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Abstract: We introduce two unary operators G and H on a relatively pseudocomplemented lattice which form an algebraic
axiomatization of the tense quantifiers “it is always going to be the case that” and “it has always been the case that”.
Their axiomatization is an extended version for the classical logic and it is in accordance with these operators
on many-valued Łukasiewicz logic. Finally, we get a general construction of these tense operators on complete
relatively pseudocomplemented lattice which is a power lattice via the so-called frame.
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Intuitionistic logic was introduced by L. E. J. Brouwer [3] and his collaborator A. Heyting [11]. The semantic of intuitionisticlogic is algebraically axiomatized by the so-called Brouwerian lattice, which is a relatively pseudocomplemented lattice,or by the so-called Heyting algebra, which is a bounded Brouwerian lattice. For our goals, we need work with acomplete lattice which is Brouwerian and hence also a Heyting algebra, thus we will not make distinction betweenthese two algebras.It is known that propositional logic (classic or non-classic) does not incorporate the dimension of time. To obtain a tenselogic we enrich the given propositional logic by new unary operators which are usually denoted by G, H, F and P,see e.g. [4, 7–9]. We usually define F and P via G and H as follows: F (x) = ¬G(¬x) and P(x) = ¬H(¬x), where ¬xdenotes negation of the proposition x.It is worth noticing that the operators G and H can be considered as certain kind of modal operators which were alreadystudied for intuitionistic calculus by D. Wijesekera [14] and in a general setting by W. B. Ewald [10].Consider a pair (T ;≤) where T is a non-empty set and ≤ is a reflexive and transitive binary relation on T . Let t ∈ Tand f(x) be a formula of a given propositional logic L. We say that G(f(t)) is valid if for every s ≥ t the formula f(s)
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is valid in L. Analogously, H(f(t)) is valid if f(s) is valid in L for each s ≤ t. Hence, P(f(t)) is valid if there exists
s ≤ t such that f(s) is valid in L and F (f(t)) is valid if there exists s ≥ t such that f(s) is valid in L. Thus the unaryoperator G constitutes an algebraic counterpart of the tense operator “it is always going to be the case that” and Hconstitutes an algebraic counterpart of the tense operator “it has always been the case that”. In other words, G and Hcan be recognized as tense “for all” quantifiers and P and F as tense existential quantifiers.Tense operators were introduced for the classical propositional calculus in [4] as operators on the corresponding Booleanalgebra satisfying the axioms

G(1) = 1, H(1) = 1,
G(x ∧ y) = G(x) ∧ G(y), H(x ∧ y) = H(x) ∧ H(y),

x ≤ GP(x), x ≤ HF (x).
However, studying non-classical logics, the list of axioms for tense operators has been enlarged. For example, for MV-algebras there were inserted axioms concerning the logical connectives implication and disjunction (for MV-algebras,the disjunction ⊕ is distinct from the lattice join ∨ in the induced lattice) as follows:

G(x → y) ≤ G(x)→ G(y), H(x → y) ≤ H(x)→ H(y),
G(x)⊕G(y) ≤ G(x ⊕ y), H(x)⊕H(y) ≤ H(x ⊕ y).

Similarly, for Moisil propositional logic and for Łukasiewicz–Moisil algebras the tense operators were introduced byC. Chiriţă [7, 8]. In what follows, we use the approach involved by C. Chiriţă but we restrict the list of axioms only foroperations of relatively pseudocomplemented lattice.Let us note that this approach was generalized for the so-called basic algebras (see e.g. [5]) in [2] and it was alreadyapplied in the logic of quantum mechanics by means of the so-called dynamic effect algebras in [6].The aim of the paper is to get an algebraic axiomatization of tense operators G, H, P and F in intuitionistic logic. Asmentioned above, an algebraic axiomatization of intuitionistic logic is usually done via relatively pseudocomplementedlattices. Let us recall that a lattice L = (L;∨,∧) is relatively pseudocomplemented if for every a, b ∈ L there exists a
relative pseudocomplement a → b, i.e. the greatest element with the property (the so-called residuation property):

x ≤ a → b if and only if x ∧ a ≤ b.

For the properties of relatively pseudocomplemented lattices, the reader is referred to [1, 12] and, in more details,in [5]. Since several constructions in these lattices will use an arbitrary infima, we assume that the lattice L is
complete. Hence, it has also a least and a greatest element and so it is a Heyting algebra. The fact that the lattice isrelatively pseudocomplemented will be expressed by notation L = (L;∨,∧,→), i.e., the relative pseudocomplementationis considered as a fundamental binary operation in L.Let us mention two well-known results on relatively pseudocomplemented lattices:

• Every relatively pseudocomplemented lattice is distributive.
• A complete lattice is relatively pseudocomplemented if and only if it is infinitely join-distributive, i.e., if it satisfies
a ∧

∨
{bi : i ∈ I} = ∨{a ∧ bi : i ∈ I}.

We are going to introduce tense operators on a complete relatively pseudocomplemented lattice. Since the logicalconnective implication in intuitionistic logic is algebraically axiomatized by means of relative pseudocomplement anddisjunction by the lattice operation join, we can apply the axiomatization for MV-algebras and modify it as follows.
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Definition 1.Let L = (L;∨,∧,→, 0, 1) be a bounded relatively pseudocomplemented lattice. Denote by x∗ = x → 0 (the so-calledpseudocomplement of x). Unary operators G,H on L are called tense operators if the following conditions hold:(1) G(1) = 1 and H(1) = 1,
(2) G(x → y) ≤ G(x)→ G(y) and H(x → y) ≤ H(x)→ H(y),
(3) G(x) ∨ G(y) ≤ G(x ∨ y) and H(x) ∨ H(y) ≤ H(x ∨ y),
(4) G(x ∧ y) = G(x) ∧ G(y) and H(x ∧ y) = H(x) ∧ H(y),
(5) x ≤ GP(x) and x ≤ HF (x), where P = H(x∗)∗ and F (x) = G(x∗)∗.
Remark 2.It is immediately clear that if x → y = x ′ ∨ y where x ′ is a complement of x in L, then L is a Boolean algebra and theaxioms of tense operators in Boolean algebra are satisfied. Hence, our definition can be considered as an extension oftense operators from the classical propositional calculus to the intuitionistic one.
Example 3.Let L = ({0, a, 1}, ∨, ∧,→) where 0 < a < 1 is a chain and hence → is defined as follows:

→ 0 a 10 1 1 1
a 0 1 11 0 a 1

Then we can put G(0) = G(a) = H(0) = H(a) = 0 and G(1) = H(1) = 1. It is an easy exercise to verify the axioms(1)–(5), thus G,H are tense operators on L.
Remark 4.Let L = (L;∨,∧,→) be an arbitrary relatively pseudocomplemented lattice. One can easily check that there exists twosorts of “extremal” tense operators:(a) G(1) = 1 = H(1) and G(x) = 0 = H(x) for each x 6= 1,
(b) G(x) = x and H(x) = x for each x ∈ L.
It is evident that this is an uninteresting case. A bit more interesting case can be given as follows:
Example 5.Consider a lattice L visualized in Figure 1.
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Then L is a relatively pseudocomplemented lattice which can be equipped with a couple of tense operators G,H whichare not “extremal” as follows:
x 0 a b c d x y z 1

G(x) 0 a 0 c y x y 0 1
H(x) 0 0 b y d 0 y z 1

Lemma 6.
Let G,H be tense operators on a relative pseudocomplemented bounded lattice L = (L;∨,∧,→, 0, 1). Let x∗ = x → 0,
P(x) = H(x∗)∗ and F (x) = G(x∗)∗. Then(i) x ≤ y implies G(x) ≤ G(y) and H(x) ≤ H(y),(ii) x ≤ y implies P(x) ≤ P(y) and F (x) ≤ F (y),(iii) x∗∗ ≥ FH(x∗∗) and x∗∗ ≥ PG(x∗∗).
Proof. The assertion (i) follows immediately by (4) since x ≤ y implies G(x) = G(x ∧ y) = G(x) ∧ G(y), thus
G(x) ≤ G(y); analogously for the operator H.To prove (ii), we know [5] that x ≤ y implies y∗ ≤ x∗ and x ≤ x∗∗. Then, using (i), we have H(x∗) ≥ H(y∗), thus
P(x) = H(x∗)∗ ≤ H(y∗)∗ = P(y). Analogously it can be shown for the operator F .To prove (iii), by (5) we obtain x∗ ≤ HF (x∗) = H(G(x∗∗)∗). Hence x∗∗ ≥ H(G(x∗∗)∗)∗ = PG(x∗∗). Analogously we canreach the second inequality.
It is a natural question if the tense operators G,H satisfy also the equality G(0) = 0 = H(0) which is dual to (1). Theanswer is as follows.
Lemma 7.
Let G,H be tense operators on a bounded relative pseudo-complemented lattice L = (L;∨,∧,→, 0, 1). Then G(0) = 0
if and only if G(x∗) ≤ G(x)∗ and H(0) = 0 if and only if H(x∗) ≤ H(x)∗.
Proof. Due to symmetry, we will prove the assertion only for the operator G. Assume G(0) = 0. Then G(x∗) =
G(x → 0) ≤ G(x) → G(0) = G(x) → 0 = G(x)∗. Conversely, if G(x∗) ≤ G(x)∗ then G(0) = G(x ∧ x∗) = G(x) ∧ G(x∗) ≤
G(x) ∧ G(x)∗ = 0.
Remark 8.The assumption G(0) = 0 = H(0) is very natural. Due to Lemma 7, it yields immediately F (x) = G(x∗)∗ ≥ G(x)∗∗ ≥ G(x)and, analogously, P(x) ≥ H(x). Since G and H are considered as general quantifiers and F and P as the correspondingexistential quantifiers, these relations are generally accepted in every logic.
In what follows, we will derive a procedure for finding tense operators in every complete relatively pseudocomplementedlattices. For this we need two lemmas which are well-known.
Lemma 9 ([13, (1.64)]).
Let L = (L;∨,∧,→) be a complete relatively pseudocomplemented lattice and a, bi ∈ L for i ∈ I. Then

a →
∧
{bi : i ∈ I} = ∧

{a → bi : i ∈ I}.
Lemma 10 ([12, (6), p. 136]).
Let L = (L;∨,∧,→) be a complete relatively pseudocomplemented lattice and ai, bi ∈ L for i ∈ I. Then∧

{ai : i ∈ I} →∧
{bi : i ∈ I} ≥ ∧

{ai → bi : i ∈ I}.
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By a frame (see e.g. [9] or [3, 6]) we mean a couple (T ,≤) where T is a non-empty set and ≤ is a quasiorder on T ,i.e., a reflexive and transitive binary relation on T . A frame (T ,≤) can be considered as a time scale, i.e., if r, s ∈ Tand r ≤ s then we say that r is “before” s and s is “after” r. Given an element t ∈ T , all s ≤ t form past tense andall r ≥ t form future in the time scale. Hence, having a relatively pseudocomplemented lattice L = (L;∨,∧,→) which isconsidered as an algebraic counterpart of intuitionistic logic, we can form a power structure LT . Then the time scalingby means of (T ,≤) enables us to define past or future of L and hence also of the true-values of formulas or propositionsfrom L. Thus we have in hand an algebraic tool evaluating what has been said in the introduction: for a formula f(x) of
L and t ∈ T , G(f(t)) is valid if for each s ≥ t the formula f(s) is valid in L. In other words, validity of G(f(t)) cannotexceed validity of f(s) for each s ≥ t. Similarly for H(f(t)) we take s ≤ t and formulas f(s) to express the validity inpast. The following theorem shows a general construction of such tense operators G,H which satisfy the needs givenabove.
Theorem 11.
Let L = (L;∨,∧,→) be a complete relatively pseudocomplemented lattice and (T ,≤) be a frame. For p ∈ LT we define
coordinatewise

G(p)(x) = ∧{p(y) : x ≤ y} and H(p)(x) = ∧{p(y) : y ≤ x}.
Then G,H are tense operators on LT such that G(0) = 0 = H(0).
Proof. It is plain to check the axiom (1). Due to the fact that L is a complete lattice and the operation of infimum isassociative, we get (4) immediately. By the use of the distributive inequality, one can easily check (3) as follows:

G(p ∨ q)(x) = ∧{p(y) ∨ q(y) : x ≤ y} ≥ (∧{p(y); x ≤ y}) ∨ (∧{q(y) : x ≤ y}) = G(p)(x) ∨ G(q)(x).
Analogously we can prove this condition for the operator H.Prove (2): G(p)(x)→G(q)(x) = (∧

{p(y) : x ≤ y}
)
→
(∧
{q(y) : x ≤ y}

)
≥
∧
{p(y)→q(y) : x ≤ y} = G(p→q)(x)directly by Lemma 10. Analogously it can be shown for H. It remains to prove (5). At first we mention that

P(p)(x) = H(p∗)∗(x) = (∧{p∗(y) : y ≤ x})∗
However, (∧{b∗i : i ∈ I})∗ ≥ b∗∗i ≥ bi thus

(∧
{b∗i : i ∈ I})∗ ≥∨{bi : i ∈ I}. (C)

Using (C) in the previous computation, we obtain
(∧
{p∗(y) : y ≤ x})∗ ≥ ∨{p(y) : y ≤ x} ≥ p(x).

Thus
GP(p)(x) = ∧{(∧

{p∗(y) : y ≤ x})∗ : x ≤ y} ≥ ∧{(∨
{p(y);y ≤ x}) : x ≤ y} ≥ p(x).

Analogously we can show HF (p)(x) ≥ p(x). Hence, G,H are tense operators on LT . It is almost evident that G(0) =0 = H(0).
Example 12.Let T = {1, 2}, 1 ≤ 2, 1 ≤ 1, 2 ≤ 2 and let L be the relatively pseudocomplemented three-element chain of Example 3,i.e., L = ({0, a, 1}, ∨, ∧,→). Consider the lattice LT which has just 9 elements and whose diagram is visualized inFigure 1. Then we have identified the elements as follows:
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0 a x b y c z d 1(0, 0) (0, a) (0, 1) (a, 0) (a, a) (a, 1) (1, 0) (1, a) (1, 1)
Since T = {1, 2}, we derive by Theorem 11:

G(p)(1) = p(1) ∧ p(2), G(p)(2) = p(2), H(p)(1) = p(1), H(p)(2) = p(1) ∧ p(2).
Then G,H are just the operators of Example 5 and we can visualize them as follows:
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Figure 2.

One can mention that the operator G which expresses future is really essentially influenced by t = 2, namely if x ∈ Lhas the second coordinate equal to 1, then G(x) = x. On the contrary, if the second coordinate is equal to 0 then
G(x) = 0. Dually we have it for the operator H where it is essentially influenced by the first coordinate (i.e. the pasttense). If the first coordinate of x equals 0 then H(x) = 0, if it equals 1 then H(x) = x. The whole table is as follows:

x (0, 0) (0, a) (0, 1) (a, 0) (a, a) (a, 1) (1, 0) (1, a) (1, 1)
G(x) (0, 0) (0, a) (0, 1) (0, 0) (a, a) (a, 1) (0, 0) (a, a) (1, 1)
H(x) (0, 0) (0, 0) (0, 0) (a, 0) (a, a) (a, a) (1, 0) (1, a) (1, 1)
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[1] Birkhoff G., Lattice Theory, Amer. Math. Soc. Colloq. Publ., 3rd ed., 25, American Mathematical Society, Providence,1967[2] Botur M., Chajda I., Halaš R., Kolařík M., Tense operators on basic algebras, Internat. J. Theoret. Phys. (in press),DOI: 10.1007/s10773-011-0748-4[3] Brouwer L.E.J., Intuitionism and formalism, Bull. Amer. Math. Soc., 1913, 20(2), 81–96[4] Burgess J.P., Basic tense logic, In: Handbook of Philosophical Logic II, Synthese Lib., 165, Reidel, Dordrecht, 1984,89–133[5] Chajda I., Halaš R., Kühr J., Semilattice Structures, Res. Exp. Math., 30, Heldermann, Lemgo, 2007[6] Chajda I., Kolařík M., Dynamic effect algebras, Math. Slovaca (in press)
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