifold on which S^1 acts as lightlike isometries.

Remark 4.3.

In (iii) of Proposition 3.5, we saw that a finite cover of a compact (complete) Lorentzian flat 4-manifold admitting a lightlike circle S^1 is the nilmanifold $S^1 \times \mathcal{N}^3/\Delta$ with nontrivial circle bundle $S^1 \to S^1 \times \mathcal{N}^3/\Delta \to S^1 \times T^2$. The circle S^1 acts as spacelike isometries. Therefore, the 4-nilmanifold $S^1 \times \mathcal{N}^3/\Delta$ of Proposition 4.2 is not conformal to a Lorentzian flat manifold. In fact, if it admits a Lorentzian flat structure within the conformal class, S^1 would be spacelike as above. But S^1 is still lightlike under the conformal change of the Lorentzian metric, which is a contradiction.

5. Developing maps

Suppose that M is a (2n+2)-dimensional conformally flat Fefferman-Lorentz parabolic manifold. There is a developing pair

$$(\rho, \text{dev}): (\pi, \widetilde{M}) \to (U(n+1, 1)^{\sim}, \widetilde{S}^{2n+1, 1}).$$

We have the following equivariant projections:

$$\mathbb{Z} \to \left(\cup (n+1,1)^{\sim}, \widetilde{S}^{2n+1,1} \right) \xrightarrow{(Q,q)} \left(\cup (n+1,1), S^{1} \times S^{2n+1} \right),$$

$$S^{1} \to \left(\cup (n+1,1), S^{1} \times S^{2n+1} \right) \xrightarrow{(P,p)} \left(P \cup (n+1,1), S^{2n+1} \right).$$

We call the immersion $q \circ \text{dev} \colon \widetilde{M} \to S^1 \times S^{2n+1}$ also a developing map. Let $\Gamma = \rho(\pi)$ be the holonomy group of M in $U(n+1,1)^{\sim}$ as before.

Theorem 5.1.

Let M be a compact conformally flat Fefferman–Lorentz parabolic manifold in dimension 2n+2. Suppose that the holonomy image $Q(\Gamma)$ is discrete in U(n+1,1). If the developing map $q \circ \text{dev} \colon \widetilde{M} \to S^1 \times S^{2n+1}$ is not surjective and such that the complement $\Lambda = S^1 \times S^{2n+1} - q \circ \text{dev}(\widetilde{M})$ is S^1 -invariant, then $q \circ \text{dev}$ is a covering map onto the image.

Proof. As $S^1 \to S^1 \times S^{2n+1} \xrightarrow{p} S^{2n+1}$ is a principal bundle, $p(\Lambda)$ is a closed subset in S^{2n+1} . Put $P(Q(\Gamma)) = G \le P \cup (n+1,1)$ and let L(G) be the *limit set* for a hyperbolic group G, cf. [7].

I. Suppose that $p(\Lambda)$ contains more than one point in S^{2n+1} . Minimality of limit set implies that $L(G) \subset p(\Lambda)$, cf. [7, Lemma 4.3.3]. Since Λ is S^1 -invariant, $p^{-1}(L(G)) \subset \Lambda$. The developing map reduces to the following:

$$q \circ \text{dev} \colon \widetilde{\mathcal{M}} \to S^1 \times S^{2n+1} - \Lambda \subset S^1 \times S^{2n+1} - p^{-1}(\mathsf{L}(G)).$$
 (26)

(i) If G is discrete, then G acts properly discontinuously on the domain of discontinuity $S^{2n+1}-L(G)$, cf. [18, 20]. It is easy to see that $Q(\Gamma)$ acts properly discontinuously on $S^1\times S^{2n+1}-p^{-1}(L(G))$ so there exists a $Q(\Gamma)$ -invariant Riemannian metric on $S^1\times S^{2n+1}-p^{-1}(L(G))$; cf., e.g., [19]. As usual, $q\circ \text{dev}\colon \widetilde{M}\to S^1\times S^{2n+1,1}-\Lambda$ is a covering map.

We have a commutative diagram of group extensions:

$$1 \longrightarrow S^{1} \longrightarrow U(n+1,1) \stackrel{P}{\longrightarrow} PU(n+1,1) \longrightarrow 1$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$1 \longrightarrow S^{1} \longrightarrow S^{1} \cdot Q(\Gamma) \stackrel{P}{\longrightarrow} G \longrightarrow 1$$

$$(27)$$

Here $S^1 \cdot Q(\Gamma)$ is the pushout.

(ii) Suppose that G is not discrete. As the identify component of the closed subgroup $S^1 \cdot Q(\Gamma)$ is S^1 and $P(S^1 \cdot Q(\Gamma)) = G$, the identity component of the closure \overline{G}^0 is solvable by Auslander's theorem [25, 8.24 Theorem]. We may assume that \overline{G}^0 is noncompact, so it follows up to conjugacy that

$$\overline{G}^0 \leq \mathsf{PU}(n+1,1)_{\infty} = \mathcal{N} \rtimes (\mathsf{U}(n) \times \mathbb{R}^+).$$

As the normalizer of \overline{G}^0 is also contained in $\mathbb{N} \rtimes (\mathbb{U}(n) \times \mathbb{R}^+)$ up to finite index, we have $G \leq \mathbb{N} \rtimes (\mathbb{U}(n) \times \mathbb{R}^+)$. Hence (27) shows that $Q(\Gamma) \leq S^1 \cdot \mathbb{N} \rtimes (\mathbb{U}(n) \times \mathbb{R}^+)$. Recall that \mathbb{R}^+ acts as the multiplication

$$\lambda(a,z) = (\lambda^2 \cdot a, \lambda \cdot z)$$

for all $\lambda \in \mathbb{R}^+$, $(a,z) \in \mathbb{N}$, cf. [17]. Since $Q(\Gamma)$ is discrete by the hypothesis, it is easy to check that

$$Q(\Gamma) \le S^1 \times (U(n) \times \mathbb{R}^+), \text{ when } \Gamma \text{ is nontrivial in } \mathbb{R}^+,$$
 (28a)

$$Q(\Gamma) \le S^1 \cdot \mathcal{N} \rtimes U(n)$$
, otherwise. (28b)

Then it follows respectively that

$$\begin{array}{ll} \mathsf{L}(G) \subset \mathsf{L}(\mathsf{U}(n) \times \mathbb{R}^+) = \{0, \infty\}, & p^{-1}(\mathsf{L}(G)) = S^1 \cdot \{0, \infty\}, \\ \mathsf{L}(G) \subset \mathsf{L}(\mathcal{N} \rtimes \mathsf{U}(n)) = \{\infty\}, & p^{-1}(\mathsf{L}(G)) = S^1 \cdot \{\infty\}. \end{array}$$

Case (28a). The developing map of the first case reduces to $q \circ \text{dev} \colon \widetilde{M} \to S^1 \times S^{2n+1} - S^1 \cdot \{0, \infty\} = S^1 \times (S^{2n} \times \mathbb{R}^+)$ by (26). Since $S^1 \times (U(n) \times \mathbb{R}^+)$ is a Riemannian isometry group of $S^1 \times (S^{2n} \times \mathbb{R}^+)$, \widetilde{M} admits a π -invariant Riemannian

metric by (28) such that $q \circ \text{dev}$ is a local isometry. As $M = \widetilde{M}/\pi$ is compact, \widetilde{M} is complete. Hence $q \circ \text{dev} : \widetilde{M} \to S^1 \times (S^{2n} \times \mathbb{R}^+)$ is a covering map. This proves the case (28a). In this case, M is diffeomorphic to $\mathbb{R} \times (S^{2n} \times \mathbb{R}^+)/\Gamma$ and so M is finitely covered by $S^1 \times S^{2n} \times S^1$.

Case (28b). Similarly as above $q \circ \text{dev} \colon \widetilde{M} \to S^1 \times S^{2n+1} - S^1 \cdot \{\infty\} = S^1 \times (S^{2n+1} - \{\infty\})$ is a covering map so that \widetilde{M} is diffeomorphic to $\mathbb{R} \times \mathbb{N}$. Then M is diffeomorphic to $\mathbb{R} \times \mathbb{N} / \Gamma$ for which M is finitely covered by a nilmanifold $S^1 \times \mathbb{N} / \Delta$. However in this case, $p(\Lambda) = \{\infty\}$ which is excluded by the hypothesis of I.

II. Suppose that $p(\Lambda)$ consists of a single point, say $\{\infty\} \in S^{2n+1}$. It follows $\Lambda = S^1 \cdot \infty$. As Λ is the complement of $q \circ \text{dev}$, we have

$$q \circ \operatorname{dev}(\widetilde{M}) = \widetilde{S}^1 \times S^{2n+1} - S^1 \cdot \{\infty\} = S^1 \times \mathbb{N}. \tag{29}$$

Since G fixes $\{\infty\}$, similarly as in the argument of (ii), the discreteness of $Q(\Gamma)$ shows

$$Q(\Gamma) \le S^1 \cdot \mathcal{N} \rtimes U(n), \quad \text{or}$$
 (30a)

$$Q(\Gamma) \le S^1 \times (U(n) \times \mathbb{R}^+). \tag{30b}$$

Case (30a). $S^1 \times \mathcal{N}$ admits an $S^1 \cdot \mathcal{N} \rtimes \mathsf{U}(n)$ -invariant Riemannian metric so $q \circ \mathsf{dev} \colon \widetilde{M} \to S^1 \times \mathcal{N}$ is a covering map. Then M is diffeomorphic to $\mathbb{R} \times \mathcal{N}/\Gamma$. A finite cover of M is a conformally flat Lorentzian parabolic manifold $S^1 \times \mathcal{N}/\Delta$ with nilpotent fundamental group.

Case (30b). Let $Q(\Gamma) \leq S^1 \times (U(n) \times \mathbb{R}^+)$. We consider the *set of points of normality* \mathbb{N} for the action $(Q(\Gamma), S^1 \times \mathbb{N})$ from [21]. First note that if $x \in S^1 \times \mathbb{N}$ is a point of normality, see [21, (3.3)], then so is the orbit $t \cdot x$ for $t \in S^1$ because S^1 centralizes $Q(\Gamma)$. Let U_x be a neighborhood for the point x of normality (with respect to $Q(\Gamma)$). For each $y \in Q(\Gamma)$, there is a commutative diagram

$$S^{1} \cdot U_{x} \xrightarrow{\gamma} S^{1} \times \mathcal{N}$$

$$\downarrow^{p} \qquad \qquad \downarrow^{p}$$

$$p(U_{x}) \xrightarrow{P(\gamma)} \mathcal{N}.$$
(31)

If $\lim_{i\to\infty} \gamma_i = g \in C(S^1 \cdot U_x, S^1 \times \mathbb{N})$ in the mapping space, then g commutes with every $t \in S^1$ and so g induces a map $P(g) \colon p(U_x) \to \mathbb{N}$ such that $\lim_{i\to\infty} P(\gamma_i) = P(g)$ for $P(\gamma_i) \in G$. In particular, when $Q(\Gamma) \upharpoonright S^1 \cdot U_x$ is relatively compact in $C(S^1 \cdot U_x, S^1 \times \mathbb{N})$, $G \upharpoonright p(U_x)$ is relatively compact in $C(p(U_x), \mathbb{N})$. Since the action (G, \mathbb{N}) is a restriction of the spherical CR-action $(U(n) \times \mathbb{R}^+, \mathbb{N})$, the set of points of normality for (G, \mathbb{N}) is exactly $\mathbb{N} - \{0\}$ on which $U(n) \times \mathbb{R}^+$ acts properly, cf. [21, (5.8)]. Then $S^1 \times (\mathbb{N} - \{0\})$ is the set of points of normality for the action $Q(\Gamma)$, $S^1 \times \mathbb{N}$. Noting $Q \circ \operatorname{dev}(\widetilde{M}) = S^1 \times \mathbb{N}$ from (29), it follows from [21, Theorem (1.4.1)] that the restriction map

$$q \circ \text{dev}: (q \circ \text{dev})^{-1}(S^1 \times (\mathcal{N} - \{0\})) \to S^1 \times (\mathcal{N} - \{0\})$$
 (32)

is a covering map. Since $(\text{dev})^{-1}(q^{-1}(S^1 \times (\mathbb{N} - \{0\}))) = (\text{dev})^{-1}(\mathbb{R} \times (\mathbb{N} - \{0\})) = \widetilde{M} - \text{dev}^{-1}(\mathbb{R} \times \{0\}) \text{ which is connected,}$ $q \circ \text{dev} \colon \widetilde{M} - \text{dev}^{-1}(\mathbb{R} \times \{0\}) \to S^1 \times (\mathbb{N} - \{0\}) \text{ is a covering map by (32) so that dev} \colon \widetilde{M} - \text{dev}^{-1}(\mathbb{R} \times \{0\}) \to \mathbb{R} \times (\mathbb{N} - \{0\}) \text{ is a diffeomorphism.}$ As above, $\text{dev}(\widetilde{M}) = \mathbb{R} \times \mathbb{N}$, hence $\text{dev} \colon \widetilde{M} \to \mathbb{R} \times \mathbb{N}$ is a diffeomorphism. However, this cannot occur since $\Gamma \leq \mathbb{R} \times (\mathbb{U}(n) \times \mathbb{R}^+)$ is a discrete subgroup with *cohomological dimension* $\text{cd} \Gamma \leq 2$. This finishes the proof of the theorem.

Acknowledgements

This research was initiated during the stay at ESI in July 2011. The author gratefully acknowledges the support of the University of Vienna via the ESI.

References

- [1] Aristide T., Closed similarity Lorentzian affine manifolds, Proc. Amer. Math. Soc., 2004, 132(12), 3697–3702
- [2] Barbot T., Charette V., Drumm T., Goldman W., Melnick K., A primer on the (2+1) Einstein universe, In: Recent Developments in Pseudo-Riemannian Geometry, ESI Lect. Math. Phys., European Mathematical Society, Zürich, 2008, 179–229
- [3] Baues O., Infra-solvmanifolds and rigidity of subgroups in solvable linear algebraic groups, Topology, 2004, 43(4), 903–924
- [4] Carrière Y., Autour de la conjecture de L. Markus sur les variétés affines, Invent. Math., 1989, 95(3), 615–628
- [5] Carrière Y., Dal'bo F., Généralisations du premier théorème de Bieberbach sur les groupes cristallographiques, Enseign. Math., 1989, 35(3-4), 245–262
- [6] Charette V., Drumm T.A., Goldman W.M., Affine deformations of a three-holed sphere, Geom. Topol., 2010, 14(3), 1355–1382
- [7] Chen S.S., Greenberg L., Hyperbolic spaces, In: Contributions to Analysis, Academic Press, New York–London, 1974, 49–87
- [8] Fefferman C., Parabolic invariant theory in complex analysis, Adv. in Math., 1979, 31(2), 131–262
- [9] Fried D., Closed similarity manifolds, Comment. Math. Helv., 1980, 55(4), 576–582
- [10] Fried D., Flat spacetimes, J. Differential Geom., 1987, 26(3), 385-396
- [11] Fried D., Goldman W.M., Three-dimensional affine crystallographic groups, Adv. in Math., 1983, 47(1), 1–49
- [12] Goldman W.M., Kamishima Y., The fundamental group of a compact flat Lorentz space form is virtually polycyclic, J. Differential Geom., 1984, 19(1), 233–240
- [13] Goldman W.M., Labourie F., Margulis G., Proper affine actions and geodesic flows of hyperbolic surfaces, Ann. of Math., 2009, 170(3), 1051–1083
- [14] Grunewald F., Segal D., On affine crystallographic groups, J. Differential Geom., 1994, 40(3), 563-594
- [15] Kamishima Y., Conformally flat manifolds whose development maps are not surjective. I, Trans. Amer. Math. Soc., 1986, 294(2), 607–623
- [16] Kamishima Y., Completeness of Lorentz manifolds of constant curvature admitting Killing vector fields, J. Differential Geom., 1993, 37(3), 569–601
- [17] Kamishima Y., Nondegenerate conformal structures, CR structures and quaternionic CR structures on manifolds, In: Handbook of Pseudo-Riemannian Geometry and Supersymmetry, IRMA Lect. Math. Theor. Phys., 16, European Mathematical Society, Zürich, 2010, 863–893
- [18] Kamishima Y., Conformally Lorentz parabolic structure and Fefferman Lorentz metrics, preprint available at http://arxiv.org/abs/0911.0867
- [19] Koszul J.-L., Lectures on Groups of Transformations, Tata Inst. Fundam. Res. Lect. Math., 32, Tata Institute of Fundamental Research, Bombay, 1965
- [20] Kulkarni R.S., Groups with domains of discontinuity, Math. Ann., 1978, 237(3), 253–272
- [21] Kulkarni R.S., Pinkall U., Uniformization of geometric structures with applications to conformal geometry, In: Differential Geometry, Peñíscola, June 2–9, 1985, Lecture Notes in Math., 1209, Springer, Berlin, 1986, 190–209
- [22] Lee K.B., Raymond F., Seifert Fiberings, Math. Surveys Monogr., 166, American Mathematical Society, Providence, 2010
- [23] Mess G., Lorentz spacetimes of constant curvature, Geom. Dedicata, 2007, 126, 3–45
- [24] Milnor J., On fundamental groups of complete affinely flat manifolds, Adv. in Math., 1977, 25(2), 178–187
- [25] Raghunathan M.S., Discrete Subgroups of Lie Groups, Ergeb. Math. Grenzgeb., 68, Springer, New York-Heidelberg, 1972
- [26] Wall C.T.C., Geometric structures on compact complex analytic surfaces, Topology, 1986, 25(2), 119–153