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1. Introduction
The origins of the concept of metric regularity go back to the Banach open mapping theorem established in the early1930s (see, e.g., [5]). The latter can be formulated in many ways; here, we state it as follows:
Banach open mapping theorem.
For any linear and bounded mapping A ∈ L(X, Y ) acting between two Banach spaces the following are equivalent:(i) A is surjective;(ii) A is open (at every point);(iii) there is a constant κ > 0 such that for all y ∈ Y there exists x ∈ X with Ax = y and ‖x‖ ≤ κ‖y‖.
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Metric subregularity of order q and the solving of inclusions

The item (ii) above means that for any x ∈ X and any neighborhood U of x the set A(U) is a neighborhood of Ax in Ywhile assertion (iii) is clearly equivalent to the existence of a constant κ > 0 such that
d
(0, A−1(y)) ≤ κ‖y‖ for all y ∈ Y . (1)

Keeping in mind that A is a linear mapping, one can show that relation (1) is equivalent to the existence of a positiveconstant κ such that
d
(
x, A−1(y)) ≤ κd(y, Ax) for all x ∈ X, y ∈ Y .

The above property is known as metric regularity (see e.g., [4, 8] for a comprehensive study on this topic) and can beextended in the set-valued framework as in Definition 1.1 below where a set-valued mapping F from a space X to thesubsets of a space Y is indicated by F : X ⇒ Y .
Definition 1.1.A mapping F : X ⇒ Y is said to be metrically regular at x̄ for ȳ if ȳ ∈ F (x̄) and there exist some positive constants κ,
a and b such that

d
(
x, F−1(y)) ≤ κd(y, F (x)) for all x ∈ IBa(x̄), y ∈ IBb(ȳ).

While the metric regularity of a bounded and linear operator is equivalent to the openness of the operator at every point,it has been shown (see, e.g., [6, 23]) that the metric regularity of a set-valued mapping F is equivalent to a strongerconcept of openness known as linear openness (also known as covering property). We recall that a mapping F : X ⇒ Yis said to be linearly open at x̄ for ȳ, where ȳ ∈ F (x̄), if there is a positive constant κ along with neighborhoods U of x̄and V of ȳ such that
F (x) ∩ V + κrIB ⊂ F (x + rIB) whenever x + rIB ⊂ U as r > 0.

For single-valued mappings the linear openness relates to the conventional openness property, actually, it is strongerthan the latter since it ensures the uniformity of covering around the point x̄ with linear rate κ. For more details on thistopic the reader could refer, for instance, to [21–23] and the references therein. In [6], Borwein and Zhuang consideredthe so-called linear openness of (at) order p ≥ 1, the definition of which is given below:A set-valued mapping F : X ⇒ Y is linearly open of order p ≥ 1 at x̄ for ȳ, where ȳ ∈ F (x̄), if there is a positiveconstant κ along with neighborhoods U of x̄ and V of ȳ such that
F (x) ∩ V + κrpIB ⊂ F (x + rIB) whenever x + rIB ⊂ U as r > 0.

One can immediately note that if a mapping F is linearly open of order p at x̄ for ȳ then it enjoys the same property oforder p′ for any p′ > p (on a potentially smaller neighborhood U of x̄ so that r ∈ (0, 1)). In particular, linear opennessimplies linear openness of order p for each p > 1. In their paper, Borwein and Zhuang showed that the linear opennessof order p of a set-mapping F acting between metric spaces is actually equivalent to the metric regularity of order
q = 1/p of F and is also equivalent to a Hölder-type regularity property of its inverse F−1. We state here the definitionof metric regularity of order q ([q]-metric regularity for short).
Definition 1.2 ([q]-metric regularity).Let F : X ⇒ Y be a set-valued mapping and let (x̄, ȳ) ∈ gphF . We say that F is [q]-metrically regular, q ∈ (0, 1), at x̄
for ȳ if there are positive constants a, b and a constant κ ≥ 0 such that

d
(
x, F−1(y)) ≤ κ[d(y, F (x))]q for all x ∈ IBa(x̄), y ∈ IBb(ȳ). (2)

148



M. Gaydu, M.H. Geoffroy, C. Jean-Alexis

Lately, Yen et al. [28] proposed alternative proofs, in normed spaces, of the equivalences first established by Borweinand Zhuang through a new systematic study of the linear openness at a positive order rate. It is worth noting that theconcept of metric regularity of order q naturally occurs in many problems of variational analysis; for instance, considerthe following differential inclusion:
x ′(s) ∈ F (x(s)), x(0) = x0 ∈ Rn, (DI)where the mapping F : Rn ⇒ Rn is locally Lipschitz and also convex and compact valued. Then, one can prove(see, e.g., [12]) that the reachable set

R(t) = {x(t) | x(·) is a trajectory of (DI)}
happens to be metrically regular of order q < 1 whenever some mild assumptions on its variations are satisfied.Additional examples of metrically regular mappings of order q along with new developments in this theory can be foundin [13]. It is also important to mention that interesting results regarding metric regularity of order q were obtained byFrankowska in two seminal works (see [11, 12]). The reader could also refer to [17] where a concept of ρ-metric regularitywith respect to a function ρ is discussed.In 2009, Kummer [19] investigated the existence and stability of solutions to inclusions of the form F (x) 3 p where Fwas a set-valued mapping acting from a complete metric space X to a linear normed space P. To this end, he exploredregularity properties for set-valued mappings involving an exponent q. In particular he considered the calmness with anexponent q and connected this property to certain iteration schemes of descent type. We will see in the next sectionthat the calmness with an exponent q of a set-valued mapping is closely tied to some kind of metric regularity propertyof its inverse.In the last two decades, a variety of authors investigated iterative frameworks for solving variational inclusions orgeneralized equations in the case when the set-valued mapping involved enjoyed some metric regularity properties (orwhen its inverse satisfied some Lipschitz-like properties), see for example [2, 7, 10, 14, 20]. To our knowledge thereare no similar studies when the mappings we are dealing with enjoy a metric regularity property of order q. Carryingout such a study is the main purpose of this work. Our particular interest is in showing the feasibility of establishingconverging methods for solving inclusions involving mappings that enjoy a so-called metric subregularity property of
order q. Nevertheless, let us point out that our purpose is not, at this time, to provide an implementable algorithm inthe proper sense.The remainder of this paper is organized as follows. In Section 2, we found it useful to provide a few characterizationsof the metric regularity of order q and we define the notion of metric subregularity of order q for which we provide alsosome characterizations. By doing so, we emphasize the similarities between standard metric (sub)regularity and metric(sub)regularity of order q. The result established in this section (especially Proposition 2.8) will play a central role inSection 3 where we show how the metric subregularity of order q can be used to prove the superlinear convergence ofa method that we propose for solving variational inclusions in the finite dimensional setting.
Notation

Throughout, X and Y stand for real Banach spaces. The closed unit ball is denoted by IB while IBr(a) stands for the closedball of radius r centered at a. We denote by d(x, C ) the distance from a point x to a set C , that is, d(x, C ) = inf
y∈C
‖x−y‖.

Let F be a set-valued mapping from X into the subsets of Y , indicated by F : X ⇒ Y . Here gphF = {(x, y) ∈ X × Y |
y ∈ F (x)} is the graph of F and the range of F is the set rgeF = {

y ∈ Y | F (x) 3 y for some x}. The inverse of F ,denoted by F−1, is defined by: x ∈ F−1(y) ⇔ y ∈ F (x).
2. Characterizations of [q]-metric regularity

In this section we present several characterizations, in terms of Hölder-type properties, of two important concepts ofmetric regularity of order q. We start with the standard metric regularity of order q as presented in Definition 1.2.
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Before going further, according to Kummer’s definition (see [19]), we consider the Aubin property with exponent q > 0,called [q]-Aubin property, for set-valued mappings. Its definition reads as follows:
Definition 2.1 (Kummer [19]).Let S : Y ⇒ X be a set-valued mapping and let (ȳ, x̄) ∈ gphS. Let q ∈ (0, 1], we say that S obeys the [q]-Aubin
property at ȳ for x̄ if

there exist a, b, κ > 0 such that for all y, y′ ∈ IBb(ȳ)
x ∈ S(y) ∩ IBa(x̄) =⇒ IBκ‖y−y′‖q (x) ∩ S(y′) 6= ∅. (3)

Note that Kummer called this property Aubin property [q] at (ȳ, x̄), we prefer here the terminology [q]-Aubin propertyat ȳ for x̄ since it is consistent with the one we use for describing the metric regularity.We will now state some characterizations of the metric regularity of order q of a set-valued mapping in terms of Hölder-like properties of its inverse. First, we recall that given two subsets A and B of X , the excess of A beyond B, denotedby e(A,B), is given by e(A,B) = sup
x∈A

d(x, B). Along with this definition we use the following convention:
e(∅, B) = {0 when B 6= ∅,

∞ otherwise.
Proposition 2.2 (Characterizations of the [q]-metric regularity).
Let F : X ⇒ Y be a set-valued mapping and (x̄, ȳ) ∈ gphF. We denote by S the inverse of F; i.e., S = F−1. The
following assertions are equivalent.(i) The mapping F is [q]-metrically regular at x̄ for ȳ.

(ii) The mapping S has the [q]-Aubin property at ȳ for x̄.

(iii) There exist positive constants a, b and a constant κ ≥ 0 such that

e
(
S(y) ∩ IBa(x̄), S(y′)) ≤ κ‖y − y′‖q for all y, y′ ∈ IBb(ȳ). (4)

(iv) There exist positive constants a, b and a constant κ ≥ 0 such that

S(y) ∩ IBa(x̄) ⊂ S(y′) + κ‖y − y′‖qIB for all y, y′ ∈ IBb(ȳ). (5)
(v) There exist positive constants a, b and a constant κ ≥ 0 such that

e
(
S(y) ∩ IBa(x̄), S(y′)) ≤ κ‖y − y′‖q for all y ∈ Y , y′ ∈ IBb(ȳ). (6)

Proof. We prove that (i)⇒ (ii)⇒ (iii)⇒ (iv)⇒ (v) ⇒ (i).(i)⇒ (ii). Assume that the mapping F is [q]-metrically regular at x̄ for ȳ, then there are positive constants a and b, anda constant κ ≥ 0 such that
d
(
x, F−1(y)) ≤ κ[d(y, F (x))]q for all x ∈ IBa(x̄), y ∈ IBb(ȳ). (7)

Take two arbitrary points y and y′ in IBb(ȳ) and let x ∈ S(y) ∩ IBa(x̄). Then from (7) we get
d(x, S(y′)) ≤ κ[d(y′, S−1(x))]q ≤ κ‖y − y′‖q,
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hence for any κ̃ > κ one has
d(x, S(y′)) < κ̃‖y − y′‖q.

Consequently, there exists a point x ′ in S(y′) such that ‖x − x ′‖ < κ̃‖y − y′‖q, i.e.,
IBκ̃‖y−y′‖q (x) ∩ S(y′) 6= ∅,

and the mapping S obeys the [q]-Aubin property at ȳ for x̄.(ii)⇒ (iii). Let a, b, and κ be as in Definition 2.1, i.e., satisfying (3). Let y, y′ ∈ IBb(ȳ) and take an arbitrary x ∈
S(y) ∩ IBa(x̄). Then there exists x ′ ∈ S(y′) such that

‖x − x ′‖ ≤ κ‖y − y′‖q

which implies that
d(x, S(y′)) ≤ κ‖y − y′‖q.

Since x has been chosen arbitrarily in S(y) ∩ IBa(x̄) we infer
e
(
S(y) ∩ IBa(x̄), S(y′)) ≤ κ‖y − y′‖q,

thus, assertion (iii) holds.(iii)⇒ (iv). The proof follows from the very definition of the excess.(iv)⇒ (v). Assume that (5) holds with constants a, b and κ. Let 0 < a′ < a and 0 < b′ < b be such that
κb′q + a′ ≤ κ(b − b′)q. (8)

It is not difficult to see that such constants a′ and b′ exist. Indeed, if we take b′ < b/2, i.e., b′ < b − b′, a simpleadjustment of a′ suffices to obtain the desired inequality.Moreover, for any y′ ∈ IBb′ (ȳ), we have from (5) that
x̄ ∈ S(ȳ) ∩ IBa(x̄) ⊂ S(y′) + κ‖ȳ − y′‖qIB,

thus
d(x̄, S(y′)) ≤ κ‖ȳ − y′‖q ≤ κb′q,

and hence
e
(
IBa′ (x̄), S(y′)) ≤ κb′q + a′. (9)

Take any y ∈ Y . If y ∈ IBb(ȳ), then (5) yields S(y) ∩ IBa(x̄) ⊂ S(y′) + κ‖y − y′‖qIB. So for any x ∈ S(y) ∩ IBa(x̄) wehave d(x, S(y′)) ≤ κ‖y − y′‖q. And it follows that
e
(
S(y) ∩ IBa(x̄), S(y′)) ≤ κ‖y − y′‖q for all y, y′ ∈ IBb(ȳ). (10)

Otherwise, assume that y /∈ IBb(ȳ), i.e., ‖y − ȳ‖ > b. Then we have
‖y′ − y‖ ≥ ‖y − ȳ‖ − ‖y′ − ȳ‖ > b − b′.

So ‖y′ − y‖q > (b − b′)q and, thanks to (8), we get κb′q + a′ ≤ κ(b − b′)q ≤ κ‖y − y′‖q. Then, (9) yields
e
(
IBa′ (x̄), S(y′)) ≤ κ‖y − y′‖q.
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Since S(y)∩ IBa′ (x̄) is obviously a subset of IBa′ (x̄), inequality (6) holds for any y /∈ IBb(ȳ). Keeping in mind relation (10)we complete the proof.(v)⇒ (i). Assume that relation (6) holds for some constants a, b and κ. We intend to show that inequality (2) is valid.Take x ∈ IBa(x̄) and y ∈ IBb(ȳ). Let z ∈ F (x) (if F (x) = ∅ then there is nothing to prove) we have x ∈ F−1(z) ∩ IBa(x̄).Then, from (6), we get
d
(
x, F−1(y)) ≤ κ‖z − y‖q.

Since z is an arbitrary point in F (x) we obtain
d
(
x, F−1(y)) ≤ κ[d(y, F (x))]q,

and the proof is complete.
Remark 2.3.Note that the equivalence between assertions (i) and (ii) does not mean that relations (2) and (3) are themselvesequivalent. Indeed the growth constant κ in (3) may be slightly greater than the one in (2); nevertheless they happento be equal in finite dimension whenever the mapping S is closed-valued (i.e, S(y) is closed for any y ∈ Y ). One canformulate the same remark regarding the equivalence between assertions (iii) and (iv). Moreover, the infimum of κ suchthat the five assertions in Proposition 2.2 hold is the same whichever formulation is adopted.
Assertion (v) provides an alternative description of the [q]-metric regularity in terms of excess which appears to be veryuseful. It asserts that one can simplify the characterization given in (iii) by letting the point y in (4) lie in the wholespace Y .The second concept of [q]-metric regularity we wish to consider here is the [q]-metric subregularity of a set-valuedmapping. It is closely tied, and actually equivalent, to a calmness-type property of its inverse. In [19], Kummerintroduced the following notion of [q]-calmness for a set-valued mapping:
Definition 2.4 (Kummer [19]).Consider a set-valued mapping S : Y ⇒ X and take (ȳ, x̄) ∈ gphS. Let q ∈ (0, 1], we say that S is [q]-calm at ȳ for x̄ if

there exist a, b, κ > 0 such that for all y ∈ IBb(ȳ)
x ∈ S(y) ∩ IBa(x̄) =⇒ IBκ‖y−ȳ‖q (x) ∩ S(ȳ) 6= ∅. (11)

Kummer also established sufficient conditions to ensure the [q]-calmness of the set of feasible constraints of an opti-mization problem. More precisely, he considered the mapping Sh : Rm ⇒ Rn defined by
Sh : p 7→ {

x ∈ Rn | hi(x) ≤ pi, i = 1, . . . , m},
where h : Rn → Rm is a C2 function satisfying h(x̄) = 0 for some x̄ in Rn. Then, denoting by H the mapping max

i
hi andby ∂c the Clarke subdifferential, he showed the following result:

Theorem 2.5 ([19, Theorem 4.11]).
The mapping Sh is 1/2-calm at 0 for x̄ if 0 6∈ ∂cH(x̄) or if (otherwise) the contingent derivative C (∂cH) is injective
at (x̄, 0).
Additional (sufficient) conditions for [q]-calmness (when q = 1/2) can be found in [1, 18]. It turns out that the [q]-calmnessof a mapping S is equivalent to the so-called [q]-metric subregularity of its inverse S−1 the definition of which is givenbelow.
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Definition 2.6 ([q]-metric subregularity).Let F : X ⇒ Y be a set-valued mapping and let (x̄, ȳ) ∈ gphF . We say that the mapping F is [q]-metrically subregular
at x̄ for ȳ, q ∈ (0, 1], if there are constants κ ≥ 0 and a > 0 such that

d
(
x, F−1(ȳ)) ≤ κ[d(ȳ, F (x))]q for all x ∈ IBa(x̄). (12)

The only difference between [q]-metric regularity and [q]-metric subregularity is that the data ȳ is now fixed and is nomore allowed to vary. Hence, obviously, [q]-metric regularity at some reference point implies [q]-metric subregularity atthe same point. Besides, the [q]-metric subregularity is also tied to the standard concept of metric subregularity (see forinstance [8] for an extensive discussion of this topic); more precisely, the metric subregularity of a mapping F : X ⇒ Yat x̄ for ȳ can also be described by inequality (12) with q = 1. It is clear that the [q]-metric subregularity is a weakercondition than the (standard) metric subregularity.We exhibit now two examples of [q]-metrically subregular mappings. The first one is given by the simple mapping
F : R ⇒ R defined by F (x) = {x2}. A straightforward computation, left to the reader, shows that F is metricallysubregular at 0 for 0 of order q = 1/2 with a constant κ = 1.Now, let H be a real Hilbert space and consider the space of all proper lower semicontinuous convex functions from
H into R ∪ {∞}, denoted by Γ(H). For any f ∈ Γ(H), we denote by ∂f the subdifferential of convex analysis of thefunction f . Then the following statement provides us with the second example we would like to present:
Proposition 2.7.
Let f ∈ Γ(H) and ȳ ∈ ∂f(x̄). If there is a neighborhood U of x̄ along with a positive constant c such that the function f
satisfies

f(x) ≥ f(x̄)− 〈ȳ, x̄ − x〉+ c
[
d
(
x, (∂f)−1(ȳ))]2 whenever x ∈ U, (13)

then ∂f is [q]-metrically subregular at ȳ for x̄ for any q ∈ (0, 1).
Note that, in the special case when ȳ = 0 (i.e., when dealing with critical points of the function f) condition (13) becomesthe following quadratic growth condition:

f(x) ≥ inf f + c
[
d
(
x, (∂f)−1(ȳ))]2 for x close to x̄.

Proposition 2.7 is a direct consequence of [3, Theorem 3.3] where it has been shown that relation (13) characterizes the(standard) metric subregularity of the mapping ∂f at ȳ for x̄.As in the case of the [q]-metric regularity, we are able to provide several charaterizations of the [q]-metric subregularity.
Proposition 2.8 (Characterizations of the [q]-metric subregularity).
Consider a set-valued mapping F : X ⇒ Y and take (x̄, ȳ) ∈ gphF. We denote by S the inverse of F; i.e., S = F−1.
Then the following assertions are equivalent.(i) The mapping F is [q]-metrically subregular at x̄ for ȳ.

(ii) The mapping S is [q]-calm at ȳ for x̄.

(iii) There exist a positive constant a and a constant κ ≥ 0 such that

e
(
S(y) ∩ IBa(x̄), S(ȳ)) ≤ κ‖y − ȳ‖q for all y ∈ Y . (14)

(iv) There exist a positive constant a and a constant κ ≥ 0 such that

S(y) ∩ IBa(x̄) ⊂ S(ȳ) + κ‖y − ȳ‖qIB for all y ∈ Y . (15)
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Proof. We prove that (i)⇒ (ii)⇒ (iii)⇒ (iv)⇒ (i).(i)⇒ (ii). Since the mapping F is [q]-metrically subregular at x̄ for ȳ, there is a positive constant a along with a constant
κ ≥ 0 such that

d
(
x, F−1(ȳ)) ≤ κ[d(ȳ, F (x))]q for all x ∈ IBa(x̄). (16)Take an arbitrary point y in Y and let x ∈ S(y)∩ IBa(x̄) (if S(y)∩ IBa(x̄) = ∅ there is nothing to prove and we are done).Then from (16) we get
d(x, S(ȳ)) ≤ κ[d(ȳ, S−1(x))]q ≤ κ‖y − ȳ‖q.Hence for any κ̃ > κ we have d(x, S(ȳ)) < κ̃‖y − ȳ‖q and it follows that there exists a point x ′ in S(ȳ) such that

‖x − x ′‖ < κ̃‖y − ȳ‖q, i.e.,
IBκ̃‖y−ȳ‖q (x) ∩ S(ȳ) 6= ∅,so the mapping S is [q]-calm at ȳ for x̄.(ii)⇒ (iii). Assume that the mapping S is [q]-calm at ȳ for x̄. There are positive constants a, b, κ such that relation (11)holds. First we show that

d
(
x, F−1(ȳ)) ≤ κ[d(ȳ, F (x) ∩ IBb(ȳ))]q for all x ∈ IBa(x̄). (17)

Let x ∈ IBa(x̄). If F (x) ∩ IBb(ȳ) = ∅ then relation (17) is obviously valid. Otherwise, take y ∈ F (x) ∩ IBb(ȳ). Then
x ∈ F−1(y)∩IBa(x̄) and thanks to (11) we obtain the existence of an element x ′ ∈ F−1(ȳ) such that ‖x−x ′‖ ≤ κ‖y−ȳ‖q.It follows that d(x, F−1(ȳ)) ≤ κ‖y − ȳ‖q. Passing to the infimum over y in the latter inequality a straightforwardcomputation yields (17).Now we show that there is a positive constant a′ such that

d
(
x, F−1(ȳ)) ≤ κ[d(ȳ, F (x))]q for all x ∈ IBa′ (x̄). (18)

Let b′ ∈ (0, b), then IBb′ (ȳ) ⊂ IBb(ȳ). Set a′ = min {a, κb′q}, then assertion (17) is still valid when we replace a with a′and b with b′. Hence we have
d
(
x, F−1(ȳ)) ≤ κ[d(ȳ, F (x) ∩ IBb′ (ȳ))]q for all x ∈ IBa′ (x̄).

Take an arbitrary x in IBa′ (x̄). If F (x) ∩ IBb′ (ȳ) 6= ∅ then d(ȳ, F (x) ∩ IBb′ (ȳ)) = d(ȳ, F (x)) and thus relation (18) holds.Otherwise, F (x) ∩ IBb′ (ȳ) = ∅ and consequently
[d(ȳ, F (x))]q ≥ b′q ≥ 1

κ ‖x − x̄‖ ≥
1
κ d
(
x, F−1(ȳ)),

so (18) holds for any x ∈ IBa′ (x̄).Now we show that inequality (14) holds for some constants that we will make precise. To this end, we consider any
y ∈ Y . If S(y) ∩ IBa′ (x̄) = ∅ then we are done; otherwise, take an arbitrary point x in S(y) ∩ IBa′ (x̄). Thanks to (18) weget d(x, S(ȳ)) ≤ κ‖y − ȳ‖q, and by passing to the supremum over x we get

e
(
S(y) ∩ IBa′ (x̄), S(ȳ)) ≤ κ‖y − ȳ‖q.

We obtain the desired conclusion.(iii)⇒ (iv). The proof is similar to the proof of (iii)⇒ (iv) in Proposition 2.2.(iv)⇒ (i). Consider two constants a and κ such that relation (15) holds and let x ∈ IBa(x̄). We show that
d
(
x, F−1(ȳ)) ≤ κ[d(ȳ, F (x))]q. (19)

If F (x) = ∅ then inequality (19) is obviously valid. Otherwise, take y ∈ F (x); then x ∈ F−1(y)∩IBa(x̄) and thanks to (15)we get x ∈ F−1(ȳ) + κ‖y − ȳ‖qIB. It follows that d(x, F−1(ȳ)) ≤ κ‖y − ȳ‖q. The latter being valid for all y ∈ F (x) weobtain relation (19) and the proof is complete.
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Remark 2.9.We learn from the proof of Proposition 2.8 (see (ii)⇒ (iii)) that there is no need to consider a neighborhood of ȳ inthe definition of the [q]-calmness. Indeed, since assertions (ii) and (iii) are equivalent, an equivalent formulation ofrelation (11) in Definition 2.4 is given by: there exist a, b, κ > 0 such that for all y ∈ Y
x ∈ S(y) ∩ IBa(x̄) =⇒ IBκ‖y−ȳ‖q (x) ∩ S(ȳ) 6= ∅,

where y may lie in the whole space Y .
Before ending this section, it is worth mentioning another characterization of the calmness with exponent q, due toKummer [19]. It reads as follows.
Proposition 2.10.
Consider a set-valued mapping S : Y ⇒ X and (ȳ, x̄) ∈ gphS. Then S is [q]-calm, q ∈ (0, 1), at ȳ for x̄ if and only if
there exist ε > 0, α > 0 such that

αd(x, S(ȳ)) ≤ ( dist ((ȳ, x), gphS))q
for all x ∈ IBε(x̄), where dist ((y, x), (y′, x ′)) = max {‖y − y′‖, ‖x − x ′‖}.
Our focus for the remainder of this paper will involve metric subregularity of order q.
3. Successive approximations of [q]-metrically subregular inclusions

Problem statement

In this section we consider the inclusion
f(x) + G(x) 3 0, (20)where f : Rn → Rm is a continuous single-valued map while G : Rn ⇒ Rm is a closed set-valued mapping; i.e., withclosed graph. Such inclusions are known as generalized equations and where introduced by Robinson in the 1970s asan abstract model of variational problems (see, e.g., the survey [24]). Actually, they may serve as a general model fora wide variety of variational problems including linear and non-linear complementarity problems, systems of non-linearequations, variational inequalities (e.g., first-order necessary conditions for non-linear programming), etc. In particular,they may characterize optimality or equilibrium and then have several applications. For instance, the Walrasian law ofcompetitive equilibria of exchange economies [26] can be formulated as a variational inclusion and so can the Wardropprinciple of user equilibrium in traffic theory [27]. For more examples, the reader could refer to [9], where an extensivedocumentation of applications of finite-dimensional non-linear complementarity problems in engineering and equilibriummodelling is available.Our purpose is to provide an iterative procedure for solving (20) and to show how the metric subregularity of order qcan be an efficient tool for establishing the superlinear convergence of such a method.We denote by S : Rm ⇒ Rn the solution map to (20) defined by

S(y) = (f + G)−1(y) = {x ∈ Rn | y ∈ f(x) + G(x)}.
It is worth pointing out that the solution set to (20), denoted by S (note that S = S(0)), is a closed nonempty subset of
Rn, consequently every point of Rn has a closest point in S (with respect to ‖ · ‖).Algorithms for solving inclusions often generate a sequence of iterates by subsequently solving subproblems that can besimpler or more robust than the original problem. In our case, for a given z ∈ Rn, we associate to (20) the approximategeneralized equation 0 ∈ A(z, x) + G(x), (21)
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where A : Rn × Rn ⇒ Rm is a set-valued mapping constructed on the basis of a single-valued approximation a, in asense which we will make precise shortly, to the function f :
A(z, x) = a(z, x) +M‖x − z‖µIB, (22)

for some real constants M ≥ 0 and µ > 1. The solution set of (20) being nonempty, we fix x̄ ∈ S. In addition weconsider a real constant ε ∈ (0, 1).We assume that the mapping a : Rn × Rn → Rm is an approximation to f in a neighborhood of x̄, namely,
‖f(x)− a(z, x)‖ ≤ M‖x − z‖µ for all x, z ∈ IBε(x̄), (23)

where the constants M and µ are the ones introduced in (22). Relation (23) measures the quality of the approximation
a(z, x) to f at a point x. When f is a smooth function it is not difficult to define an approximation in the sense of (23).Indeed, it turns out that a special case of such approximations is given by the so-called (n, α)-point based approximations,an extension of the concept of point-based approximations introduced by Robinson in [25], which are easy to define inthe differentiable setting (for instance, any Fréchet differentiable function such that its derivative is Lipschitz continuousor Hölder continuous admits a (n, α)-point-based approximation). For more examples and details on this topic the readercould refer to [15, 25] and references therein.
Iterative procedure for solving (20)
We are now going to propose an iterative scheme for the problem (20) by solving subsequently approximate inclusionsclosely related to (21). For any z ∈ Rn we denote by Σ(z) the solution set of (21), i.e.,

Σ(z) = {x ∈ Rn | 0 ∈ A(z, x) + G(x)}.
Moreover, since S is a closed and nonempty subset of Rn, any element z ∈ Rn admits (at least) one closest point in S;such a point will be denoted by πz . We then consider the following subset Z (z) of Σ(z), for any z ∈ Rn, defined by

Z (z) = {x ∈ Σ(z) | ‖x − πz‖ ≤ ‖z − πz‖}.
Let us now present the algorithm we will study in the sequel. Given any starting point x0 in some neighborhood of x̄,for k = 0, 1, 2, . . . compute xk+1 such that

‖xk+1 − πxk ‖ ≤ ‖xk − πxk ‖ (24)
and satisfying 0 ∈ A(xk , xk+1) + G(xk+1).
The combination of these two conditions is equivalent to the simpler inclusion

xk+1 ∈ Z (xk ). (25)
The essence of the method is to replace the set-valued mapping f + G with the approximate mapping A(·, ·) + G(·). Azero of this approximation then provides additional information that can be used to refine the approximation and therebyrestart the process. By computing, for each k , an element xk+1 satisfying (25) we build a sequence such that each newiterate gets closer to S than the previous one. Indeed, assertion (24) implies that d(xk+1, S) ≤ d(xk , S). Moreover, it isworth noting that, combining relations (22) and (23) and keeping in mind that G is a closed set-valued mapping, if thesequence xk converges to some element x∗ ∈ Rn then necessarily x∗ ∈ S.
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Local behavior of the method

The following lemma asserts that the subproblem (21) admits at least one solution lying in Z (z) whenever the point z isclose enough to the solution x̄ to (20).
Lemma 3.1.
Let z ∈ IBε/3(x̄), then Z (z) 6= ∅.
Proof. Since πz ∈ S, we have 0 ∈ a(z, πz) + G(πz) + (f(πz)− a(z, πz)).Moreover, keeping in mind that x̄ ∈ S, from the very definition of πz we have ‖z − πz‖ ≤ ‖z − x̄‖. Then

‖πz − x̄‖ ≤ ‖πz − z‖+ ‖z − x̄‖ ≤ 2 ‖z − x̄‖ ≤ 23 ε,
hence both z and πz are in IBε(x̄). Thus relation (23) yields

0 ∈ a(z, πz) + G(πz) +M ‖πz − z‖µIB = A(z, πz) + G(πz).
It follows that πz ∈ Σ(z) and, obviously, πz ∈ Z (z). Therefore Z (z) is not empty.
Lemma 3.2.
Let z ∈ IBε/3(x̄). Assume that the mapping f + G is [q]-metrically subregular at x̄ for 0, q < 1, with a constant κ such
that 2κ 2q(µ+1)Mq < 1. Then

‖x − πx‖ ≤
12 ‖z − πz‖µq whenever x ∈ Z (z).

Proof. Let x be an arbitrary point in Z (z). From the definition of the set Z (z) we have
‖x − x̄‖ ≤ ‖x − πz‖+ ‖πz − z‖+ ‖z − x̄‖ ≤ 2 ‖z − πz‖+ ‖z − x̄‖ ≤ 3 ‖z − x̄‖ ≤ ε.

Hence, x ∈ IBε(x̄). Since x is a solution of the generalized equation
0 ∈ f(x) + G(x) + A(z, x)− f(x),

there exists y ∈ f(x)− A(z, x) such that
x ∈ S(y) ∩ IBε(x̄).Since the mapping f +G is [q]-metrically subregular at x̄ for 0, its inverse, which turns out to be equal to S, is [q]-calmat 0 for x̄ (see Proposition 2.8). Hence, from Proposition 2.8 again, there is a positive constant a and a constant κ̃ > κsatisfying 2κ̃ 2q(µ+1)Mq < 1 such that

S(u) ∩ IBa(x̄) ⊂ S(0) + κ̃ ‖u‖qIB for all u ∈ Y .

Considering a smaller ε if necessary, we obtain x ∈ S + κ̃ ‖y‖qIB. Then
‖x − πx‖ ≤ κ̃ ‖y‖q. (26)

Since y ∈ f(x)− A(z, x), from relation (22) together with (23) we get ‖y‖ ≤ 2M‖x − z‖µ . Moreover,
‖x − z‖ ≤ ‖x − πz‖+ ‖πz − z‖ ≤ 2 ‖z − πz‖, because x ∈ Z (z).
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Hence,
‖y‖ ≤ 2µ+1M‖z − πz‖µ.Then, from (26), we have

‖x − πx‖ ≤ 2q(µ+1)Mqκ̃ ‖z − πz‖µq.Since 2κ̃ 2q(µ+1)Mq < 1, one has
‖x − πx‖ ≤

12‖z − πz‖µq,and we are done.
We are now ready to state our convergence theorem. The result we obtain is local since we need our initial guess to besufficiently close to a solution to the problem.
Theorem 3.3.
Assume that the mapping f+G is [q]-metrically subregular at x̄ for 0, q < 1, with a constant κ such that 2κ 2q(µ+1)Mq < 1.
In addition, let the constants µ and q be such that µq > 1. Then, there is a neigborhood Ω of x̄ such that for any initial
guess x0 ∈ Ω there exists a sequence xk whose elements are in IBε/3(x̄), satisfying (25) and converging superlinearly
with order µq to some solution to the generalized equation (20).
Proof. Take an arbitrary point x0 in IBε/15(x̄). First we show the existence of a sequence xk starting from x0 such that
xk+1 ∈ Z (xk ) ∩ IBε/3(x̄) for k = 0, 1, 2, . . . Thanks to Lemma 3.1 the set Z (x0) is nonempty, therefore we can take x1 in
Z (x0). Moreover,

‖x1 − x0‖ ≤ ‖x1 − πx0‖+ ‖πx0 − x0‖ ≤ 2 ‖x0 − πx0‖ ≤ 2 ‖x0 − x̄‖.It follows
‖x1 − x̄‖ ≤ ‖x1 − x0‖+ ‖x0 − x̄‖ ≤ 3 ‖x0 − x̄‖ ≤ ε5 ,that is x1 ∈ IBε/5(x̄) ⊂ IBε/3(x̄). Hence Z (x1) 6= ∅ and there is x2 ∈ Z (x1).Now, proceeding by induction, suppose that there are elements x0, x1, . . . , xn in IBε/3(x̄) such that xk+1 ∈ Z (xk ) for

k = 0, 1, . . . , n − 1. From Lemma 3.1 there is an element xn+1 ∈ Z (xn). Let us show that xn+1 ∈ IBε/3(x̄). First, since
xk+1 ∈ Z (xk ) for k = 0, 1, . . . , n, we have

‖xk+1 − xk‖ ≤ ‖xk+1 − πxk ‖+ ‖πxk − xk‖ ≤ 2 ‖xk − πxk ‖, k = 0, 1, . . . , n.
Hence we get

‖xn+1 − x0‖ = ∥∥∥∥∥ n∑
k=0 (xk+1 − xk )∥∥∥∥∥ ≤ n∑

k=0 ‖xk+1 − xk‖ ≤ 2 n∑
k=0 ‖xk − πxk ‖. (27)

Then, using Lemma 3.2, we have for k ≥ 1
‖xk − πxk ‖ ≤

12 ‖xk−1 − πxk−1‖µq ≤ 121+µq ‖xk−2 − πxk−2‖(µq)2
≤ 121+µq+(µq)2 ‖xk−3 − πxk−3‖(µq)3 ≤ . . . ≤ 121+µq+(µq)2+...+(µq)(k−1) ‖x0 − πx0‖(µq)k .

Since µq > 1, a straightforward computation shows that
21+µq+(µq)2+...+(µq)(k−1) ≥ 2k .

Then
‖xk − πxk ‖ ≤

12k ‖x0 − πx0‖(µq)k for all k ≥ 1. (28)
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Combining relations (27) and (28) we obtain
‖xn+1 − x0‖ ≤ 2 n∑

k=1
12k ‖x0 − πx0‖(µq)k + 2 ‖x0 − πx0‖.

From the definition of π0, together with the fact that x̄ ∈ S, we get
‖x0 − πx0‖ ≤ ‖x0 − x̄‖ ≤ ε15 < 1.

So we infer
‖xn+1 − x0‖ ≤ 2 ‖x0 − πx0‖

n∑
k=1

12k + 2 ‖x0 − πx0‖ ≤ 4 ‖x0 − πx0‖. (29)
Hence,

‖xn+1 − x̄‖ ≤ ‖xn+1 − x0‖+ ‖x0 − x̄‖ ≤ 4 ‖x0 − πx0‖+ ‖x0 − x̄‖ ≤ 5 ‖x0 − x̄‖ ≤ ε3 .Consequently, xn+1 is in IBε/3(x̄) and there is a sequence xk satisfying xk+1 ∈ Z (xk ) for k = 0, 1, 2, . . . and the elementsof which are in the ball IBε/3(x̄). In particular our algorithm (25) is well defined. Moreover, since the sequence xk isbounded in Rn it admits a cluster point. We show that it is unique. To this end, assume that there are two differentcluster points x̂ and x̃. As we mentioned it previously, necessarily, both x̂ and x̃ are in S. Since ‖x̂ − x̃‖ > 0, there arepositive integers i and j , j > i, such that
max {‖xi − x̂‖, ‖xj − x̃‖} ≤ 13 ‖x̂ − x̃‖, d(xi, S) ≤ 116 ‖x̂ − x̃‖.

Hence,
‖xj − xi‖ ≥ ‖x̂ − x̃‖ − ‖xi − x̂‖ − ‖xj − x̃‖ ≥

13 ‖x̂ − x̃‖. (30)
Now, invoking the same arguments we used to establish relation (29), we have

‖xj − xi‖ ≤ 4 ‖xi − πxi‖.
Then, from the choice of xi, one has

‖xj − xi‖ ≤ 4d(xi, S) ≤ 14 ‖x̂ − x̃‖. (31)
Since (31) contradicts (30), we deduce that the sequence xk has exactly one cluster point and therefore is convergent tosome point x∗ ∈ S. To complete the proof we show that the sequence xk converges superlinearly to x∗. Once again, bythe same arguments that the ones used to establish (29), we get for all integers l greater than 1,

‖xk+l − xk+1‖ ≤ 4 ‖xk+1 − πxk+1‖.

Moreover, thanks to Lemma 3.2 we have
‖xk+l − xk+1‖ ≤ 2 ‖xk − πxk ‖µq ≤ 2 ‖xk − x∗‖µq.

Letting l go to infinity we obtain
‖xk+1 − x∗‖ ≤ 2 ‖xk − x∗‖µq,

that is the sequence xk converges superlinearly to x∗.
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Remark 3.4.The results stated in this section strongly rely on the existence of a projection over the closed set of solutions S. Hence,one way to extend this theory to the infinite dimensional setting is to assume that the solution set to (20) is a nonempty
proximinal subset of a Banach space Y (in that case, f and G would be mappings acting between two Banach spaces Xand Y ). We recall that a subset A of a normed space (E, ‖ · ‖) is said to be proximinal if every point of E has a closestpoint in A (with respect to ‖ · ‖). Any boundedly weakly compact set is proximinal; in particular so is any nonemptyclosed convex set in a reflexive Banach space. In finite dimensions, any nonempty closed set is proximinal. We did notcarry out such a study because the finite dimensional setting is the one that covers most of the applications of our results.Indeed, for instance, both the differential inclusion (DI) in Section 1 and the optimization problem in Section 2 occur in
Rn. Of course, more practical applications lie also in the finite dimensional framework, for example, when investigatingstrong stationary solutions to an electricity spot market model, see e.g., [16], where metric regularity plays a central rolein solving of such problems.
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