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1. Introduction

Let $) be the complex upper half plane and let I'1(/N) be a congruence subgroup of SL,(Z) whose elements are congruent
to (g) ;‘) modulo N, N =1,2,3,... Since the group ['1(N) acts on $ by linear fractional transformations, we may define
the modular curve Xi(N) = 1(N)\ $*, as the projective closure of the smooth affine curve ['1(N)\ £, whose genus shall
be denoted g1 n. Since g1 = 0 only for the eleven cases 1 < N < 10 and N = 12 [7], for such N the function field
K(X1(N)) of the curve X;(N) is a rational function field over C.

In [3, 5, 11, 12, 21] the division values of the Weierstrass p-function were used to construct modular functions on I"1(N)
of positive genus. In Section 3 of this article, we find the field generator jin for 7 < N < 10 and N = 12 using
the aforementioned functions. In Section 4, we construct the normalized generators (or Hauptmoduln) N(j; n). When
7 € $NQ(v/—d) for a square free positive integer d, we shall show that N(j; x)(7) is an algebraic integer. When applied
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to explicit class field theory, it is important to work with modular functions with rational Fourier coefficients. The modular
function ji n has this property and can therefore be used to construct class fields over an imaginary quadratic field K.
This is done in Section 4 following an idea of Chen-Yui [1]. Given an ideal 2 = [, ay] of maximal order in K, let
a=aj/a; € H. Then we shall show that the modular function j; y(a) in the above generates the ray class field Kj over
K for a conductor f dividing N.

Throughout the article we adopt the following notation:
$H* — the extended complex upper half plane,
I — a congruence subgroup of SL,(Z),
M(N) = {y € SLy(Z) : y = I mod N},
[o(N) — the Hecke subgroup { (¢4) € (1) : c = 0mod N},
M(N)y={(¢5) elT(1):a=d=1,c=0modN},
X(M)y=r\9,
X(N) =T(N)\ 97,
Xo(N) = To(N)\ 97,
Xi(N) =T (N)\ 7,
K(X(I")) — the function field of the curve X(I),
" — the inhomogeneous group of I (= '/ £ /)
gy = ¥zt 7 € §,
fla, = (detA)¥2(cz + d)~f(Az) where A = (¢5),
sy =1((22)-2),

Mk (I") = the space of modular forms of weight k with respect to the group I,

z — (oo denotes that z = it, t € R, and t — oo,

’

E —a sum over m # 0.
m

We shall always take the branch of the square root having argument in (—/2, /2]. Thus, v/Z is a holomorphic function
on the complex plane with the negative real axis (—oo, 0] removed. For any integer k, we define z*/2 to mean (y/z)*.

2. Cuspsofl{(N)

We denote by Sr the set of inequivalent cusps of I'. From [7, 13, 15],

St = {00, 4/7,5/7, 0,172, 1/3};

St = {00, 3/8,0,1/3, 1/2, 1/4};

Sr.0 = {00, 5/9,7/9, 0, 112, 3/4, 1/3, 2/3};

Sr.0) = {00, 3/10, 0, 1/3, 1/2, 1/4, 1/5, 2/5}; and
Stz = {00, 5/12, 0, 1/5, 1/2, 1/3, 1/9, 1/4, 1/8, 1/6}.

For later use we calculate the widths of the cusps. We recall that the width of the cusp a/c in Xj(N) is the smallest
positive integer h such that (2 5) (§4) (¢ 2)71 € £M1(N). The lemma below is [8, Lemma 3],
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Lemma 2.1.
Let a/c € P'(Q) be a cusp where (a, c) = 1. Choose an element (‘C’ 5) € SLy(Z). Then the width of a/c in Xi(N) is given
by N/(c, N) if N # 4.

We then have the following tables of inequivalent cusps of I'1(N) for 7 < N <10 and N = 12:

Table 1. Cusps of I'1(7)

cusp|oo|4/7|5/7|0(1/2|1/3
width| 1| 1| 17| 7| 7

Table 2. Cusps of I'1(8)

cusp|oo|3/8(0(1/3]|1/2{1/4
width| 1| 1(8| 8| 4| 2

Table 3. Cusps of I'1(9)

cusp |00 |5/9|7/9(0(1/2|3/4]|1/3|2/3
width| 1| 1} 19| 9| 9] 3| 3

Table 4. Cusps of I'1(10)

cusp|oo|3/10 1/3{1/2|1/4]1/5|2/5
width| 1 1110] 10| 5| 5| 2| 2

[«

Table 5. Cusps of I'1(12)

cusp|oo|5/12| 0|1/5{1/2|1/3{1/9|1/4]{1/8|1/6
width| 1| 1|12{ 12| 6| 4| 4| 3| 3| 2

3. Modular functions j; n for 7 < N < 10and N =12

In this section we construct a generator of K(X;(N)) using the p-division values when N € {7,8,9,10,12}. Let L be a
lattice in C. The Weierstrass p-function (relative to L) is defined by the series

1 1 1
pL(Z)227+ Z (Z—W)z_ﬁ.

wel, w#0

Let a = (a4, a2) be a row vector with entries in Z. Then we define the N-th division value pn , [16, Chapter VII, §3] of

% to be
a1z+a
on,a(2) = pu, (%)

where L, =Zz + Z for z € $.
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Lemma 3.1 ([16, Chapter VII, §2 and § 3]).
(1) pn.aly, = on.ay fory € T(1).

(D) pn.a(2) = N?(GR2a(2) — GRool2)) € Mo(T(N)) where G, , is the Eisenstein series of weight 2 and level N, which
is defined by the value at s = 0 of the analytic continuation of the series

’
Z (m1z+m2)_2|m1z+m2|_5, zEHN.

my=a, mod N

(iti) G .4(2) has the following qn-expansion:

. —27mi v
GRoal2) = Nz =2) + ZGV(Nra)QN .

v>0

where

ao(/\/,a)za(%) S omy?

my=as(N)
with 8(a,/N) =1 if a1/N € Z, 0 otherwise, and
47T2 ! am
a,(N,a) = =5 - > o mlNen, v,

ml|v,v/im=aq(N)

Lemma 3.2.
Let a and b be two row vectors such that +a is not congruent to b modulo N. Then pn.. — v has no zeros in $.

Proof. 1t is well known that
p1(z1) = pi(22) if and only if + 2z =2z,mod L. (M
Now suppose that there exists some zy € §) such that pn.a(20) = onp(20). Then

azo+ay\ bizo + b
Lzo( N )_ Lo N '

Now by (1), £(a1zo + a2)/N = (b1zo + b2)/Nmod L. Thus (a1, a2) = (b1, b2) mod N, which is a contradiction. O

We identify the cusps of X(N) with (;) where x,y € Z/NZ and are relatively prime.

Lemma 3.3 ([15, Proposition 1]).
The ramification degree of the projection X(N) — Xi(N) at each cusp (;) is given by gcd (y, N).

Lemma 3.4 ([15, Proposition 3]).
Let Gn.2.a be defined by the holomorphic part of Gy ,,. Let {x}n be defined by 0 < {x}n < N/2 and {x}n = %x
mod N. Then Gn2.a has a zero of order > {a1x + azy}n at the cusp (;) of X(N).

Lemma 3.5.
Let a = (0, ay). Then,

PN,(0.02) € My(I"4(N)),  and (V)

Wi (#n.0.02)(2)) z PN.(o,az)(Z)l[(g N, = PN, (a,,0) (NZ). (i)
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Proof. By Lemma 3.1 (ii), it suffices to check the slash operator invariance under ['1(N). For each y = (‘g Z) e 1(N),
consider

ab 1 %
= (0, = (0, d N
ay (02)(Cd) (02)(01) mo
=a modN.

From Lemma 3.1 (i) and the definition of the p-division value it follows that pnalj,), = £y = Pna- To prove (ib):

e (N e (A (R
= pN,(az,O)(ZH[(/(\)/ o1, by Lemma 3.1 (i)
= N0 (N2). O

Lemma 3.6.
We have

! -2 272 1
Z my = ~7 P
my=ap mod N N 1—cos (2027[//\/)

for a; not congruent to 0 modulo N.

Proof. First note that for z € $, Y, _,(z + n)™> = 27i)*Y 2, nq". Also Y o2, nq" = q(1 — q)~>. Hence

1 _ . q
Zm = (Zm)zm, zESH. 2)

nez

We observe that the LHS of (2) converges uniformly and absolutely in C\ Z. Hence as z approaches a,/N, (2) becomes

1 9 ) eZﬂiale 3
é (@INFap = N gy 2E 9 (3)
Now we consider the absolute value of the RHS of (3), which is equal to
471.2 47‘(2 271'2

[1 — cos (2raz/N) — isin (2maz/N)J? - (1 — cos (271a,/N))? + sin?(2raz/N) ~ 1—cos (2razIN) -

Since the LHS of (3) is positive, the RHS of (3) must be 27%/(1 — cos (2ra,/N)). Hence

ZI my~% = Z my™? since a; # 0mod N

my=ay mod N my=ay mod N

-y S N S
- (@ 4+ Nn)2 — N2 1 —cos(2a,7/N)’

nez

This proves the lemma. O

Theorem 3.7.
Let N € {7,8,9,10,12}. Put

_ YJ12,(1,0)(‘I 2z) — YJ12,(2,0)(1 2z)
£12,1,0(122) = p12,50/(122) -

_ S/JN,(1,O)(NZ) - YJN,(z,O)(NZ)

., N +£12, i
o010 (N2) — pn, 4,0 (N2) u Je

JiN

Then jin € K(Xi(N)) and hence K(Xi(N)) = C(ji.n)-
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Proof. Considering the above lemmas, it is enough to show that j; 5 has only one simple zero and one simple pole at
the cusps. For simplicity, we let ¢; = Gn2,0, and @; = @; — @;. Using Lemmas 3.3 and 3.4 we can estimate the order
of ¢;; at each cusp. First we consider the case N =7. Let (¢;) denote the divisor of the function ¢;. Then,

). wzzo+3(5)+(5). oz (5)+2(5).

W] =

w02 0+2(5) +3(

Thus we have

(@12)2(0)+2(%)+(%) and (<p14)z(0)+(%)+2(%). )

In general, a modular form of weight k for a subgroup of index p in I'(1) has kp/12 zeroes in any fundamental domain.
In our case, p =[(1):£1(7)] = 24 and k = 2. Therefore ku/12 = 4, hence the inequality in (4) is an equality.

Similarly, in the other cases we have the following equalities. When N = 8,
1 1 1
(‘P12)=<0)+2(§)+(§) and (<p14)=(0)+3(§),
When N =9,
(pr2) = (0) +2 (%) (%) i (%) " (%) and  (pu) = (0) + (%) 2 (g) N (%) N (%) |
When N =10,

wims (3 (4[] e mooeafl) (3 2(3)

When N =12,

) ) )

N‘AA

04040 -

N (D e () e () (D
2 3 9 4 8
+ Ty A
8 9/
Thus in the case N € {7,8,9,10} (resp. N = 12) the quotient @12/@14 (resp. @12/¢15) generates the function field of

X1(N). Since Wy normalizes I'1(N), its action induces an automorphism of the function field of X;(N) and therefore ji n
generates K(X7(N)), as desired. O

:

4. Normalized generators

For a modular function f, we call f normalized if its g-series is
1 2
E+O+a1q+uzq +...

The following lemma is a simple consequence of basic properties of compact Riemann surfaces (or algebraic curves).

Lemma 4.1.
The normalized generator of a genus zero function field is unique.
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Proof. LetTl be a Fuchsian group such that the genus of the curve '\ $* is zero. Assume that K(X(I')) = C(}}) = C(h)
where J; and J, are normalized. We can then write their Fourier expansions as J; = ¢~' +0 + a1q + a,q%> + ... and
b =g+ 0+ big + bg* + ... Observe that 1 = [K(X([): C(/;)] = vo(Ji) = VeolJi) for i = 1,2. Hence, J; and J; have
only one zero and one pole whose orders are simple. We see that the only poles of J; occur at co. Then, J; — J; has no
poles (because the series for each of J; and J, start with g~') and is thus constant. Since J; — ), = (a1 — b1)g +. . ., this
constant must be zero. This proves the lemma. O

Now, we will construct the normalized generator (or the Hauptmodul) of the function field K(X;(N)) from the modular
function ji; v mentioned in Theorem 3.7. Let

N(jh7) = #—3 = %+4q+3q2—5q4—7q5—2q6+8q7+16q8+12q9—7q10+...,
N(jrs) = ﬁ—z = %+3q+2q2+q3—2q4—4q5—4q6+6q8+9q9+8q10+...,
Niis) = g =2 = o+ 20420+ 4 =" =20 =30" =20 + ¢* + 4"+ 60"+ .
N(j1,10) = 1'1,10(_2%_2 = %+2q+qz+q3+0q4—q5—2q6—2q7—q8+q9+3q1°+...,
N(jr2) = #—2 = %+q+q2+q3—q6—q7—q8—q9+...

which are in  g7'Z[[q]}. Then the above computation shows that N{(j; ) is the normalized generator of K(X;(N)). Using
Lemmas 3.1 and 3.6 we can compute the cusp values of N(j; n), summarized in the following tables:

Table 6. Cusp values of N(ji7)

s oo |4/7|5/7 0 1/2 1/3
- B —— B = ——
N(j1,7)(s) |oo| =3| 2 3—1,:—1 -3 \:,V—1,VV—1 -3 ‘;—1,7,—1 -3

where u =1 —cos (2n/7), v =1 — cos (4n/7), w = 1 — cos (87/7).

Table 7. Cusp values of N(ji 8)

s |oo|3/8] O 13 |1/2]1/4
N(jr8)(s)[oo|=2{2V2 +1|=2v2 + 1| 3|1

Table 8. Cusp values of N(ji0)

s o0 |5/9|7/9 0 1/2 3/4 1/3 2/3
N(jn0)(s) [oo| =2| =1 | 4= — 2| =) — 9 =i —2(=3 = V30)/2| (=3 + V3i)12

where u =1 —cos (27/9), v=1— cos (47/9), w = 1 — cos (8,/9).

Table 9. Cusp values of N(ji10)

s oo [3/10| 0 1/3 12 1/4 1/5(2/5
N(jr.10)(s)|oo| =1 [1+ V5|1 = V5|(=3 = V5)/2|(=3+V5)/2| 0 |-2
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Table 10. Cusp values of N{(ji 12)

s o0|5/12| 0 15 |1/2) 13 | 1/9 1/4 1/8 1/6
N(j112)(s)[oo| =1 |1+ V3|1 =V3|=2|—1—i|=1+i|(=1 = V3)/2|(=1 +V3()/2]| O

Theorem 4.2.
Let d be a square free positive integer and t = N(j; ) be the normalized generator of K(X1(N)). For a cusp s of I'1(N)
let h, denote its width. If t € q7'Z|[q]] and

[1 (@) —ts)™

s€Sr (N \{oo}

is a polynomial in Z[t], then t(t) is an algebraic integer for T € @(\/—d) N 5.

Proof. Let j(z) = 1/q + 744 + 196884q + ... It is well-known that j(7) is an algebraic integer for T € Q(vV'—d) N $
[10, 18]. For algebraic proofs, see [4, 14, 17, 19]. View j as a function on the modular curve X;(N). Then j has a pole of
order h; at the cusp s. On the other hand, t(z) — t(s) has a simple zero at s. Thus

ix [] (w@—ts)- (5)

sE€Sr Ny \{oo}

has a pole only at co whose degree is yy = [F(1):F1(N)], and is thus a monic polynomial in t of degree pn which we
denote by f(t). Since the multiplier of j in (5) is a polynomial in Z[t] and since j and t have integer coefficients in the
g-expansions, f(t) is a monic polynomial in Z[t] of degree pn. This shows that #(7) is integral over Z[j(t)]. Therefore
t(7) is integral over Z for 7 € Q(de) N $. O

Corollary 4.3.
For T € Q(V—d) n %, N(j1n)(7) is an algebraic integer for N € {7,8,9,10,12}.

Proof. Since N(jin) has integral Fourier coefficients, it is enough to show that

[T (@) —tes)™ ezt (6)

s€Sr (v \{oo}
When N € {8,10,12}, from Tables 2, 4, 5, 7, 9 and 10 we can check that this product is in Z[t]. When N =7 we show

that
(t — t(0)) (t—t(%)) (t—t(%)) € 7t

where t = N(j17). And when N =9 we show that
) ) € Zt]

oo (1) o

where t = N(ji9). Then from Tables 1, 3, 6 and 8 we have (6).
N =7 Let ty be the Hauptmodul of (7). Then by [2, Tables 3 and 4],

EN

_n(2)?
~ n(7z)t

1
0 +4:E+0+2q+8q2—5q3—4q4—10q5+12q6—7q7+8q8+46q9—36q1°+...
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If we view t as a function on Xj(7), then ty has simple poles only at oo, 4/7, 5/7. Thus ty x (t — t(4/7))(t — t(5/7)) has
poles only at co whose degree is 3 and so it is a monic polynomial in t of degree 3. Then we can write

e o) o) =

for some a, b, c € C. From Table 4 it follows that
tox (t+3)(t+2) =t +at’ + bt +c.
By replacing ty, t by their g-series,
(L.H.S) :q*3+%+§+44+94q+...
12+b

(R.H.S.) :q_3+%+ +948a+c+(48+6a+4b)g - ...

Therefore a =5, b = 4, ¢ = —5. Also from the transformation formula of eta functions it follows that
4 —1/2)* — 4 N4
lpg oy = k] ra= Nl g Iy
1ol 720 ) n(=71z) V=iz7 " n(z/7)"

Since 0, 1/2, and 1/3 are equivalent to 0 under 'y(7), ¢(0), t(1/2), and t(1/3) are roots of the polynomial

X3 45X 44X —5—4(X+3)(X+2) = X+ X2 —16X —29.

N =9 Let ty be the Hauptmodul of I4(9). Again by [2, Tables 3 and 4]

3
1
to = nrngZ)P +3:6+O+0q+5q2+0q3+Oq4—7q5+0q6+0q7+3q8+0q9+0q1°+...

Similarly to the case N =7,

e o) o)) =

for some a,b,c € C. From Table 5
tox (t+2)(t+1) =8 +at’>+ bt +c.

By replacing ty, t by their g-series,

1 3 6
(L.H.S.) =$+?+5+15+27q+39q2+_,.

1 6+b
(R.H.S.) :Eﬂ-%-k%+6+4a+c+(15+4a+2b)q+(21+6a+2b)q2+...

Thusa=3,b=0,c=-3. And

_ iz e O 0 ) M
boljo ) = n(92)3‘(? 2 3= n(=9/z)? 3= V—iz]9 n(z/9)? 33

Now that 0, 1/2, and 3/4 are equivalent to 0 under '(9), ¢(0), t(1/2), and t(3/4) are roots of the polynomial

X 43X2=3-3(X+2)(X+1)=Xx3-9X-0. O
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Remark 4.4.

(1) Let t = N(j;,n). There is an explicit description of how the Galois group of Q(e?*N) over Q acts on t(s) for each cusp
s (see [15] and also [18, Chapter 6] and [20, Chapter 1]). Using this description one can show that the assumption in
Theorem 4.2 is met.

(2

The function j; n is @ modular unit with integer coefficients [9, Theorem 6.4]. In other words, j;n is a unit inside
the integral closure of the ring Z[j]. Therefore, the values of j; 5 at imaginary quadratic irrationalities are not only
algebraic integers, but also units in the ring of integers. Now, the normalized Hauptmodul N(j; )(z) is equal to
+j; n(y2)®! + ¢ for a suitably chosen y € Ig(N) and some integer c. More explicitly, the following equalities hold:

N2 =j7((33) 2) =3, N(ire)2) = —jis ((33) 2) — 1. N(jro)(2) = 19 ((33) 2) — 2,

Nijo)(z) = — T —

(B

jao((567)2)°

Therefore, N(j; n) takes algebraic integers as values at imaginary quadratic numbers.

5. Application to class fields

Let G be an algebraic group GL, defined over Q and G, be the adelization of G. We set Goor = {x € GLy(R) : detx > 0}
and Gg, = {x € GLy(Q) : detx > 0}. Note that we define the topology of Gx by taking U =[], GLy(Z,) x Gy to
be an open subgroup. Let K be an imaginary quadratic field, and let & be an embedding of K into M,(Q). We call &
normalized if it is defined by v (}) = &(u) (}) for v € K where z is a fixed point of {(K*) (C Gg,) in $. We observe
that the embedding & defines a continuous homomorphism of K. into Ga,, where K} is the idele group of K and Gy
denotes the group Gy Guo. with Gy the non-archimedean part of G,. The following lemma is a slight modification of the
argument in [1, (3.7.6)] which originally comes from the Shimura reciprocity law.

Lemma 5.1 ([8, sublemma of Theorem 17]).

With K and a as in the introduction, let az’ + bz + ¢ = 0 be the equation of a such that a > 0 and (a,b,c) = 1. Let f
be a modular function of level N with rational Fourier coefficients and (B) a principal ideal of Ok relatively prime to N.
Write B = n(aa)+ m in Z(aa) + Z (= Ok). And let Ag be a matrix in SL,(Z) whose image in SL,(Z/NZ) is equal to

—bn+m —cn
anN(B)™" mN@B)™" |-
Here N(B) means the norm of B. Then the action of (B) on f(a) is given by

f(a)[(B)rK(N)/K] = f(Ag - a) 7

where [(B), Kin)/K] denotes the Artin symbol.

Theorem 5.2,
Let K and a be as before. Let az’ 4+ bz + ¢ = 0 be the equation of a such that a > 0 and (a,b,c) = 1. Then j; n(a)
generates the ray class field K; with conductor

N
f= N [(a, N), aa + b]

where di is the discriminant of K and N € {7,8,9,10,12}.
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Proof. We treat only the case N = 7 — the other cases can be treated in almost the same way. Since j is
a modular function of level 7 with rational Fourier coefficients, ji7(a) belongs to K. Let Ic(7) be the group of all
fractional Ok-ideals relatively prime to 70k and @,k : Ix(7) — Gal(L/K) be the Artin map for a subfield L of Ki7). We
set L1 = K(j; 7(a)) for simplicity. Since K C L[y C Kj7), we have Pk 1(7) C ker(®, k) where Pk (7) is the subgroup of
Ik(7) generated by the principal ideals xOx with x = 1mod70x. We will show that ker (P, k) = Pk 1(f) N I (7), where
Pk 1(f) is the subgroup of Ik(f) generated by principal ideals x Ox with x = 1 mod f and /k(f) is the group of all fractional
Ok-ideals relatively prime to f. Let a € ker(®,, k). Then & k(a) = [a, L1/K] fixes ji7(a) and hence it fixes j(a) too.
Here j denotes the modular invariant. Since K(j(a)) is the Hilbert class field of K, a belongs to Pk(7), the subgroup
of Ik(7) generated by principal ideals. Thus we can write a = BOk where B is an element of Ox with (N(B),7) =1. If
B=n(aa)+misinZ-(aa)+Z = Ok, then by (7) we claim that (B) € ker (P, k) if and only if Ag € £['4(7) - T, where
M« = {v € SLu(Z) : ya = a}. Here we observe that I, is nontrivial if and only if « is equivalent to i (= v/—1) or p
(= e¥B) under SL,(Z). First we consider the trivial case for I',. For (8) € Ik(7).

(B) € ker (P, k) = Ap € £1(7) = 7|an and —bn+m=+1mod7
7 7
+
(0’7)|n and me 1+ bn+7Z = @7 (aa+b)+7Z
7
= @7 (a,7),aa + b) = (B) € Pxalf),

as desired. Next, assume that [, is nontrivial. Thus « is equivalent to i or p under SL,(Z). Suppose first that «a is
equivalent to i (i.e. the discriminant d¢ = b?> — 4ac = —4). We then obtain that for (8) € Ik(7),

(B) € ker(dy, ) = Ag € £T1(7) T

= Ag € £4(7) or Ag-y™ (?_01) y € £[4(7)

e (796 =

where we write a = y~' - i for some y = (p 7) € SLy(Z). Since a is a root of the polynomial [1,0, 1
(y) denotes the

(P?+ )22 +2(pqg +rs)z+q>+s% a =p>+r’ b =2(pqg+rs)and c = g°> + s Here [A, B, C|o

quadratic form Ax? + Bxy + Cy?. Thus
o1\ [-br2 —c
o) a bp2|’

- (0 —1) (bzn/Z— bm/2 —acn —c(m — bn/Z))
B - =

and thus

10 a(m—bn/2)kg *
where kg € Z is such that kgN(B) = 1 mod 7. Therefore

0 -1
Ag € £[4(7) or AB'V1(1 O)VEJLF1(7)

= 7]an and m € £1+bn+7Z,
bn b*n  bm
- = - =4
or 7|a(m 2) and 5 5 acn = £1mod7
7
— @7 |n and B € X1+n(aa+b)+7Z,
7 bn b*n  bm
- = _— = =4+
or @7 | (m 3 ) and 5 5 —acn 1mod7
7
B e ), )
= Be +(a’7)[(a ), aa + b]
7 bn b*n  bm
o 20 P Gen = +1mod7.
or @7 | (m > ) and > 5 —acn mod
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On the other hand,

(B) € Pxa(f) = +B=1modf or +xp-i=Tmodf.

From the equality (¢a)? + b(aa) + ac = 0 it follows that aa = —b/2 + i. And

B-i=(naa+ m) aa—i—é = —bl+m aa—i—b—m—nac
= 2] =72 2
2

= (—b7n+m)(aa+b)—b(—b7n+m) +b7m—nac= (—b7n+m) (aa—{—b)—{—an—bTm—acn.

Thus
+B=1modf or *B-i=1modf =
7 7 bn b*n  bm
+ 1 [(a,7 - = —_ - = =41 7.
Bel+ @7 [(a,7),aa +b], or @7 | (m > ) and > 5 —acn mod

Suppose instead that a is equivalent to p under SL,(Z) (i.e. the discriminant d¢ = —3). Since [, = { +
L0073, £(40) )} we see that T = { =1, 2y (97) v, 2y (1 {) v} if we write a = y~"p for some

y = (7 7) € SLy(Z). We then obtain that for (B) € Ik(7),

(B) (S ker(<DL1/;<) — AB (S iﬂ (7) . Fa
S 11 4 {01
= Ag € £[4(7) or Ag-y 10 ye £l4(7) or Ag-y 11 y € £[4(7).

Since a is a root of the polynomial

[1,1,1]o(pq)

rs

j) = (p*+pr+r’)2+(2pq+ps+qr+2rs)z+ (¢* + gs +5°),

we get a = p? +pr+r? b=2pq+ps+qr+2rs (=2(pg+ps+rs)—1=2(pg+qr+rs)+1) and c = g* + gs + s*

Thus
11 _
14 10 14

. a1 _ —bn +m —cn
As (y (—1 0) y) _( ankg mk,g)
(b+1)(—=bn+m)/2+acn —((b+1)n/2—m)c

(b+1)n/2— m)akg * '

ps+pg+rs g*+qs+s?
—(p* + pr+r’) =(pq + qr +rs)

(b+1/2 c
—a —(b-112)"

and

(b+1)/2 c
—a (b=

Likewise, we have
afo=y o 1 71_ —(b=12 —c
Yl T a0 T a  (b+1)2

Ag -y 01 y = —(b="1)(=bn+m)/2—acn ((b—1)n/2 —m)c
g (—(b —1)n/2 + m)akg * '

and
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Therefore
D [0
Ag € £[4(7) or Ag-vy 10 ye £l4(7) or Ag-y 11 y € £[1(7)
= 7|an and me€ £1+bn+7Z,
or 7|a((b+21)n—m) and (b+1)_bn#+acnzi1mod7
or 7|a(@—m) and (b—1)_bn#+acnzi1mod7
= e+ ! [(a,7),aa + b]
B (@,7)" " '
(0’77)|(b+21)n—m and (b+1)_bn#+acnzi1mod7
(0’77)|(b_21)n—m and (b—1)_m'%+acnzi1mod7.
On the other hand,
(B) € Pkalf) = +B=1modf or *B-p=1modf or =*B-p>=1modf
From the equality (ca)? + b(aa) + ac = 0 it follows that
—-b+1-1+v-3 b—1 —b—-1+1+v-3 b+1 5
aa= 2 =T tP= 2 =T

Thus we have p = aa + (b —1)/2 and —p? = aa + (b + 1)/2. And

B-p=(naa+ m) (aa_{_b%) _ (m— (b+21)n)ua+m(b2_1)—l706
= (m— (b+21)n) (aar+b)—b (m— (b+21)n) +m(b2_1) —nac
- (m—(b+1)n)(aa+b)—(b+1)7_bn+m — nac.
2 2
Similarly,
B-(—p?) = (naa+m) (aa—i—?) = (m— (b—Z'I)n)aa_l_w_nac
_ (b—="1)n (b="1)n m(b+1)
—(m— 5 )(aa+b)—b(m— 5 )+ 5 —nac
bn—m

— nac.

- (m—(b_21)n)(aa+b)+(b—1)

Thus we get that

+B=1modf or *B-p=1modf or =*pB-p>=1modf

7
+ —
— _B€1+(a,7) [(a,7), aa + b],
7 (b+‘])n —bn+m
_(b+MN)n —bn T+ m =4
o ! (m= ) and o+ 1w noc = stmoo7
or (0,77)|(m_(b—21)n) and (b_1)_br72¢+naczi1mod7.

Consequently, (B) € ker(®,/k) is equivalent to (B) € Ik(7) N Pk (f). We recall from [6, ChapterV, Lemma 6.1] that the
canonical map /lk(7) — Ik(f)/Pk.1(f) induces an isomorphism Ik (7)/(Ik(7) N Pxa(f)) = Ik(f)/Px(f). Therefore by class
field theory we prove that L, is the ray class field K. O
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