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Abstract: The notion of a closed polynomial over a field of zero characteristic was introduced by Nowicki and Nagata. In
this paper we discuss possible ways to define an analog of this notion over fields of positive characteristic. We
are mostly interested in conditions of maximality of the algebra generated by a polynomial in a respective family of
rings. We also present a modification of the condition of integral closure and discuss a condition involving partial
derivatives.
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Introduction

If k is a field, then by k [x1, . . . , xn] we denote the k-algebra of polynomials in n variables. A polynomial
f ∈ k [x1, . . . , xn] \ k , where k is a field of zero characteristic, is called closed if the ring k [f ] is integrally closed in
k [x1, . . . , xn]. Nowicki [6, 7] proved that a polynomial f is closed if and only if k [f ] is a ring of constants of a k-derivation.The definition of a closed polynomial may be literally applied to the case of positive characteristic, but then we lose theconnection with rings of constants. We want to preserve this connection, and we ask about single generators of ringsof constants. If char k = p > 0, then such a ring is a k

[
xp1 , . . . , xp

n
]-algebra, so it is natural to consider the followingcondition:

”k[xp1 , . . . , xp
n , f
] is a ring of constants of a k-derivation”

for a polynomial f ∈ k [x1, . . . , xn] \ k
[
xp1 , . . . , xp

n
].

∗ E-mail: pjedrzej@mat.uni.torun.pl
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Nowicki and Nagata showed in [8] that for f ∈ k [x1, . . . , xn]\k , char k = 0, the ring k [f ] is integrally closed in k [x1, . . . , xn]if and only if it is a maximal element of the family {k [g] : g ∈ k [x1, . . . , xn]}. Ayad observed in [2] that this holds also inthe case of positive characteristic. We present in Proposition 3.1 a characterization of rings of constants of derivationsin terms of maximality in a suitable family of rings. In Proposition 3.2 we obtain implications between maximality ofrespective rings in the three families we consider; this shows how far it is from the integral closedness of k [f ].In Theorem 4.1 we present an analog of the condition of integral closedness for rings of constants in the positivecharacteristic case. In the last section we discuss the condition gcd ( ∂f
∂x1 , . . . , ∂f

∂xn

) = 1, which is too strong if char k = 0,but may be both sufficient and necessary if char k > 0.
1. Preliminaries

Let A be a ring. An additive map d : A → A is called a derivation, if d(fg) = d(f)g + d(g)f for every f, g ∈ A. The set
Ad = {f ∈ A : d(f) = 0}

is called a ring of constants of d. If A is a K-algebra, where K is a ring, and a derivation d : A → A is K-linear, then
d is called a K-derivation.If d : A → A is a derivation, then Ad is a subring of A. If A is a K-algebra and d is a K-derivation of A, then Ad is a
K-subalgebra of A. If A is a domain (that is, a commutative ring with unity, without zero divisors) of characteristic p > 0and d : A → A is a derivation, then Ap ⊂ Ad where Ap = {ap : a ∈ A}.If k is a field of characteristic p > 0 and d is a k-derivation of k [x1, . . . , xn], then k [x1, . . . , xn]d is a k

[
xp1 , . . . , xp

n
]-algebra.If, moreover, d(f) = 0 for some f ∈ k [x1, . . . , xn], then k

[
xp1 , . . . , xp

n , f
]
⊂ k [x1, . . . , xn]d.Note that, for an arbitrary polynomial f ∈ k [x1, . . . , xn], there exists the smallest (with respect to inclusion) ring ofconstants of a k-derivation, containing f . It is:

• the integral closure of the ring k [f ] in k [x1, . . . , xn], if char k = 0 ([7, Corollary 7.2.1], [8, Proposition 3.3]),• the ring k
(
xp1 , . . . , xp

n , f
)
∩ k [x1, . . . , xn], if char k = p > 0 [3].

The following theorem of Nowicki and Nagata explains why rings of constants of the form k [f ] are so important.
Theorem 1.1 ([7, 7.1.4, 7.1.5], [8, 2.8]).
If k is a field of zero characteristic, and d is a k-derivation of k [x1, . . . , xn] such that tr degk k [x1, . . . , xn]d 6 1, then
k [x1, . . . , xn]d = k [f ] for some f ∈ k [x1, . . . , xn].
In particular, if d is a nonzero k-derivation of k [x, y], then k [x, y]d = k [f ] for some f ∈ k [x, y].
The following theorem presents a variety of equivalent conditions defining a closed polynomial.
Theorem 1.2 ([1], [2], [6], [8]).
Let k be a field and let f ∈ k [x1, . . . , xn] \ k. Denote by k the algebraic closure of k. Consider the following conditions:(1) k [f ] is a ring of constants of some k-derivation of k [x1, . . . , xn];

(2) the ring k [f ] is integrally closed in k [x1, . . . , xn];
(3) the ring k [f ] is a maximal element (with respect to inclusion) of the family {k [g] : g ∈ k [x1, . . . , xn]};
(4) for some c ∈ k the polynomial f + c is irreducible over k;

(5) for all but finitely many c ∈ k the polynomial f + c is irreducible over k.
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We have:a) if char k = 0, then the conditions (1)–(5) are equivalent;b) if k is a perfect field, then the conditions (2)–(5) are equivalent;c) for an arbitrary field the conditions (2) and (3) are equivalent.

The equivalence of (1), (2) and (3) in the case of char k = 0 was proved by Nowicki and Nagata ([6, Theorem 2.1],[7, Proposition 5.2.1], [8, Lemma 3.1]). The condition (4) in the case of char k = 0 comes from Ayad [2, Théorème 8,Remarque] and is based on the theorem of Płoski in the case of k = C ([9], [10, 3.3, Corollary 1, p. 220]). Ayad observedthat the equivalence of conditions (2) and (3) holds also in the case of positive characteristic. The case of a perfect fieldwas considered by Arzhantsev and Petravchuk [1, Theorem 1].The above theorem gives the most natural way to define an analog of a closed polynomial in the case of positivecharacteristic. However, we will see in the next section that in this case there is no implication between the condition(3) and an analog of the condition (1) from Theorem 1.2.
2. Some examples

Consider the family of rings introduced in the condition (3) of Theorem 1.2:
A = {k [g] : g ∈ k [x1, . . . , xn]},

where k is a field of arbitrary characteristic. Note that the ring k [f ] is a maximal element of A if and only if thepolynomial f is non-composite, that is, it cannot be presented in the form f = w(g), where g ∈ k [x1, . . . , xn], and
w ∈ k [T ], deg w > 1.If we consider rings of constants of k-derivations in the case of char k = p > 0, then it is more natural to consider afamily

B = {k
[
xp1 , . . . , xp

n , g
] : g ∈ k [x1, . . . , xn]}.It is clear that the maximality of k [f ] in A does not imply, in general, the maximality of k

[
xp1 , . . . , xp

n , f
] in B .

Example 2.1.Let char k = p > 0. The ring k
[
xp1 x2] is a maximal element of A, but the ring k

[
xp1 , . . . , xp

n , xp1 x2] is not a maximalelement of B .
If xp1 x2 = w(g) for some polynomial w(T ) ∈ k [T ], then, comparing degrees with respect to x2, we obtain that 1 =deg w · degx2 g, so deg w = 1. On the other hand, k

[
xp1 , . . . , xp

n , xp1 x2] ⊂ k
[
xp1 , . . . , xp

n , x2] and k
[
xp1 , . . . , xp

n , xp1 x2] 6=
k
[
xp1 , . . . , xp

n , x2], because x2 6∈ k
[
xp1 , . . . , xp

n , xp1 x2].Observe that the maximality of k
[
xp1 , . . . , xp

n , f
] in B also does not imply, in general, the maximality of k [f ] in A.

Example 2.2.Let char k = p > 0. The ring k
[
xp1 , . . . , xp

n , x1 + xp1 ] = k
[
x1, xp2 , . . . , xp

n
] is a maximal element of B , but the ring k [x1 + xp1 ]is not a maximal element of A.

If k
[
x1, xp2 . . . , xp

n
]
⊂ k

[
xp1 , . . . , xp

n , g
] for some g ∈ k [x1, . . . , xn], then x1 = b0 + b1g + . . . + brgr , where b0, . . . , br ∈

k
[
xp1 , . . . , xp

n
] and r > 1 is minimal. Applying the partial derivative ∂

∂xi
we obtain 1 = (

b1 + . . . + rbrgr−1) ∂g
∂xi

, so
b1 + . . . + rbrgr−1 ∈ k . By the minimality of r we have r = 1 and b1 ∈ k , so k

[
xp1 , . . . , xp

n , g
] = k

[
x1, xp2 . . . , xp

n
]. Thering k

[
x1 + xp1 ] is not a maximal element of A, because k

[
x1 + xp1 ] ⊂ k [x1] and k

[
x1 + xp1 ] 6= k [x1].Note that the family B has too many maximal elements, not all of them are rings of constants of derivations.
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Example 2.3.Let char k = p > 0. If p > 2, then k
[
xp1 , . . . , xp

n , xp−11 x2] is a maximal element of B , and it is not a ring of constants ofany k-derivation of k [x1, . . . , xn].
Assume that k

[
xp1 , . . . , xp

n , xp−11 x2] ⊂ k
[
xp1 , . . . , xp

n , g
], where g ∈ k [x1, . . . , xn]. Then xp−11 x2 = w(g) for some polynomial

w(T ) ∈ K [T ], where K = k
[
xp1 , . . . , xp

n
]. Since gp ∈ K , we may assume that deg w < p. Taking the partial derivativeswith respect to x1 and x2 we obtain that −xp−21 x2 = w ′(g) · ∂g

∂x1 and xp−11 = w ′(g) · ∂g
∂x2 , so w ′(g) = cxi1, where c ∈ k \ {0}and 0 6 i 6 p − 2.Thus ∂g

∂x1 = − 1
c xp−2−i1 x2 and ∂g

∂x2 = 1
c xp−1−i1 , so − 1

c xp−2−i1 = ∂
∂x2
( ∂g

∂x1
) = ∂

∂x1
( ∂g

∂x2
) = (p− 1− i) 1

c xp−2−i1 . We see that i ≡ 0(mod p), so i = 0. Hence w ′(g) = c.Now, observe that the field extension k
(
xp1 , . . . , xp

n
)
⊂ k(x1, . . . , xn) is of degree pn, so the field extension k

(
xp1 , . . . , xp

n
)
⊂

k
(
xp1 , . . . , xp

n , g
) is of degree pr for some r ∈ {0, . . . , n}. Since g ∈ k

[
xp1 , . . . , xp

n
] and, by the assumption, g 6∈

k
[
xp1 , . . . , xp

n
], we see that r = 1. Thus the polynomials 1, g, . . . , gp−1 are linearly independent over k

(
xp1 , . . . , xp

n
). Thismeans that w ′(T ) = c, so w(T ) = c · T + b for some b ∈ k

[
xp1 , . . . , xp

n
]. Then xp−11 x2 = w(g) = cg + b, and we obtainthat k

[
xp1 , . . . , xp

n , xp−11 x2] = k
[
xp1 , . . . , xp

n , g
].Finally, suppose that the ring k

[
xp1 , . . . , xp

n , xp−11 x2] is the ring of constants of a k-derivation d of k [x1, . . . , xn]. Since
xp−11 x2 d

(
x1xp−12 ) = d

(
xp−11 x2x1xp−12 ) = d

(
xp1 xp2 ) = 0, we obtain that d

(
x1xp−12 ) = 0. On the other hand, x1xp−12 , as apolynomial of degree 1 with respect to x1, does not belong to k

[
xp1 , . . . , xp

n , xp−11 x2], since p − 1 > 1.
3. Rings of constants as maximal subalgebras

If we are interested in rings of constants of the form k
[
xp1 , . . . , xp

n , f
], then we should use another family of rings:

C = {R ⊂ k [x1, . . . , xn] : k
[
xp1 , . . . , xp

n
]
⊂ R,

(
R0 :k(xp1 , . . . , xp

n
)) = p

}
,

where R0 denotes the field of fractions of a domain R and (L :K ) denotes the degree of a field extension K ⊂ L.
Proposition 3.1.
A ring R ∈ C is a ring of constants of some k-derivation of k [x1, . . . , xn] if and only if it is a maximal element of C.

Proof. Recall from [3, Theorem 1.1] that a ring R ⊂ k [x1, . . . , xn] is a ring of constants of some k-derivation of
k [x1, . . . , xn] if and only if k

[
xp1 , . . . , xp

n
]
⊂ R and R0 ∩ k [x1, . . . , xn] = R .Assume that a ring R ∈ C is a ring of constants of some k-derivation and consider a ring T ∈ C such that R ⊂ T .We have R0 ⊂ T0 and (R0 : k

(
xp1 , . . . , xp

n
)) = (

T0 : k
(
xp1 , . . . , xp

n
)) = p, so R0 = T0. Hence T ⊂ T0 ∩ k [x1, . . . , xn] =

R0 ∩ k [x1, . . . , xn] = R , by the assumption on R .Assume that a ring R is a maximal element of C. Let R ′ = R0 ∩ k [x1, . . . , xn]. Observe that R ⊂ R ′ and R0 = (R ′)0, so
R ′ ∈ C. Thus R = R ′, that is, R is a ring of constants of some k-derivation.
We see that the ring from Example 2.3 is maximal in B , and is not maximal in C. Observe also that we can correctExample 2.2 in the following way. If we replace x1 + xp1 by x1, then we do not change the ring k

[
xp1 , . . . , xp

n , f
] beingmaximal in B , and the ring k [f ] becomes maximal in A. This leads us to introduce the condition (1) in Proposition 3.2.We obtain the following relations between maximality of respective subalgebras in the three given families.

Proposition 3.2.
Let char k = p > 0, f ∈ k [x1, . . . , xn]. Consider the following conditions:(0) k [f ] is a maximal element of A;
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(1) k [f + h] is a maximal element of A for some h ∈ k
[
xp1 , . . . , xp

n
]
;

(2) k
[
xp1 , . . . , xp

n , f
]

is a maximal element of B;

(3) k
[
xp1 , . . . , xp

n , f
]

is a maximal element of C.

Then the following implications hold: (3) ⇒ (2) ⇒ (1)
⇑(0).

Proof. The implication (3)⇒(2) follows from the inclusion B ⊂ C∪{k
[
xp1 , . . . , xp

n
]}. The implication (0)⇒(1) is obvious.We will prove the implication (2)⇒(1).Assume that k

[
xp1 , . . . , xp

n , f
] is a maximal element of B .Observe that, if k [g1] $ k [g2] for some g1, g2 ∈ k [x1, . . . , xn] \ k , then deg g1 > deg g2, so each increasing chain (withrespect to inclusion) in A is finite. This yields that every non-empty subfamily of A has a maximal element. Take

h0 ∈ k
[
xp1 , . . . , xp

n
] such that k [f + h0] is a maximal element of the subfamily {k [f + h] : h ∈ k

[
xp1 , . . . , xp

n
]} of A.Consider a polynomial g ∈ k [x1, . . . , xn] such that k [f + h0] ⊂ k [g]. Then f + h0 ∈ k [g], so f ∈ k

[
xp1 , . . . , xp

n , g
] and

k
[
xp1 , . . . , xp

n , f
]
⊂ k

[
xp1 , . . . , xp

n , g
]. Therefore k

[
xp1 , . . . , xp

n , f
] = k

[
xp1 , . . . , xp

n , g
], by the maximality of k

[
xp1 , . . . , xp

n , f
]

in B , so f − ag ∈ k
[
xp1 , . . . , xp

n
] for some a ∈ k \ {0}, by [3, Proposition 2.7]. This means that ag = f + h1 for some

h1 ∈ k
[
xp1 , . . . , xp

n
], and then k [g] = k [f + h1]. By the choice of h0, the inclusion k [f + h0] ⊂ k [f + h1] implies the equality

k [f + h0] = k [f + h1], that is, k [f + h0] = k [g]. Hence k [f + h0] is a maximal element of A.
As we have just observed, the reverse implications, in general, do not hold.Recall that in case of positive characteristic, k [f ] is maximal in A if and only if k [f ] is integrally closed in k [x1, . . . , xn](Theorem 1.2). So if the definition of a closed polynomial is literally applied in the case of positive characteristic, fromthe propositions above it follows that the connection between integral closedness and the rings of constants is no longervalid. Note that the condition (0) is, in general, independent of the conditions (2) and (3). Example 2.1 shows that itdoes not imply (2), and Example 2.2 shows that it is not implied by (3).
4. Another conditions

When considering rings of constants of derivations of the form k
[
xp1 , . . . , xp

n , f
], it is natural to ask about integralclosedness. However, if n > 1, then this ring is not integrally closed in k [x1, . . . , xn], because for a polynomial g ∈

k [x1, . . . , xn] \ k
[
xp1 , . . . , xp

n , f
] we have gp ∈ k

[
xp1 , . . . , xp

n , f
]. Nevertheless, we can modify the condition of integralclosedness.

Theorem 4.1.
Let A be a domain of characteristic p > 0 and let B be a subring of A, containing Ap, and such that A is finitely
generated as a B-algebra. Let R be a subring of A such that B ⊂ R. The following conditions are equivalent:(1) the ring R is a ring of constants of some B-derivation of A,

(2) for every g ∈ A and a0, a1, . . . , ap−1 ∈ R, such that ai 6= 0 for some i, if ap−1gp−1 + . . . + a1g + a0 = 0, then
g ∈ R,

(3) for every a ∈ R \ {0}, b ∈ R, and g ∈ A, if ag + b = 0, then g ∈ R,

(4) for every a ∈ B \ {0}, b ∈ R, and g ∈ A, if ag + b = 0, then g ∈ R.
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Proof. First, note that the condition (3) means that R0 ∩ A = R .(1)⇔(3) We have already assumed that B ⊂ R , so the ring R is a ring of constants of some B-derivation of A if and onlyif R0 ∩ A = R ([4, Theorem 2.5] – a generalization of [3, Theorem 1.1]).The implications (2)⇒(3) and (3)⇒(4) are obvious.(3)⇒(2) Assume that R0 ∩ A = R . Consider g ∈ A and a0, a1, . . . , ap−1 ∈ R , such that ai 6= 0 for some i and
ap−1gp−1 + . . . + a1g + a0 = 0.

The elements 1, g, . . . , gp−1 are linearly dependent over R0, but the field extension R0 ⊂ R0(g) is purely inseparable, so
g ∈ R0 (see [5, Lemma 1.1] for details), that is, g ∈ R .(4)⇒(3) Assume that the condition (4) holds and consider a ∈ R \ {0}, b ∈ R , and g ∈ A such that ag + b = 0. Wehave apg + ap−1b = 0 and ap ∈ B \ {0}, so, by the assumption, g ∈ R .
The condition (2) is a good analog of integral closedness for subrings R ⊂ A such that Ap ⊂ R . On the other hand,however, we see that it reduces to a quite simple form (4).Note that, in the case of zero characteristic, some conditions involving partial derivatives imply that the polynomial isclosed. The following proposition was proved by Ayad in [2, Proposition 14], in the case of two variables, but his proofmay be easily generalized to the case of n variables.
Proposition 4.2 (Ayad).
If char k = 0, f ∈ k [x1, . . . , xn] \ k and gcd( ∂f

∂x1 , . . . , ∂f
∂xn

) = 1,

then the ring k [f ] is integrally closed in k [x1, . . . , xn].
There is no reverse implication in the proposition above, in general.
Example 4.3.Let char k = 0, n > 2. Put f = xr1xs2 ∈ k [x1, . . . , xn], where r, s > 1, gcd (r, s) = 1 and (r, s) 6= (1, 1). Then f is a closedpolynomial, but gcd ( ∂f

∂x1 , . . . , ∂f
∂xn

)
6= 1.

Consider the k-derivation d = sx1 ∂
∂x1 − rx2 ∂

∂x2 . Observe that d(xi1xj2) = (si − rj) xi1xj2 for every i, j , so k [x1, . . . , xn]dis k-linearly spanned by monomials xi1xj2 such that si − rj = 0, so k [x1, . . . , xn]d = k
[
xr1xs2]. On the other hand,gcd ( ∂f

∂x1 , . . . , ∂f
∂xn

) = xr−11 xs−12 .In the case of positive characteristic we have the following [5, Theorem 2.3].
Proposition 4.4.
If char k = p > 0, f ∈ k [x1, . . . , xn] \ k

[
xp1 , . . . , xp

n
]

and gcd ( ∂f
∂x1 , . . . , ∂f

∂xn

) = 1, then k
[
xp1 , . . . , xp

n , f
]

is a ring of constants
of some k-derivation of k [x1, . . . , xn].
In contrary to the case of zero characteristic, the condition

gcd( ∂f
∂x1 , . . . , ∂f

∂xn

) = 1
is of use here. In some special cases (see [5] for details) there is equivalence in the proposition above, perhaps it holdsfor an arbitrary f .
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