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Abstract: For an infinite set X , denote by Γ(X ) the semigroup of all injective mappings from X to X under function compo-
sition. For α ∈ Γ(X ), let C (α) = {β ∈ Γ(X ) : αβ = βα} be the centralizer of α in Γ(X ). The aim of this paper
is to determine those elements of Γ(X ) whose centralizers have simple structure. We find α ∈ Γ(X ) such that
various Green’s relations in C (α) coincide, characterize α ∈ Γ(X ) such that the J -classes of C (α) form a chain,
and describe Green’s relations in C (α) for α with so-called finite ray-cycle decomposition. If α is a permutation,
we also find the structure of C (α) in terms of direct and wreath products of familiar semigroups.
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1. Introduction

For a semigroup S and an element a ∈ S, the centralizer C (a) of a in S is defined by C (a) = {x ∈ S : ax = xa}. It isclear that C (a) is a subsemigroup of S. A significant amount of research has been devoted to studying centralizers in
S in the case when S is a semigroup of transformations (full or partial) on a finite set X . For example, the elements ofsuch centralizers have been characterized in [9, 20, 24–26, 31]; Green’s relations and regularity have been determinedin [16–18]; and some representation theorems have been obtained in [22, 23, 29].These investigations have been motivated by the fact that, if S is a semigroup of transformations on X that containsthe identity idX , then for any α ∈ S, the centralizer C (α) is a generalization of S in the sense that S = C (idX ). Itis therefore of interest to find out which ideas, approaches, and techniques used to study S can be extended to thecentralizers of its elements.
∗ E-mail: jkoniecz@umw.edu
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Infinite injective transformations whose centralizers have simple structure

Centralizers of transformations are also important since they appear in various areas of mathematical research. Forexample, they play a role in finding the group of automorphisms of a general semigroup [4, Theorem 2.23]. They occurnaturally in the theory of unary algebras since the monoid of endomorphisms of any mono-unary algebra A = 〈A, f〉is the centralizer C (f) in the semigroup T (A) of full transformations on A [15], and the group of automorphisms of A is
C (f) ∩ Sym (A), where Sym (A) is the symmetric group on A [11, 12]. Centralizers also appear in the study of commutinggraphs of groups and semigroups (see, for example, [1, 5, 6, 13]). The commuting graph of a finite non-commutativesemigroup S is a simple graph whose vertices are all non-central elements of S and two distinct vertices a, b areadjacent if ab = ba. Since ab = ba if and only if b ∈ C (a), the knowledge of the centralizers of transformations ishelpful in studying the commuting graph of S whenever S is a semigroup of transformations.Relatively little has been done regarding centralizers of transformations in the infinite case. For any set X , denote by
T (X ) the semigroup of full transformations on X (all mappings from X to X ) and by Γ(X ) the semigroup of injectivetransformations on X (all injective mappings from X to X ). In both cases, the operation is the composition of functions.Both semigroups have the symmetric group Sym (X ) of permutations on X as their group of units. (Note that if X isfinite, then Γ(X ) = Sym (X ).) The centralizers of idempotent transformations in an infinite T (X ) have been studied in[2, 3, 30]. The author has studied the centralizers of transformations in an infinite Γ(X ) [19], where he characterized theelements of C (α) and determined Green’s relations in C (α), including the partial orders of L-, R-, and J -classes.The present paper follows up on [19]. The structure of the semigroup Γ(X ) in terms of Green’s relations is simple:
H = L, R = D = J , and the J -classes form a chain [19, Theorem 2.3]. The goal of the present paper is to determine theelements α ∈ Γ(X ) whose centralizers have a simple structure, similar to the structure of Γ(X ). Research along similarlines has been done for other semigroups of transformations, for example for the semigroup T (X, ρ) of transformationson X that preserve an equivalence relation ρ on X [27, 28], and for the semigroup T (X, ρ, R) of transformations on Xthat preserve both ρ and a cross-section R of X/ρ [3].In any centralizer C (α), where α ∈ Γ(X ), Green’s L-relation has the same characterization as Green’s L-relation in Γ(X ):
β Lγ if and only if β and γ have the same image. However, in contrast with Γ(X ), Green’s relations R, D , and J in ageneral C (α) do not have the same characterization. In Section 3, we determine when various Green’s relations in C (α)coincide. Also in contrast with Γ(X ), the J -classes in a general C (α) do not form a chain. In Section 4, we find sufficientand necessary conditions for the J -classes of C (α) to form a chain. Green’s relations in C (α) have a particularly simpledescription when α ∈ Γ(X ) has a finite ray-cycle decomposition (see Section 2). We describe Green’s relations for suchtransformations α in Section 5. In Section 6, we assume that α is a permutation of X . Under this assumption, we findthe structure of the centralizer C (α) in terms of direct and wreath products of semigroups of injective transformations,the group Z of integers, and groups Zn of integers modulo n.For the remainder of the paper, we assume that X is an arbitrary infinite set.
2. Centralizers in Γ(X )
In this section, to make the paper self-contained, we briefly describe some results obtained in [19]. If S is a semigroupand a, b ∈ S, we say that aLb if S1a = S1b, aRb if aS1 = bS1, and aJ b if S1aS1 = S1bS1, where S1 is thesemigroup S with an identity adjoined. We define H as the intersection of L and R, and D as the join of L and R,that is, the smallest equivalence relation on S containing both L and R. These five equivalence relations are knownas Green’s relations [10, p. 45]. Green’s relations provide one of the most important tools in studying semigroups. For
a ∈ S, we denote the equivalence class of a with respect to J by Ja, and refer to Ja as a J -class. Since J is definedin terms of principal ideals in S, which are partially ordered by inclusion, we have the induced partial order in the setof the J -classes: Ja ≤ Jb if S1aS1 ⊆ S1bS1.For α ∈ Γ(X ), we denote the image of α by im (α), the cardinality of im (α), called the rank of α , by rank (α), and thecardinality of X \ im (α), called the defect of α , by def (α). We will denote by S(α) = {x ∈ X : xα 6= x} the set ofelements shifted by α , and by F (α) = {x ∈ X : xα = x} the set of elements fixed by α . (We will write mappings on theright: xf rather than f(x), and compose from left to right: x(fg) rather than g(f(x)).)Green’s relations in Γ(X ) have been determined in [19, Theorem 2.3]: α Lβ ⇔ im (α) = im (β); α Rβ ⇔ def (α) = def (β);
H = L and R = D = J ; Jα ≤ Jβ ⇔ def (α) ≥ def (β); the J -classes in Γ(X ) form a chain.
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J. Konieczny

Let . . . , x−1, x0, x1, . . . be pairwise distinct elements of X . We denote by (x0 x1 x2 . . . 〉 the transformation η ∈ Γ(X ),called a ray, such that xiη = xi+1 for all i ≥ 0 and yη = y for all other y ∈ X ; by 〈 . . . x−1 x0 x1 . . . 〉 the transformation
ω ∈ Γ(X ), called a double ray, such that xiω = xi+1 for all i and yω = y for all other y ∈ X ; and by (x0 x1 . . . xn−1),where n ≥ 1, the transformation λ ∈ Γ(X ), called an n-cycle, such that xiλ = xi+1 for all i, 0 ≤ i < n, where xn−1λ = x0,and yλ = y for all other y ∈ X (see [19, Definition 3.1]).We say that α, β ∈ Γ(X ) are disjoint if S(α) ∩ S(β) = ∅. Let M be a set of pairwise disjoint transformations in Γ(X ).The formal product of elements of M, denoted by ∏α∈M α , is a transformation in Γ(X ) defined by

x
(∏
α∈M

α
) = {xα if x ∈ S(α) for some α ∈ M,

x otherwise.
If A = ∅, we agree that ∏α∈A α = idX . (See [19, Definition 3.2].)If α ∈ Γ(X ) with α 6= idX , then there exist unique sets: A of rays, B of double rays, and C of cycles of length at least 2such that the transformations in A ∪ B ∪ C are pairwise disjoint and

α = ∏
η∈A

η

(∏
ω∈B

ω
)(∏

λ∈C

λ
)
. (1)

(See [21, Proposition 3.3] and [19, Proposition 3.3].) We call the product (1) the ray-cycle decomposition of α .For η = (x0 x1 x2 . . . 〉, ω = 〈 . . . x−1 x0 x1 . . . 〉, λ = (x0 x1 . . . xn−1), and any β in Γ(X ), we define:
ηβ∗ = (x0β x1β x2β . . . 〉, ωβ∗ = 〈 . . . x−1β x0β x1β . . . 〉, λβ∗ = (x0β x1β . . . xn−1β).

(See [19, Definition 3.5].) For α, β ∈ Γ(X ), we will say that α is contained in β, and write α @ β, if xα = xβ for every
x ∈ S(α). Note that all rays, double rays, and cycles from the ray-cycle decomposition of α are contained in α .For α ∈ Γ(X ), let A, B, and C be the sets that occur in the ray-cycle decomposition of α (see (1)). By Aα , Bα , and Cαwe will mean the following sets:

Aα = A, Bα = B, Cα = C ∪
{
{x} : x ∈ F (α)}, Cn

α = {λ ∈ Cα : λ is a cycle of length n},
where n ≥ 1 and it is understood that C 1

α = {
{x} : x ∈ F (α)}. For β ∈ Γ(X ), we extend the definition of β∗ by

{x}β∗ = {xβ} for every {x} ∈ C 1
α . For λ ∈ Cn

α , we will write λ = (x0 x1 . . . xn−1), with the understanding that if n = 1,then λ = {x0} and S({x0}) = {x0}. (See [19, Notation 3.7].)The elements of the centralizer C (α) have been characterized in [19, Theorem 3.9].
Theorem 2.1.
Let α, β ∈ Γ(X ). Then β ∈ C (α) if and only if for all η ∈ Aα , ω ∈ Bα , and λ ∈ Cα :

(1) either there is a unique η1 ∈ Aα such that ηβ∗ @ η1 or there is a unique ω1 ∈ Bα such that ηβ∗ @ ω1;(2) ωβ∗ ∈ Bα and λβ∗ ∈ Cα .

Let α ∈ Γ(X ). For β ∈ C (α), we define a mapping hβ : Aα ∪ Bα ∪ Cα → Aα ∪ Bα ∪ Cα by
δhβ =


η if δ ∈ Aα and δβ∗ @ η for some η ∈ Aα ,
ω if δ ∈ Aα and δβ∗ @ ω for some ω ∈ Bα ,
δβ∗ if δ ∈ Bα ∪ Cα .
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Infinite injective transformations whose centralizers have simple structure

Note that hβ is well defined by Theorem 2.1. (See [19, Definition 4.1].)Let α ∈ Γ(X ) and β, γ ∈ C (α). The following conditions occur in the descriptions of Green’s relations in C (α).
|Aα \ Aαhβ |+ ∣∣Bα \ (Aαhβ ∪ Bαhβ)∣∣ = |Aα \ Aαhγ |+ ∣∣Bα \ (Aαhγ ∪ Bαhγ)∣∣. (2)∣∣Bα \ (Aαhβ ∪ Bαhβ)∣∣ = ∣∣Bα \ (Aαhγ ∪ Bαhγ)∣∣. (3)

|Cn
α \ Cn

α hβ | = |Cn
α \ Cn

α hγ | for every n ≥ 1. (4)
Green’s relations L, R, and D in C (α) have been characterized in [19, Theorems 4.4, 4.7, 4.9].
Theorem 2.2.
Let α ∈ Γ(X ) and β, γ ∈ C (α). Then

(1) β Lγ in C (α) if and only if im (β) = im (γ).
(2) βRγ in C (α) if and only if

(a) for every η ∈ Aα ,

ηhβ ∈ Aα and |S(ηhβ) \ im (β)| = k ⇔ ηhγ ∈ Aα and |S(ηhγ) \ im (γ)| = k;
(b) conditions (2), (3), and (4) hold.

(3) β D γ in C (α) if and only if

(a) there is a bijection f : Aα ∩ Aαhβ → Aα ∩ Aαhγ such that for every η ∈ Aα ∩ Aαhβ ,

|S(η) \ im (β)| = |S(ηf) \ im (γ)|;
(b) |Bα ∩ Aαhβ | = |Bα ∩ Aαhγ |;(c) conditions (2), (3), and (4) hold.

The partial order of J -classes in C (α) has been determined in [19, Theorem 4.8].
Theorem 2.3.
Let α ∈ Γ(X ) and β, γ ∈ C (α). Then Jγ ≤ Jβ if an only if

(1) There are injective mappings f : Aα∩Aαhγ → Aα∩Aαhβ and g : Bα∩Aαhγ → (Aα∪Bα )hβ such that |S(η)\ im (γ)| ≥
|S(ηf) \ im (β)| for all η ∈ Aα ∩ Aαhγ , im (f) ∩ im (g) = ∅, and

|Aα \ Aαhγ |+ ∣∣Bα \ (Aαhγ ∪ Bαhγ)∣∣ ≥ |Aα \ Aαhβ |+ ∣∣Bα \ (Aαhβ ∪ Bαhβ)∣∣ + ∣∣Aαhβ \ (im (f) ∪ im (g))∣∣;
(2) |Bα \ (Aαhγ ∪ Bαhγ)| ≥ |Bα \ (Aαhβ ∪ Bαhβ)|;(3) |Cn

α \ Cn
α hγ | ≥ |Cn

α \ Cn
α hβ | for every n ≥ 1.
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3. Centralizers in which Green’s relations coincide

In the semigroup Γ(X ), Green’s relations R, D , and J coincide (see Section 2). In this section, we describe thetransformations α ∈ Γ(X ) such that R = D in C (α), and the transformations α ∈ Γ(X ) such that D = J in C (α). Thesedescriptions will show that, in general, R, D , and J are distinct in the centralizer C (α).
Theorem 3.1.
Let α ∈ Γ(X ). Then R = D in C (α) if and only if |Aα | ≤ 1.

Proof. Let A = Aα .(⇒) We will prove the contrapositive. Suppose |A| > 1 and let η1 = (x0 x1 x2 . . . 〉 and η2 = (y0 y1 y2 . . . 〉 be two distinctrays in A. Define β ∈ Γ(X ) by: xiβ = yi+1 and yiβ = xi for every i ≥ 0, and xβ = x for all other x ∈ X . Define
γ ∈ Γ(X ) by: xiγ = xi and yiγ = yi+1 for every i ≥ 0, and xγ = x for all other x ∈ X . Then β, γ ∈ C (α) by Theorem 2.1.We have (β, γ) /∈ R since β and γ do not satisfy (2a) of Theorem 2.2 (|S(η1hβ) \ im (β)| = 1 but |S(η1hγ) \ im (γ)| = 0).On the other hand, (β, γ) ∈ D since β and γ satisfy (3a) of Theorem 2.2 (with f : A∩Ahβ → A∩Ahγ defined by ηf = η)and they also satisfy (3b) and (3c) of Theorem 2.2. Hence R 6= D .(⇐) Suppose |A| ≤ 1. Then (3a) of Theorem 2.2 implies (2a) of Theorem 2.2, and so D ⊆ R. Hence R = D since R ⊆ Din every semigroup.
To describe the centralizers in which D = J , we will need the following lemma.
Lemma 3.2.
Let P and Q be finite sets with |P| = |Q| and let δ1 : P → {0, 1, 2, . . . } and δ2 : Q → {0, 1, 2, . . . } be mappings.
Suppose there are bijections f1 : P → Q and f2 : Q → P such that pδ1 ≥ (pf1)δ2 and qδ2 ≥ (qf2)δ1 for all p ∈ P and
q ∈ Q. Then pδ1 = (pf1)δ2 for all p ∈ P.

Proof. For an integer n ≥ 0, let Pn = {p ∈ P : pδ1 = n} and Qn = {q ∈ Q : qδ2 = n}. Let n ≥ 0. We claim thatfor all p ∈ Pn and q ∈ Qn, we have pf1 ∈ Qn and qf2 ∈ Pn.We proceed by induction on n. It is clear that the claim is true for n = 0. Let n ≥ 1 and suppose the claim is true forevery k , 0 ≤ k < n. Let p ∈ Pn and let q = pf1 with qδ2 = k . Then n = pδ1 ≥ qδ2 = k . Suppose to the contrary that
n > k . By the inductive hypothesis, p1f1 ∈ Qk and q1f2 ∈ Pk for all p1 ∈ Pk and q1 ∈ Qk . Since f1 and f2 are injective,it follows that |Pk | = |Qk | and, since Pk and Qk are finite, that f1 restricted to Pk is a bijection from Pk to Qk . Hence,there is p2 ∈ Pk such that q = p2f1. But then p2f1 = q = pf1, and so p2 = p, which is a contradiction. Hence n = k ,that is, pf1 ∈ Qn. By a similar argument, qf2 ∈ Pn for every q ∈ Qn, and the claim follows by induction.The result follows immediately from the claim.
Theorem 3.3.
Let α ∈ Γ(X ). Then D = J in C (α) if and only if Aα is finite.

Proof. Let A = Aα , B = Bα , and Cn = Cn
α , n ≥ 1.(⇒) We will prove the contrapositive. Suppose A is infinite and let

η1 = (x10 x11 x12 . . . 〉, η2 = (x20 x21 x22 . . . 〉, η3 = (x30 x31 x32 . . . 〉, . . . ,

be pairwise distinct rays in A.Define β : X → X by: ηnβ∗ = η2n for every n ≥ 1, and xβ = x for all other x ∈ X . Define γ : X → X by:
η1γ∗ = (x11 x12 x13 . . . 〉, ηnγ∗ = η2n for every n ≥ 2, and xγ = x for all other x ∈ X . Then β, γ ∈ C (α) by Theorem 2.1.
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We have ηnhβ = η2n for every n ≥ 1, η1hγ = η1, and ηnhγ = η2n for every n ≥ 2. Thus A ∩ Ahβ = {η2n : n ≥ 1} and
A ∩ Ahγ = {η1} ∪ {η2n : n ≥ 2}.Define f1 : A ∩ Ahβ → A ∩ Ahγ by η2nf1 = η2n+2, n ≥ 1, f2 : A ∩ Ahγ → A ∩ Ahβ by: η1f2 = η2 and η2nf2 = η2n,
n ≥ 2. By the definition of β and γ, the sets B ∩ Ahβ and B ∩ Ahγ are empty. Let g1 : B ∩ Ahγ → (A ∪ B)hβ and
g2 : B ∩ Ahβ → (A ∪ B)hγ be empty mappings. For every n ≥ 1,

|S(η2n) \ im (β)| = 0 = |S(η2n+2) \ im (γ)| = |S(η2nf1) \ im (γ)|.
Further, since |S(η2n) \ im (β)| = 0 for every n ≥ 1, we have

|S(η1) \ im (γ)| ≥ |S(η2) \ im (β)| = |S(η1)f2 \ im (β)| and
|S(η2n) \ im (γ)| ≥ |S(η2n) \ im (β)| = |S(η2nf2) \ im (β)| for every n ≥ 2.

By the definitions of β and γ, we also have |A \ Ahγ | = |A \ Ahβ | = ℵ0, B \ (Ahβ ∪ Bhβ) = B \ (Ahγ ∪ Bhγ) = ∅,∣∣Ahβ \ ( im (f1)∪ im (g1))∣∣ = ∣∣Ahγ \ ( im (f2)∪ im (g2))∣∣ = 1, and Cn \Cnhβ = Cn \Cnhγ = ∅ for every n ≥ 1. Hence Jγ ≤ Jβand Jβ ≤ Jγ by Theorem 2.3, and so (β, γ) ∈ J .However, there is no bijection f : A ∩ Ahβ → A ∩ Ahγ such that |S(η2n) \ im (β)| = |S(η2nf) \ im (γ)|, n ≥ 1, since
|S(η1) \ im (γ)| = |{x0}| = 1 and |S(η2n) \ im (β)| = 0 for every n ≥ 1. Thus (β, γ) /∈ D by (3a) of Theorem 2.2, and so
D 6= J .(⇐) Let A be finite. Suppose (β, γ) ∈ J , that is, Jγ ≤ Jβ and Jβ ≤ Jγ . By Theorem 2.3, there are injective mappings
f1 : A ∩ Ahβ → A ∩ Ahγ and f2 : A ∩ Ahγ → A ∩ Ahβ such that

|S(η1) \ im (β)| ≥ |S(η1f1) \ im (γ)| and |S(η2) \ im (γ)| ≥ |S(η2f2) \ im (β)| (5)
for all η1 ∈ A∩Ahβ and η2 ∈ A∩Ahγ . Note that f1 and f2 must be bijections since A∩ Ahβ and A∩ Ahγ are finite sets.Define δ1 : A∩Ahβ → {0, 1, 2, . . .} and δ2 : A∩Ahγ → {0, 1, 2, . . .} by: η1δ1 = |S(η1)\ im (β)| and η2δ2 = |S(η2)\ im (γ)|,
η1 ∈ A ∩ Ahβ , η2 ∈ A ∩ Ahγ . By (5), η1δ1 ≥ (η1f1)δ2 and η2δ2 ≥ (η2f2)δ1 for all η1 ∈ A ∩ Ahβ and η2 ∈ A ∩ Ahγ . Thus,by Lemma 3.2,

|S(η) \ im (β)| = ηδ1 = (ηf1)δ2 = |S(ηf1) \ im (γ)|for every η ∈ A∩Ahβ . Hence β and γ satisfy condition (3a) of Theorem 2.2. Since A is finite and hβ and hγ are injectivemappings, we have
|A \ Ahβ | = |B ∩ Ahβ | = |A| − |A ∩ Ahβ | and |A \ Ahγ | = |B ∩ Ahγ | = |A| − |A ∩ Ahγ |. (6)

We already know that f1 : A ∩ Ahβ → A∩ Ahγ is a bijection. Thus |A ∩ Ahβ | = |A ∩ Ahγ |, which, together with (6), gives
|B ∩ Ahβ | = |B ∩ Ahγ | and |A \ Ahβ | = |A \ Ahγ |. (7)

Since Jγ ≤ Jβ and Jβ ≤ Jγ , we have by Theorem 2.3 that
|B \ (Ahγ ∪ Bhγ)| = |B \ (Ahβ ∪ Bhβ)| and |Cn \ Cnhγ | = |Cn \ Cnhβ | for every n ≥ 1. (8)

Hence β and γ satisfy: condition (3b) of Theorem 2.2 (by (7)), condition (2) (by (7) and (8)), condition (3) (by (8)), andcondition (4) (by (8)).Thus (β, γ) ∈ D , and so J ⊆ D . Hence D = J since D ⊆ J in every semigroup.
Corollary 3.4.
Let α ∈ Γ(X ). Then in C (α),

(1) if R = D then R = D = J ;(2) R = D = J if and only if |Aα | ≤ 1.

Proof. It follows immediately from Theorems 3.1 and 3.3.
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4. Centralizers in which J -classes form a chain

In the semigroup Γ(X ), the J -classes form a chain (see Section 2). In the centralizer C (α), this is true only for veryspecial α ∈ Γ(X ) described below.
Theorem 4.1.
Let α ∈ Γ(X ). The partially ordered set of J -classes in C (α) is a chain if and only if exactly one of the following
conditions is satisfied:

(1) Aα = ∅, Bα is finite, and Cn
α is infinite for at most one n ≥ 1;

(2) Aα = ∅, Bα is infinite, and Cn
α is finite for all n ≥ 1; or

(3) |Aα | = 1, Bα is finite, and Cn
α is finite for all n ≥ 1.

Proof. Let A = Aα , B = Bα , and Cn = Cn
α , n ≥ 1.(⇒) We will prove the contrapositive. Suppose none of (1)–(3) holds. (Note that (1), (2), and (3) are mutually exclusive,so it is impossible for at least two of them to hold.)Suppose B is infinite. Let ω1, ω2, ω3, . . . be pairwise distinct double rays in B. Since (2) does not hold, either A 6= ∅ or

Cn is infinite for some n ≥ 1. Let A 6= ∅. Define β : X → X by: ηβ∗ = η for every η ∈ A, ωiβ∗ = ωi+1 for every i ≥ 1,and xβ = x for all other x ∈ X . Define γ : X → X by: ηγ∗ = (x1 x2 x3 . . . 〉 for every η = (x0 x1 x2 . . . 〉 ∈ A, ωiγ∗ = ωifor every i ≥ 1, and xγ = x for all other x ∈ X . Then β, γ ∈ C (α) by Theorem 2.1. We have B \ (Ahβ ∪Bhβ) = {ω1} and
B \ (Ahγ ∪ Bhγ) = ∅. Thus Jγ 6≤ Jβ by (2) of Theorem 2.3. We also have that |S(η) \ im (β)| = 0 for every η ∈ A ∩ Ahβ ,and |S(η) \ im (γ)| = 1 for every η ∈ A ∩ Aγ. Thus, since A 6= ∅ and A ∩ Ahβ = A ∩ Ahγ = A, there is no injection
f : A ∩ Ahβ → A ∩ Ahγ such that |S(η) \ im (β)| ≥ |S(ηf) \ im (γ)| for every η ∈ A ∩ Ahβ , and so Jβ 6≤ Jγ by (1) ofTheorem 2.3.Let Cn be infinite for some n ≥ 1, say n = m. Let λ1, λ2, λ3, . . . be pairwise distinct cycles in Cm. Then we can easilydefine β, γ ∈ C (α) such that B \ (Ahβ ∪ Bhβ) = {ω1}, B \ (Ahγ ∪ Bhγ) = ∅, Cm \ Cmhβ = ∅, and Cm \ Cmhγ = {λ1}. Forany such β and γ, the J -classes Jβ and Jγ are incompatible by Theorem 2.3.Suppose B is finite. We consider two cases.
Case 1. Cn is finite for all n ≥ 1.
Then, since (3) does not hold, |A| 6= 1, that is, A = ∅ or |A| ≥ 2. But the former is impossible since (1) does not hold.Thus |A| ≥ 2. Let η1 = (x0 x1 x2 . . . 〉 and η2 = (y0 y1 y2 . . . 〉 be distinct rays in A. Define β : X → X by: η1β∗ = η1,
η2β∗ = (y2 y3 y4 . . . 〉, ηβ∗ = (z2 z3 z4 . . . 〉 for every η = (z0 z1 z2 . . . 〉 ∈ A with η 6= η1, η2, and xβ = x for all other x ∈ X .Define γ : X → X by: η1γ∗ = (x1 x2 x3 . . . 〉, η2γ∗ = (y1 y2 y3 . . . 〉, ηγ∗ = (z1 z2 z3 . . . 〉 for every η = (z0 z1 z2 . . . 〉 ∈ Awith η 6= η1, η2, and xγ = x for all other x ∈ X . Then β, γ ∈ C (α) by Theorem 2.1. Note that A ∩ Ahβ = A ∩ Ahγ = A.By the definition of β, we have |S(η1) \ im (β)| = 0, |S(η2) \ im (β)| = 2, and |S(η) \ im (β)| = 2 for every η ∈ A with
η 6= η1, η2. By the definition of γ, we have |S(η1) \ im (γ)| = 1, |S(η2) \ im (γ)| = 1, and |S(η) \ im (γ)| = 1 for every η ∈ Awith η 6= η1, η2. It follows that there is no injective mapping f : A → A such that |S(η) \ im (γ)| ≥ |S(ηf) \ im (β)| for all
η ∈ A, and there is no injective mapping f ′ : A → A such that |S(η) \ im (β)| ≥ |S(ηf ′) \ im (γ)| for all η ∈ A. Thus Jγ 6≤ Jβand Jβ 6≤ Jγ by (1) of Theorem 2.3.
Case 2. Cn is infinite for some n ≥ 1, say n = m.
Let λ1, λ2, λ3, . . . be pairwise distinct cycles in Cm. Let A 6= ∅. Define β : X → X by: ηβ∗ = η for every η ∈ A,
λiβ∗ = λi+1 for every i ≥ 1, and xβ = x for all other x ∈ X . Define γ : X → X by: ηγ∗ = (x1 x2 x3 . . . 〉 for every
η = (x0 x1 x2 . . . 〉 ∈ A, λiγ∗ = λi for every i ≥ 1, and xγ = x for all other x ∈ X . Then β, γ ∈ C (α) by Theorem 2.1. Wehave Cm \Cmhβ = {λ1} and Cm \Cmhγ = ∅. Thus Jγ 6≤ Jβ by (3) of Theorem 2.3. We also have that |S(η) \ im (β)| = 0 forevery η ∈ A ∩ Ahβ , and |S(η) \ im (γ)| = 1 for every η ∈ A ∩ Aγ. Thus, since A 6= ∅ and A ∩ Ahβ = A ∩ Ahγ = A, there isno injection f : A ∩ Ahβ → A ∩ Ahγ such that |S(η) \ im (β)| ≥ |S(ηf) \ im (γ)| for every η ∈ A ∩ Ahβ , and so Jβ 6≤ Jγ by(1) of Theorem 2.3.
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Let A = ∅. Then, since (1) does not hold, there is k ≥ 1 with k 6= m such that Ck 6= Cm and Ck is infinite. Let µ1, µ2, µ3, . . .be pairwise distinct cycles in Ck . Then we can define β, γ ∈ C (α) such that Cm \ Cmhβ = ∅, Cm \ Cmhγ = {λ1},
Ck \ Ckhβ = {µ1}, and Ck \ Ckhγ = ∅. For any such β and γ, the J -classes Jβ and Jγ are incompatible by Theorem 2.3.
(⇐) Suppose that exactly one of the conditions (1)–(3) is satisfied. Let β, γ ∈ C (α). We want to prove that Jγ ≤ Jβ or
Jβ ≤ Jγ .Suppose B is infinite. Then (2) holds, and so A = ∅ and Cn is finite for every n ≥ 1. Thus Cnhβ = Cnhγ = Cn, and so
|Cn \ Cnhγ | = 0 = |Cn \ Cnhβ | for every n ≥ 1. Hence, by Theorem 2.3, Jγ ≤ Jβ (if |B \ Bhγ | ≥ |B \ Bhβ |) or Jβ ≤ Jγ (if
|B \ Bhβ | ≥ |B \ Bhγ |).Suppose B is finite. Then Bhβ = Bhγ = B and B ∩ Ahβ = B ∩ Ahγ = ∅, and so B \ (Ahβ ∪ Bhβ) = B \ (Ahγ ∪ Bhγ) = ∅.Since (2) or (3) holds, we have that either A = ∅ or Cn is finite for every n ≥ 1.Suppose A = ∅ and Cn is finite for every n ≥ 1. Then Cnhβ = Cnhγ = Cn, and so |Cn \ Cnhγ | = 0 = |Cn \ Cnβ| for every
n ≥ 1. Thus Jγ ≤ Jβ by Theorem 2.3 (with f and g being empty mappings) and, similarly, Jβ ≤ Jγ . Hence Jβ = Jγ .Suppose A = ∅ and Cn is infinite for some n ≥ 1. Then, by (1), Cn is infinite for exactly one n ≥ 1, say n = m. Thus,by Theorem 2.3, Jγ ≤ Jβ (if |Cm \ Cmhγ | ≥ |Cm \ Cmhβ |) or Jβ ≤ Jγ (if |Cm \ Cmhβ | ≥ |Cm \ Cmhγ |).Suppose A 6= ∅ and Cn is finite for every n ≥ 1. Then (3) holds, and so A is a one-element set, say A = {η}. Notethat A ∩ Ahβ = A ∩ Ahγ = A = {η}. Thus, by Theorem 2.3, Jγ ≤ Jβ (if |S(η) \ im (γ)| ≥ |S(η) \ im (β)|) or Jβ ≤ Jγ (if
|S(η) \ im (β)| ≥ |S(η) \ im (γ)|).Hence, in all possible cases, Jβ and Jγ are compatible, which completes the proof.
5. Transformations with finite ray-cycle decomposition

The descriptions of Green’s relations in C (α) simplify considerably when the sets Aα , Bα , and Cn
α (for every n ≥ 1) arefinite. If this happens, we will say that α ∈ Γ(X ) has a finite ray-cycle decomposition. Let α ∈ Γ(X ) have a finiteray-cycle decomposition, and let β ∈ C (α). Recall that hβ is injective and that it maps Bα to Bα . Thus, since Bα is finite,

hβ restricted to Bα is a bijection from Bα to Bα . Similarly, for every n ≥ 1, hβ restricted to Cn
α is a bijection from Cn

α to
Cn
α . Further, hβ cannot map elements of Aα to Bα , and so hβ restricted to Aα is a bijection from Aα to Aα . Therefore, wehave the following:
(1) Aα ∩ Aαhβ = Aα ;(2) Aα \ Aαhβ = Bα ∩ Aαhβ = Bα \ (Aαhβ ∪ Bαhβ) = ∅;(3) Cn

α \ Cn
α hβ = ∅ for every n ≥ 1.

The following result follows immediately from (1)–(3) and Theorems 2.2 and 3.3.
Theorem 5.1.
Let α ∈ Γ(X ) be a transformation with a finite ray-cycle decomposition, and let β, γ ∈ C (α). Then in C (α):

(1) βRγ if an only if |S(ηhβ) \ im (β)| = |S(ηhγ) \ im (γ)| for every η ∈ Aα .(2) β D γ if and only if there is a bijection f : Aα → Aα such that |S(η) \ im (β)| = |S(ηf) \ im (γ)| for every η ∈ Aα .(3) J = D .

6. The structure of the centralizer of a permutation

Let α ∈ Sym (X ). In this section, we prove that C (α) is isomorphic to a semigroup constructed using direct and wreathproducts of the semigroup Γ(Bα ) of injective transformations on Bα , the semigroups Γ(Cn
α ) of injective transformations on

Cn
α , n ≥ 1, the group Z of integers, and the groups Zn of integers modulo n, n ≥ 1.
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First note that for every α ∈ Γ(X ),
α ∈ Sym (X ) ⇐⇒ Aα = ∅. (9)

The following theorem follows immediately from (9), Theorem 2.2, Corollary 3.4, and Theorem 4.1.
Theorem 6.1.
Let α ∈ Sym (X ). Then in C (α):

(1) βRγ if and only if |Bα \ Bαhβ | = |Bα \ Bαhγ | and |Cn
α \ Cn

α hβ | = |Cn
α \ Cn

α hγ | for every n ≥ 1.

(2) R = D = J .

(3) The J-classes form a chain if and only if at most one of the sets Bα , C 1
α , C 2

α , C 3
α , . . . is infinite.

Let M be a set, S be a semigroup of transformations on M, and T be a semigroup. Denote by TM the set of all mappings
f : M → T and note that TM with multiplication defined by

i(fg) = (if)(ig), f, g ∈ TM , i ∈ M,

is a semigroup. Define a multiplication on the set TM × S by
(f, u)(g, v) = (fgu, uv), (10)

where gu ∈ TM is defined by i(gu) = (iu)g, so for every i ∈ M,
i(fgu) = (if)[(iu)g].

It is straightforward to verify that TM × S with multiplication (10) is a semigroup.
Definition 6.2.The set TM×S with multiplication (10) is called the wreath product of T and S (with respect to the set M), and denotedby T o S.
Note that T o S is completely determined by T , S, and the set M. If S is a group of permutations on a set M and T isa group, then T o S is the group wreath product (see [7, page 46], [14, page 79], and [29, page 272]).We will be interested in the wreath products Z o Γ(M) and Zn o Γ(M), where Z is the group of integers and Zn is thegroup of integers modulo n. The wreath product Z o Γ(M) is the set ZM × Γ(M) with multiplication

(f, u)(g, v) = (f + gu, uv) with i(f + gu) = (if) + (iu)g, (11)
where f, g ∈ ZM , u, v ∈ Γ(M), and i ∈ M. The wreath product Zn o Γ(M) is the set ZMn × Γ(M) with multiplication as in(11) except that f, g ∈ ZMn and ‘+’ is the addition modulo n.For semigroups S and T , we write S ∼= T if S is isomorphic to T .
Proposition 6.3.
Let α ∈ Sym (X ) be a product of double rays (that is, Aα = ∅ and Cn

α = ∅ for every n ≥ 1). Then C (α) ∼= (Z o Γ(Bα )).
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Proof. Let B = Bα . For every ω ∈ B, we fix an element ω0 ∈ S(ω). For every i ∈ Z, let ωi = ω0α i. Then
ω = 〈 . . . ω−1 ω0 ω1 . . . 〉. We will define an isomorphism φ from C (α) to Z oΓ(B). Let β ∈ C (α). For ω ∈ B, let ρ = ωhβ .Then ω0β = ρi for some i ∈ Z. Define fβ : B → Z by ωfβ = i. Recall that hβ : B → B is injective, that is, hβ ∈ Γ(B).We define φ : C (α)→ ZB × Γ(B) by

βφ = (fβ , hβ), β ∈ C (α).
To prove that φ is a homomorphism, let β, γ ∈ C (α). Then

(βγ)φ = (fβγ , hβγ), (βφ)(γφ) = (fβ , hβ)(fγ , hγ) = (fβfhβγ , hβhγ).
Let ω ∈ B, ρ = ωhβ , σ = ρhγ , i = ωfβ , and j = ρfγ . Then

ω(fβfhβγ ) = ωfβ + (ωhβ)fγ = i+ ρfγ = i+ j. (12)
On the other hand,

ω0(βγ) = ρiγ = (ρ0α i)γ = ρ0(α iγ) = ρ0(γα i) = σjα i = σi+j , (13)
where ω0β = ρi since ωfβ = i, ρ0γ = σj since ρfγ = j , and α iγ = γα i since γ ∈ C (α). By (13) and the definition of fβγ ,we have that ωfβγ = i+ j . Hence fβγ = fβf

hβ
γ by (12). Thus, since hβγ = hβhγ (see [19, Lemma 4.2]),

(βγ)φ = (fβγ , hβγ) = (fβfhβγ , hβhγ) = (βφ)(γφ),
that is, φ is a homomorphism.To prove that φ is one-to-one, let β, γ ∈ C (α) and suppose βφ = γφ, that is, fβ = fγ and hβ = hγ . Let ω ∈ B,
ρ = ωhβ = ωhγ , and i = ωfβ = ωfγ . Then for every j ∈ Z,

ωjβ = (ω0α j )β = ω0(α jβ) = ω0(βα j ) = (ω0β)α j = ρiα j ,

and, similarly, ωjγ = ρiα j . Thus β = γ.Finally, to prove that φ is onto, let (f, h) ∈ ZB × Γ(B). Let ω ∈ B, ρ = ωh, and i = ωf . Define β : X → X by
ωjβ = ρi+j , j ∈ Z.

It is clear that β is injective. By Theorem 2.1, we have that β ∈ C (α). We also have hβ = h (by the definition of β) and
fβ = f (since ω0β = ρi+0 = ρi, and so ωfβ = i = ωf). Hence (f, h) = (fβ , hβ) = βφ.
Proposition 6.4.
Let α ∈ Sym (X ) be a product of cycles of fixed length n (that is, Aα = Bα = ∅ and Cm

α = ∅ for every m 6= n). Then
C (α) ∼= (Zn o Γ(Cn

α )).
Proof. Let Cn = Cn

α . For every λ ∈ Cn, we fix an element λ0 ∈ S(λ). For every i ∈ Zn = {0, 1, . . . , n − 1}, let
λi = λ0α i. Then λ = (λ0 λ1 . . . λn−1). We will define an isomorphism φ from C (α) to Zn oΓ(Cn). Let β ∈ C (α). For λ ∈ Cn,let µ = λhβ . Then λ0β = µi for some i ∈ Zn. Define fβ : Cn → Zn by λfβ = i. We define φ : C (α)→ ZCnn × Γ(Cn) by

βφ = (fβ , hβ), β ∈ C (α).
Now, the argument from the proof of Proposition 6.3 can be used (almost verbatim) to prove that φ is an isomorphism.
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Let I be a nonempty index set and let {Si : i ∈ I} be a collection of semigroups indexed by I. The direct productof the collection, denoted ⊗i∈I Si, is the set of all mappings p : I → ⋃
i∈I Si such that ip ∈ Si for every i ∈ I, withmultiplication defined by i(pq) = (ip)(iq), p, q ∈ ⊗i∈I Si, i ∈ I. The direct product of any collection of semigroupsis a semigroup [10, page 5]. If Si is a group for every i ∈ I, then ⊗i∈I Si is a group [8, Exercise 15, page 157]. If

I = {1, 2, . . . , m}, we write the direct product ⊗i∈I Si as S1 × S2 × · · · × Sm and elements p ∈ ⊗i∈I Si as m-tuples(1p, 2p, . . . , mp).
Theorem 6.5.
Let α ∈ Sym (X ). Then

C (α) ∼= (
Z o Γ(Bα ))×⊗

n≥1
(
Zn o Γ(Cn

α )).
Proof. Let B = Bα and Cn = Cn

α for every n ≥ 1. Let X0 = ⋃ω∈B S(ω) and let Xn = ⋃λ∈Cn S(λ), n ≥ 1. Let β ∈ Γ(X ).For each integer m ≥ 0, denote by αm and βm the restrictions of α and β to Xm, respectively. Then αm ∈ Sym (Xm) forevery m ≥ 0. By Theorem 2.1,
β ∈ C (α) ⇐⇒ βm ∈ C (αm), m ≥ 0. (14)

It follows from (14) that the mapping φ : C (α)→⊗
m≥0 C (αm) defined by

m(βφ) = βm, β ∈ C (α), m ≥ 0,
is an isomorphism. By Proposition 6.3, C (α0) ∼= (

Z o Γ(B)). By Proposition 6.4, C (αn) ∼= (
Zn o Γ(Cn)) for every n ≥ 1.Thus

C (α) ∼= ⊗
m≥0 C (αm) ∼= (

Z o Γ(B))×⊗
n≥1

(
Zn o Γ(Cn)),

which concludes the proof.
For a monoid S, we denote by U(S) the group of units of S. Let M be a set, S be a monoid of transformations of Mwith identity idM (i idM = i for every i ∈ M), and T be a monoid with identity 1. Then the wreath product T o S is amonoid with identity (ι, idM ), where ι : M → T is the mapping such that iι = 1 for every i ∈ M. It is straightforward toshow that the group of units of T o S is the wreath product U(T ) o (S ∩ Sym (M)).For every α ∈ Γ(X ), the centralizer C (α) is a monoid with identity idX and the group of units U(C (α)) = C (α)∩Sym (X ).Theorem 6.5 and the foregoing observations give the following result.
Theorem 6.6.
Let α ∈ Sym (X ). Then

U(C (α)) ∼= (
Z o Sym (Bα ))×⊗

n≥1
(
Zn o Sym (Cn

α )).
Theorem 6.6 generalizes the result obtained for permutations of a finite set [29]. Suppose X is finite and let α ∈ Sym (X ).Then Bα = ∅ and Cn

α = ∅ for almost all n ≥ 1. Let 1 ≤ n1 < n2 < . . . < nk be the integers such that Cni
α 6= ∅ for every

i ∈ {1, 2, . . . , k} and Cn
α = ∅ for all other n ≥ 1. Denote by C ′(α) the centralizer of α relative to Sym (X ) and note that

C ′(α) = C (α) ∩ Sym (X ). Then, by Theorem 6.6,
C ′(α) ∼= (

Zn1 o Sym (Cn1
α ))× (Zn2 o Sym (Cn2

α ))× · · · × (Znk o Sym (Cnk
α )),

which is the result stated in [29, (2.12) and (2.13)].
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We finish this paper with some problems concerning the structure of centralizers in semigroups of transformations otherthan Γ(X ).
(1) Determine the structure of centralizers in various subsemigroups of T (X ), for example in the semigroup Ω(X ) ofall surjective transformations.(2) Determine the structure of centralizers in various subsemigroups of the semigroup P(X ) of partial transformationson X , for example in the symmetric inverse semigroup I(X ) of all partial injective transformations.(3) Determine the structure of centralizers in various subsemigroups of the semigroup L(V ) of all linear transformationson a vector space V .
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