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1. Introduction

A group is called (2,3)-generated if it can be generated by an involution and an element of order 3. For instance,
PSL;,(Z) is generated by the projective images of the matrices

01 0-1
10 | 1 -1
of (projective) order 2 and 3, respectively. Moreover, it is well known that PSL,(Z) is isomorphic to the free product of

the cyclic group of order 2 and the cyclic group of order 3. Thus, the problem of (2, 3)-generation is closely related to
the problem of description of the normal subgroups of PSL,(Z).

L. Di Martino and N. Vavilov conjectured in [1, 2] that, for any finitely generated commutative ring R, elementary
Chevalley groups over R are (2, 3)-generated provided their rank is large enough. For classical matrix groups over finite
fields this conjecture was settled affirmatively in [4]. For matrix groups over other finitely generated rings see e.g. [8, 9]
The latter results are only asymptotic, i.e., they do not give the answer for low-dimensional groups. However, for certain
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series of groups and certain rings the problem can be solved completely. For instance, joint efforts of several authors
[6, 7, 11-14] led to the discovery that the groups SL,(Z) and GL,(Z) are (2,3)-generated precisely when n > 5.

It turns out that the problem for the symplectic groups Sp,,(Z) is more delicate than for SL,(Z), because all general
results in the symplectic case either required invertibility of 2 in the ring under consideration [6] or dealt only with
groups over finite fields [5]. Moreover, these methods cannot be directly transferred to Sp,,(Z). The evidence arising
from the solution of a similar problem for SL,(Z) shows that low-dimensional cases require a separate treatment.

We began a systematic study of the (2, 3)-generation problem for Sp,,(Z) in [10], where the cases n < 4 were considered.
We also conjectured that Sp,,(Z) is (2, 3)-generated precisely when n > 4. In the present paper we make the next step
and give the affirmative answer for Sp;y(Z). Our methods are similar to those developed in [10], but even a subtle
increase of the dimension led to a significant growth of computational efforts. It might be rather difficult to proceed in
the same manner for larger values of n.

2. Main result and notation

Let /, be the n x n identity matrix. Recall that up to conjugation

Spon(Z) = {g € GL2(Z) : g"Jg = J},

0 1/
N
Theorem 2.1.
The group Sp,,(Z) is (2, 3)-generated. More precisely, define

where

Our main result is the following theorem.

110 01 0-2 1 1 3 2-2 1-1-3-3 2-5 6 3
0 00 1 0 2 0 3-3 1 -2 5-3-4 3 2-7 0-1 1
011 0-2-1-3 0 1 3 3 3-2-1 2 5 0 5-1 3
0-20 0 01 3-1 0-2 -1 0 0 21 11 1-4-73
N 0 00-1-1-3-1-3 2 0 _ 1T 1-1 1 2 3 1 3-3-=-2
~]10 00 0 01 00O Of" y= 1-1 1 3 0 2 2 3-3-1
0 001 01 0 1-20 -3 5-3-4 4 2-6 1-2-1
0 00 0 00O 1T 0O 2-3 2 3-3-1 3-1 1 1
0-10 0 0 0 1 0 0-1 3-4 3 7-3 1 4 1-3-1
0 00 0 01 0-2 0-1 -2 4-3-3 5 3-3 2-3-3

Then x* = y* = g and Spo(Z) = {x, y).

Remark 2.2.

The method of finding x and y is similar to that used in [10]. The starting point is a pair of parametric matrices

0010 I’10000 r3 1000 ry f90f110I’13

0001 0000 ry 0100 rg rip0 r120 ryy

1000—-r; 0000 —r5 0000-1 00 00 O

0100—-r,0000 —r4 0000 0-10 00 O

| 0000 10000 O ~10010-1 00 00 O

*=10000 00100 | Y97 ]|0001 0-10 00 0

0000 01000 —rs 0000 0 00-10 O

0000 00001 rg 0000 0 01-10 O

0000 00010 —rg 0000 0 00 00-1

0000 00000 1 0000 0 00 011
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of order 2 and 3, respectively. Next we try to find ry,..., r4 such that xo, yo fix some skew-symmetric form Jy, which
remains non-degenerate modulo any prime p. This assumption implies certain relations between ry, ..., ri4, which allow
to reduce the search area. For instance, the following parameters will suit us:

n=n=m==1,n=1n=-4r5=3r==2r=ro=m=2rg=rn=rp=0, rn3=4

Finally, we find an invertible integral matrix Z such that Jo = Z7/Z and set x = ZxoZ~", y = ZyoZ~". In our case

05 0 40 3 2 0-1 O
00 1-21 2—-4 2-1 1
2 81 70 5 5 1 2 1
-1-5-1-40-3-3-1-1-2
7= 0 0-2 10-2 2-3 1-2
Tt 1110 1 1 1 10
0-2 0-31-1-3 0 0 1
01 010 1 1 0 0-1
0 0 0 00 1 0 0 0-3
0-2-1-10-3 0-2 1 O

We omit further computational details.

The claim about the orders of x and y is trivial. It is also straightforward to verify that (x,y) C Sp,o(Z). To prove the
converse inclusion we use the well-known fact (e.g. see Theorem 5.3.4 in [3]) that Sp,, (Z) coincides with the elementary
symplectic group ESp,,(Z). Recall the definition of ESp,,(Z). For 1 < i,j < 2n, let e;; be the 2n x 2n matrix with 1 in
the ith row and jth column and zeros elsewhere. Define

/n+k i'n+ ji+n 1S<£ ’
Pi,j(k) _ 2 (e Jt+ e],+ ) l / n
/2n+k'ei,i+n 1Sl:j§n,
In+k' in'+ j+n,i 1S<£ ’
0, (k) = 2 (€itn,j + €jni) l l n
b + k- €itn,i 1<i=j<n,
Rij(k) = by + k- (€1j — €j4n,isn) 1<i#j<n

Notice that, for k € Z,
Pij(k) = (Pij(1)", Q:j(k) = (Qi;(1)", Rij(k) = (Ri;(1)".

Following [3, Chapter 5] we define ESp,,(Z) as the group generated by the matrices P; (1), Q;;(1), 1 <i < j < n, and

Thus, to prove the inclusion ESp,o(Z) C (x, y) it is enough to show that P;;(1), Q;;(1), Ri;(1) € (x,y). We split the proof
into several steps, which are presented in the next section. In the proof we construct a sequence of matrices in (x, y).
In order to assist the reader and make the construction more transparent we use the following notation:

e A; are upper block-triangular matrices in (x, y) of the shape

5L\
i "

e B; are lower block-triangular matrices in (x, y) of the shape

50
)
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e C; are upper block-triangular matrices in (x, y) of the shape

KL

oM/’ G

where K, L and M are 5 x 5 matrices;
e D; are block-diagonal matrices in (x, y) of the shape

K 0

0 (k1) | 4)

where K is a 5 x 5 matrix and T denotes the transpose of a matrix;

e g; are auxiliary matrices from (x, y) with no prescribed shape.

3. Detailed proofs

To assist the reader in verifying the proof, the corresponding Magma file is also available as a supplementary information
to the article.

Lemma 3.1.
We have Py1(4) € (x,y) and P1,;(2), Ri:(2) € (x,y) for2 < i <5.

Proof. First of all, let us define

g1 =y (xy) (xy?)",

g2 = (xy) (xy?) (xy)’,
g3 = y (xy?) xy (xyxy?)
G = ((xgxy2)3g1)4.

2

Now we can construct first matrices of shape (1):

Ar = (47 g2yx) " Gy~ gayx - g5 G g3 = Pra(4) Pi3(2) Pis(2),
Az = (97" Cigax)’ = Pra(—4) Pis(—4),

As = xAiAxA = Py 5(—4),

Ay = AAT = Pyy(4).

This gives the first inclusion stated in the lemma. Let us set

g4 = (X92)3r

g5 = xyxy’x,

g6 = y (xy?) (x9) (xy?) "xy (xy?)’x,
g7 = (xyxy?)* (xy?)’x,

gs = (xg?) ((xy)*xyxy (xy?)’)’.
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Using these matrices and Ay, ..., A; we can find more matrices of the desired shape (1):

As = g5' Cigs - gaxCixgy ' - ASAT = Pio(4),

As = (xg5"Cigs)* - (gsxgi") ™ Cigsxgr - (g3xgs) T G gixga - Ay = P 4(4),
Ar = (95194X)_1A195194X g5 ' Ar1ge - AT AT AT A As = Pis(2),

As = AyAAT = Pis(2),

Ag = (92xga) ' Asgaxga - Ay Ag% = Pi2(2).

We have already proved that P;3(2), P13(2), P15(2) € (x,y). Before proving that P;4(2) belongs to (x,y) we have to
construct a few block-diagonal matrices of shape (4). Let us consider

Di = (xAe)* AT AT AJAS? = Rip(—4),

Dy = xDix - APATALAG = Ria(—4),

Ds = g5'Dy" g7 - DAATEARAS = R 5(8),

Di = g5' Cigs - DDA ALAS A AS® = R 4(2),
Ds = g;' G g4 - DA A5 A AGAg = Rys(—4).

In particular, we have just shown the inclusion Ry 4(2) € (x, y). Finally, let us set

6 2
90 = (xy?) (xy)xy’xy (xy?)",
G= (95194X92X94)_1A895194X92X94 - DaDF?APAG AT AT = Pra2) Ris(2).

Now we are able to complete the proof by constructing the following matrices:

Ds = (g2xg4)"' Cogaxga - Ay AAG °AT° = Ri5(2),

Ao GDg' = Pi4(2),

D; = g5' G g - DIAPAIATTASA = Rio(2),

Ds = (97'91xg2xg1) " Aog3 ' gaxgoxgy - D" DA AIRAT AT ALy = Ri5(2). O

Let us define two subsets of Z'°:

U1 ={U=(U1,...,U10)TZU6=U7=...=U10=0},
UQI{U:(U1,...,U‘|0)T3U1ZUZI...=U5:O}.

Remark 3.2.
Clearly, ho + uv™/ 4+ vu'J has shape (1) if u,v € U; and has shape (2) if u,v € U,.

Lemma 3.3.
We have P ,(2), Pij(2) € (x,y), where 2 < i < j <5.

Proof. First, we explain further constructions that are used in the proof of the lemma. Let u,v be two integral
column-vectors orthogonal with respect to J, i.e,, v/ Ju = 0. A direct computation shows that

S=ho+uv'/+vu'] € Sp,y(Z). (6)
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If we take
=(1,0,0,0,0,0,0,0,0,0)" 7)

and
vV = ((Uzbz + G3b3 + (14b4 + G5b5)/2, bz, b3, b4, b5, 0, —ay, —adsz, —aa, —G5)T, (8)

where all coefficients a; and b; are even, then we can write S as

5 5
S= DR1,,-(a,-) : E|P1_,-(b,-). (9)

In other words, since a3, as, as, as, by, bs, bs, bs are assumed to be even, S can be written as a product of suitable
powers of D;, Dg, D4, Ds, Ag, As, Aro, and A;. Hence, such S belongs to (x,y) by Lemma 3.1. Assume further that
g € {x,y) and g7'u, g7"v belong to U;. Then g~'Sg € (x,y) and

. . 1T - 1 \T _ 4T _ 4 \T
97'Sg =ho+(g7'u)(97'v) g"Jg +(g7'V)(g7"u) g"Jg = ho+ (g"u)(g7'V) S+ (g7'V) (g "u) J
has shape (1) by the remark preceding the statement of the lemma. Moreover, the above conditions on v guarantee that
g~ 'Sg belongs to (P;;(4), P;(2): 1 <i<j<5).
Let us describe the strategy which is used in further computations.

1. We search for g € (x, y) such that the last five entries in the first column of g~' vanish (this is equivalent to the
condition g~'u € U, where u is given by (7).

2. We find v of the form (8) such that g~'v € U, and find the corresponding decomposition (9) for S. After that we
evaluate g~'Sg.

3. Finally, to simplify the subsequent calculations we multiply g~'Sg by suitable powers of
P‘|,1 (4), P1'2(2), ey P‘|5(2) S <X, y)

(i.e., respectively by powers of A4, Ag, Ag, A1, A7 defined in the proof of Lemma 3.1) and obtain matrices from

Now we present the results of computation based on the above strategy. Let

g10 = 47 ((xy) xy?) *xy (xy?) xyxy?,

gn = y?((xy?) xy (xy?)") xyxyx,

g2 = y*(xy?) "xy (xy?) "xy (xy?) xyxy’x,

g1 = yxy? ((xy)°xy?(xy)’)”,

g1a = yxyPxyxy® (xy (xg?)’)*((x0?) xy) xyxy?,

g1s = y (xy?) (xy) (xy?) xyxy?(xy) (xy?) (xy) xy ey,
g16 = (xy?) xyxy?xy (xy?) xy (xy?)'x,

g
g

7 = yPxy?(xy)? (xy?) xy (xg?) xyxy’xy (xg?)’xy (xg?)’,

s = (xy?) xy (xy?) " (xyxy?) xy? (xy) (xy?) xyxg? (xg)? (xy?) () (xyxy ) (xg?) xyx,
g1a = y?((x0?) xy) "xyPxy (xg?)° (xy?xy) xy (xy?) xy (xyxy?) xyx,

g20 = yPxyxy? (xy) *xy? (xyPxy’xy (xy?) xyx,

g2 = (xy?) xy (xy?)” (xy (x4?)°) xyxy(xy)xy?ry (xy?)x,

920 = xy?(xy)? (xy?) () xy? (xy?xy) .

N
=}

N

N
[\]
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All these matrices as well as gi5g2xg4 and g11g2xg4 satisfy the condition g~'u € U;. Using the idea described at the
beginning of the proof we can find 15 upper-block triangular matrices Ay, ..., Axs € (x,y) N {Pi;(4), Pi;(2) : 2 < i <

j< 5>:
An = gid DPASATT AP A3 g 10 - AT AZATOB AT AL,
Az = g1 DIAZAAT At g - AL AZARR AR AL
Ais = g7, D‘5A7A8 RANA G ASAS AT AT ALY
Any = g3 DB AR AP ATRAS g . AZTST ATS AIOTS9 A35T1 75577
A5 = g D7A7A§A9 YA gia - APAPAG AT A,
Ats = g3 DIAAGAT Arg g1s - APAPAGT AT AL®,
Ay = g1 Dy A AT Al g - AL ABAS867 75288 4284
A = (91692x94) " D7 P A AT A gr6gaxga - ALY ASART AT A,
Ao = (g1192x94) " DIAAGAT ALG g1 gaxga - AP ATAT 2 AGPAT,
Ay = g7 Dy M ASAIAB AL g1y - ANTBO A 18 A7 A28 72343,
Ant = g D2ALALASA D grs - ATBAT AT B AT AT,
An = g AT AT Avogio - AT ATP AT 10 AT AR,
Axy = g3 D7 AT AZAGAY 90 - AiAsAGAY
A = g5 D5 A A BAGOA g1 - A AT BAIB ANALZS
Avs = g5 DY AV AS AS A8 g,y - A7 170 AT 398 A 989 4134 4530
The matrices Aqq, ..., Ass can be written in the following way:

Ai=/10+k1(i)627+k2[(6‘23+937)+k3i(6‘29+647)+ki(6210+€‘57)+k[e33
+/< (939+€48)+/< (6’310+6‘58)+k( 6’49+/< (6'410+6‘59)+k1(06'510

For reader’s convenience, we present the values of the coefficients k}i) in Table 1.

Table 1. The coefficients k}”

W
" —340| —738| 350| —2| —1592 758 —4| -—-360 2 0
12 4 0 10| —4 —-36 42| —12 —24 4 0

13 152 448| —182|—-10 1320| —-538| —30 212 101 0
14| —11136|—33500(11148| —30| —100776| 33536 —90|—11160 300 O
15 -32 —52 18| —-22 —-24 10| —22 —4 8|—-12
16| —=276] —434 82| —88 —680| 128|—138 —24 261—28

17| —520| —1566| 512| 16| —4716| 1542 48| -504| —-16| O
18| —508| —1562| 538|—16| —4800| 1652 —48| —568 16| 0
19 -20 —64 14| 4 —204 46| 12 -8 -4/ 0
20 0 —56 56| 0| —4524| 4576| 36| —4628| —-36| O
21 20 30 =10 10 40 —101 10 0 0] O
22 32 96| —64| 40 288 —192| 120 1200 —76| 48
23 0 8 0 O 20 -2 0 0 0 O
24 0 34 0]—-34 236 —26|-—144 0 26| 52

25 92 732| —404| 274 5472|—2964| 2004 1596|—1078| 728
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Clearly, the matrices Ayy, ..., A commute pairwise. It turns out that we can express P;;(4), P;j(2), 2 < i< j <5, as
certain products of their powers:

AZﬁ — A11 A1623AT3539A?;|‘A1752990A$24A177‘|062A%64A179‘|30A£07A;12758A£2441 A23771 2A£4410A§(5) — PZ,Z (4)'

A27 — A1_1223A1_21296A1_3439A$L7}3A1:;44A1_6754A1_72481 A1_83281 A1_9115A;8A2_14816A328Ag§26A;ZGA5545 — P2,3(2)r

A28 — A1_1193A1_2544A1_3422A;‘?‘OA1_5526A?gA1_76663A1_82402A1_92032AEOA%?06A§S5A‘2‘;26A2_481 8A§g — P2,4(2),

o = A AR AL A A AP AL A AP ARG AP = Post)

A30 — Aﬂ165A1721434A173605A$§7A175564A176147A1774236A1781 920A179842A20A271‘|107A;36A5302A274423A%5 — P3’3(4),

A31 — A1—1288A1—21498A1—31 044A;¥§4A1—51 500/41_6523/41_751 65A1_83976A1_91498A;3A2_17035A;(2)1 A2—31052A2—4413A2—522 — P3,4(2)'
A32 _ Aﬂ156A172858A}29A1;4‘4A%gﬁBA;ﬁ755A;74O2A1782403A?9604A}8A2712281 Ag%9A§g75Agg3A£549 _ P3,5(2),

s = AP AL A PASAS A A A AR ARA AL AL A AT = Puald)

A34 — Aﬂ193A1721167A1739‘|9A$§2A175201GAT6287A1773592A1782583A1791O75ASOA;16106A£294A;33519A£4379A£5‘I1 — P4'5(2),

_ A—45 A321 2570 A28 23182 A—439 4713 A—1022 7116 A10 41505 4494 28278 4462 A—30 __
Ass = A AR ATARAG A Aiz A Arg AwAar A AT Ay Ay = Pss(4).

To complete the proof of Lemma 3.3 it remains to show that P;;(2) € (x,y) for 1 < i < 5. For this purpose let us define
the following matrices:
2\2
923 = yxy ((xy)* (xy*)°)",
3 2
g2 = (xyxy®) (xy)? (xyxy®) (xy) xy* (xy)’x,
213
gxs = (XUXH ) )
2
G = (xy)’ (xyxy?)",

and set

Ass = (C3924)' A5 A AG A A AP Ass = P11 (2) Paa(2),

Az = Asg (G323 AAT AR AR Arg ° Ads A% Are AsgAsy As P ARATAL P A5 = P2:(2) Ps5(2),

CAN2 2D A A A2 A2 A

Asg = (A379251) Ag 2Ag1Azﬁ‘)1Az72A302A351 =Pi1(2),

As = (Asgn ) A7 A7 AoAT AL AL AT A AT = Pss(2),

A = A Ase = Py4(2),

Ay = Ay Ay = P2y(2),

Ap = (92xgaAy) AP ACAL AL AR AR = Pss(2).
The last five entries complete the proof. O
Lemma 3.4.

We have Ry (1), Ps5(1), Pr;(1) € (x,y) for2 < i <5 1<j<5.

Proof. Let us define
926 = y (xg)* (xuxy?)’ (xy)* (xyxy?)’,
927 = y (xy’xyxy?)’xy (xyxy?)’,
g = (Xy)z(XyZ)Z(XyXyZ)Z(XyZ)%('
g20 = (xyxy?) (xy)? (xy?)* (xuxy?) *xyPxy (xyxy?)’,
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and consider

= (Anga yxy’gs) " AsAuAs! A, = Ris(2),
Dio = (g26A%) A3 A A% A" = Rya(2),
Dy = (A31X)72A27A31A§21A222 = R32(2),
Di» = (Angs' g3 ) DoAn AZPA AL, = Rya(2),
Dys = (gzxg4C1)2D2D2 Cr AR A AR AS AL AT AR ALPAD = Ry 4(—4),
Dy = (A27927 ) A272A%8A oAr = Roa(2) Ros(2),
Dis = g3 Diagas - D5 ° Dy Dyl Dyt A7 2 Ag® AP ARG AS ASe Mg A A5 A ARAR = Ro5(2).

Finally, we can obtain the following matrices:

2 2 2 15
Gy = (yxy’xy (xy®)"(xy)* (xy®) " (xy)’ (xyxy®)°x) ~,
G = CiDZD3 D3 DA AP AT A A Agg A A ° Ay A AR AR AT AL

The advantage of C4 and Gs is that they have shape (3) and some of their non-diagonal entries are odd. Moreover, Gs
will help us to construct the first matrix of shape (1) with the block L containing only ones and zeros, namely

SV =2 1 e ] A2 AT A _ _ _ 6 A5 A—8 A
Az = (92X94C5 1) D61D91D151 A ZAS 7A9 6A?oAy1 zAgg/4294/49/“328/4%4/‘\:«:86/4405/4418/44221
Now let us set

= (93_196) A4393 g6 - D3y D12D14 D35 AGASAL Ay AP Al Ay = Rai(—1) Poa(1) Paa(1),
G = (9595"'xg5 ) Co92593'xg5" - D3D7 D AGAL AT AL AL = R31(1) Rsa(1) Raa(1) P33(1) P3s(1),
Co = (92093") " Coga0g3 " - Dy *DioDi D}, AT A A ALAY = Raa(1) Rs(1) P s(1) Pas(1) Pss(—1),
Co = (92095") " Cogaogs" - D3° D} D AZ AT ALAT = Ryo(1) Rys(1) Pas(1) Psa(l),
Cio = (9792) " Cogr92 - DaD7 DAY An AR AT = Rsa(1) R (1) Ras1) Pas(1),
G = (93_1926)71 Co95" 926 - D3 D3 Dy Dy AGAS, AP ALY ALY = Rso(1) Ra(1) Ras(1) Paa(1),
Ci2 = (92795") ' Gogrg3" - D3 DDA ALAT AT ALAZ = Ry1(1) Rs2(1) Rsa(1) Ras(1) Pas(1) Pas(—1) Pas(1).

Using them we are now able to prove some of the statements of the lemma. Namely, take

Ay = C7C§1 C10C1E1A8A27A§12 = Pi3(1),

A = GGy ' GG Ay = P35(1),

Ass = (2¥94) ' Augaxgs - Ag Al = Pio(1),

Ay = (92xg5x) " Augaxgsx - Dy D' A AT ASGA Ay = Pis(1).

Futhermore, let us consider
g3 = (x¢?) (xy)? (x0?) "xy (xg?) (xy)’x

gz = ((Xyz)zxy)z(xy)zr
93 = y (xy?) (xg)* (xy?) xyxy?.
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Now we finish the proof by constructing the following matrices:

Dis = (9594) ' Awgsgs - AvAg Ay = Ria(1),

A = (92xg31) " Augaxgs - 93 Ay 930 - DD DRAG AR AL AR A = Pra(1),

D7 = g3/ Di6gx - Dg ' D305 Dig ' Ag Ay AS AL AL = Rus(1),

Dig = (g3‘11g4xgzxg4)71A47g§11g4xngg4 : D6D§D156D1_71A§;5A4111AZ73A289 = Rio(1),

A = (g5 gax) " Augs! gax - DEDis Dy A7 2 AdAi] ARAY = Py (1),

Dig = g3 Disgso - D3Dis D7 Dig ' AjiAigA " Aig ALy’ = Ri5(1). O

Lemma 3.5.
We have P;j(1) € (x,y) for2<i < j<5.

Proof. We arque as at the beginning of the proof of Lemma 3.3, but now we consider v € (%Z)10 of shape (8) with
a;, b; € Z, i.e. without any assumptions on their parity (taking u as in (7) we always have that uv'/ + vu™/ is an
integral matrix). Again, the matrix S defined by (6) can be represented in the form (9), where now the product is in
(x,y) by Lemma 3.4. In other words, S is a product of suitable powers of Dig, D1g, D16, D17, Asg, Asa, Asag, and Asz. Set

93 = y>xg?(xy) (xy?) xuxg? () (xy?) (xyxy?)’ (xy?) ()t (xy?) *x,
g3 = xy ((xg)xy?)* (xy)’ (xy?)°x.

It is easy to check that the last five entries in the first column of g3, g3/ as well as (g15g2xg4)~" vanish. Recall that
the same property holds for g77,...,g5, constructed in the proof of Lemma 3.3. Hence, for these matrices g we have
g 'u € U;. Finding suitable vectors v and reasoning in the same way as in the proof of Lemma 3.3, we define the
following matrices:

s = G5 DA AR A g o - AT A A
Ast = g7 Df;AL;ZZAZg ZAZWAZQ °g1 -A;492A;632A27A1§A;948,

A5y = g1d DisALAs AvAsg Gra - AQARAi Ave Al

Ass = g6 Dig *Ay' AigAwr g - Ay Ay P AL AR AR

Ast = (91692¥G4) " Dig*Aiy AlgAirg16G2xGa - Agg Ase Al A AL’
Ass = 95) DigAnuAR AT AR 922 - A A At P AR AL,

Ass = 933 Dig Al ARgAR A 933 - Al ARTPARP AR AR

__—1P)=11225 A3 p-2 —85 428 A2 225 235
As7 = G334 Dig AggAdeAir Adg 934 - A Ale A AigAsg.-

Clearly, the matrices Asy, ..., As; can be written in the form (10). The coefficients k,w are presented in Table 2. Moreover,
we can simplify the result by making the reduction modulo 2 (the possibility of such simplification follows from Lemmas 3.1
and 3.3; moreover, using Ass = P35(1) it is possible to make k;') equal 0):

Asg = AsoAyy Az AssAs A A ALY Als,

Asy = A A2 AR AS AR ATZ AL AR ALCAL,

Ao = AsyAQy Agg Aso AL AseArg A AP Arg

Ast = As3 Az A Ay As!Y AL ARANAR Al

Aer = AsiAyy A Ade Az Azt A A ARC AT,

Ass = AssAy ° AggAr) AR AP AL A A A P AT,

A64 — A56A§g366A2—85292A§g47A3—11 3273A3—41 332A287A42;864AJ;?512A221 BOAEZR,

_ 32 A-9 A—1 p—-27 8 A11 798 A—6
Ass = Asr Az A% A Az AsaAggAn A Ass -




The group Spy,(Z) is (2,3)-generated

Table 2. The coefficients k}”

S N S ™ O I )
50 92| =213 97 —1 —484| 223 —-2| =102 1 0
51 16 44 =31 -5 120 —89 —15 46 5 0
52 —-12 —-14 5 -7 24 -7 1 2 0 -2
53| —128| -—-387| 124 8| —1170| 375 24| —120f -8 0
54| -—-122| -385| 137 8| —1212| 430 —24| =152 8 0
55 -9 36| —37 27 756| —492 3421 303|-209| 144
56| —21024|—52732|10584 | —5294 | —132260|26546 | —13278 | —5328 | 2665|—1333
57 -21 —64 18 2 —195 55 6| —-15| -2 0

The matrices Asg, ..., Ass satisfy (10) with k/w € {0,1}. The coefficients k}i) are listed in Table 3.

Table 3. The coefficients k/“)

Recall that we already have P55(1) € (x,y) by Lemma 3.4.

matrices:

=
(il

. k;i)

N

o
B

. k;i)

=
B

. k1(i

SIS

58
59
60
61
62
63
64
65

- O = O O © O O

o O O = = O O -
O O m O 2 A

- 0O 0O 0 0 o o o

- 0O 0 0 = =
o O O O O O o O©o

- O = O O O O O
[ RN . B s W o S G

o = O O O O O O

AsgAsy = Pa5(1),
= AsoAy = Pas(1),
AsiAge = P34(1),
AeAss = Paa(1),
AsoA) Ag Asg = P25 (1),
= AwAy = Pss(1),
AesAs7 Agg Azg = P2(1) Paa(1),
= AwAx A7 = Pss(1),
(92xg4) " Angaxga - Ay A Arg Aig Ags A AeoA7s” = Paa(1),
A72A;41 = P,(1).

To complete the proof it is enough to construct the following

The statements of Lemma 3.4 and Lemma 3.5 show us that P;;(1) € (x,y), 1 < i < j < 5. Using this fact we can prove
that Q;;(1), 1 < i < j <5, are also in (x, y).

Lemma 3.6.

For1<i<j<5wehave Qi;(1) € (x,y).
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Proof. Observe that

(Pj(1):1<i<j<B)Cixy) fuel,

5:l10iUUTj€
(Qii(M):1<i<j<5) if ue U,

Here U, and U, are the subsets defined in (5) and the matrix J is defined at the beginning of Section 2. Also it is clear
that

g7'Sg =g (ho=uu))g = ho (g7'u)(97'u) g7 g = ho = (g7"u)(g"u)"J
provided g € Spyo(Z). Thus, if we take g € (x,y) C Spyo(Z) and u € U; such that g~'u € Us, then the above matrix
g~'Sg belongs to (Q;;(1):1<i<j<5)N(x,y). Set

y (xg) (xy(x0)*) (xy)* (xy?) xyx,
xy (xg?) (xy) (xy?)*,

g3s

J36
g3 = y (xyPxy?(xy)’ (xy?) ‘xyx,

g3 = (xy) (xy?) (xy)* (xy?) (xy)’,

930 = y*xy’(xy)’x,

g1 = y (xyxy?)* (xy?)’xy,

ga = ylxyxyxy (xy?) 'xyx,

g1 = yxy>xy (xy?)’xy (xy?) (xy)* (xg?)*(x9)? (xy?) 'xyx,
g1 =y ((xg?) xy)’xy?,

Gas = (Xyz)sxyxgzx,

g5 = (xyxy?)’xy (xyxy?) xy ((xy)xy?)* (xyxy?)’y,

g6 = y (xy?)” (xyxy?)*(xy) ',

g7 = (x?) (xyxy?)x,

g8 = y (xy)* (xyxy?)’ (xy?)’,

gao = xyxy®(xy) xy*(xy)*x,

g5 = y*(xy?)’,

gs1 = (xy’xy) xyxy?,

o)

N

S

and also

ur =(1,1,2,-1,0,0,0,0,0,0)",

u; = (-1,1,3,-1,0,0,0,0,0,0),

u3 = (-2,-7,-20,1,-5,0,0,0,0,0)",
us = (=10, -29, —64,3,-4,0,0,0,0,0)",
us = (—4,0,-2,3,-1,0,0,0,0,0)",

us = (—7,-19,-31,5,-2,0,0,0,0,0)7,
u7 = (-3,-3,-11,4,-3,0,0,0,0,0)",
ug = (—6,-3,13,—4,-1,0,0,0,0,0)",
ug = (—6,—6,-19,7,-2,0,0,0,0,0)",
u = (1,-3,-8,2,-1,0,0,0,0,0)",

up = (0,-2,-6,1,—-1,0,0,0,0,0)7,

up = (—3,-2,-4,2,0,0,0,0,0,0)7,

u3 = (-5,0,-2,3,-2,0,0,0,0,0)",




The group Spy,(Z) is (2,3)-generated

u1g = (2,—2,-5,0,—1,0,0,0,0,0)7,

u1s = (—8,—11,-29,7,-2,0,0,0,0,0)",
e = (=1,-3,-11,3,-2,0,0,0,0,0)",
u7 = (=1,0,-1,1,-1,0,0,0,0,0)".

Finally, let us consider
5 _ g3ai(ho +uiul))gsay: 1 <i <15,
[ ggjﬂ(/m—u[ufj)g%“ ifi =16,17,
which belong to <Q,-,,—(1) 1<i<j< 5> N{x,y). Clearly, By, ..., Bi;7 commute pairwise. It turns out that they generate

the same subgroup of Sp;4(Z) as Q;;(1) do. Namely, we can express the matrices Q;;(1) as the following products of
B1, ey B17I

Oui(1) = BYB;'"BYB;iBy*B;*' BY By BBy B\ B;;° BBy’ Bis  Big B,
Qi2(1) = B{'BYB3BiB;"B; By’ By* By” By By ° B3 Byy ' By Bis' By By,

0i3(1) = B'™B;*'By*B; BBy B; ¥ By By’ By ™ B B, B3 Biy’ Bis Big By,
0i4(1) = BB, By’ B BB} By' By By B B, BiS Bii Bi5 B Bi3,

Qi5(1) = Bi'By’B;°B;'BiBy"B; By B3 Biy” By, By, ' B3 Bl ' Bis Big By,

0Q22(1) = By,

0.5(1) = B®BY'BPB2B: BB By By P BB B3 BB B B BY,
0.4(1) = BIYBI®B1B2E" BBl B;2B; " B B BB B2 BB, ¥ B,
Q:5(1) = BPBYB;"B,*Bs’ B' B, By BBy ** By, BY, Bi3 By B By By

0s3(1) = BB3'B;"*B, B5°By' B; "By “ By By ¥ By By BBy Bis By By,
Qs4(1) = BBy B3BiBy* By By By’ ByBio BY1 Bry” B3 Bii ¥ Bis' Big By,

0s5(1) = By"°B,""B;*B; BB B; ' By’ B;y ¥ Bi1B;;* B3 B B Bie  Bi7”,
Ouall) = B®BB; 0B 2BV BI8B; 1B, B, 123,17 B- 08 36 g3 B2 12380
Qi5(1) = By*B,"BYBiBiB; " B;* By By* Bly' Bu By, B3 By Bi5° By  BY,
Qs5(1) = Bis. O

Proof of Theorem 2.1. By Lemmas 3.4, 3.5 and 3.6 we already have that P;;(1), Q;;(1) € (x,y), 1 < i < j <5.
Finally, we set P;;(1) = P;(1), Qi;(1) = Q;:(1) for i > j and use the commutator identity

Rik(1) = Pij(1) Qjx(1) Pij(=1) Qju(=1)

which is true for any triple of pairwise distinct indices 1 < i, j, k < 5. We conclude that R; ;(1) € (x,y) for 1 <i#j<5
and hence ESp,o(Z) C (x, y). Since Spyo(Z) = ESpy(Z) by [3], this finishes the proof of Theorem 2.1. O
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