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Abstract: For an infinite set X, denote by I'(X) the semigroup of all injective mappings from X to X under function compo-
sition. For a € I'(X), let C(a) = {B € T'(X) : aB = Ba} be the centralizer of a in I'(X). The aim of this paper
is to determine those elements of I'(X) whose centralizers have simple structure. We find a € '(X) such that
various Green’s relations in C(a) coincide, characterize a € I'(X) such that the J-classes of C(a) form a chain,
and describe Green’s relations in C(a) for a with so-called finite ray-cycle decomposition. If « is a permutation,
we also find the structure of C(a) in terms of direct and wreath products of familiar semigroups.
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1. Introduction

For a semigroup S and an element a € S, the centralizer C(a) of a in S is defined by C(a) = {x € S: ax = xa}. ltis
clear that C(a) is a subsemigroup of S. A significant amount of research has been devoted to studying centralizers in
S in the case when S is a semigroup of transformations (full or partial) on a finite set X. For example, the elements of
such centralizers have been characterized in [9, 20, 24-26, 31]; Green’s relations and reqularity have been determined
in [16-18]; and some representation theorems have been obtained in [22, 23, 29].

These investigations have been motivated by the fact that, if S is a semigroup of transformations on X that contains
the identity idx, then for any a € S, the centralizer C(a) is a generalization of S in the sense that S = C(idx). It
is therefore of interest to find out which ideas, approaches, and techniques used to study S can be extended to the
centralizers of its elements.
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Centralizers of transformations are also important since they appear in various areas of mathematical research. For
example, they play a role in finding the group of automorphisms of a general semigroup [4, Theorem 2.23]. They occur
naturally in the theory of unary algebras since the monoid of endomorphisms of any mono-unary algebra A = (A, )
is the centralizer C(f) in the semigroup T(A) of full transformations on A [15], and the group of automorphisms of A is
C(f) N Sym (A), where Sym (A) is the symmetric group on A [11, 12]. Centralizers also appear in the study of commuting
graphs of groups and semigroups (see, for example, [1, 5, 6, 13]). The commuting graph of a finite non-commutative
semigroup S is a simple graph whose vertices are all non-central elements of S and two distinct vertices a, b are
adjacent if ab = ba. Since ab = ba if and only if b € C(a), the knowledge of the centralizers of transformations is
helpful in studying the commuting graph of S whenever S is a semigroup of transformations.

Relatively little has been done regarding centralizers of transformations in the infinite case. For any set X, denote by
T(X) the semigroup of full transformations on X (all mappings from X to X) and by I'(X) the semigroup of injective
transformations on X (all injective mappings from X to X). In both cases, the operation is the composition of functions.
Both semigroups have the symmetric group Sym (X) of permutations on X as their group of units. (Note that if X is
finite, then I'(X) = Sym (X).) The centralizers of idempotent transformations in an infinite T(X) have been studied in
[2, 3, 30]. The author has studied the centralizers of transformations in an infinite ['(X) [19], where he characterized the
elements of C(a) and determined Green’s relations in C(a), including the partial orders of £-, R-, and J-classes.

The present paper follows up on [19]. The structure of the semigroup '(X) in terms of Green’s relations is simple:
H =L, R=D=/J, and the J-classes form a chain [19, Theorem 2.3]. The goal of the present paper is to determine the
elements a € ['(X) whose centralizers have a simple structure, similar to the structure of ['(X). Research along similar
lines has been done for other semigroups of transformations, for example for the semigroup T(X, p) of transformations
on X that preserve an equivalence relation p on X [27, 28], and for the semigroup T(X, p, R) of transformations on X
that preserve both p and a cross-section R of X/p [3].

In any centralizer C(a), where a € I'(X), Green’s L-relation has the same characterization as Green’s L-relation in [(X):
B Ly if and only if B and y have the same image. However, in contrast with ['(X), Green’s relations R, D, and J in a
general C(a) do not have the same characterization. In Section 3, we determine when various Green'’s relations in C(a)
coincide. Also in contrast with I'(X), the J-classes in a general C(a) do not form a chain. In Section 4, we find sufficient
and necessary conditions for the J-classes of C(a) to form a chain. Green’s relations in C(a) have a particularly simple
description when a € I'(X) has a finite ray-cycle decomposition (see Section 2). We describe Green'’s relations for such
transformations a in Section 5. In Section 6, we assume that «a is a permutation of X. Under this assumption, we find
the structure of the centralizer C(a) in terms of direct and wreath products of semigroups of injective transformations,
the group Z of integers, and groups Z, of integers modulo n.

For the remainder of the paper, we assume that X is an arbitrary infinite set.

2. Centralizers in [ (X)

In this section, to make the paper self-contained, we briefly describe some results obtained in [19]. If S is a semigroup
and a,b € S, we say that a Lb if S'a = S'b, aR b if aS' = bS', and a T b if S'aS" = S'bS?, where S is the
semigroup S with an identity adjoined. We define ‘H as the intersection of £ and R, and D as the join of £ and R,
that is, the smallest equivalence relation on S containing both £ and R. These five equivalence relations are known
as Green’s relations [10, p. 45]. Green’s relations provide one of the most important tools in studying semigroups. For
a € S, we denote the equivalence class of a with respect to J by J,, and refer to J, as a J-class. Since J is defined
in terms of principal ideals in S, which are partially ordered by inclusion, we have the induced partial order in the set
of the J-classes: J, < J, if S'aS' C S'pS".

For a € T'(X), we denote the image of a by im (), the cardinality of im (a), called the rank of a, by rank (a), and the
cardinality of X \ im (a), called the defect of a, by def (a). We will denote by S(a) = {x € X : xa # x} the set of
elements shifted by a, and by F(a) = {x € X : xa = x} the set of elements fixed by a. (We will write mappings on the
right: xf rather than f(x), and compose from left to right: x(fg) rather than g(f(x)).)

Green’s relations in ['(X) have been determined in [19, Theorem 2.3]: a L B < im(a) = im (B); a R B & def (a) = def (B);
H=Land R=D =7, J, < Jg & def(a) > def (B); the J-classes in ['(X) form a chain.
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Let ..., x_1, X0, x1,... be pairwise distinct elements of X. We denote by (xoxi X ...) the transformation n € I'(X),
called a ray, such that x;n = x;;1 for all i > 0 and yn = y for all other y € X; by (... x_1 X0 Xy ... ) the transformation
w € [(X), called a double ray, such that x;w = x;41 for all i and yw = y for all other y € X; and by (xox1 ... X,-1),
where n > 1, the transformation A € I'(X), called an n-cycle, such that x;A = x;41 for all i, 0 < i < n, where x,_1A = xo,
and yA = y for all other y € X (see [19, Definition 3.1)).

We say that a, B € ['(X) are disjoint if S(a) N S(B) = B. Let M be a set of pairwise disjoint transformations in I'(X).
The formal product of elements of M, denoted by [],.,, @, is a transformation in '(X) defined by

X(l_la) :{xoz if x € S(a) for some a e M,

aeM X otherwise.

If A= 0, we agree that [],., @ = idx. (See [19, Definition 3.2].)

If @ € T'(X) with a # idx, then there exist unique sets: A of rays, B of double rays, and C of cycles of length at least 2
such that the transformations in AU B U C are pairwise disjoint and

o= (o) (71 ()

(See [21, Proposition 3.3] and [19, Proposition 3.3].) We call the product (1) the ray-cycle decomposition of a.

Forn=(xox1x2 ...}, w={(...x1XX1 ...5 A= (xoX1 ... X,—1), and any B in [(X), we define:
nB* = (xoB x1Bx2B ) wpB* = ( x_1BxoBx1B ) AB* = (xoBx1B ... Xp—1B).

(See [19, Definition 3.5].) For a, B € I'(X), we will say that a is contained in B, and write a C B, if xa = xp for every
x € S(a). Note that all rays, double rays, and cycles from the ray-cycle decomposition of o are contained in a.

For a € T'(X), let A, B, and C be the sets that occur in the ray-cycle decomposition of o (see (1)). By A,, B,, and C,
we will mean the following sets:

A, = A, B, = B, Ca:CU{{x}:XEF(a)}, Cg:{/\ECa:)\isacgcle of length n},

where n > 1 and it is understood that C} = {{x} : x € F(a)}. For B € I'(X), we extend the definition of B* by
{x}B* = {xB} for every {x} € Cl. For A € C?, we will write A = (xg X1 ... X,_1), with the understanding that if n =1,
then A = {xo} and S({x0}) = {x0o}. (See [19, Notation 3.7])

The elements of the centralizer C(a) have been characterized in [19, Theorem 3.9].

Theorem 2.1.
Let a,B € I'(X). Then B € C(a) if and only if for all n € A,, w € By, and A € Cy:

(1) either there is a unique m € A, such that nB* T ny or there is a unique wy € B, such that nB* T wy;

(2) wB* € B, and AB* € C,.

Let a € ['(X). For B € C(a), we define a mapping hg : Ac U B, U Gy — A U B, U G, by

n if 0 € A, and 0B* C n for some n € A,
ohg =qw if 0 € A, and 0B* C w for some w € By,
op* ifoe B,UC,.
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Note that hg is well defined by Theorem 2.1. (See [19, Definition 4.1].)

Let a € I'(X) and B,y € C(a). The following conditions occur in the descriptions of Green'’s relations in C(a).

|Aa \ Achg| + |Ba \ (Achs U Bohg)| = |Ac \ Achy| + | Ba \ (Aahy U Bahy)|. )
|Ba \ (Achg U Bohg)| = |Ba \ (Achy U Bah,)|. 3)
|CON\ Clhg| = |C2\ Coh,| for every n > 1. 4)

Green'’s relations £, R, and D in C(a) have been characterized in [19, Theorems 4.4, 4.7, 4.9].

Theorem 2.2.
Leta € T'(X) and B,y € C(a). Then

(1) BLy in C(a) if and only if im (B) = im (y).
(2) BRy in C(a) if and only if

(a) for every n € A,
nhg € A, and |S(nhg)\im(B)| =k < nh, € A, and |S(nh,)\im(y)| = k;

(b) conditions (2), (3), and (4) hold.
(3) BDy in C(a) if and only if

(a) there is a bijection f : Aq N Achg — Aa N Aghy, such that for every n € Aq N Achg,
[S(n) \ im (B)| = |S(nf) \ im (y)|;

(b) |Ba n AahBl = |Ba ﬂAahy|/
(c) conditions (2), (3), and (4) hold.

The partial order of J-classes in C(a) has been determined in [19, Theorem 4.8].

Theorem 2.3.
Let a € ['(X) and B,y € C(a). Then J, < Jg if an only if

(1) There are injective mappings f : AcNAh, = AcNAghg and g : BoNAgh, — (AqUBq)hg such that |S(n)\im (y)| >
|S(nf)\ im (B)| for all n € A, N Agh,, im (f)Nim(g) = @, and

|Ac \ Achy| + |Ba \ (Achy U Bohy)| > |Aa \ Achg| + |Ba \ (Aahg U Bahg)| + |Achg \ (im (f) U im (g))[;

(2) |Ba \ (Aahy U Bahy)| 2 |Ba \ (AahB U Bah8)|/
(3) 1C2\ Cihy| > |C\ CLhg| for every n > 1.
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3. Centralizers in which Green’s relations coincide

In the semigroup I'(X), Green's relations R, D, and J coincide (see Section 2). In this section, we describe the
transformations a € I'(X) such that R =D in C(a), and the transformations a € '(X) such that D = J in C(a). These
descriptions will show that, in general, R, D, and J are distinct in the centralizer C().

Theorem 3.1.
Let a € I'(X). Then R =D in C(a) if and only if |As] < 1.

Proof. Let A=A,.

(=) We will prove the contrapositive. Suppose |A| > 1 and let i1 = (xox1 x2 ... ) and m2 = (Yo y1 Y2 -..) be two distinct
rays in A. Define B € I'(X) by: x;f = yi11 and y;B = x; for every i > 0, and xB = x for all other x € X. Define
y € ['(X) by: x;¥ = x; and y;y = y;41 for every i > 0, and xy = x for all other x € X. Then B,y € C(a) by Theorem 2.1.
We have (B,y) ¢ R since B and y do not satisfy (2a) of Theorem 2.2 (|S(n1hg) \ im (B)| = 1 but |S(n1hy) \ im (y)| = 0).

On the other hand, (B, y) € D since B and y satisfy (3a) of Theorem 2.2 (with f : AN Ahg — AN Ah, defined by nf = n)
and they also satisfy (3b) and (3c) of Theorem 2.2. Hence R #+ D.

(<) Suppose |A| < 1. Then (3a) of Theorem 2.2 implies (2a) of Theorem 2.2, and so D C R. Hence R =D since R C D
in every semigroup. O

To describe the centralizers in which D = J, we will need the following lemma.

Lemma 3.2.

Let P and Q be finite sets with |P| = |Q| and let &, : P — {0,1,2,...} and &, : Q — {0,1,2,...} be mappings.
Suppose there are bijections f; : P — Q and f, : Q — P such that pd, > (pf1)0, and qd, > (gf2)01 for all p € P and
g € Q. Then pd, = (pfr)o, for all p € P.

Proof. For anintegern >0, let P, ={p € P:pd =n}and Q, = {g € Q: qd = n}. Let n > 0. We claim that
forall p € P, and g € Q,, we have pf; € Q, and gf, € P,.

We proceed by induction on n. It is clear that the claim is true for n = 0. Let n > 1 and suppose the claim is true for
every k, 0 < k < n. Let p € P, and let g = pfy with qd, = k. Then n = pd > qd, = k. Suppose to the contrary that
n > k. By the inductive hypothesis, p1f; € Q and g1f, € Py for all p1 € Py and g1 € Ok. Since f; and f, are injective,
it follows that |Py| = |Qk| and, since Py and Qi are finite, that f; restricted to Py is a bijection from Py to Q. Hence,
there is p, € Py such that g = p,fi. But then pofi = g = pfi, and so p, = p, which is a contradiction. Hence n = k,
that is, pfi € Q,. By a similar arqument, gf, € P, for every g € Q,, and the claim follows by induction.

The result follows immediately from the claim. O

Theorem 3.3.
Let a € ['(X). Then D = J in C(a) if and only if A, is finite.

Proof. letA=A, B=B, and C,=C", n>1.

(=) We will prove the contrapositive. Suppose A is infinite and let

— 1T (2422 — (,3,3,3
m= XX x5 ... n=gxixs ..., n=0gx x5 ...),
be pairwise distinct rays in A.

Define B : X — X by: n,B* = ny, for every n > 1, and xB = x for all other x € X. Define y : X — X by:
my* = (x4 2 x3 ...), nny* = n, for every n > 2, and xy = x for all other x € X. Then B,y € C(a) by Theorem 2.1.
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We have n,hg = o, for every n > 1, mh, = m, and n,h, = ny, for every n > 2. Thus AN Ahg = {n2, : n > 1} and
ANAh, ={m}U{nnm:n>2}

Define f1 CA ﬂAhB - AﬂAhy le I]znf1 = Mny2, N > 1, fz CA ﬂAhy - AnAh/g bl_,l f]1f2 =m and f]znfz = Mn,
n > 2. By the definition of B and y, the sets BN Ahg and B N Ah, are empty. Let g; : BN Ah, — (AU B)hg and
g2 : BN Ahg — (AU B)h, be empty mappings. For every n > 1,

1S(n20) \ im (B)] = 0 = [S(n2n+2) \ im (¥)| = [S(n2nf1) \ im (¥)].

Further, since |S(n2,) \ im (B)| = 0 for every n > 1, we have

1S(m) \im ()] = [S(n2) \im (B)] = [S(m)2 \ im(B)]  and
|S(20) \im ()] > [S(n20) \im (B)] = [S(n2n2) \im (B)] for every n > 2.
By the definitions of B and y, we also have |A\ Ah,| = |A\ Ahg| = 8o, B\ (Ahg U Bhg) = B\ (Ah, U Bh,) = 6,

!Ahs\(im(ﬂ)uim (91))| = ’Ahy\(lm(fz)Uim (gz))‘ =1,and C,\ C,hg = C,\ C,h, = @ for every n > 1. Hence J, < Jg
and Jg < J, by Theorem 2.3, and so (B,y) € J.

However, there is no bijection f : AN Ahg — AN Ah, such that |S(n2,) \ im(B)] = |S(n2.f) \ im(y)|, n > 1, since
[S(m) \ im (y)] = [{xo}| = 1 and |S(n2,) \ im (B)| = 0 for every n > 1. Thus (B,y) & D by (3a) of Theorem 2.2, and so
D+J.

(<) Let A be finite. Suppose (B,y) € J, thatis, J, < Jg and Jg < J,. By Theorem 2.3, there are injective mappings
fi AN Ahg - ANAh, and f, : AN Ah, — AN Ahg such that

|S(m) \im (B)| = |S(mfi) \ im (y)] and |S(n2) \ im (y)| > |S(n2£2) \ im (B)] )

for all ;m € AN Ahg and n, € AN Ah,. Note that f; and f, must be bijections since AN Ahg and AN Ah, are finite sets.
Define 0, : ANAhg — {0,1,2,...} and 3, : AnAh, — {0,1,2,...} by: m6; = |S(m)\im (B)| and n20; = |S(n2) \ im (v)|,
m € AN Ahg, n, € AnNAh,. By (5), mor > (mfi)0, and n20, > (n2f2)0¢ for all ny € AN Ahg and n; € AN Ah,. Thus,
by Lemma 3.2,

[S(n) \im (B)] = ndy = (nf1)d2 = |S(nfy) \'im (y)|

for every n € AN Ahg. Hence B and y satisfy condition (3a) of Theorem 2.2. Since A is finite and hg and h, are injective
mappings, we have

|A\ Ahg| = |B N Ahg| = |A] — |AN Ahg| and |A\ Ah,| =|BnAh,| = |Al —|AN Ah,|. (6)
We already know that f; : AN Ahg — AN Ah, is a bijection. Thus |[AN Ahg| = |AN Ah,|, which, together with (6), gives
|B N Ahg| = |BnAh,| and |A\ Ahg| = |A\ Ah,|. (7)

Since J, < Jg and Jg < J,, we have by Theorem 2.3 that
|B\ (Ah, U Bh,)| = |B\ (Ahg U Bhg)| and |Gy \ Cohy| =|Cy \ Cohg| for every n > 1. (8)

Hence B and y satisfy: condition (3b) of Theorem 2.2 (by (7)), condition (2) (by (7) and (8)), condition (3) (by (8)), and
condition (4) (by (8)).

Thus (B,y) € D, and so J CD. Hence D = J since D C J in every semigroup. O

Corollary 3.4.
Let a € ['(X). Then in C(a),

(1) f R =D thenR =D = J;
(2) R=D=J ifand only if |A,| < 1.

Proof. It follows immediately from Theorems 3.1 and 3.3. O
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4. Centralizers in which [7-classes form a chain

In the semigroup I'(X), the J-classes form a chain (see Section 2). In the centralizer C(a), this is true only for very
special a € ['(X) described below.

Theorem 4.1.
Let a € T'(X). The partially ordered set of J-classes in C(a) is a chain if and only if exactly one of the following
conditions is satisfied:

(1) Aq =@, B, is finite, and C! is infinite for at most one n > 1;
(2) Ae =0, B, is infinite, and C! is finite for all n > 1; or

(3) |A«l =1, By is finite, and C2 is finite for all n > 1.

Proof. letA=A, B=B, and G, =C" n>1.

(=) We will prove the contrapositive. Suppose none of (1)—(3) holds. (Note that (1), (2), and (3) are mutually exclusive,
so it is impossible for at least two of them to hold.)

Suppose B is infinite. Let wy, wo, w3, ... be pairwise distinct double rays in B. Since (2) does not hold, either A # @ or
C, is infinite for some n > 1. Let A # {. Define B: X — X by: nB* = nfor every n € A, wf* = w41 for every i > 1,
and xB = x for all other x € X. Define y : X = X by: ny* = (xixax3 ...) forevery n = (xox1 x2 ...) € A wiy* = w;
for every i > 1, and xy = x for all other x € X. Then B,y € C(a) by Theorem 2.1. We have B\ (Ahg U Bhg) = {w} and
B\ (Ah, U Bh,) = 0. Thus J, & Jg by (2) of Theorem 2.3. We also have that |S(n) \ im (B)| = 0 for every n € AN Ahg,
and |S(n) \im(y)] = 1 for every n € AN Ay. Thus, since A # @ and AN Ahg = AN Ah, = A, there is no injection
f: AnAhg — AN Ah, such that |S(n) \ im (B)| > |S(nf) \ im (y)| for every n € AN Ahg, and so Jg £ J, by (1) of
Theorem 2.3.

Let C, be infinite for some n > 1, say n = m. Let Ay, A3, A3, ... be pairwise distinct cycles in C,. Then we can easily
define B,y € C(a) such that B\ (Ahg U Bhg) = {w1}, B\ (Ah, U Bh,) =8, C, \ Cn,hg =0, and C, \ C,,h, = {M}. For
any such B and y, the J-classes Jg and J, are incompatible by Theorem 2.3.

Suppose B is finite. We consider two cases.
Case 1. C, is finite for all n > 1.

Then, since (3) does not hold, |A| # 1, that is, A = @ or |A| > 2. But the former is impossible since (1) does not hold.
Thus |A] > 2. Let my = (xoxix2 ...) and 02 = (Yo y1 Yz ...) be distinct rays in A. Define B: X — X by: mB* = m,
mB* = (Y2ysys ... ), nB* = (222324 ... ) foreveryn = (202122 ... ) € Awith n # ny, nz, and xB = x for all other x € X.
Define y : X = X by: my* = (xixaxs ...), my* = (yr1y2ys ...), nv* = (z1z2z3 ... ) forevery n = (0212, ...) E A
with n # m, n2, and xy = x for all other x € X. Then B,y € C(a) by Theorem 2.1. Note that AN Ahg = AN Ah, = A.
By the definition of B, we have |S(m)\ im(B)] = 0, |S(n2) \ im(B)] = 2, and |S(n) \ im (B)| = 2 for every n € A with
n # m, ny. By the definition of y, we have |S(n7) \im (y)| =1, |S(n2) \im (y)| =1, and |S(n) \im (y)| = 1 for every n € A
with n # m, no. It follows that there is no injective mapping f : A — A such that [S(n) \ im (y)| > |S(nf) \ im (B)]| for all
n € A, and there is no injective mapping f' : A — A such that |[S(n) \im (B)| > |S(nf’) \im (y)| for all n € A. Thus J, £ Jg
and Jg £ J, by (1) of Theorem 2.3.

Case 2. G, is infinite for some n > 1, say n = m.

Let A1, A2, A3, ... be pairwise distinct cycles in C,,. Let A # @. Define B : X — X by: nB* = n for every n € A,
AiB* = Aiq for every i > 1, and xB = x for all other x € X. Define y : X — X by: ny* = (xyx2x3 ...) for every
n=(xox1x2...) €A Ay* = A for every i > 1, and xy = x for all other x € X. Then B,y € C(a) by Theorem 2.1. We
have C, \ Cuhg = {M} and C, \ Cyhy, = 0. Thus J, £ Jg by (3) of Theorem 2.3. We also have that |S(n) \ im (B)| = 0 for
every n € AN Ahg, and |S(n)\ im (y)| = 1 for every n € AN Ay. Thus, since A # @ and AN Ahg = AN Ah, = A, there is
no injection f : AN Ahg — AN Ah, such that |S(n) \ im (B)| > |S(nf) \ im (y)| for every n € AN Ahg, and so Jg £ J, by
(1) of Theorem 2.3.
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Let A = @. Then, since (1) does not hold, there is k > 1 with k # m such that C; # C, and C; is infinite. Let yq, o, 13, - . .
be pairwise distinct cycles in Cy. Then we can define B,y € C(a) such that C, \ Cu,hg = 8, G, \ Cohy, = {M},
Ci \ Cehg = {in}, and G\ Cch, = 8. For any such B and y, the J-classes Jg and J, are incompatible by Theorem 2.3.

(<) Suppose that exactly one of the conditions (1)—(3) is satisfied. Let B,y € C(a). We want to prove that J, < Jg or
Jg <y

Suppose B is infinite. Then (2) holds, and so A = and C, is finite for every n > 1. Thus C,hg = C,h, = C,, and so
|G, \ Gohy| =0 =1C, \ C,hg| for every n > 1. Hence, by Theorem 2.3, J, < Jg (if |B\ Bh,| > |B\ Bhg|) or Jg < J, (if
|B\ Bhg| > [B\ Bh,|).

Suppose B is finite. Then Bhg = Bh, = B and BN Ahg = BN Ah, =, and so B\ (Ahg U Bhg) = B\ (Ah, U Bh,) = 0.
Since (2) or (3) holds, we have that either A =@ or C, is finite for every n > 1.

Suppose A = and C, s finite for every n > 1. Then C,hg = C,h, = C,, and so |C, \ C,h,| =0 =|C, \ C,B] for every
n > 1. Thus J, < Jg by Theorem 2.3 (with f and g being empty mappings) and, similarly, Jg < J,. Hence Jg = J,.
Suppose A = @ and C, is infinite for some n > 1. Then, by (1), G, is infinite for exactly one n > 1, say n = m. Thus,
by Theorem 2.3, J, < Jg (if |C \ Cuhy| > |G \ Cuhg|) or Jg < J, (if |G \ Cuhg| > |Ci \ Cuhy)).

Suppose A #+ @ and C, is finite for every n > 1. Then (3) holds, and so A is a one-element set, say A = {n}. Note
that An Ahg = AnAh, = A = {n}. Thus, by Theorem 2.3, J, < Jg (if |S(n) \ im (y)| > |S(n) \ im (B)]) or Jg < J, (if
1S() \ im (B)] = |S(n) \ im (y)])-

Hence, in all possible cases, Jg and J, are compatible, which completes the proof. O

5. Transformations with finite ray-cycle decomposition

The descriptions of Green'’s relations in C(a) simplify considerably when the sets A,, B,, and C] (for every n > 1) are
finite. If this happens, we will say that a € '(X) has a finite ray-cycle decomposition. Let a € '(X) have a finite
ray-cycle decomposition, and let B € C(a). Recall that hg is injective and that it maps B, to B,. Thus, since B, is finite,
hg restricted to B, is a bijection from B, to B,. Similarly, for every n > 1, hg restricted to CJ is a bijection from C} to
Cl. Further, hg cannot map elements of A, to B,, and so hg restricted to A, is a bijection from A, to A,. Therefore, we
have the following:

(1) Ag NAghg = Aai
(2) A\ Achg = Bo N Aghg = By \ (Achg U Bohg) = 6;
(3) Ca\ Clhg =@ for every n > 1.

The following result follows immediately from (1)—(3) and Theorems 2.2 and 3.3.

Theorem 5.1.

Let a € T'(X) be a transformation with a finite ray-cycle decomposition, and let B,y € C(a). Then in C(a):
(1) BRy if an only if |S(nhg) \ im (B)| = |S(nh,) \ im (y)| for every n € A,.
(2) BDy if and only if there is a bijection f : A, — A, such that |S(n) \ im (B)| = |S(nf) \ im (y)]| for every n € A..
3) J=D.

6. The structure of the centralizer of a permutation

Let o € Sym (X). In this section, we prove that C(a) is isomorphic to a semigroup constructed using direct and wreath
products of the semigroup I'(B,) of injective transformations on B,, the semigroups I'(C7) of injective transformations on
CZ, n > 1, the group Z of integers, and the groups Z, of integers modulo n, n > 1.
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First note that for every a € I'(X),
aeSym(X) < A, =10. (9)

The following theorem follows immediately from (9), Theorem 2.2, Corollary 3.4, and Theorem 4.1.

Theorem 6.1.
Let o € Sym (X). Then in C(a):

(1) BRy if and only if |By \ Bohg| = |Bo \ Bohy| and |C2\ Clhg| = |C2\ C2h,| for every n > 1.
2 R=D=J.

(3) The J-classes form a chain if and only if at most one of the sets B,, C}, C2, C2, ... is infinite.

Let M be a set, S be a semigroup of transformations on M, and T be a semigroup. Denote by T the set of all mappings
f: M — T and note that TM with multiplication defined by

i(fg) = (if)lig), ~ f.geT", ieM,
is a semigroup. Define a multiplication on the set TM x S by
(f.u)g,v) = (fg" uv), (10)
where g € TM is defined by i(g") = (iu)g, so for every i € M,
i(fg") = (if(iv)g]-
It is straightforward to verify that TM x S with multiplication (10) is a semigroup.

Definition 6.2.
The set TM x S with multiplication (10) is called the wreath product of T and S (with respect to the set M), and denoted
by T S.

Note that TS is completely determined by T, S, and the set M. If S is a group of permutations on a set M and T is
a group, then TS is the group wreath product (see [7, page 46], [14, page 79], and [29, page 272]).

We will be interested in the wreath products Z I'(M) and Z, ! T (M), where Z is the group of integers and Z, is the
group of integers modulo n. The wreath product Z (M) is the set ZM x (M) with multiplication

(f,u)(g,v) = (f+g" uv) with i(ff +g") = (if) + (iv)g, (11)

where f,g € ZM, u,v € [(M), and i € M. The wreath product Z, : [ (M) is the set ZM x (M) with multiplication as in
(11) except that f,g € Z¥ and ‘+' is the addition modulo n.

For semigroups S and T, we write S = T if S is isomorphic to T.

Proposition 6.3.
Let a € Sym (X) be a product of double rays (that is, A, =@ and C" = @ for every n > 1). Then C(a) = (Z 0 F(Ba)).
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Proof. let B = B,. For every w € B, we fix an element wy € S(w). For every i € Z, let w; = wpa'. Then
w={(... w_qwyw ...). We will define an isomorphism ¢ from C(a) to Z:['(B). Let B € C(a). For w € B, let p = wh.
Then woB = p; for some i € Z. Define fz : B — Z by wfz = i. Recall that hg : B — B is injective, that is, hg € ['(B).
We define ¢ : C(a) — Z8 x I'(B) by

B¢ =(lg.hg), B € Cla).

To prove that ¢ is a homomorphism, let B,y € C(a). Then

(BY)® = (fay hay).  (BONY®) = (fo, ha)(Fy. hy) = (fa)" hh,).

Let w € B, p = whg, 0 = ph,, i = wig, and j = pf,. Then
w(fshF) = why + (whe)f, = i + pf, = i + j. (12)

On the other hand,
wo(BY) = piv = (poa')y = po(a'y) = po(ya') = gja’ = 0y, (13)

where wof8 = p; since wfg = i, poy = 0; since pf, = j, and a'y = ya' since y € C(a). By (13) and the definition of fg,,
we have that wfg, = i+ j. Hence fg, = foCB by (12). Thus, since hg, = hgh, (see [19, Lemma 4.2)),

(BY)$ = (fay, hgy) = (fehy° hgh,) = (B)(v9),

that is, ¢ is a homomorphism.

To prove that ¢ is one-to-one, let B,y € C(a) and suppose B¢ = y¢, that is, iy = f, and hg = h,. let w € B,
p = whg = why, and i = wfg = wf,. Then for every j € Z,

w;B = (wo)B = wo(e!B) = wy(Be) = (woB)a’ = pic?,

and, similarly, w;y = pidd. Thus B =y.
Finally, to prove that ¢ is onto, let (f, h) € Z8 x I'(B). Let w € B, p = wh, and i = wf. Define B: X — X by

wiB = pisj, jEL.

It is clear that B is injective. By Theorem 2.1, we have that B € C(a). We also have hg = h (by the definition of B) and
fg = f (since woB = piro = pi, and so wip = i = wf). Hence (f, h) = (fz, hg) = B¢. O

Proposition 6.4.
Let a € Sym (X) be a product of cycles of fixed length n (that is, A, = B, = @ and C? = @ for every m # n). Then
C(a) E (Zy21T(CD)).

Proof. Let C, = C". For every A € C,, we fix an element Ay € S(A). For every i € Z, = {0,1,...,n — 1}, let
A = Agal. Then A = (Ag Ay ... A,_1). We will define an isomorphism ¢ from C(a) to Z,T(C,). Let B € C(a). For A € G,,
let y = Ahg. Then Ao = y; for some i € Z,. Define f3: C, — Z, by Mz = i. We define ¢ : C(a) — Z& x '(C,) by

B¢ = (s, hg), B e Cla)

Now, the argument from the proof of Proposition 6.3 can be used (almost verbatim) to prove that ¢ is an isomorphism. [
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Let / be a nonempty index set and let {S; : i € I} be a collection of semigroups indexed by /. The direct product
of the collection, denoted ), S;, is the set of all mappings p : | — [J,; Si such that ip € S; for every i € /, with
multiplication defined by i(pq) = (ip)(iq), p.q € @, S, i € I. The direct product of any collection of semigroups
is a semigroup [10, page 5]. If S; is a group for every i € /, then ), S;i is a group [8, Exercise 15, page 157]. If
I'={1,2,...,m}, we write the direct product &.., Si as S1 x S; x --- x S, and elements p € &._, S; as m-tuples
(1p,2p, ..., mp).

iel

Theorem 6.5.
Let a € Sym (X). Then

Cla) Z (Z1T(Ba)) x X) (Z,21T(CL)).

n>1

Proof. Let B= B, and C, = C] forevery n > 1. Let Xp = [J,cp S(w) and let X, = J,c¢, S(A), n > 1. Let B € T(X).
For each integer m > 0, denote by a,, and B, the restrictions of @ and B to Xj,, respectively. Then a, € Sym (X,) for
every m > 0. By Theorem 2.1,

B € Cla) &= Bn € Clan), m > 0. (14)

It follows from (14) that the mapping ¢ : C(a) — @),,5¢ C(an) defined by
m(B¢) =Bn, BECla), m=>0,

is an isomorphism. By Proposition 6.3, C(ag) = (Z i F(B)). By Proposition 6.4, C(a,) = (Zn 0 F(C,,)) for every n > 1.
Thus
Cla) = Q) Clan) = (Z2T(B)) x Q) (Zn2T(Ch)),

m>0 n>1

which concludes the proof. O

For a monoid S, we denote by U(S) the group of units of S. Let M be a set, S be a monoid of transformations of M
with identity idys (iidy = i for every i € M), and T be a monoid with identity 1. Then the wreath product TS is a
monoid with identity (¢, idys), where 1 : M — T is the mapping such that it = 1 for every i € M. It is straightforward to
show that the group of units of T2 S is the wreath product U(T) 2 (S N Sym (M)).

For every a € I'(X), the centralizer C(a) is a monoid with identity idx and the group of units U(C(a)) = C(a) N Sym (X).
Theorem 6.5 and the foregoing observations give the following result.

Theorem 6.6.
Let a € Sym (X). Then

U(C(a) = (Z2Sym(Ba)) x R (Zo2Sym(CT).

Theorem 6.6 generalizes the result obtained for permutations of a finite set[29]. Suppose X is finite and let a € Sym (X).
Then By, =@ and C2 = @ for almost all n > 1. Let 1 < ny < ny < ... < ny be the integers such that C +#  for every
i€{1,2,...,k} and C! = @ for all other n > 1. Denote by C’(a) the centralizer of a relative to Sym (X) and note that
C'(a) = C(a) N Sym (X). Then, by Theorem 6.6,

C'(a) Z (Zn, 1SYM(C2)) X (Z, 1SYM (C2)) X -+ X (Zy 2 Sym (C2¥)),

ny

which is the result stated in [29, (2.12) and (2.13)].
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We finish this paper with some problems concerning the structure of centralizers in semigroups of transformations other
than "(X).

(1) Determine the structure of centralizers in various subsemigroups of T(X), for example in the semigroup Q(X) of
all surjective transformations.

(2) Determine the structure of centralizers in various subsemigroups of the semigroup P(X) of partial transformations
on X, for example in the symmetric inverse semigroup /(X) of all partial injective transformations.

(3) Determine the structure of centralizers in various subsemigroups of the semigroup L(V/) of all linear transformations
on a vector space V.
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