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1. Introduction

Let H be the complex upper half plane and let Γ1(N) be a congruence subgroup of SL2(Z) whose elements are congruentto (1 ∗0 1) modulo N, N = 1, 2, 3, . . . Since the group Γ1(N) acts on H by linear fractional transformations, we may definethe modular curve X1(N) = Γ1(N) \H∗, as the projective closure of the smooth affine curve Γ1(N) \H, whose genus shallbe denoted g1,N . Since g1,N = 0 only for the eleven cases 1 ≤ N ≤ 10 and N = 12 [7], for such N the function field
K (X1(N)) of the curve X1(N) is a rational function field over C.In [3, 5, 11, 12, 21] the division values of the Weierstrass ℘-function were used to construct modular functions on Γ1(N)of positive genus. In Section 3 of this article, we find the field generator j1,N for 7 ≤ N ≤ 10 and N = 12 usingthe aforementioned functions. In Section 4, we construct the normalized generators (or Hauptmoduln) N(j1,N ). When
τ ∈ H∩Q(√−d) for a square free positive integer d, we shall show that N(j1,N )(τ) is an algebraic integer. When applied
∗ E-mail: chhkim@hanyang.ac.kr
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to explicit class field theory, it is important to work with modular functions with rational Fourier coefficients. The modularfunction j1,N has this property and can therefore be used to construct class fields over an imaginary quadratic field K .This is done in Section 4 following an idea of Chen–Yui [1]. Given an ideal A = [α1, α2] of maximal order in K , let
α = α1/α2 ∈ H. Then we shall show that the modular function j1,N (α) in the above generates the ray class field Kf over
K for a conductor f dividing N.Throughout the article we adopt the following notation:

H∗ – the extended complex upper half plane,
Γ – a congruence subgroup of SL2(Z),
Γ(N) = {γ ∈ SL2(Z) : γ ≡ I modN},
Γ0(N) – the Hecke subgroup { (a b

c d
)
∈ Γ(1) : c ≡ 0 modN},

Γ1(N) = { (a b
c d
)
∈ Γ(1) : a ≡ d ≡ 1, c ≡ 0 modN},

X (Γ) = Γ \ H∗,
X (N) = Γ(N) \ H∗,
X0(N) = Γ0(N) \ H∗,
X1(N) = Γ1(N) \ H∗,
K (X (Γ)) – the function field of the curve X (Γ),
Γ – the inhomogeneous group of Γ (= Γ/ ± I)
qh = e2πiz/h, z ∈ H,
f |[A]k = (detA)k/2(cz + d)−k f(Az) where A = (a b

c d
),

f |(a b
c d
) = f

((
a b
c d
)
· z
),

Mk (Γ) – the space of modular forms of weight k with respect to the group Γ,
z → i∞ denotes that z = it, t ∈ R, and t → ∞,∑′

m
– a sum over m 6= 0.

We shall always take the branch of the square root having argument in (−π/2, π/2]. Thus, √z is a holomorphic functionon the complex plane with the negative real axis (−∞, 0] removed. For any integer k , we define zk/2 to mean (√z)k .
2. Cusps of Γ1(N)
We denote by SΓ the set of inequivalent cusps of Γ. From [7, 13, 15],

SΓ1(7) = {∞, 4/7, 5/7, 0, 1/2, 1/3};
SΓ1(8) = {∞, 3/8, 0, 1/3, 1/2, 1/4};
SΓ1(9) = {∞, 5/9, 7/9, 0, 1/2, 3/4, 1/3, 2/3};
SΓ1(10) = {∞, 3/10, 0, 1/3, 1/2, 1/4, 1/5, 2/5}; and
SΓ1(12) = {∞, 5/12, 0, 1/5, 1/2, 1/3, 1/9, 1/4, 1/8, 1/6}.

For later use we calculate the widths of the cusps. We recall that the width of the cusp a/c in X1(N) is the smallestpositive integer h such that (a b
c d
) (1 h0 1) (a b

c d
)−1 ∈ ±Γ1(N). The lemma below is [8, Lemma 3].
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Lemma 2.1.
Let a/c ∈ P1(Q) be a cusp where (a, c) = 1. Choose an element

(
a b
c d
)
∈ SL2(Z). Then the width of a/c in X1(N) is given

by N/(c,N) if N 6= 4.

We then have the following tables of inequivalent cusps of Γ1(N) for 7 ≤ N ≤ 10 and N = 12:
Table 1. Cusps of Γ1(7)

cusp ∞ 4/7 5/7 0 1/2 1/3width 1 1 1 7 7 7

Table 2. Cusps of Γ1(8)
cusp ∞ 3/8 0 1/3 1/2 1/4width 1 1 8 8 4 2

Table 3. Cusps of Γ1(9)
cusp ∞ 5/9 7/9 0 1/2 3/4 1/3 2/3width 1 1 1 9 9 9 3 3

Table 4. Cusps of Γ1(10)
cusp ∞ 3/10 0 1/3 1/2 1/4 1/5 2/5width 1 1 10 10 5 5 2 2

Table 5. Cusps of Γ1(12)
cusp ∞ 5/12 0 1/5 1/2 1/3 1/9 1/4 1/8 1/6width 1 1 12 12 6 4 4 3 3 2

3. Modular functions j1,N for 7 ≤ N ≤ 10 and N = 12
In this section we construct a generator of K (X1(N)) using the ℘-division values when N ∈ {7, 8, 9, 10, 12}. Let L be alattice in C. The Weierstrass ℘-function (relative to L) is defined by the series

℘L(z) = 1
z2 + ∑

w∈L,w6=0
1(z − w)2 − 1

w2 .

Let a = (a1, a2) be a row vector with entries in Z. Then we define the N-th division value ℘N,a [16, Chapter VII, §3] of
℘ to be

℘N,a(z) = ℘Lz
(a1z + a2

N

)
where Lz = Zz + Z for z ∈ H.
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Lemma 3.1 ([16, Chapter VII, §2 and §3]).(i) ℘N,a|[γ]2 = ℘N,aγ for γ ∈ Γ(1).(ii) ℘N,a(z) = N2(G∗N,2,a(z)−G∗N,2,0(z)) ∈ M2(Γ(N)) where G∗N,2,a is the Eisenstein series of weight 2 and level N, which
is defined by the value at s = 0 of the analytic continuation of the series

∑′

mν≡aν modN(m1z +m2)−2|m1z +m2|−s, z ∈ H.

(iii) G∗N,2,a(z) has the following qN-expansion:

G∗N,2,a(z) = −2πi
N2(z − z̄) +∑

ν≥0 αν(N, a)qNν ,
where

α0(N, a) = δ
(a1
N

) ∑′

m2≡a2(N)m2−2
with δ(a1/N) = 1 if a1/N ∈ Z, 0 otherwise, and

αν(N, a) = −4π2
N2 · ∑′

m|ν, ν/m≡a1(N) |m|ζN
a2m, ν ≥ 1.

Lemma 3.2.
Let a and b be two row vectors such that ±a is not congruent to b modulo N. Then ℘N,a − ℘N,b has no zeros in H.

Proof. It is well known that
℘L(z1) = ℘L(z2) if and only if ± z1 ≡ z2 mod L. (1)

Now suppose that there exists some z0 ∈ H such that ℘N,a(z0) = ℘N,b(z0). Then
℘Lz0

(a1z0 + a2
N

) = ℘Lz0
(
b1z0 + b2

N

)
.

Now by (1), ±(a1z0 + a2)/N ≡ (b1z0 + b2)/N mod L. Thus ±(a1, a2) ≡ (b1, b2) modN, which is a contradiction.
We identify the cusps of X (N) with (xy) where x, y ∈ Z/NZ and are relatively prime.
Lemma 3.3 ([15, Proposition 1]).
The ramification degree of the projection X (N)→ X1(N) at each cusp

(x
y
)

is given by gcd (y,N).
Lemma 3.4 ([15, Proposition 3]).
Let GN,2,a be defined by the holomorphic part of G∗N,2,a. Let {x}N be defined by 0 ≤ {x}N ≤ N/2 and {x}N ≡ ±xmod N. Then GN,2,a has a zero of order ≥ {a1x + a2y}N at the cusp

(x
y
)

of X (N).
Lemma 3.5.
Let a = (0, a2). Then,

℘N,(0,a2) ∈ M2(Γ1(N)), and (i)
WN
(
℘N,(0,a2)(z)) def= ℘N,(0,a2)(z)|[( 0 −1

N 0 )]2 = ℘N,(a2,0)(Nz). (ii)
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Proof. By Lemma 3.1 (ii), it suffices to check the slash operator invariance under Γ1(N). For each γ = (a b
c d
)
∈ Γ1(N),consider

aγ = (0, a2) (a bc d
)
≡ (0, a2) (1 ∗0 1

) mod N
≡ a mod N.

From Lemma 3.1 (i) and the definition of the ℘-division value it follows that ℘N,a|[γ]2 = ℘N,aγ = ℘N,a. To prove (ii):
WN (℘N,(0,a2)(z)) = ℘N,(0,a2)(z)|[( 0 −1

N 0 )]2 = ℘N,(0,a2)(z)|[(0 −11 0 )]2[(N 00 1)]2= ℘N,(a2,0)(z)|[(N 00 1)]2 by Lemma 3.1(i)
= ℘N,(a2,0)(Nz).

Lemma 3.6.
We have ∑′

m2≡a2 modNm2−2 = 2π2
N2 · 11− cos (2a2π/N)

for a2 not congruent to 0 modulo N.

Proof. First note that for z ∈ H, ∑n∈Z(z + n)−2 = (2πi)2∑∞
n=1 nqn. Also ∑∞

n=1 nqn = q (1− q)−2. Hence
∑
n∈Z

1(z + n)2 = (2πi)2 q(1− q)2 , z ∈ H. (2)
We observe that the LHS of (2) converges uniformly and absolutely in C \Z. Hence as z approaches a2/N, (2) becomes

∑
n∈Z

1(a2/N + n)2 = (2πi)2 e2πia2/N(1− e2πia2/N )2 , z ∈ H. (3)
Now we consider the absolute value of the RHS of (3), which is equal to

4π2
|1− cos (2πa2/N)− i sin (2πa2/N)|2 = 4π2(1− cos (2πa2/N))2 + sin2(2πa2/N) = 2π21− cos (2πa2/N) .

Since the LHS of (3) is positive, the RHS of (3) must be 2π2/(1− cos (2πa2/N)). Hence∑′

m2≡a2 modNm2−2 = ∑
m2≡a2 modNm2−2 since a2 6≡ 0 modN

= ∑
n∈Z

1(a2 +Nn)2 = 2π2
N2 · 11− cos (2a2π/N) .

This proves the lemma.
Theorem 3.7.
Let N ∈ {7, 8, 9, 10, 12}. Put

j1,N = ℘N,(1,0)(Nz)− ℘N,(2,0)(Nz)
℘N,(1,0)(Nz)− ℘N,(4,0)(Nz) , N 6= 12, j1,12 = ℘12,(1,0)(12z)− ℘12,(2,0)(12z)

℘12,(1,0)(12z)− ℘12,(5,0)(12z) .
Then j1,N ∈ K (X1(N)) and hence K (X1(N)) = C(j1,N ).
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Proof. Considering the above lemmas, it is enough to show that j1,N has only one simple zero and one simple pole atthe cusps. For simplicity, we let φj = GN,2,(0,j) and φij = φi − φj . Using Lemmas 3.3 and 3.4 we can estimate the orderof φij at each cusp. First we consider the case N = 7. Let (φj ) denote the divisor of the function φj . Then,
(φ1) ≥ (0) + 2(12

) + 3(13
)
, (φ2) ≥ 2(0) + 3(12

) + (13
)
, (φ4) ≥ 3(0) + (12

) + 2(13
)
.

Thus we have (φ12) ≥ (0) + 2(12
) + (13

) and (φ14) ≥ (0) + (12
) + 2(13

)
. (4)

In general, a modular form of weight k for a subgroup of index µ in Γ(1) has kµ/12 zeroes in any fundamental domain.In our case, µ = [Γ(1) :±Γ1(7)] = 24 and k = 2. Therefore kµ/12 = 4, hence the inequality in (4) is an equality.Similarly, in the other cases we have the following equalities. When N = 8,
(φ12) = (0) + 2(13

) + (12
) and (φ14) = (0) + 3(13

)
.

When N = 9,
(φ12) = (0) + 2(12

) + (34
) + (13

) + (23
) and (φ14) = (0) + (12

) + 2(34
) + (13

) + (23
)
.

When N = 10,
(φ12) = (0) + 3(13

) + (12
) + (14

) and (φ14) = (0) + 2(13
) + (12

) + 2(14
)
.

When N = 12,
(φ12) = (0) + 2(15

) + (12
) + (13

) + (19
) + (14

) + (18
) and

(φ15) = (0) + (15
) + (12

) + (13
) + (19

) + (14
) + (16

) + (18
) + (19

)
.

Thus in the case N ∈ {7, 8, 9, 10} (resp. N = 12) the quotient φ12/φ14 (resp. φ12/φ15) generates the function field of
X1(N). Since WN normalizes Γ1(N), its action induces an automorphism of the function field of X1(N) and therefore j1,Ngenerates K (X1(N)), as desired.
4. Normalized generators

For a modular function f , we call f normalized if its q-series is
1
q + 0 + a1q+ a2q2 + . . .

The following lemma is a simple consequence of basic properties of compact Riemann surfaces (or algebraic curves).
Lemma 4.1.
The normalized generator of a genus zero function field is unique.
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Proof. Let Γ be a Fuchsian group such that the genus of the curve Γ\H∗ is zero. Assume that K (X (Γ)) = C(J1) = C(J2)where J1 and J2 are normalized. We can then write their Fourier expansions as J1 = q−1 + 0 + a1q + a2q2 + . . . and
J2 = q−1 + 0 + b1q + b2q2 + . . . Observe that 1 = [K (X (Γ)) :C(Ji)] = ν0(Ji) = ν∞(Ji) for i = 1, 2. Hence, J1 and J2 haveonly one zero and one pole whose orders are simple. We see that the only poles of Ji occur at ∞. Then, J1 − J2 has nopoles (because the series for each of J1 and J2 start with q−1) and is thus constant. Since J1− J2 = (a1−b1)q+ . . ., thisconstant must be zero. This proves the lemma.
Now, we will construct the normalized generator (or the Hauptmodul) of the function field K (X1(N)) from the modularfunction j1,N mentioned in Theorem 3.7. Let

N(j1,7) = −1
j1,7(z)− 1 − 3 = 1

q + 4q+ 3q2 − 5q4 − 7q5 − 2q6 + 8q7 + 16q8 + 12q9 − 7q10 + . . . ,

N(j1,8) = −1
j1,8(z)− 1 − 2 = 1

q + 3q+ 2q2 + q3 − 2q4 − 4q5 − 4q6 + 6q8 + 9q9 + 8q10 + . . . ,

N(j1,9) = −1
j1,9(z)− 1 − 2 = 1

q + 2q+ 2q2 + q3 − q4 − 2q5 − 3q6 − 2q7 + q8 + 4q9 + 6q10 + . . . ,

N(j1,10) = −1
j1,10(z)− 1 − 2 = 1

q + 2q+ q2 + q3 + 0q4 − q5 − 2q6 − 2q7 − q8 + q9 + 3q10 + . . . ,

N(j1,12) = −1
j1,12(z)− 1 − 2 = 1

q + q+ q2 + q3 − q6 − q7 − q8 − q9 + . . .

which are in q−1Z[[q]]. Then the above computation shows that N(j1,N ) is the normalized generator of K (X1(N)). UsingLemmas 3.1 and 3.6 we can compute the cusp values of N(j1,N ), summarized in the following tables:
Table 6. Cusp values of N (j1,7)

s ∞ 4/7 5/7 0 1/2 1/3
N(j1,7)(s) ∞ −3 −2 u−1−w−1

v−1−w−1 − 3 w−1−v−1
u−1−v−1 − 3 v−1−u−1

w−1−u−1 − 3
where u = 1− cos (2π/7), v = 1− cos (4π/7), w = 1− cos (8π/7).
Table 7. Cusp values of N(j1,8)

s ∞ 3/8 0 1/3 1/2 1/4
N(j1,8)(s) ∞ −2 2√2 + 1 −2√2 + 1 −3 −1

Table 8. Cusp values of N(j1,9)
s ∞ 5/9 7/9 0 1/2 3/4 1/3 2/3

N(j1,9)(s) ∞ −2 −1 u−1−w−1
v−1−w−1 − 2 w−1−v−1

u−1−v−1 − 2 v−1−u−1
w−1−u−1 − 2 (−3−√3i)/2 (−3 +√3i)/2

where u = 1− cos (2π/9), v = 1− cos (4π/9), w = 1− cos (8π/9).
Table 9. Cusp values of N(j1,10)

s ∞ 3/10 0 1/3 1/2 1/4 1/5 2/5
N(j1,10)(s) ∞ −1 1 +√5 1−√5 (−3−√5)/2 (−3 +√5)/2 0 −2
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Table 10. Cusp values of N(j1,12)
s ∞ 5/12 0 1/5 1/2 1/3 1/9 1/4 1/8 1/6

N(j1,12)(s) ∞ −1 1 +√3 1−√3 −2 −1− i −1 + i (−1−√3i)/2 (−1 +√3i)/2 0
Theorem 4.2.
Let d be a square free positive integer and t = N(j1,N ) be the normalized generator of K (X1(N)). For a cusp s of Γ1(N)
let hs denote its width. If t ∈ q−1Z[[q]] and ∏

s∈SΓ1(N)\{∞}
(t(z)− t(s))hs

is a polynomial in Z[t], then t(τ) is an algebraic integer for τ ∈ Q
(√
−d
)
∩ H.

Proof. Let j(z) = 1/q+ 744 + 196884q+ . . . It is well-known that j(τ) is an algebraic integer for τ ∈ Q
(√
−d
)
∩ H[10, 18]. For algebraic proofs, see [4, 14, 17, 19]. View j as a function on the modular curve X1(N). Then j has a pole oforder hs at the cusp s. On the other hand, t(z)− t(s) has a simple zero at s. Thus

j ×
∏

s∈SΓ1(N)\{∞}
(t(z)− t(s))hs (5)

has a pole only at ∞ whose degree is µN = [Γ(1) : Γ1(N)], and is thus a monic polynomial in t of degree µN which wedenote by f(t). Since the multiplier of j in (5) is a polynomial in Z[t] and since j and t have integer coefficients in the
q-expansions, f(t) is a monic polynomial in Z[t] of degree µN . This shows that t(τ) is integral over Z[j(τ)]. Therefore
t(τ) is integral over Z for τ ∈ Q

(√
−d
)
∩ H.

Corollary 4.3.
For τ ∈ Q

(√
−d
)
∩ H, N(j1,N )(τ) is an algebraic integer for N ∈ {7, 8, 9, 10, 12}.

Proof. Since N(j1,N ) has integral Fourier coefficients, it is enough to show that
∏

s∈SΓ1(N)\{∞}
(t(z)− t(s))hs ∈ Z[t]. (6)

When N ∈ {8, 10, 12}, from Tables 2, 4, 5, 7, 9 and 10 we can check that this product is in Z[t]. When N = 7 we showthat (t − t(0)) (t − t(12
))(

t − t
(13
))
∈ Z[t]

where t = N(j1,7). And when N = 9 we show that
(t − t(0)) (t − t(12

))(
t − t

(34
))
∈ Z[t]

where t = N(j1,9). Then from Tables 1, 3, 6 and 8 we have (6).
N = 7 Let t0 be the Hauptmodul of Γ0(7). Then by [2, Tables 3 and 4],

t0 = η(z)4
η(7z)4 + 4 = 1

q + 0 + 2q+ 8q2 − 5q3 − 4q4 − 10q5 + 12q6 − 7q7 + 8q8 + 46q9 − 36q10 + . . .
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If we view t0 as a function on X1(7), then t0 has simple poles only at ∞, 4/7, 5/7. Thus t0 × (t − t(4/7))(t − t(5/7)) haspoles only at ∞ whose degree is 3 and so it is a monic polynomial in t of degree 3. Then we can write
t0 ×

(
t − t

(47
))(

t − t
(57
)) = t3 + at2 + bt + c

for some a, b, c ∈ C. From Table 4 it follows that
t0 × (t + 3)(t + 2) = t3 + at2 + bt + c.

By replacing t0, t by their q-series,
(L.H.S.) = q−3 + 5

q2 + 16
q + 44 + 94q+ . . .

(R.H.S.) = q−3 + a
q2 + 12 + b

q + 9 + 8a+ c + (48 + 6a+ 4b)q+ . . .

Therefore a = 5, b = 4, c = −5. Also from the transformation formula of eta functions it follows that
t0|(0 −11 0 ) = η(z)4

η(7z)4 ∣∣∣(0 −11 0 ) + 4 = η(−1/z)4
η(−7/z)4 + 4 = √

−iz 4η(z)4
√
−iz/7 4η(z/7)4 + 4→ 4.

Since 0, 1/2, and 1/3 are equivalent to 0 under Γ0(7), t(0), t(1/2), and t(1/3) are roots of the polynomial
X 3 + 5X 2 + 4X − 5− 4(X + 3)(X + 2) = X 3 + X 2 − 16X − 29.

N = 9 Let t0 be the Hauptmodul of Γ0(9). Again by [2, Tables 3 and 4]
t0 = η(z)3

η(9z)3 + 3 = 1
q + 0 + 0q+ 5q2 + 0q3 + 0q4 − 7q5 + 0q6 + 0q7 + 3q8 + 0q9 + 0q10 + . . .

Similarly to the case N = 7,
t0 ×

(
t − t

(59
))(

t − t
(79
)) = t3 + at2 + bt + c

for some a, b, c ∈ C. From Table 5
t0 × (t + 2)(t + 1) = t3 + at2 + bt + c.By replacing t0, t by their q-series,

(L.H.S.) = 1
q3 + 3

q2 + 6
q + 15 + 27q+ 39q2 + . . .

(R.H.S.) = 1
q3 + a

q2 + 6 + b
q + 6 + 4a+ c + (15 + 4a+ 2b)q+ (21 + 6a+ 2b)q2 + . . .

Thus a = 3, b = 0, c = −3. And
t0|(0 −11 0 ) = η(z)3

η(9z)3 ∣∣∣(0 −11 0 ) + 3 = η(−1/z)3
η(−9/z)3 + 3 = √

−iz 3η(z)3
√
−iz/93η(z/9)3 + 3→ 3.

Now that 0, 1/2, and 3/4 are equivalent to 0 under Γ0(9), t(0), t(1/2), and t(3/4) are roots of the polynomial
X 3 + 3X 2 − 3− 3(X + 2)(X + 1) = X 3 − 9X − 9.
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Remark 4.4.(1) Let t = N(j1,N ). There is an explicit description of how the Galois group of Q(e2πi/N ) over Q acts on t(s) for each cusp
s (see [15] and also [18, Chapter 6] and [20, Chapter 1]). Using this description one can show that the assumption inTheorem 4.2 is met.

(2) The function j1,N is a modular unit with integer coefficients [9, Theorem 6.4]. In other words, j1,N is a unit insidethe integral closure of the ring Z[j ]. Therefore, the values of j1,N at imaginary quadratic irrationalities are not onlyalgebraic integers, but also units in the ring of integers. Now, the normalized Hauptmodul N(j1,N )(z) is equal to
±j1,N (γz)±1 + c for a suitably chosen γ ∈ Γ0(N) and some integer c. More explicitly, the following equalities hold:

N(j1,7)(z) = j1,7 ((4 17 2) z)− 3, N(j1,8)(z) = −j1,8 ((3 18 3) z)− 1, N(j1,9)(z) = j1,9 ((5 19 2) z)− 2,
N(j1,10)(z) = − 1

j1,10 (( 3 210 7) z) , N(j1,12)(z) = 1
j1,12 (( 5 212 5) z) − 2.

Therefore, N(j1,N ) takes algebraic integers as values at imaginary quadratic numbers.
5. Application to class fields

Let G be an algebraic group GL2 defined over Q and GA be the adelization of G. We set G∞+ = {x ∈ GL2(R) : det x > 0}and GQ+ = {x ∈ GL2(Q) : det x > 0}. Note that we define the topology of GA by taking U = ∏
p GL2(Zp) × G∞+ tobe an open subgroup. Let K be an imaginary quadratic field, and let ξ be an embedding of K into M2(Q). We call ξ

normalized if it is defined by u (z1) = ξ(u) (z1) for u ∈ K where z is a fixed point of ξ(K×) (⊂ GQ+ ) in H. We observethat the embedding ξ defines a continuous homomorphism of K×A into GA+, where K×A is the idele group of K and GA+denotes the group G0G∞+ with G0 the non-archimedean part of GA. The following lemma is a slight modification of theargument in [1, (3.7.6)] which originally comes from the Shimura reciprocity law.
Lemma 5.1 ([8, sublemma of Theorem 17]).
With K and α as in the introduction, let az2 + bz + c = 0 be the equation of α such that a > 0 and (a, b, c) = 1. Let f
be a modular function of level N with rational Fourier coefficients and (β) a principal ideal of OK relatively prime to N.
Write β = n(aα) +m in Z(aα) + Z (= OK ). And let Aβ be a matrix in SL2(Z) whose image in SL2(Z/NZ) is equal to

(
−bn+m −cn
anN(β)−1 mN(β)−1

)
.

Here N(β) means the norm of β. Then the action of (β) on f(α) is given by

f(α)[(β),K(N)/K ] = f(Aβ · α) (7)
where [(β), K(N)/K ] denotes the Artin symbol.

Theorem 5.2.
Let K and α be as before. Let az2 + bz + c = 0 be the equation of α such that a > 0 and (a, b, c) = 1. Then j1,N (α)
generates the ray class field Kf with conductor

f = N(a,N) · [(a,N), aα + b]
where dK is the discriminant of K and N ∈ {7, 8, 9, 10, 12}.
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Proof. We treat only the case N = 7  the other cases can be treated in almost the same way. Since j1,7 isa modular function of level 7 with rational Fourier coefficients, j1,7(α) belongs to K(7). Let IK (7) be the group of allfractional OK -ideals relatively prime to 7OK and ΦL/K : IK (7)→ Gal(L/K ) be the Artin map for a subfield L of K(7). Weset L1 = K (j1,7(α)) for simplicity. Since K ⊆ L1 ⊆ K(7), we have PK,1(7) ⊆ ker(ΦL1/K ) where PK,1(7) is the subgroup of
IK (7) generated by the principal ideals xOK with x ≡ 1 mod 7OK . We will show that ker (ΦL1/K ) = PK,1(f) ∩ IK (7), where
PK,1(f) is the subgroup of IK (f) generated by principal ideals xOK with x ≡ 1 mod f and IK (f) is the group of all fractional
OK -ideals relatively prime to f. Let a ∈ ker(ΦL1/K ). Then ΦL1/K (a) = [a, L1/K ] fixes j1,7(α) and hence it fixes j(α) too.Here j denotes the modular invariant. Since K (j(α)) is the Hilbert class field of K , a belongs to PK (7), the subgroupof IK (7) generated by principal ideals. Thus we can write a = βOK where β is an element of OK with (N(β), 7) = 1. If
β = n(aα) +m is in Z · (aα) +Z = OK , then by (7) we claim that (β) ∈ ker(ΦL1/K ) if and only if Aβ ∈ ±Γ1(7) · Γα whereΓα = {γ ∈ SL2(Z) : γα = α}. Here we observe that Γα is nontrivial if and only if α is equivalent to i (= √−1) or ρ(= e2πi/3) under SL2(Z). First we consider the trivial case for Γα . For (β) ∈ IK (7),

(β) ∈ ker(ΦL1/K ) ⇐⇒ Aβ ∈ ±Γ1(7) ⇐⇒ 7 | an and − bn+m ≡ ±1mod 7
⇐⇒ 7(a, 7) | n and m ∈ ±1 + bn+ 7Z ⇐⇒ 7(a, 7) | n and β ∈ ±1 + n (aα + b) + 7Z
⇐⇒ ±β ∈ 1 + 7(a, 7) · [(a, 7), aα + b] ⇐⇒ (β) ∈ PK,1(f),

as desired. Next, assume that Γα is nontrivial. Thus α is equivalent to i or ρ under SL2(Z). Suppose first that α isequivalent to i (i.e. the discriminant dK = b2 − 4ac = −4). We then obtain that for (β) ∈ IK (7),
(β) ∈ ker(ΦL1/K ) ⇐⇒ Aβ ∈ ±Γ1(7) · Γα

⇐⇒ Aβ ∈ ±Γ1(7) or Aβ · γ−1(0 −11 0
)
γ ∈ ±Γ1(7)

where we write α = γ−1 · i for some γ = (p q
r s) ∈ SL2(Z). Since α is a root of the polynomial [1, 0, 1] ◦ (p q

r s) (z1) =(p2 + r2)z2 + 2(pq + rs)z + q2 + s2, a = p2 + r2, b = 2(pq + rs) and c = q2 + s2. Here [A,B, C ] ◦ (xy) denotes thequadratic form Ax2 + Bxy+ Cy2. Thus
γ−1(0 −11 0

)
γ = (−b/2 −c

a b/2
)
,

and thus
Aβ · γ−1(0 −11 0

)
γ = (b2n/2− bm/2− acn −c(m− bn/2)

a(m− bn/2)kβ ∗

)
where kβ ∈ Z is such that kβN(β) ≡ 1 mod 7. Therefore

Aβ ∈ ±Γ1(7) or Aβ · γ−1(0 −11 0
)
γ ∈ ±Γ1(7)

⇐⇒ 7 | an and m ∈ ±1 + bn+ 7Z,
or 7 | a(m− bn2

) and b2n2 − bm2 − acn ≡ ±1 mod 7
⇐⇒ 7(a, 7) | n and β ∈ ±1 + n(aα + b) + 7Z,

or 7(a, 7) |
(
m− bn2

) and b2n2 − bm2 − acn ≡ ±1 mod 7
⇐⇒ ±β ∈ 1 + 7(a, 7) [(a, 7), aα + b],

or 7(a, 7) |
(
m− bn2

) and b2n2 − bm2 − acn ≡ ±1 mod 7.
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On the other hand, (β) ∈ PK,1(f) ⇐⇒ ±β ≡ 1 mod f or ± β · i ≡ 1 mod f.
From the equality (aα)2 + b(aα) + ac = 0 it follows that aα = −b/2 + i. And

β · i = (naα +m) (aα + b2
) = (−bn2 +m

)
aα + bm2 − nac

= (−bn2 +m
) (aα + b)− b(−bn2 +m

)+ bm2 − nac = (−bn2 +m
) (aα + b) + b2n2 − bm2 − acn.

Thus
± β ≡ 1 mod f or ± β · i ≡ 1 mod f ⇐⇒

± β ∈ 1 + 7(a, 7) · [(a, 7), aα + b], or 7(a, 7) |
(
m− bn2

) and b2n2 − bm2 − acn ≡ ±1 mod 7.
Suppose instead that α is equivalent to ρ under SL2(Z) (i.e. the discriminant dK = −3). Since Γρ = {

±
I, ±

(0 −11 1 ) , ± ( 1 1
−1 0) }, we see that Γα = {

± I, ±γ−1 (0 −11 1 ) γ, ±γ−1 ( 1 1
−1 0) γ} if we write α = γ−1ρ for some

γ = (p q
r s) ∈ SL2(Z). We then obtain that for (β) ∈ IK (7),

(β) ∈ ker(ΦL1/K ) ⇐⇒ Aβ ∈ ±Γ1(7) · Γα
⇐⇒ Aβ ∈ ±Γ1(7) or Aβ · γ−1( 1 1

−1 0
)
γ ∈ ±Γ1(7) or Aβ · γ−1(0 −11 1

)
γ ∈ ±Γ1(7).

Since α is a root of the polynomial
[1, 1, 1] ◦(p q

r s

)(
z1
) = (p2 + pr + r2)z2 + (2pq+ ps+ qr + 2rs)z + (q2 + qs+ s2),

we get a = p2 + pr+ r2, b = 2pq+ ps+ qr+ 2rs (= 2(pq+ ps+ rs)− 1 = 2(pq+ qr+ rs) + 1) and c = q2 + qs+ s2.Thus
γ−1( 1 1

−1 0
)
γ = ( ps+ pq+ rs q2 + qs+ s2

−(p2 + pr + r2) −(pq+ qr + rs)
) = ((b+ 1)/2 c

−a −(b − 1)/2
)
,

and
Aβ ·

(
γ−1( 1 1

−1 0
)
γ
) = (−bn+m −cn

ankβ mkβ

)((b+ 1)/2 c
−a −(b − 1)/2

)

= ((b+ 1)(−bn+m)/2 + acn −((b+ 1)n/2−m)c((b+ 1)n/2−m)akβ ∗

)
.

Likewise, we have
γ−1(0 −11 1

)
γ = (γ−1( 1 1

−1 0
)
γ
)−1 = (−(b − 1)/2 −c

a (b+ 1)/2
)

and
Aβ · γ−1(0 −11 1

)
γ = (−(b − 1)(−bn+m)/2− acn ((b − 1)n/2−m)c(−(b − 1)n/2 +m)akβ ∗

)
.
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Therefore
Aβ ∈ ±Γ1(7) or Aβ · γ−1( 1 1

−1 0
)
γ ∈ ±Γ1(7) or Aβ · γ−1(0 −11 1

)
γ ∈ ±Γ1(7)

⇐⇒ 7 | an and m ∈ ±1 + bn+ 7Z,
or 7 | a((b+ 1)n2 −m

) and (b+ 1)−bn+m2 + acn ≡ ±1 mod 7
or 7 | a((b − 1)n2 −m

) and (b − 1)−bn+m2 + acn ≡ ±1 mod 7
⇐⇒ ±β ∈ 1 + 7(a, 7) [(a, 7), aα + b],

or 7(a, 7) | (b+ 1)n2 −m and (b+ 1)−bn+m2 + acn ≡ ±1 mod 7
or 7(a, 7) | (b − 1)n2 −m and (b − 1)−bn+m2 + acn ≡ ±1 mod 7.

On the other hand,
(β) ∈ PK,1(f) ⇐⇒ ±β ≡ 1 mod f or ± β · ρ ≡ 1 mod f or ± β · ρ2 ≡ 1 mod f.

From the equality (aα)2 + b(aα) + ac = 0 it follows that
aα = −b+ 1− 1 +√−32 = −b − 12 + ρ = −b − 1 + 1 +√−32 = −b+ 12 − ρ2.

Thus we have ρ = aα + (b − 1)/2 and −ρ2 = aα + (b+ 1)/2. And
β · ρ = (naα +m) (aα + b − 12

) = (m− (b+ 1)n2
)
aα + m(b − 1)2 − nac

= (m− (b+ 1)n2
) (aα + b)− b(m− (b+ 1)n2

) + m(b − 1)2 − nac

= (m− (b+ 1)n2
) (aα + b)− (b+ 1)−bn+m2 − nac.

Similarly,
β ·
(
− ρ2) = (naα +m) (aα + b+ 12

) = (m− (b − 1)n2
)
aα + m(b+ 1)2 − nac

= (m− (b − 1)n2
) (aα + b)− b(m− (b − 1)n2

) + m(b+ 1)2 − nac

= (m− (b − 1)n2
) (aα + b) + (b − 1) bn − m2 − nac.

Thus we get that
± β ≡ 1 mod f or ± β · ρ ≡ 1 mod f or ± β · ρ2 ≡ 1 mod f
⇐⇒ ±β ∈ 1 + 7(a, 7) · [(a, 7), aα + b],

or 7(a, 7) |
(
m− (b+ 1)n2

) and (b+ 1)−bn+m2 + nac ≡ ±1 mod 7
or 7(a, 7) |

(
m− (b − 1)n2

) and (b − 1)−bn+m2 + nac ≡ ±1 mod 7.
Consequently, (β) ∈ ker(ΦL1/K ) is equivalent to (β) ∈ IK (7) ∩ PK,1(f). We recall from [6, Chapter V, Lemma 6.1] that thecanonical map IK (7) → IK (f)/PK,1(f) induces an isomorphism IK (7)/(IK (7) ∩ PK,1(f)) ≈ IK (f)/PK,1(f). Therefore by classfield theory we prove that L1 is the ray class field Kf.
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