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Abstract: Inthis note we provide regularity conditions of closedness type which guarantee some surjectivity results concern-
ing the sum of two maximal monotone operators by using representative functions. The first regularity condition
we give guarantees the surjectivity of the monotone operator S(- + p) + T(:), where p € X and S and T are
maximal monotone operators on the reflexive Banach space X. Then, this is used to obtain sufficient conditions
for the surjectivity of S + T and for the situation when 0 belongs to the range of S + T. Several special cases are
discussed, some of them delivering interesting byproducts.
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1. Introduction

The recent developments in treating monotone operators by means of convex analysis brought interesting results related
to many problems involving monotone operators (cf. [4, 14]). Among them, maximal monotonicity of the sum of two
maximal monotone operators [4, 6], sufficient conditions ensuring that O belongs to the range of a sum of maximal
monotone operators and surjectivity of such a sum [4, 16]. Problems like these arise in different applications in fields
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like inverse problems, Fenchel-Rockafellar and Singer-Toland duality schemes, Clarke—Ekeland least action principle
[2], variational inequalities [4, 11], Schrodinger equations and others [1]. In papers [10, 11] algorithms for determining
where the sum of two maximal monotone operators takes the value O are given. Surjectivity issues regarding maximal
monotone operators are discussed also in recent works [8, 9, 12].

In this paper we give, by using representative functions, conditions that characterize the fact that, for maximal monotone
operators S and T defined on a reflexive Banach space X and p € X, the monotone operator S(- + p) + T(:) is
surjective. From this we deduce characterizations of the surjectivity of S + T and of the situation when 0 lies in the
range of S+ T. As main results, we introduce weak closedness type reqularity conditions that guarantee the validity
of the mentioned results. An example to underline the fact that these regularity conditions are indeed weaker than the
interiority type ones considered in the literature, is also provided. As special cases we consider situations where T is
the normal cone of a nonempty closed convex set, respectively when S and T are subdifferentials of proper convex lower
semicontinuous functions. In this way we rediscover several results from the literature, like the celebrated Rockafellar’s
surjectivity theorem and we moreover deliver weak reqularity conditions for some results known so far only under stronger
hypotheses involving generalized interiors.

2. Preliminaries

First we present some notions and results from convex analysis that are necessary in order to make the paper self-
contained. Let a nontrivial Hausdorff locally convex topological space be denoted by X and its dual space by X*. The
dual of X* is said to be the bidual of X, being denoted by X**. If X is normed, it can be identified with a subspace of
X**, and we denote the canonical image in X** of the element x € X by x, too. By (x*, x) we denote the value of the
linear continuous functional x* € X* at x € X. Moreover, we call ¢ : X x X* = R, c(x, x*) = (x*, x), the duality product.
Denote the indicator function of U C X by 0y and its support function by oy.

For a function f : X — R = R U {00}, we denote its domain by domf = {x € X : f(x) < +00}. We call f proper if
f(x) > —oco for all x € X and dom f # @. The conjugate function of f is f* : X* = R, f*(x*) = sup {(x*, x) = f(x) : x € X}
For x € X such that f(x) € R we define the (convex) subdifferential of f at x by 0f(x) = {x* e X*: fly) —f(x) >
(x*,y—x) for all y € X}. When f(x) ¢ R we take by convention 0f(x) = @. The subdifferential of the indicator function
of a set U C X is said to be the normal cone of U being denoted by Ny. Between a function and its conjugate there is
Young’s inequality f*(x*) + f(x) > {x*, x) for all x € X and all x* € X*, fulfilled as equality by a pair (x,x*) € X x X*
if and only if x* € 9f(x). Denote also by clf : X — R the largest lower semicontinuous function everywhere less than
or equal to f, i.e. the lower semicontinuous hull of f, and by cof : X — R the largest convex function everywhere less
than or equal to f, i.e. the convex hull of f.

When f,g : X — R are proper, we have the infimal convolution of f and g defined by f0g : X — R, fOg(a) =
inf {f(x) + g(a —x) : x € X}. It is said to be exact at y € X when the infimum at @ = y is attained, i.e. there exists
x € X such that fOg(y) = f(x) + g(y — x). When an infimum or a supremum is attained we write min and max instead
of respectively inf and sup.

The next result can be derived from the proofs of [7, Proposition 2.2 and Theorem 3.1].

Proposition 2.1.
Consider on X* a locally convex topology giving X as its dual space. Let proper, convex and lower semicontinuous
functions f, g : X — R satisfy dom f Nndom g # @ and p* € X*. Then f*Og* is lower semicontinuous at p* and exact at
p* if and only if

inf [f(x) + g0 = (p*, )] = max { = (') = g"(p" — x")}.

Remark 2.2.
The continuity of either f or g at a point of domf N domg yields the fulfillment of the equivalent statements from
Proposition 2.1, even when the lower semicontinuity hypotheses imposed on f and g are removed.
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Let us recall some notions and results involving monotone operators (see for instance [4, 5, 8, 14]). Further, X is a Banach
space equipped with the norm || - ||, while the dual norm on X* is || - |-

A multifunction T : X = X* is called a monotone operator provided that for any x, y € X one has (y* —x*,y —x) >0
whenever x* € Tx and y* € Ty. The domain of T is D(T) = {x € X : Tx # @}, while its range is R(T) = J{Tx :
x € X}. T is called surjective if R(T) = X*. A monotone operator T : X = X* is called maximal when its graph
G(T) ={(x,x*) : x € X, x* € Tx} is not properly included in the graph of any other monotone operator 7" : X = X*.
The subdifferential of a proper convex lower semicontinuous function on X is a typical example of a maximal monotone
operator, the first to note this being Rockafellar in [13].

To a maximal monotone operator T : X = X* one can attach the Fitzpatrick function

or X x X' SR grlox) = sup{(y",x) + (' y) = (4", y)  y" € Ty},

which is proper convex and weakxweak*-lower semicontinuous, and the so-called Fitzpatrick family of representative
functions
— | fr is convex and strongxstrong lower semicontinuous,
Fr={fr:XxX"->R| " J J
c<fr, (x,x*)eG(T)= fr(x,x*) = (x,x%)

The largest element of Fr is ¢y = cl x|, co (¢ + 6c(r)). We also have ¢r(x, x*) = (c + 56(7))*()(*,)() = 7 (x*, x) for
all (x,x*) € X x X*. For fr € Fr, denote by )A‘T : X x X* = R the function defined as ?T(X,X*) = fr(x,—x*), x € X,
x* € X*. Note that 7 is proper, convex and lower semicontinuous, and ?T(x,x*) > —(x*,x) and ;'?(X*,x) = f3(x*, —x)

for all x € X and x* € X*.

If f: X — R is a proper convex lower semicontinuous function, then the function (x, x*) = f(x)+f*(x*) is a representative
function of the maximal monotone operator df : X =2 X* and we call it the Fenchel representative function. If f is also
sublinear, the only representative function associated to 0f is the Fenchel one, which coincides in this case with the
Fitzpatrick function of 0f (see [3, Theorem 5.3 and Corollary 5.9]). Other maximal monotone operators having only one
representative function, the Fenchel one, are the normal cones of nonempty closed convex sets.

The following statement underlines close connections between maximal monotone operators and their representative
functions.

Proposition 2.3.
Let T : X = X* be a maximal monotone operator.

(i) @7 is the smallest element of the family Fr.
(it) If fr € Fr one has f3(x*, x) > (x*,x) for all (x,x*) € X x X*.

(iii) If fr € Fr and (x,x*) € X x X*, (x,x*) € G(T) if and only if fr(x,x*) = (x*,x) and this is further equivalent to
fr(x*, x) = (x*, x).

3. Surjectivity results for the sum of two maximal monotone operators

In this main section we deal with the surjectivity results announced in the introduction. Further, let X be a reflexive
Banach space, S and T be two maximal monotone operators defined on X. The first main statement of this note follows,
after an observation needed in its proof.

Remark 3.1.
Letp € X and p* € X*. Then p* € R(S(p + ) + T(-)) if and only if (p, p*) € G(S)—G (—T), where G (—T) = {(x,x*) €
X x X*:(x,—x*) e G(T)}.

Theorem 3.2.
Let p € X and p* € X*. The following statements are equivalent:
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(i) p* €R(Slp+1) + T());

(ii) for all fs € Fs and fr € Fr one has dom fs N ( dom fr+ (p.p*)) # 0 and the function f;D(?-’f +{(p*. p). () is
lower semicontinuous at (p*, p) and exact at (p*, p);

(iii) there exist fs € Fs and fr € Fr with dom fsn( dom IA‘T—i—(p,p*)) #+ @ such that the function f;D(lA‘?—i-((p*,p), (-.))
is lower semicontinuous at (p*, p) and exact at (p*, p).

Proof. Note first that the assertion (ii)=>(iii) is immediate and one also has
(Frt=po-=p)) =15 +(p" ) + (). (1)
(it))=(i) Proposition 2.1 yields the equivalence of (iii) to
(fs+Fr(-—p.-—p)(p"p) = min [fs(pT =t p—u) + Fr(u™, u) + (p*, u) + (u”, p)]- (2)

Denoting by (@*, @) € X* x X the point where this minimum is attained, we obtain, via Proposition 2.3,

(fs +Fr(- —p.- = p") (" p) = f5(p" — &, p — B) + T7(a", @) + (p*, &) + (", p) 3
>(p"—a",p—a)—(a*,a)+(p", u)+ (0", p) =(p".p).
But Proposition 2.3 yields for every x € X and x* € X*
(fs + Trl- = po- = p)) (. x) = (xx) + (=" = p*), x = p) = (", p) + (p",x) — (p", p),
thus (p*, p) > (x*, p) + (p*, x) — (fs + Fr(- — p,- — p*)) (x,x*). Consequently,
(fs+F(-—p.-=p))'(p".p) < (p".p). (4)
Together with (3) this yields
(fs+Tr(-—p,-=p") (0", p) = (p", p),
and consequently the inequalities invoked to obtain (3) must be fulfilled as equalities. Therefore
folp*—a*,p—a)=(p"—a",p—a) and 7@ a)=(-0"a). (5)

Having these, Proposition 2.3 yields then p* — &* € S(p — @) and a* € T(—a), followed by p* € S(p — a) + T(—a), ie.
p*€R(S(p+-)+T())

()=(i1) WhenAever fs € Fs, fr € Fr, () yields, via Remark 3.1, (p,p*) € domfs — domfs, Le.
dom fs N (dom fr + (p*, p)) # @.

For every fs € Fs, fr € Fr, u € X and u* € X* we have fi(p* — u*, p — u) + F3(u*, u) + ((p*, p), (u, u™)) >

(p* = u*,p — u) = (u*,u) + (p*,u) + (u", p) = (p*,p). Consequently, Fs0(F; + ((p* p). () (p*.p) > (p*,p) and
since the function in the right-hand side is strongxstrong continuous, its value at (p*, p) must also be smaller than

cl(f:0 (f* {(p*.p). (-.-))))(p*. p). But from [5, Theorem 7.6] we know, via (1), that one has cl(f* ( 5 +{p*.p).(.))) =
(fs + Fr(=(p*,p) + ()" and since (4) always holds, it follows that cl (fzO(f; +((p*, p). (-, ))))(p*. p) < (p .p).
Consequently,

fEO(F + (", p). (D) (p",p) > L (FO(F7 + ((p% p). (D)) (p™, p) = (p". p)- (6)

Since p* € R(S(p+ )+ T(-)), there exists (a*,a) € X* x X fulfilling (5). Then fi(p* — a*,p — a) + ?}(U*,D) +
((p*.p). (@, a*)) ={p*.p) ie

fEO(F + (0" p). (. N) (P p) = F2(p™ — &%, p — @) + T7(@", @) + ((p*, p). (&, @%)) = (p", p),

therefore the exactness of the infimal convolution in (ii) is proven, while the lower semicontinuity follows via (6). O
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From Theorem 3.2 we obtain the following surjectivity result.

Corollary 3.3.
For p € X, one has R(S(p + ) + T()) = X* if and only if

for all p* € X*, fs € Fs and fr € Fr one has domfs N ( dom fr+ (p.p*)) # 0 and

the function f;D(?? +{(p*, p). (.*))) is lower semicontinuous at (p*, p) and exact at (p*, p),
and this is further equivalent to

for all p* € X* there exist fs € Fs and fr € Fr with dom fs N ( dom fr+ (p.p*)) # 0 such that

the function f;EI(??} +{(p*. p). (-, ))) is lower semicontinuous at (p*, p) and exact at (p*, p).

Starting from Corollary 3.3 we are able to introduce a sufficient condition for the surjectivity of S(p + ) + T(-) for a
given p € X.

Theorem 3.4.
Letp € X. ThenR(S(p+ )+ T()) = X" if

for each p* € X* there exist fs € Fs and fr € Fr with domfs N (dom f‘r + (p,p*)) #+ @ such that

. RC
the function fs0(f7 + ((p*, p). (-, ))) is lower semicontinuous on X* x {p} and exact at (p*, p). (RO)

Next we characterize the surjectivity of S+ T via a condition involving representative functions. The first result follows
directly from Theorem 3.2, while the second one is a direct consequence of the first.

Theorem 3.5.

Let p* € X*. The following statements are equivalent:

(i) pr € R(S+T),

(ii) for all fs € Fs and fr € Fr one has dom fs N (dom fr + (0, p*)) # @ and the function fz0(f; + (p*,-)) is lower
semicontinuous at (p*,0) and exact at (p*,0);

(iii) there exist fs € Fs and fr € Fr with domfs N ( dom fr + (0, p*)) # @ such that the function f;l:](f‘; +(p*,-)) is
lower semicontinuous at (p*,0) and exact at (p*, 0).

Corollary 3.6.
One has R(S + T) = X* if and only if

for all p* € X*, fs € Fs, fr € Fr one has domfs N (dom ?T + (O,p*)) + 0 and
the function f;D(?? + (p*, )) is lower semicontinuous at (p*,0) and exact at (p*,0),

and this is further equivalent to

for all p* € X* there exist fs € Fs and fr € Fr with domfs N (dom ?T + (0, p*)) +0
such that the function f;D(?? +(p*, )) is lower semicontinuous at (p*,0) and exact at (p*,0).

From Corollary 3.6 one can deduce a sufficient condition to have S + T surjective.
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Theorem 3.7.
One has R(S+ T) = X* if

for all p* € X* there exist fs € Fs and fr € Fr with domfs N ( dom ?T + (0, p*)) + @ such RO
that the function f;D(?; +(p*,-)) is lower semicontinuous on X* x {0} and exact at (p*,0).

Remark 3.8.
In the literature there were given other reqularity conditions guaranteeing surjectivity of S+ T, namely, for fixed fs € Fs
and fr € Fr,

- (cf. [9, Corollary 2.7]) domfr = X x X*,
- (cf. [14, Theorem 30.2]) dom fs — domf; = X x X*,
- (cf. [16, Corollary 4)) {0} x X* C sqri (dom fs — dom f7),

where sqri denotes the strong quasi relative interior of a given set, respectively. It is obvious that the first one implies
the second, whose fulfillment yields the third condition. This one yields

(fs + i, — p)) (x*,0) = *En)?;mex [fe(x* — u*, —u) + Fe(u*, u) + (p*, u)] for all x*,p* e X*,

which is equivalent, when dom fs N (dom 71 + (0, p*)) # @ (condition fulfilled in all the three reqularity conditions given
above), to the fact that whenever p* € X* the function f;D(IA‘} + (p*, )) is lower semicontinuous at (x*,0) and exact at
(x*,0) for all x* € X*. It is obvious that this implies (RC) and below we present a situation where (RC) holds, while the
conditions for surjectivity of S+ T listed above do not.

Example 3.9.
Let X = R and consider the operators S, T : R = R defined by
0 if 0,
{0} l x> R ifx=0,
Sx=4(—00,0] if x=0, Tx = ) x € R.
. # otherwise,
g otherwise,

One notices easily that, considering the functions f,g : R — R, f = 8o and g = 8}, which are proper, convex
and lower-semicontinuous, we have S = df and T = dg, thus S and T are maximal monotone. It is obvious that
R(S + T) = R. The Fitzpatrick families of both S and T contain only their Fitzpatrick functions, because f and g are
sublinear functions. We have

0 itx >0 x*<0,
400 otherwise,

0 ifx=0,

+o0 otherwise.

Ps(x, x*) = { and er(x, x*) = {

Therefore
() x) 0 if x* <0, x>0, and (' x) 0 if x=0,
X", x) = X, x) =
s +oo otherwise, or +o00 otherwise.
Then domgs — domdr = R, x R, where Ry = [0,+00), and it is obvious that {0} x R is not included in

sqri(dom ¢s — dom @7) = (0, +00) x R. Consequently, the three conditions mentioned in Remark 3.8 fail in this situation.
On the other hand, for p*, x, x* € R one has

0 if x>0,

*D Ak + *’. *’ —
@s0(@7 + (p*, ) (X", x) {+oo iy <0,

This function is lower semicontinuous on R x R, and exact at all (x*,x) € R x R,.. Consequently, (RC) is valid in this
case.
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Remark 3.10.
Following Remark 2.2, when one of fs and f7 is continuous, (RC) is automatically fulfilled. It is known (see for instance
[14]) that the domain of the Fitzpatrick function attached to the duality map

1
/X =X, szai IxI? = {x* € X" |x|I” = |x*[I2 = (x*. x)}., xeX,

which is a maximal monotone operator, is the whole product space X x X*. By [15, Theorem 2.2.20] it follows that ¢,
is continuous, thus by Corollary 3.3 we obtain that S(p + -) + J(-) is surjective whenever p € X. Thus we rediscover a
property of maximal monotone operators. Moreover, employing Corollary 3.6 one gets that S+/ is surjective, rediscovering
Rockafellar’s classical surjectivity theorem for maximal monotone operators [14, Theorem 29.5].

The last results we derive from the main one are connected to the situation when 0 lies in the range of S+ T.

Corollary 3.11.
One has 0 € R(S + T) if and only if

for all fs € Fs and fr € Fr one has dom fs N dom IA‘T + @ and
the function f;D?; is lower semicontinuous at (0,0) and exact at (0, 0),

and this is further equivalent to

there exist fs € Fs and fr € Fr with dom fs N dom ;‘T #+ @ such that
the function f¢[0f; is lower semicontinuous at (0,0) and exact at (0, 0).

From Corollary 3.11 one can deduce a sufficient condition to be sure that 0 € R(S + T).

Theorem 3.12.
One has0 e R(S+T) if

there exist fs € Fs and fr € Fr with domfs N dom ?T %+ @ such that ~
the function fi0F; is lower semicontinuous on X* x {0} and exact at (0,0).

Remark 3.13.

Other regularity conditions gquaranteeing 0 € R(S+T) were given in [4, Theorem 45], (0,0) €
core ( co (G (S)) — co (G(—T))), where core denotes the algebraic interior of a given set and co its convex hull, and
[16, Lemma 1], (0,0) & sqri(dom fs — dom ?T) respectively. Following similar arguments to the ones in Remark 3.8 one
can show that both yield (I/?E). Checking the situation from Example 3.9, we see that the condition involving sqri fails,
while (Ii\é) is fulfilled. As core ( co (G (S)) —co (G (—T))) = int(Ry x (—R;) — {0} x R) = (0, +00) x R does not contain

(0,0), it is straightforward that (F,EE) is indeed weaker than both abovementioned conditions for 0 € R(S + T).

Remark 3.14.
One can notice via (1) that (2) can be rewritten when p* =0 and p =0 as
xexl,?*fex* [fs(x,x )+ fr(x, x )] = u*eT(*afeX [ — fs(—u™, —u) — f7(u u)] (7)

.e. there is strong duality for the convex optimization problem formulated above in the left-hand side of (7) and its
Fenchel dual problem. When (@, @*) € X x X* is an optimal solution of the dual problem, i.e. the point where the
maximum in the right-hand side of (7) is attained, one obtains &* € S(a) and —&* € T(@). Employing now Proposition
2.3 we obtain fs(a, a*) = f&(—a*, —a) = (a*,a) and fr(a, a*) = F3(a*, a) = —(a*, @), therefore

fs(a, a*) + Fr(a, a*) = f&(—a*, —a) + f5(a*, a) = 0.
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Thus, the infimum in the left-hand side of (7) is attained, i.e. the primal optimization problem given there has an
optimal solution, too. As strong duality for it holds, we are now in the situation called total duality [5, Section 17],
which happens when the optimal objective values of the primal and dual coincide and both these problems have optimal
solutions. Therefore we can conclude that for this kind of optimization problems when strong Fenchel duality holds the
primal problem has an optimal solution, too.

Remark 3.15.

Given p € X and p* € X*, the function ng(?? + ((p*.p). (-.-))) can be replaced in conditions (ii)—(iii) from Theo-
rem 3.2 with (f; —{(p*, p), (- )))E\?-*f without altering the statement. The other conditions considered above can be
correspondingly rewritten, too.

4. Applications

4.1. T is the normal cone of a closed convex set

Let U C X be a nonempty closed convex set. Its normal cone Ny is a maximal monotone operator. Taking T = Ny, its
only representative function is fn,, (x, x*) = ou(x) + ou(x*), (x, x*) € X x X*. From our main statements we obtain in this
case the following results.

Corollary 4.1.
Letp € X. Then R(S(p + ) + Nuy(-)) = X* if and only if

for all p* € X* and fs € Fs one has domfs N (U x domo_y + (p, p*)) # ¥ and the function
(g y) = anf TS =7 p) CoNY™ =Xy =x) + oulx7)] ®)

is lower semicontinuous at (p*, p) and the infinum within is attained when (y*,y) = (p*, p),

and this is further equivalent to

for all p* € X* there exists fs € Fs with domfs N (U x doma_y + (p, p*)) # @
such that the function (8) is lower semicontinuous at (p*, p) and the infinum within
is attained when (y*, y) = (p*, p).

Corollary 4.2.
Let p € X. Then R(S(p + ) + Nu(-)) = X* if

for all p* € X* there exists fs € Fs with domfs N (U x doma_y + (p, p*)) # 0
such that the function (8) is lower semicontinuous on X* x {p} and (RCy)
the infimum within is attained when (y*,y) = (p*, p).

Corollary 4.3.
One has 0 € R(S + Ny) if

there exists fs € Fs with domfs N (U x dom a_y) # @ such that
the function (y*, y) — infyeu{(f&(-, y + x)0ou)(y*)} is lower semicontinuous (RCo)
on X* x {0} and the infimum within is attained when (y*, y) = (0, 0).

Remark 4.4.
A stronger than (RCy) reqularity condition for 0 € R (S + Ny), namely 0 € core (co (D (S) — U)), was considered in [4,
Corollary 5.7].
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Not without importance is the question how one can equivalently characterize surjectivity of a maximal monotone operator
via its representative functions. To answer this question, take U = X. Then T = Ny, i.e. Tx = {O} for all x € X, and
the Fenchel representative function of Nx is (x, x*) = 0x(x) + ox(x*) = d;03(x*). Then S+ T = S and surjectivity of S
can be characterized, via Corollary 4.1, as follows.

Corollary 4.5.
One has R(S) = X* if and only if

for all p* € X* and fs € Fs the function y* — —(f;(y*, -))*(p*) is lower

semicontinuous at p* and there exists x € X such that p* € (9fZ(p*,-))(x),
and this is further equivalent to

for all p* € X* there exists fs € Fs such that the function y* — —(f%(y*, -))*(p*)

is lower semicontinuous at p* and there exists x € X such that p* € (Bfg(p*, -))(x).

Proof. Corollary 4.1 asserts the equivalence of the surjectivity of the maximal monotone operator S to the lower
semicontinuity at (p*,0) of the function (y*, y) — infiex rex [(f; —{p*, Ny* —x* y +x) + UX(X*)] concurring with
the attainment of the infimum within when (y*,y) = (p*,0), for every p* € X*. Taking a closer look at this function,
we note that it can be simplified to (y*,y) — infuex [fi(y* y + Xx) — (p*,y + x)], which can be further reduced to
y* = —(fiy", '))*(p*). For p* € X*, the attainment of the infimum from above when (y*, y) = (p*, 0) means actually the
existence of x € X such that f(p*, x) — (p*, x) = —(f%(p*,))"(p*), which is nothing but p* € (9f&(p*, ")) (x). O

Remark 4.6.
In [9, Corollary 2.2] it is said that S is surjective if dom (¢s) = X x X*. This result can be obtained as a consequence of
Corollary 4.5, via Remark 2.2.

Remark 4.7.
Determining when 0 € R(S) is important even beyond optimization. Via Corollary 4.5 we can provide the following
sufficient condition for this:

there exists fs € Fs such that the function y* — —(f&(y*,-))"(0) is lower
semicontinuous and there exists x € X such that p* € (9f%(0, ) (x).

4.2. S and T are subdifferentials

Take proper convex lower semicontinuous functions f,g : X — R. Let first T = dg and consider for it the Fenchel
representative function. Then Corollary 3.3 yields the following statement.

Corollary 4.8.
Letp € X. Then R(S(p + ) + 9g(-)) = X* if and only if

for all p* € X* and fs € Fs one has dom fs N (domg x (—domg*) + (p, p*)) # @ and the function

f20(g(—) + g*() + {(p*. p). (. ))) is lower semicontinuous at (p*, p) and exact at (p*, p),
and this is further equivalent to

for all p* € X* there exists fs € Fs with dom fs N (dom g x (—dom g*) + (p, p*)) # @ such that

the function f:0(g(—) + g*(-) + {(p*. p). (-, -)}) is lower semicontinuous at (p*, p) and exact at (p*, p).
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The other statements in Section 3 can be particularized for this special case, too. However, we give here only a
consequence of Theorem 3.12.

Corollary 4.9.
One has 0 € R(S + 0dq) if

there exists fs € Fs with domfs N (dom g x (—dom g*)) # @ such that the function
f:0(g(—) + g*(-)) is lower semicontinuous on X* x {0} and exact at (0,0).

Remark 4.10.

In[9, Proposition 2.9] it was proven that when g and g* are real-valued, the monotone operator S(p+-)+09g(-) is surjective
whenever p € X. This statement can be rediscovered as a consequence of Corollary 4.8, too. Using [15, Proposition
2.1.6] one obtains that g and g* are continuous. Then the Fenchel representative function of dg is continuous and (see
Remark 2.2) this yields the fulfillment of the reqularity condition from Corollary 4.8. Consequently, S(p + ) + dg(:) is
surjective whenever p € X.

Take now also S = df, to which we associate the Fenchel representative function, too. Let the function § : X — R be
defined by §(x) = g(—x). Corollary 3.3 yields the following result.

Corollary 4.11.
Let p € X. If domf N (p + dom g) # 0§, then R (9f(p + ) + 0g(-)) = X* if and only if

for all p* € X* one has dom f* N (p* — dom g*) + 0,
the function fJ(g + p*) is lower semicontinuous at p and exact at p

and the function f*0(g* + p) is lower semicontinuous at p* and exact at p*.

Moreover, from Corollary 4.9 one can deduce the following statement.

Corollary 4.12.
One has 0 € R(0f + dg) if dom f N dom g # @, dom f* N (—dom g*) #+ @ and

fg is lower semicontinuous at 0 and exact at 0, and

the function f*Og* is lower semicontinuous and exact at 0.
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