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1. Introduction

Let A(m+2) = Rm+2oGL(m+2,R) be the affine group of the (m+2)-dimensional Euclidean space Rm+2. An (m+2)-manifold M is an affinely flat manifold if M is locally modeled on Rm+2 with coordinate changes lying in A(m+2). When
Rm+2 is endowed with a Lorentz inner product, we obtain Lorentz similarity geometry

SimL(Rm+2) = Rm+2o (O(m+1, 1)×R+)
as a subgeometry of A(m + 2). If an affinely flat manifold M is locally modeled on SimL(Rm+2), then M is said to bea Lorentzian similarity manifold. Lorentzian similarity geometry contains Lorentzian flat geometry

(E(m+1, 1),Rm+2),where E(m+1, 1) = Rm+2oO(m+1, 1).We start with the following result.
∗ E-mail: kami@tmu.ac.jp
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Lorentzian similarity manifolds

Theorem A.If M is a compact complete Lorentzian similarity manifold, then M is a Lorentzian flat space form. Furthermore, M isdiffeomorphic to an infrasolvmanifold.
The first part of Theorem A has been proved by T. Aristide [1]. Once M is a compact Lorentzian flat space form, it isshown by Y. Carrière and F. Dal’bo [5] that M is diffeomorphic to an infrasolvmanifold. In particular, the Auslander–Milnorconjecture is true for compact complete Lorentzian similarity manifolds, cf. [24]. In this direction, we have obtained a newcharacterization of compact Lorentzian flat space forms.
Theorem B.If M is a compact Lorentzian flat space form, then the fundamental group admits a nontrivial translation subgroup.
We prove Theorem B in Section 2. As an application, we study compact Lorentzian flat Seifert manifolds in Section 3;see [10, 23].Let (PO(m+2, 2), Sm+1,1) be a conformally flat Lorentzian geometry. If a point ∞̂ ∈ Sm+1,1 is defined as the projectiviza-tion of a null vector in Rm+4, the stabilizer PO(m+2, 2)∞̂ is isomorphic to SimL(Rm+2) for which there is a suitable con-formal Lorentzian embedding of Rm+2 into Sm+1,1−{∞̂} that is equivariant with respect to SimL(Rm+2) = PO(m+2, 2)∞̂,cf. [17]. In contrast to conformally flat Riemannian geometry, Rm+2 is properly contained in the complement Sm+1,1−{∞̂},cf. [2]. A Lorentzian similarity geometry (SimL(Rm+2),Rm+2) is a sort of subgeometry of conformally flat Lorentzian ge-ometry (PO(m+2, 2), Sm+1,1).For m = 2n, there is the natural embedding U(n+1, 1) → O(2n+2, 2) such that (U(n+1, 1), S1×S2n+1) is a sub-geometry of (O(2n+2, 2), S1×S2n+1). Here S1×S2n+1 is a two-fold covering of S2n+1,1. A (2n+2)-dimensional ma-nifold M is said to be a conformally flat Fefferman–Lorentz parabolic manifold if M is uniformized with respect to(U(n+1, 1), S1×S2n+1), cf. [18]. In Section 5, we consider when the developing map of a compact conformally flatFefferman–Lorentz parabolic manifold becomes a covering map onto its image; see [15]. Let

Z →
(U(n+1, 1)∼, S̃2n+1,1) (Q,q)−−→

(U(n+1, 1), S1×S2n+1)
be the equivariant covering map. In Section 5 we prove
Theorem C.Let M be a (2n+2)-dimensional compact conformally flat Fefferman–Lorentz parabolic manifold and

(ρ, dev) : (π1(M), M̃) → (U(n+ 1, 1)∼, R×S2n+1)
the developing pair. Suppose that the holonomy image Q(ρ(π1(M)) is discrete in U(n+1, 1). If the developing map
q ◦ dev : M̃ → S1×S2n+1 is not surjective and such that the complement Λ = S1×S2n+1 − q ◦ dev(M̃) is S1-invariant,then q ◦ dev is a covering map onto the image.
For noncompact complete Lorentzian case, i.e., properly discontinuous actions of free groups on complete simply connectedLorentzian flat manifolds, the behavior changes drastically. See [2, 6, 13] for details.
2. Lorentzian similarity manifold

Consider the following exact sequence:
1 → Rm+2oR+ → SimL(Rm+2) P−→ O(m+1, 1) → 1. (1)
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Lemma 2.1.
Let M = Rm+2/Γ be a compact complete Lorentzian similarity manifold where Γ ≤ SimL(Rm+2). Suppose that P(Γ) is
discrete in O(m+1, 1). If ∆ = (Rm+2oR+) ∩ Γ, then ∆ ≤ Rm+2 which is nontrivial.

Proof. Since P(Γ) is discrete, it acts properly discontinuously on the (m+1)-dimensional hyperbolic space Hm+1
R =(O(m+1)×O(1)) \ O(m+1, 1). The (virtually) cohomological dimension vcd of P(Γ) satisfies vcdP(Γ) ≤ m+ 1. On theother hand, the cohomological dimension cd Γ = m+ 2, the intersection ∆ of (1) is nontrivial. Let

1 → Rm+2 → Rm+2oR+ p−→ R+ → 1
be the exact sequence. If p(∆) is nontrivial, then we may assume that there exists an element γ = (a, λ) ∈ ∆ such that
p(γ) = λ < 1. A calculation shows

γn = (1− λn1− λ a, λn
)
, n ∈ Z.

The sequence of the orbits {γn · 0 : n ∈ Z} at the origin 0 ∈ Rm+2 converges when n → ∞,
γn · 0 = 1− λn1− λ a+ λn · 0 = 1− λn1− λ a → 11− λ a.

As ∆ acts properly discontinuously on Rm+2, {γn : n = 1, 2, . . . } is a finite set. Since ∆ is torsion-free, γ = 1 which isa contradiction. So p(Γ) must be trivial.
Proposition 2.2.
Let M = Rm+2/Γ be a compact complete Lorentzian similarity manifold. Then Γ is virtually solvable in SimL(Rm+2).
Proof. (1) When P(Γ) is discrete, we obtain the following exact sequences from (1).

1 // Rm+2 // SimL(Rm+2) L / / O(m+1, 1)×R+ // 1
1 // ∆ //

OO

Γ L //

OO

L(Γ) //

OO

1
(2)

If ∆ ∼= Zk , then the span Rk of ∆ in Rm+2 is normalized by Γ. Let 〈·, ·〉 be the Lorentz inner product on Rm+2. The restof the argument is similar to that of [12]. In fact, L(Γ) of (2) induces a properly discontinuous affine action ρ on Rm+2−kwith finite kernel Ker ρ:
ρ : L(Γ)→ Aff(Rm+2−k ),

cf. Lemma 3.1. If necessary, we can find a torsion-free normal subgroup of finite index in ρ(L(Γ)) by Selberg’s lemma.Passing to a finite index subgroup if necessary, the quotient Rm+2−k /ρ(L(Γ)) is a compact complete affinely flat manifold.Suppose that 〈·, ·〉�Rk is nondegenerate. According to whether 〈·, ·〉�Rk is positive definite or indefinite, Rm+2−k /ρ(L(Γ))is a compact complete Lorentzian similarity manifold or Riemannian similarity manifold respectively.If Rm+2−k /ρ(L(Γ)) is a Lorentzian similarity manifold, by induction hypothesis, L(Γ) is virtually solvable. When
Rm+2−k /ρ(L(Γ)) is a Riemannian similarity manifold, i.e., ρ(L(Γ)) ≤ Sim(Rm+2−k ) which is an amenable Lie group, adiscrete subgroup ρ(L(Γ)) is virtually solvable by Tits’ theorem (cf. [24]; furthermore, Rm+2−k /ρ(L(Γ)) is a Riemannian flatmanifold by Fried’s theorem [9]). In each case, Γ is virtually solvable.If 〈·, ·〉�Rk is degenerate, then Rk = R consisting of a lightlike vector as a basis. The holonomy group L(Γ) leavesinvariant R. The subgroup of O(m+1, 1)×R+ preserving R is isomorphic to Sim∗(Rm)×R+ = (Rmo (O(m)×R∗))×R+which is an amenable Lie group. As L(Γ) ≤ Sim∗(Rm)×R+, L(Γ) is virtually solvable, and so is Γ.
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(2) When P(Γ) is indiscrete, it follows from [25, Theorem 8.24] that the identity component of the closure P(Γ) 0 is solvablein O(m+1, 1). It belongs to the maximal amenable subgroup up to conjugate:
P(Γ) 0 ≤ Rmo (O(m)×R∗).

It is easy to check that the normalizer of P(Γ) 0 is still contained in Rmo (O(m)×R∗) because the normalizer leavesinvariant at most two points {0,∞} on the boundary Sm = ∂Hm+1
R for which O(m + 1, 1)∞ = Rmo (O(m)×R∗). Hence

P(Γ) ≤ Rmo (O(m)×R∗). There is an exact sequence induced from (1):
1 → Rm+2oR+ → P−1(Rmo (O(m)×R∗)) P−→ Rmo (O(m)×R∗) → 1

in which P−1(Rmo (O(m)×R∗)) is an amenable Lie subgroup. Hence, Γ is virtually solvable.
Proposition 2.3.
Let M be a compact complete Lorentzian similarity manifold Rm+2/Γ. Then M is diffeomorphic to an infrasolvmanifold U/Γ.

Proof. As Γ ≤ Rm+2o (O(m+1, 1)×R+) is a virtually solvable group, take the real algebraic hull A(Γ) = U ·T , where
U is a unipotent radical and T is a reductive d-subgroup such that T/T 0 is finite. Then each element r = u · t ∈ U · Tacts on U by γx = utxt−1, x ∈ U . It follows from the result of [3] that Γ acts properly discontinuously on U so that U/Γis compact. Furthermore, U/Γ is diffeomorphic to an infrasolvmanifold by [3, Theorem 1.2].Since U/Γ is compact, we choose a compact subset D ⊂ U such that U = Γ · D. As Γ acts properly discontinuously on
Rm+2 and U · T ≤ Rm+2o (O(m+1, 1)×R+), it is easily checked that U acts properly on Rm+2. Since T is reductive,we may assume that T · 0 = 0 ∈ Rm+2. Define a map

ρ : U → Rm+2, ρ(x) = x · 0.

Noting that U acts freely on Rm+2, ρ is a simply transitive action. For γ = u · t ∈ Γ, γx = utxt−1 as above.Then ρ(γx) = utxt−1 · 0 = utx · 0 = γρ(x). So ρ is Γ-equivariant, ρ induces a diffeomorphism on the quotients
U/Γ ∼= Rm+2/Γ.
In particular, a compact (and hence complete) Lorentzian flat space form is diffeomorphic to an infrasolvmanifold. More-over, we have a new characterization on compact complete Lorentzian flat space forms. First, let {`1, e2, . . . , em+1, `m+2}be the basis on Rm+2 such that

〈`1, `1〉 = 〈`m+2, `m+2〉 = 0, 〈ei, ej〉 = δij , 〈`1, `m+2〉 = 1.
The subgroup Sim(Rm) of O(m+1, 1) with respect to the above basis has the following form:

Sim(Rm) =
A =

λ x −λ−1|x|2/2
0 B −λ−1B tx
0 0 λ−1

 : λ ∈ R+, B ∈ O(m), x ∈ Rm

 . (3)
Here |x| is the orthogonal norm for x ∈ Rm. See [18] for details.Let M = Rm+2/Γ be a compact Lorentzian flat space form. As Γ is a virtually polycyclic group, cf. [12], we assume that Γis a discrete polycyclic group in E(m+1, 1) = Rm+2oO(m+1, 1). Let A(Γ) = U · T be the real algebraic hull for Γ forwhich there is the following commutative diagram:
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Rm+2 / / E(m+1, 1) L // O(m+1, 1)
A(Γ)
O O

L // L(A(Γ))
Γ
OO

L // L(Γ).
(4)

As A(Γ) is solvable, it is contained in the maximal amenable group
Rm+2o (Rmo (T k×R+)) ≤ Rm+2oSim(Rm). (5)

Here T k is a k-torus in O(m). Since Rm+2oRm is a maximal normal unipotent subgroup in the group (5), it follows
U ≤ Rm+2oRm =⇒ L(U) ≤ Rm. (6)

Let Fitt(Γ) denote the Fitting subgroup which is the maximal nilpotent normal subgroup of Γ. Then Fitt(Γ) = U ∩ Γ.See, e.g., [3, 14]. It follows Fitt(Γ) ≤ Rm+2oRm. The Fitting hull F(Γ) is the Zariski-closure A(Fitt(Γ)) of Fitt(Γ) in U .Then Fitt(Γ) is a uniform subgroup of F(Γ) such that V = U/F(Γ) is a vector group.
Lemma 2.4.
Suppose that there exists an element γ = (a, A) ∈ Γ, where the form A in (3) has nontrivial λ 6= 1. Then at least one of
the following holds.(i) Fitt(Γ) ∩ Rm+2 is nontrivial.(ii) There is an element γ1 ∈ Fitt(Γ) such that

γ1 = c1
c20
, 1 y −|y|2/2

0 I −ty
0 0 1

 ∈ Rm+2oRm.

Proof. Suppose that the holonomy homomorphism
L : Fitt(Γ) → L(Fitt(Γ)) (≤ Rm)

is isomorphic (if not, then (i) holds). Then Fitt(Γ) is a free abelian group so that the Fitting hull F(Γ) ≤ Rm+2oRmbecomes a simply connected abelian Lie subgroup. Note that F(Γ) has a nontrivial summand in Rm of Rm+2oRm. Every1-parameter subgroup of F(Γ) has the following form in Rm+2oRm:
{φt}t∈R =


f1(t)f2(t)

t

,
1 g(t) −|g(t)|2/2

0 I −tg(t)
0 0 1


 ≤ Rm+2oRm. (7)

Case 1. If dim F(Γ) ≥ 2, then we can choose a 1-parameter subgroup {ψt}t∈R such that
ψt =


q1(t)
q2(t)0

,
1 p(t) −|p(t)|2/2

0 I −tp(t)
0 0 1


.
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Since F(Γ) is abelian, the commutativity gs ◦ ψt = ψt ◦ gs for any {gs} ≤ F(Γ) shows
gs =


h1(s)
h2(s)0

,
1 r(t) −|r(t)|2/2

0 I −tr(t)
0 0 1


.

Hence F(Γ) ≤ [Rm+10
]
oRm.

Case 2. Suppose that dim F(Γ) = 1. Then Fitt(Γ) is an infinite cyclic group {γ1}. Passing to a subgroup of index 2 ifnecessary, Γ centralizes Fitt(Γ):
γγ1γ−1 = γ1 γ ∈ Γ. (8)

Let
γ1 =


c1
c2
c3

,
1 y −|y|2/2

0 I −ty
0 0 1


, γ =


a1
a2
a3

,
λ x −λ−1|x|2/2

0 B −λ−1B tx
0 0 λ−1




in which R+ 3 λ 6= 1 by the hypothesis. Then the equality (8) shows λ−1c3 = c3. Hence c3 = 0 for γ1.
Lemma 2.5.
A maximal connected abelian subgroup of Rm+2oRm which has a nontrivial summand in Rm is isomorphic to Rk×Rm−k+1,1 ≤ k ≤ m.

Proof. By calculation, a maximal connected abelian subgroup with nontrivial summand in Rm is as follows:

Rk×Rm−k+1 =




x1...
xk0...0


,



1 0 yk+1 . . . ym+1 −|y|2/2
0 I 0 0

yk+1
0 0 I

...
ym+10 0 0 . . . 0 1




.

Theorem 2.6.
The fundamental group Γ of a compact Lorentzian flat space form Rm+2/Γ admits a nontrivial translation subgroup.

Proof. Let γ = (a, A) ∈ Γ be such that A ∈ Sim(Rm). Take γ1 ∈ Fitt(Γ) so that γ1 = (c, C ) ∈ Rm+2oRm. As
γγ1γ−1 = (a+ Ac − ACA−1a, ACA−1),

a calculation shows
γ`γ1γ−` = ((I − A`CA−`) `−1∑

i=0 A
ia+ A`c, A`CA−`

)
. (9)

We put
P(`) = (I − A`CA−`) `−1∑

i=0 A
ia. (10)
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Case I. Suppose that A of (3) satisfies λ 6= 1 (say λ < 1). Conjugating γ by a translation, we can assume for γ = (a, A)that a = t [a1 a2 0]. As we described, A = (x, λB) ∈ Sim(Rm), cf. (3), and C = (y, I) ∈ Rm, a calculation shows that
A`CA−` = (λ`B`y, I) =

1 λ`B`y z
0 I − t(λ`B` y)
0 0 1

, (11)
where z = −λ2` |y|2/2. It is easy to see that if ` → ∞,

A`CA−` → I. (12)
Similarly for A = (x, λB) ∈ Sim(Rm),

A` = ((I − (λB)` )(I − λB)−1x, λ`B`) =
λ` w u

0 B` −λ−`B` tw
0 0 λ−`

, (13)
where

w = (I − (λB)` )(I − λB)−1x, u = −λ−` |w|22 .

Furthermore, a calculation shows
b1 = (1− λ` )(1− λ)−1a1 + ((` − 1)I − (I − (λB)` (I − λB)−1))(I − λB)−1x · a2,

`−1∑
i=0 A

ia = t [b1 b2 0], b2 = `−1∑
i=0 B

ia2. (14)
In our case, B ∈ T k ≤ O(m) for some k ≥ 0, we may put

B = (Ik 0
0 Sk

)
, Sk =


cosθ1 − sinθ1sinθ1 cosθ1 . . . cosθk − sinθksinθk cosθk

.

Noting that x · y = 〈x, y〉 is O(m)-invariant, substitute (11), (14) into (10):
P(`) =

−λ`B`y · b200
 =

−λ`〈(I + B + · · ·+ B` )y, a2〉00
 =

−λ
`

〈((` + 1)Ik 0
0 (I − S`+1

k )(I − Sk )−1
)
y, a2

〉
00

.
As λ < 1 can be sufficiently small (if necessary), it follows

λ` (` + 1) → 0, ` → ∞.

Similarly S`+1
k → I. Hence if ` → ∞, we have

P(`) →
000
. (15)
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We choose an element γ1 = (c, C ) ∈ Fitt(Γ) from Lemma 2.4 such that c = t [c1 c2 0]. By (13), when ` → ∞, we have
A`c =

λ`c1 + w · c2
B`c20

 →
(I − λB)−1x · c2

c20
. (16)

Using (12), (15) and (16),
γ`γ1γ−` = (P(`) + A`c, A`CA−`

)
→


(I − λB)−1x · c2

c20
, I

 = γ2.

Since Fitt(Γ) is closed (discrete) and normal in Γ, the limit γ2 exists in Fitt(Γ). If c2 6= 0, then γ2 is a nontrivialtranslation in Rm+2. (Otherwise, γ2 = 1. By discreteness of Fitt(Γ), γ`γ1γ−` = 1 for sufficiently large ` , or γ1 = 1 whichis impossible.) This proves Case I.
Case II. Suppose that the R+-summand λ is trivial for every element of Γ. Then it follows

Γ ≤ UoT ≤ Rm+2o (RmoT k ).
In particular, we have T ≤ T k so that U/Γ is an infranilmanifold by Proposition 2.2. By the Auslander–Bieberbachtheorem, Γ has a finite index maximal normal nilpotent subgroup Γ0. By maximality, Γ0 = Fitt(Γ). Note that L(Fitt(Γ))is abelian because L(Fitt(Γ)) ≤ L(U) ≤ Rm by (6).Suppose that L : Fitt(Γ)→ L(Fitt(Γ)) is isomorphic. (If not, Rm+2∩Γ is nontrivial.) Then Fitt(Γ) is a free abelian subgroupof finite index in Γ. In particular, Rm+2/Fitt(Γ) is a compact manifold with Rank Fitt(Γ) = m+ 2. On the other hand, theFitting hull F(Γ) (= U) becomes a unipotent abelian Lie subgroup in Rm+2oRm. By Lemma 2.5, F(Γ) ≤ Rk×Rm−k+1.This implies Rank Fitt(Γ) ≤ m+ 1 which is a contradiction. Therefore Γ admits a translation subgroup.
T. Aristide has shown the following in [1]. The proof here is much the same as that of [1] except for the final part.We retain the notations of Theorem 2.6.
Theorem 2.7.
Every compact complete Lorentzian similarity manifold is a Lorentzian flat space form.

Proof. Let Γ ≤ SimL(Rm+2) be the fundamental group of a compact complete Lorentzian similarity manifold. Supposethat there is an element γ = (a, µA) ∈ Γ such that µ 6= 1 and
A =

λ x −λ−1|x|2/2
0 B −λ−1B tx
0 0 λ−1

 ∈ Sim(Rm)
from (3). As Γ acts freely on Rm+2, we can assume µ = λ−1. Since(

λ−1B −λ−2B tx
0 λ−2

)

has no eigenvalue 1, conjugating by a translation we may assume that
γ =

[a10
]
,

1 λ−1x −λ−2|x|2/2
0 λ−1B −λ−2Btx
0 0 λ−2


. (17)

1778



Y. Kamishima

Let γ1 = (c, C ) ∈ Fitt(Γ) ≤ Rm+2oRm be an element such that
C = (y, I) =

1 y −|y|2/2
0 I −ty
0 0 1

.
Similarly as in (9), it follows

γ`γ1γ−` = ((I − D`CD−`
) `−1∑
i=0 D

id+D`c, D`CD−`
)
, (18)

where
I − D`CD−` =

0 −λ`B`y λ2` |y|2/2
0 0 t(λ`B`y)
0 0 0

 (19)
and

D` = λ−`
((I − (λB)` )(I − λB)−1x, λ`B`) =

1 (λ−` I − B` )(I − λB)−1x u
0 λ−`B` w
0 0 λ−`

, (20)
where 2u = −λ−` ∣∣(λ−` I − B` )(I − λB)−1x∣∣2, w = −λ−`B` · t((λ−` I − B` )(I − λB)−1x).Since d = t [a1 0] from (17), ∑`−1

i=0 Did = t [`a1 0 0]. In particular, we obtain (I − D`CD−` )∑`−1
i=0 Did = 0. It follows from(18) that γ`γ1γ−` = (D`c,D`CD−` ).We suppose µ = λ−1 < 1 as usual. Put c = t [c1 c2 c3]. We evaluate at the origin 0 ∈ Rm+2:

γ`γ1γ−` · 0 = D`c →

c1 − (I − λB)−1x · c200
, ` → ∞.

As Γ acts properly discontinuously and freely, there exists k ∈ Z such that γkγ1γ−k = γ1. Since
γ1 = (c, C ) =


c1
c2
c3

,
1 y −|y|2/2

0 I −ty
0 0 1


 ∈ Rm+2oRm,

it follows DkCD−k = C , which shows λ2k |y| = |y| from (19). As λ 6= 1, y = 0. This implies γ1 = (c, I) ∈ Rm+2. Thus
γkγ1γ−k = (Dkc, I) and so Dkc = c. Noting |B`c2| = |c2|, it is easy to see that c3 = c2 = 0 which shows

γ1 =

c100
, I

 .

Thus by (20),
γγ1γ−1 = (Dc, I) =


c100
, I

 = γ1.
As long as λ 6= 1, this is true for any element γ1 of Fitt(Γ), i.e., γ commutes with every element of Fitt(Γ). Considerthe nilpotent subgroup Γ0 = {γ,Fitt(Γ)} of Γ. Since L(Γ) ≤ Rmo (T k×R+), it follows [L(Γ), L(Γ)] ≤ Rm, i.e., [Γ,Γ] ≤
Rm+2oRm which is a nilpotent normal subgroup. By maximality, [Γ,Γ] ≤ Fitt(Γ). Moreover, this implies that Γ0 is anilpotent normal subgroup containing Fitt(Γ). Hence Γ0 = Fitt(Γ) and so γ ∈ Fitt(Γ) ≤ Rm+2oRm. This contradicts thehypothesis that µ = λ−1 6= 1. Therefore, every element of Γ has trivial summand in R+, i.e., Γ ≤ E(m+1, 1).
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Remark 2.8.There is a compact incomplete Lorentzian similarity (m+2)-manifold whose fundamental group is isomorphic to Γ×Z,where Γ is a torsion-free discrete cocompact isometry subgroup of the hyperboloid Hm+1
R . This is easily obtained bytaking the interior of the cone in Rm+2 which is identified with the product Hm+1

R ×R+ on which the holonomy groupO(m+1, 1)×R+ acts transitively. In particular, the virtual solvability of π1(M) does not follow from compactness for aLorentzian similarity manifold M, cf. [4, 24].
3. Lorentzian flat Seifert manifolds

Let M = Rm+2/Γ be a compact complete Lorentzian similarity manifold. It follows from Proposition 2.6 that Γ ∩Rm+2 isnontrivial, say Zk . Then Γ normalizes its span Rk of Zk in Rm+2. As Rk acts properly on Rm+2 as translations, we havean equivariant principal bundle (Zk ,Rk ) → (Γ,Rm+2) ν−→ (Q,R` ),
where ` = m+ 2− k and Q = Γ/Zk . In this case each element γ of Γ has the form

γ = ([ab
]
,
(
A C0 B

))
, (21)

where
ν(γ) = (A C0 B

)
, A ∈ GL(k,Z), B ∈ GL(`,R).

If we put
ρ(ν(γ)) = (b, B) ∈ A(`), (22)

then it is easy to see that ρ : Q → A(`) is a well-defined homomorphism. The quotient group Q acts on R` through ρ:
α · w = ρ(ν(γ))w, ν(γ) = α ∈ Q, w ∈ R` .

Recall the following lemma [12]:
Lemma 3.1.
The group ρ(Q) is a properly discontinuous affine action on R` such that

• Ker ρ is a finite subgroup,

• R` /ρ(Q) is a compact affine orbifold.

Proof. We show that Q acts properly discontinuously. Consider the pushout
1 // Zk //

��

Γ ν / /

��

Q //

��

1
1 // Rk // R · Γ ν / / Q // 1.

As both Rk and Γ act freely and properly on Rm+2 with Rk /Zk = T k , it follows that Rk · Γ acts properly on Rm+2. Since
Rk → Rm+2 ν−→ R` is a principal bundle, choose a continuous section s : R` → Rm+2 of ν. Let {αi}i∈N be a sequence of
Q such that

αi · wi → z, wi → w, i → ∞.
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Choose a sequence {γi}i∈N from Γ such that ν(γi) = αi. As
ν(γis(wi)) = αi · wi = ν(s(αiwi)),

there is a sequence {ti}i∈N ≤ Rk such that
tiγis(wi) = s(αiwi), s(αi · wi)→ s(z), s(wi)→ s(w).

Since Rk · Γ acts properly on Rm+2, there is an element g ∈ Rk · Γ such that tiγi → g and so αi = ν(tiγi)→ ν(g) ∈ Γ.Thus Q acts properly discontinuously on R` .We check that Ker ρ is finite. Let 1 → Zk → Γ1 → Ker ρ → 1 be the induced extension by the inclusion Ker ρ ≤ Q.Then Γ1 acts invariantly in the inverse image Rk = ν−1(pt). As Γ acts freely and properly, the quotient Rk /Γ1 is a closedsubmanifold in M. Since Rk /Zk = T k covers Rk /Γ1, Ker ρ is finite.
By the definition [22], we obtain
Proposition 3.2.
T k → M → R` /ρ(Q) is an injective Seifert fiber space with typical fiber a torus T k and exceptional fiber a Euclidean
space form T k /F .

In [10] Fried has found all simply transitive Lie group actions on 4-dimensional Lorentzian flat space R4 and appliedthem to classify 4-dimensional compact (complete) Lorentzian flat manifolds M up to a finite cover. As a consequence,each such M is finitely covered by a solvmanifold.We take a different approach to determine 4-dimensional compact complete Lorentzian flat manifoldsM from the existenceof causal actions.
Definition 3.3.A circle S1 (respectively R) is a causal action on M if the vector field induced by S1 (respectively R) is a timelike,spacelike or lightlike vector field on M; cf. [2, 16].
We have the following result which occurs in dimension 4 but not in general.
Proposition 3.4.
The fundamental group Γ of a compact complete Lorentzian flat manifold M has a finite index subgroup which contains
a central translation subgroup. In particular, some finite cover of M admits a causal circle action.

Proof. Let Zk = Γ ∩ R4 which is a nontrivial translation subgroup by Theorem 2.6. If k = 1, then Z is central ina subgroup of finite index in Γ.
Case 1. Suppose that Z2 = Γ ∩ R4 (which is maximal). Let

G = R4o (R2o (SO(2)×R+))
be the maximal connected solvable Lie subgroup of E(3, 1). (See part (2) of the proof of Proposition 2.2.) Then Γ lies inthe following exact sequences up to finite index:
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1 // R4 // E(3, 1) L // O(3, 1) // 1
1 // Z2 //

OO

µP

��

Γ L //

OO

µP

��

L(Γ) //

OO

µP
� �

1
1 // R4 // G L // R2o (SO(2)×R+) // 1

(23)

Here µP is the conjugate homomorphism by some matrix P ∈ GL(4,R). For γ ∈ Γ, we write
γ = ([a1

a2
]
,
(
A C0 B

)) so that L(γ) = (A C0 B
)
.

The conjugation homomorphism φ : L(Γ)→ AutZ2 is given by
φ(L(γ)) = A ∈ GL(2,Z).

As L(Γ) is a free abelian group of rank 2, φ(L(Γ)) belongs to A or N up to conjugacy, where SL(2,R) = KAN. SinceGL(2,Z) is discrete, φ(L(Γ)) is isomorphic to Z, and so Kerφ = Z. Choose a generator γ0 from Kerφ and γ ∈ Γ forwhich φ(L(γ)) generates φ(L(Γ)). Note that γ0, γ and Z2 generate Γ.Recall the homomorphism ρ : L(Γ)→ A(2) from (22) defined by ρ(L(γ)) = (a2, B). Since ρ(L(Γ)) is a properly discontinuousaction of A(2) with compact quotient, the holonomy group of ρ(L(Γ)) is a unipotent subgroup of GL(2,R). In particular,each B has two eigenvalues 1 and so L(γ) has at least two eigenvalues 1. From (23), µP (L(Γ)) ≤ R2o (SO(2)×R+) and
µP (L(γ)) = PL(γ)P−1 =

λ−1 x −λ|x|2/20 T −λT tx0 0 λ

, (24)
where T ∈ SO(2). Since L(Γ) is a free abelian group of rank 2, it follows either µP (L(Γ)) ≤ R2 or µP (L(Γ)) ≤ SO(2)×R+.If µP (L(Γ)) ≤ SO(2)×R+, applying γ0 ∈ Kerφ,

PL(γ0)P−1 =
λ−1 0 00 T 00 0 λ

. (25)
As φ(L(γ0)) = A = I in this case, L(γ0) has all eigenvalues 1. (25) shows λ = 1, T = I. Hence PL(γ0)P−1 = I or
L(γ0) = I. So γ0 ∈ Γ ∩R4 which contradicts a maximality of the translation subgroup Z2. It then follows µP (L(Γ)) ≤ R2.In this case

PL(γ)P−1 =
1 x −|x|2/20 I −tx0 0 1

.
Then A of (21) has two eigenvalues 1 so [γ,Z2] = (A − I)Z2 has rank less than 2. Hence there is an element m ∈ Z2such that [γ,m] = 1. As φ(γ0) = 1, γ0mγ−10 = m. Hence m is a central element of Γ ∩ R4.
Case 2. Suppose that Z3 = Γ ∩ R4. There is an induced affine action ρ : L(Γ) → A(1) in this case so that ρ(L(Γ))consists of a translation group up to finite index. As above we obtain

γ = ([ab
]
,
(
A C0 1

))
,

where A ∈ GL(3,Z). Since L(γ) has the eigenvalue 1, in view of (24), it follows either T = I or λ = 1. If T = I, A hasat least one eigenvalue 1. As Γ = Z3oZ, it follows Rank [γ,Z3] < 3. Again there exists an element n ∈ Z3 such that
γnγ−1 = n. Hence n is a central element in Γ.
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Let Z be a central translation subgroup of Γ. Put Q = Γ/Z. As every element γ ∈ Γ has the form
γ = ([ab

]
,
(1 C0 B

))
,

where B ∈ GL(3,R), there is an induced action
φ : Q → A(3), φ(γ̄) = (b, B).

Although Z is not necessarily equal to Γ ∩ R4, it can be easily checked that φ : Q → A(3) is a properly discontinuousaction such that R3/φ(Q) is compact and Kerφ is finite as in Lemma 3.1. If R is the span of Z in R4, then R is a causalaction on R4.
Proposition 3.5.
Every compact complete Lorentzian flat 4-manifold admits a causal circle bundle M in its finite cover.

(i) S1 is a timelike circle. M = T 4 = S1×T 3, where T 3 is a Riemannian flat torus.(ii) S1 is a spacelike circle.(ii.1) M = S1×T 3.(ii.2) M = S1×N3/∆.(ii.3) M = S1×R/π. Each 3-dimensional factor is a Lorentzian flat manifold.(iii) S1 is a lightlike circle. M = S1×N3/∆, where S1 → M → S1×T 2 is a nontrivial principal bundle over the affine
torus with Euler number k ∈ Z. Moreover, S1 is spacelike so M coincides with (ii.2).

Proof. According to whether R is timelike or spacelike, we see that the induced action is Euclidean φ : Q → E(3) orLorenztian φ : Q → E(2, 1), respectively. Moreover, we have a decomposition R4 = R×R3 with respect to the Lorentzinner product. Then the formula of (21) becomes
γ = ([ab

]
,
(1 00 B

))
.

For φ(Q) ≤ E(3), it follows φ(Q) ≤ R3 up to finite index by the Bieberbach theorem and hence
γ = ([ab

]
, I
)
.

As a consequence, Γ ≤ R4. This shows (i).For φ(Q) ≤ E(2, 1), we assume φ(Q) is torsion-free. It is known that a compact Lorentzian flat 3-manifold R3/φ(Q) is T 3,a Heisenberg nilmanifold N/∆ or a solvmanifold R/π. See, for example, [11, 18]. When R3/φ(Q) = N/∆, the center Rof N is the translation subgroup consisting of 
b100


.

The corresponding subgroup ∆ in Γ belongs to the translation subgroup


a
b100
, I


.
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It is easy to see that ∆ is a central subgroup of rank 2.On the other hand, there are two isomorphism classes of 4-dimensional (compact) nilmanifolds which are Nil4/Γ or
S1×N/∆. They are characterized as whether the center C (Nil4) = R or C (R×N) = R2. (See [26] for the classificationof 4-dimensional Riemannian geometric manifolds in the sense of Thurston and Kulkarni.) By this classification, R4/Γ =
S1×N/∆.When R3/φ(Q) = R/π, it follows that [π, π] = Z2. As Z ≤ Γ is central, it implies [Γ,Γ] = Z2. By the classification [26]of 4-dimensional solvmanifolds, the universal covering group G is either one of solvable Lie groups of Inoue type:Sol41 = NoR, Sol40 = R3oR, or Sol4m,n = R3oR, m 6= n, R×R, m = n. Therefore [G,G] = N or R3 except for R×R.As [G,G] = [R,R] = R2 for R×R, we obtain R4/Γ = S1×R/π.We treat the last case of R being lightlike. By an ad-hoc argument or using the result of [10], it is shown that Γ isnilpotent with RankC (Γ) = 2. So R4/Γ = S1×N/∆ again. The universal cover R×N is isomorphic to the semidirectproduct of the translation subgroup R3 with R;

R3 =


a
b
c0
, I

, R =


−t3/6
−t2/20
t

,


1 t 0 −t2/20 1 0 −t0 0 1 00 0 0 1

.

Hence the lightlike action
R =


a000


lies in N and there is another central group
R =


00
c0


which constitutes a principal bundle and its quotient:
R → R×N → R×R2, S1 → R4/Γ → S1×T 2.

As [∆,∆] = kZ, k ∈ Z, S1 → N/∆→ T 2 is a circle bundle with Euler number k .
Remark 3.6.For the last case, the translation group is the same R3 = R3×0, but for R = {φt}t∈R there are other possibilities.Namely, φt has the following form:



−t3/60
−t2/2
t

,


1 0 t −t2/20 1 0 00 0 1 −t0 0 0 1

,



−t3/6
−t2/2
−t2/2
t

,


1 t t −t2/20 1 0 −t0 0 1 −t0 0 0 1

.

4. Fefferman–Lorentz parabolic structure

Let Z2 be the subgroup of the center S1 in U(n+1, 1). Put Û(n+1, 1) = U(n+1, 1)/Z2. The inclusion U(n+1, 1) →O(2n+2, 2) defines a natural embedding Û(n+1, 1) → PO(2n+2, 2). Then Û(n+1, 1) acts transitively on S2n+1,1 sothat (Û(n+1, 1), S2n+1,1) is a subgeometry of (PO(2n+2, 2), S2n+1,1).
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As in Introduction, a conformally flat Fefferman–Lorentz parabolic manifold M is a (2n+2)-dimensional smooth manifoldlocally modeled on the geometry (U(n+1, 1), S1×S2n+1). See [18] for details. We first observe which subgroup inSimL(R2n+2) corresponds to conformally flat Fefferman–Lorentz parabolic structure. Let q : S2n+1,1 → S2n+1 be theprojection and {∞̂} ∈ S2n+1,1 as before. Put q(∞̂) = {∞} ∈ S2n+1 which is a point at infinity. As a sphericalCR-manifold, S2n+1 − {∞} is identified with the Heisenberg Lie group N. Since the stabilizer is
PO(2n+2, 2)∞̂ = R2n+2o (O(2n+1, 1)×R+) = SimL(R2n+2),

the intersection Û(n+ 1, 1) ∩ PO(2n+ 2, 2)∞̂ becomes
Û(n+1, 1)∞̂ = No (U(n)×R+).

Noting that Sim∗(R2n) = R2no (O(2n)×R∗) ≤ O(2n+1, 1), it follows
No (U(n)×R+) ≤ R2n+2o (Sim∗(R2n)×R+) = (R2n+2oR2n)o (O(2n)×R∗)×R+,

where R2n+2oR2n is a nilpotent Lie group such that N ≤ R2n+2oR2n. We have shown in [18], cf. [8], that
Theorem 4.1.
A Fefferman–Lorentz manifold S1×N is conformally flat if and only if N is a spherical CR-manifold.

Note that S1 acts as lightlike isometries on Fefferman–Lorentz manifolds S1×N so does its lift R on R×N. If(U(n+1, 1)∼, R×S2n+1) is an infinite covering of (Û(n+1, 1), S2n+1,1), then the subgroup R× (NoU(n)) of U(n+1, 1)∼acts transitively on the complement R×S2n+1 − R · ∞ = R×N. If Z×∆ is a discrete cocompact subgroup of
R× (NoU(n)), then we obtain, cf. [18],
Proposition 4.2.
S1×N/∆ is a conformally flat Lorentzian parabolic manifold on which S1 acts as lightlike isometries.

Remark 4.3.In (iii) of Proposition 3.5, we saw that a finite cover of a compact (complete) Lorentzian flat 4-manifold admittinga lightlike circle S1 is the nilmanifold S1×N3/∆ with nontrivial circle bundle S1 → S1×N3/∆→ S1×T 2. The circle S1acts as spacelike isometries. Therefore, the 4-nilmanifold S1×N3/∆ of Proposition 4.2 is not conformal to a Lorentzianflat manifold. In fact, if it admits a Lorentzian flat structure within the conformal class, S1 would be spacelike as above.But S1 is still lightlike under the conformal change of the Lorentzian metric, which is a contradiction.
5. Developing maps

Suppose that M is a (2n+2)-dimensional conformally flat Fefferman–Lorentz parabolic manifold. There is a developingpair (ρ, dev) : (π, M̃) → (U(n+1, 1)∼, S̃2n+1,1).
We have the following equivariant projections:

Z →
(U(n+1, 1)∼, S̃2n+1,1) (Q,q)−−→

(U(n+1, 1), S1×S2n+1),
S1 → (U(n+1, 1), S1×S2n+1) (P,p)−−→

(PU(n+1, 1), S2n+1).
We call the immersion q ◦ dev : M̃ → S1×S2n+1 also a developing map. Let Γ = ρ(π) be the holonomy group of M inU(n+1, 1)∼ as before.
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Theorem 5.1.
Let M be a compact conformally flat Fefferman–Lorentz parabolic manifold in dimension 2n + 2. Suppose that the
holonomy image Q(Γ) is discrete in U(n+1, 1). If the developing map q ◦ dev : M̃ → S1×S2n+1 is not surjective and
such that the complement Λ = S1×S2n+1 − q ◦ dev (M̃) is S1-invariant, then q ◦ dev is a covering map onto the image.

Proof. As S1 → S1×S2n+1 p−→ S2n+1 is a principal bundle, p(Λ) is a closed subset in S2n+1. Put P(Q(Γ)) = G ≤PU(n+1, 1) and let L(G) be the limit set for a hyperbolic group G, cf. [7].
I. Suppose that p(Λ) contains more than one point in S2n+1. Minimality of limit set implies that L(G) ⊂ p(Λ),cf. [7, Lemma 4.3.3]. Since Λ is S1-invariant, p−1(L(G)) ⊂ Λ. The developing map reduces to the following:

q ◦ dev : M̃ → S1×S2n+1 − Λ ⊂ S1×S2n+1 − p−1(L(G)). (26)
(i) If G is discrete, then G acts properly discontinuously on the domain of discontinuity S2n+1 − L(G), cf. [18, 20].It is easy to see that Q(Γ) acts properly discontinuously on S1×S2n+1 − p−1(L(G)) so there exists a Q(Γ)-invariantRiemannian metric on S1×S2n+1 − p−1(L(G)); cf., e.g., [19]. As usual, q ◦ dev : M̃ → S1×S2n+1,1 − Λ is a covering map.We have a commutative diagram of group extensions:

1 // S1 / / U(n+1, 1) P //// PU(n+1, 1) // 1
1 // S1 // S1 · Q(Γ) P //

OO

G / / 1
(27)

Here S1 · Q(Γ) is the pushout.
(ii) Suppose that G is not discrete. As the identify component of the closed subgroup S1 · Q(Γ) is S1 and
P(S1 · Q(Γ)) = G, the identity component of the closure G0 is solvable by Auslander’s theorem [25, 8.24 Theorem].We may assume that G0 is noncompact, so it follows up to conjugacy that

G 0 ≤ PU(n+1, 1)∞ = No (U(n)×R+).
As the normalizer of G 0 is also contained in No (U(n)×R+) up to finite index, we have G ≤ No (U(n)×R+). Hence(27) shows that Q(Γ) ≤ S1 · No (U(n)×R+). Recall that R+ acts as the multiplication

λ(a, z) = (λ2 · a, λ · z)
for all λ ∈ R+, (a, z) ∈ N, cf. [17]. Since Q(Γ) is discrete by the hypothesis, it is easy to check that

Q(Γ) ≤ S1× (U(n)×R+), when Γ is nontrivial in R+, (28a)
Q(Γ) ≤ S1 · NoU(n), otherwise. (28b)

Then it follows respectively that
L(G) ⊂ L(U(n)×R+) = {0,∞}, p−1(L(G)) = S1 · {0,∞},L(G) ⊂ L(NoU(n)) = {∞}, p−1(L(G)) = S1 · {∞}.

Case (28a). The developing map of the first case reduces to q ◦ dev : M̃ → S1×S2n+1 −S1 · {0,∞} = S1× (S2n×R+)by (26). Since S1× (U(n)×R+) is a Riemannian isometry group of S1× (S2n×R+), M̃ admits a π-invariant Riemannian
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metric by (28) such that q ◦ dev is a local isometry. As M = M̃/π is compact, M̃ is complete. Hence q ◦ dev : M̃ →
S1× (S2n×R+) is a covering map. This proves the case (28a). In this case, M is diffeomorphic to R× (S2n×R+)/Γ andso M is finitely covered by S1×S2n×S1.Case (28b). Similarly as above q◦dev : M̃ → S1×S2n+1−S1 · {∞} = S1× (S2n+1−{∞}) is a covering map so that M̃is diffeomorphic to R×N. Then M is diffeomorphic to R×N/Γ for which M is finitely covered by a nilmanifold S1×N/∆.However in this case, p(Λ) = {∞} which is excluded by the hypothesis of I.
II. Suppose that p(Λ) consists of a single point, say {∞} ∈ S2n+1. It follows Λ = S1 · ∞. As Λ is the complement of
q ◦ dev, we have

q ◦ dev(M̃) = S̃1×S2n+1 − S1 · {∞} = S1×N. (29)
Since G fixes {∞}, similarly as in the argument of (ii), the discreteness of Q(Γ) shows

Q(Γ) ≤ S1 ·NoU(n), or (30a)
Q(Γ) ≤ S1× (U(n)×R+). (30b)

Case (30a). S1×N admits an S1 · NoU(n)-invariant Riemannian metric so q ◦ dev : M̃ → S1×N is a covering map.Then M is diffeomorphic to R×N/Γ. A finite cover of M is a conformally flat Lorentzian parabolic manifold S1×N/∆with nilpotent fundamental group.Case (30b). Let Q(Γ) ≤ S1× (U(n)×R+). We consider the set of points of normality N for the action (Q(Γ), S1×N)from [21]. First note that if x ∈ S1×N is a point of normality, see [21, (3.3)], then so is the orbit t · x for t ∈ S1 because
S1 centralizes Q(Γ). Let Ux be a neighborhood for the point x of normality (with respect to Q(Γ)). For each γ ∈ Q(Γ),there is a commutative diagram

S1 · Ux γ //

p

� �

S1×N

p

��
p(Ux ) P(γ) // N.

(31)

If limi→∞ γi = g ∈ C (S1 · Ux , S1×N) in the mapping space, then g commutes with every t ∈ S1 and so g inducesa map P(g) : p(Ux ) → N such that limi→∞ P(γi) = P(g) for P(γi) ∈ G. In particular, when Q(Γ)�S1 · Ux is relativelycompact in C (S1 · Ux , S1×N), G�p(Ux ) is relatively compact in C (p(Ux ),N). Since the action (G,N) is a restriction ofthe spherical CR-action (U(n)×R+, N), the set of points of normality for (G,N) is exactly N− {0} on which U(n)×R+acts properly, cf. [21, (5.8)]. Then S1× (N − {0}) is the set of points of normality for the action (Q(Γ), S1×N). Noting
q ◦ dev(M̃) = S1×N from (29), it follows from [21, Theorem (1.4.1)] that the restriction map

q ◦ dev : (q ◦ dev)−1(S1× (N−{0})) → S1× (N−{0}) (32)
is a covering map. Since (dev)−1(q−1(S1× (N−{0}))) = (dev)−1(R× (N−{0})) = M̃−dev−1(R×{0}) which is connected,
q◦dev : M̃−dev−1(R×{0}) → S1× (N−{0}) is a covering map by (32) so that dev : M̃−dev −1(R×{0}) → R× (N−{0})is a diffeomorphism. As above, dev(M̃) = R×N, hence dev : M̃ → R×N is a diffeomorphism. However, this cannot occursince Γ ≤ R× (U(n)×R+) is a discrete subgroup with cohomological dimension cd Γ ≤ 2. This finishes the proof of thetheorem.
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