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Abstract: In this note we provide regularity conditions of closedness type which guarantee some surjectivity results concern-
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1. Introduction

The recent developments in treating monotone operators by means of convex analysis brought interesting results relatedto many problems involving monotone operators (cf. [4, 14]). Among them, maximal monotonicity of the sum of twomaximal monotone operators [4, 6], sufficient conditions ensuring that 0 belongs to the range of a sum of maximalmonotone operators and surjectivity of such a sum [4, 16]. Problems like these arise in different applications in fields
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like inverse problems, Fenchel–Rockafellar and Singer–Toland duality schemes, Clarke–Ekeland least action principle[2], variational inequalities [4, 11], Schrödinger equations and others [1]. In papers [10, 11] algorithms for determiningwhere the sum of two maximal monotone operators takes the value 0 are given. Surjectivity issues regarding maximalmonotone operators are discussed also in recent works [8, 9, 12].In this paper we give, by using representative functions, conditions that characterize the fact that, for maximal monotoneoperators S and T defined on a reflexive Banach space X and p ∈ X , the monotone operator S(· + p) + T (·) issurjective. From this we deduce characterizations of the surjectivity of S + T and of the situation when 0 lies in therange of S + T . As main results, we introduce weak closedness type regularity conditions that guarantee the validityof the mentioned results. An example to underline the fact that these regularity conditions are indeed weaker than theinteriority type ones considered in the literature, is also provided. As special cases we consider situations where T isthe normal cone of a nonempty closed convex set, respectively when S and T are subdifferentials of proper convex lowersemicontinuous functions. In this way we rediscover several results from the literature, like the celebrated Rockafellar’ssurjectivity theorem and we moreover deliver weak regularity conditions for some results known so far only under strongerhypotheses involving generalized interiors.
2. Preliminaries

First we present some notions and results from convex analysis that are necessary in order to make the paper self-contained. Let a nontrivial Hausdorff locally convex topological space be denoted by X and its dual space by X ∗. Thedual of X ∗ is said to be the bidual of X , being denoted by X ∗∗. If X is normed, it can be identified with a subspace of
X ∗∗, and we denote the canonical image in X ∗∗ of the element x ∈ X by x, too. By 〈x∗, x〉 we denote the value of thelinear continuous functional x∗ ∈ X ∗ at x ∈ X . Moreover, we call c : X ×X ∗ → R, c(x, x∗) = 〈x∗, x〉, the duality product.Denote the indicator function of U ⊆ X by δU and its support function by σU .For a function f : X → R = R ∪ {±∞}, we denote its domain by dom f = {x ∈ X : f(x) < +∞}. We call f proper if
f(x) > −∞ for all x ∈ X and dom f 6= ∅. The conjugate function of f is f∗ : X ∗ → R, f∗(x∗) = sup {〈x∗, x〉−f(x) : x ∈ X}.For x ∈ X such that f(x) ∈ R we define the (convex) subdifferential of f at x by ∂f(x) = {

x∗ ∈ X ∗ : f(y) − f(x) ≥
〈x∗, y− x〉 for all y ∈ X}. When f(x) /∈ R we take by convention ∂f(x) = ∅. The subdifferential of the indicator functionof a set U ⊆ X is said to be the normal cone of U being denoted by NU . Between a function and its conjugate there is
Young’s inequality f∗(x∗) + f(x) ≥ 〈x∗, x〉 for all x ∈ X and all x∗ ∈ X ∗, fulfilled as equality by a pair (x, x∗) ∈ X × X ∗if and only if x∗ ∈ ∂f(x). Denote also by cl f : X → R the largest lower semicontinuous function everywhere less thanor equal to f , i.e. the lower semicontinuous hull of f , and by co f : X → R the largest convex function everywhere lessthan or equal to f , i.e. the convex hull of f .When f, g : X → R are proper, we have the infimal convolution of f and g defined by f�g : X → R, f�g(a) =inf {f(x) + g(a − x) : x ∈ X}. It is said to be exact at y ∈ X when the infimum at a = y is attained, i.e. there exists
x ∈ X such that f�g(y) = f(x) + g(y − x). When an infimum or a supremum is attained we write min and max insteadof respectively inf and sup.The next result can be derived from the proofs of [7, Proposition 2.2 and Theorem 3.1].
Proposition 2.1.
Consider on X ∗ a locally convex topology giving X as its dual space. Let proper, convex and lower semicontinuous
functions f, g : X → R satisfy dom f ∩ domg 6= ∅ and p∗ ∈ X ∗. Then f∗�g∗ is lower semicontinuous at p∗ and exact at
p∗ if and only if inf

x∈X

[
f(x) + g(x)− 〈p∗, x〉] = max

x∗∈X∗

{
− f∗(x∗)− g∗(p∗ − x∗)}.

Remark 2.2.The continuity of either f or g at a point of dom f ∩ domg yields the fulfillment of the equivalent statements fromProposition 2.1, even when the lower semicontinuity hypotheses imposed on f and g are removed.
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Let us recall some notions and results involving monotone operators (see for instance [4, 5, 8, 14]). Further, X is a Banachspace equipped with the norm ‖ · ‖, while the dual norm on X ∗ is ‖ · ‖∗.A multifunction T : X ⇒ X ∗ is called a monotone operator provided that for any x, y ∈ X one has 〈y∗ − x∗, y − x〉 ≥ 0whenever x∗ ∈ Tx and y∗ ∈ Ty. The domain of T is D (T ) = {x ∈ X : Tx 6= ∅}, while its range is R (T ) = ⋃
{Tx :

x ∈ X}. T is called surjective if R (T ) = X ∗. A monotone operator T : X ⇒ X ∗ is called maximal when its graphG (T ) = {(x, x∗) : x ∈ X, x∗ ∈ Tx} is not properly included in the graph of any other monotone operator T ′ : X ⇒ X ∗.The subdifferential of a proper convex lower semicontinuous function on X is a typical example of a maximal monotoneoperator, the first to note this being Rockafellar in [13].To a maximal monotone operator T : X ⇒ X ∗ one can attach the Fitzpatrick function

φT : X × X ∗ → R, φT (x, x∗) = sup {〈y∗, x〉+ 〈x∗, y〉 − 〈y∗, y〉 : y∗ ∈ Ty},
which is proper convex and weak×weak∗-lower semicontinuous, and the so-called Fitzpatrick family of representative
functions

FT = {fT : X × X ∗ → R
∣∣∣∣ fT is convex and strong×strong lower semicontinuous,

c ≤ fT , (x, x∗) ∈ G (T )⇒ fT (x, x∗) = (x, x∗)
}
.

The largest element of FT is ψT = cl‖·‖×‖·‖∗ co (c + δG (T )). We also have φT (x, x∗) = (
c + δG (T ))∗(x∗, x) = ψ∗T (x∗, x) forall (x, x∗) ∈ X × X ∗. For fT ∈ FT , denote by f̂T : X × X ∗ → R the function defined as f̂T (x, x∗) = fT (x,−x∗), x ∈ X ,

x∗ ∈ X ∗. Note that f̂T is proper, convex and lower semicontinuous, and f̂T (x, x∗) ≥ −〈x∗, x〉 and f̂∗T (x∗, x) = f∗T (x∗, −x)for all x ∈ X and x∗ ∈ X ∗.If f : X → R is a proper convex lower semicontinuous function, then the function (x, x∗) 7→ f(x)+ f∗(x∗) is a representativefunction of the maximal monotone operator ∂f : X ⇒ X ∗ and we call it the Fenchel representative function. If f is alsosublinear, the only representative function associated to ∂f is the Fenchel one, which coincides in this case with theFitzpatrick function of ∂f (see [3, Theorem 5.3 and Corollary 5.9]). Other maximal monotone operators having only onerepresentative function, the Fenchel one, are the normal cones of nonempty closed convex sets.The following statement underlines close connections between maximal monotone operators and their representativefunctions.
Proposition 2.3.
Let T : X ⇒ X ∗ be a maximal monotone operator.

(i) φT is the smallest element of the family FT .

(ii) If fT ∈ FT one has f∗T (x∗, x) ≥ 〈x∗, x〉 for all (x, x∗) ∈ X × X ∗.
(iii) If fT ∈ FT and (x, x∗) ∈ X × X ∗, (x, x∗) ∈ G (T ) if and only if fT (x, x∗) = 〈x∗, x〉 and this is further equivalent to

f∗T (x∗, x) = 〈x∗, x〉.
3. Surjectivity results for the sum of two maximal monotone operators

In this main section we deal with the surjectivity results announced in the introduction. Further, let X be a reflexiveBanach space, S and T be two maximal monotone operators defined on X . The first main statement of this note follows,after an observation needed in its proof.
Remark 3.1.Let p ∈ X and p∗ ∈ X ∗. Then p∗ ∈ R (S(p+ ·) + T (·)) if and only if (p, p∗) ∈ G (S)−G (−T ), where G (−T ) = {(x, x∗) ∈
X × X ∗ : (x,−x∗) ∈ G (T )}.
Theorem 3.2.
Let p ∈ X and p∗ ∈ X ∗. The following statements are equivalent:
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(i) p∗ ∈ R (S(p+ ·) + T (·));
(ii) for all fS ∈ FS and fT ∈ FT one has dom fS ∩ ( dom f̂T + (p, p∗)) 6= ∅ and the function f∗S�

(
f̂∗T + 〈(p∗, p), (·, ·)〉) is

lower semicontinuous at (p∗, p) and exact at (p∗, p);
(iii) there exist fS ∈ FS and fT ∈ FT with dom fS∩( dom f̂T +(p, p∗)) 6= ∅ such that the function f∗S�

(
f̂∗T +〈(p∗, p), (·, ·)〉)

is lower semicontinuous at (p∗, p) and exact at (p∗, p).
Proof. Note first that the assertion (ii)⇒(iii) is immediate and one also has(

f̂T (· − p, · − p∗))∗ = f̂∗T + 〈p∗, ·〉+ 〈·, p〉. (1)
(iii)⇒(i) Proposition 2.1 yields the equivalence of (iii) to(

fS + f̂T (· − p, · − p∗))∗(p∗, p) = min
u∗∈X∗,u∈X

[
f∗S(p∗ − u∗, p − u) + f̂∗T (u∗, u) + 〈p∗, u〉+ 〈u∗, p〉]. (2)

Denoting by (ū∗, ū) ∈ X ∗ × X the point where this minimum is attained, we obtain, via Proposition 2.3,(
fS + f̂T (· − p, · − p∗))∗(p∗, p) = f∗S(p∗ − ū∗, p − ū) + f̂∗T (ū∗, ū) + 〈p∗, ū〉+ 〈ū∗, p〉

≥ 〈p∗ − ū∗, p − ū〉 − 〈ū∗, ū〉+ 〈p∗, ū〉+ 〈ū∗, p〉 = 〈p∗, p〉. (3)
But Proposition 2.3 yields for every x ∈ X and x∗ ∈ X ∗(

fS + f̂T (· − p, · − p∗))(x, x∗) ≥ 〈x∗, x〉+ 〈−(x∗ − p∗), x − p〉 = 〈x∗, p〉+ 〈p∗, x〉 − 〈p∗, p〉,
thus 〈p∗, p〉 ≥ 〈x∗, p〉+ 〈p∗, x〉 − (fS + f̂T (· − p, · − p∗))(x, x∗). Consequently,(

fS + f̂T (· − p, · − p∗))∗(p∗, p) ≤ 〈p∗, p〉. (4)
Together with (3) this yields (

fS + f̂T (· − p, · − p∗))∗(p∗, p) = 〈p∗, p〉,and consequently the inequalities invoked to obtain (3) must be fulfilled as equalities. Therefore
f∗S(p∗ − ū∗, p − ū) = 〈p∗ − ū∗, p − ū〉 and f̂∗T (ū∗, ū) = 〈−ū∗, ū〉. (5)

Having these, Proposition 2.3 yields then p∗ − ū∗ ∈ S(p − ū) and ū∗ ∈ T (−ū), followed by p∗ ∈ S(p − ū) + T (−ū), i.e.
p∗ ∈ R (S(p+ ·) + T (·)).(i)⇒(ii) Whenever fS ∈ FS , fT ∈ FT , (i) yields, via Remark 3.1, (p, p∗) ∈ dom fS − dom f̂T , i.e.dom fS ∩ (dom f̂T + (p∗, p)) 6= ∅.For every fS ∈ FS , fT ∈ FT , u ∈ X and u∗ ∈ X ∗ we have f∗S(p∗ − u∗, p − u) + f̂∗T (u∗, u) + 〈(p∗, p), (u, u∗)〉 ≥
〈p∗ − u∗, p − u〉 − 〈u∗, u〉 + 〈p∗, u〉 + 〈u∗, p〉 = 〈p∗, p〉. Consequently, f∗S�(f̂∗T + 〈(p∗, p), (·, ·)〉) (p∗, p) ≥ 〈p∗, p〉 andsince the function in the right-hand side is strong×strong continuous, its value at (p∗, p) must also be smaller thancl (f∗S�(f̂∗T+〈(p∗, p), (·, ·)〉))(p∗, p). But from [5, Theorem 7.6] we know, via (1), that one has cl (f∗S�(f̂∗T + 〈(p∗, p), (·, ·)〉)) =(
fS + f̂T (−(p∗, p) + (·, ·)))∗ and since (4) always holds, it follows that cl (f∗S�(f̂∗T +〈(p∗, p), (·, ·)〉))(p∗, p) ≤ 〈p∗, p〉.Consequently,

f∗S�
(
f̂∗T + 〈(p∗, p), (·, ·)〉)(p∗, p) ≥ cl (f∗S�(f̂∗T + 〈(p∗, p), (·, ·)〉))(p∗, p) = 〈p∗, p〉. (6)Since p∗ ∈ R (S(p+ ·) + T (·)), there exists (ū∗, ū) ∈ X ∗ × X fulfilling (5). Then f∗S(p∗ − ū∗, p − ū) + f̂∗T (ū∗, ū) +

〈(p∗, p), (ū, ū∗)〉 = 〈p∗, p〉, i.e.
f∗S�

(
f̂∗T + 〈(p∗, p), (·, ·)〉)(p∗, p) = f∗S(p∗ − ū∗, p − ū) + f̂∗T (ū∗, ū) + 〈(p∗, p), (ū, ū∗)〉 = 〈p∗, p〉,

therefore the exactness of the infimal convolution in (ii) is proven, while the lower semicontinuity follows via (6).
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From Theorem 3.2 we obtain the following surjectivity result.
Corollary 3.3.
For p ∈ X, one has R (S(p+ ·) + T (·)) = X ∗ if and only if

for all p∗ ∈ X ∗, fS ∈ FS and fT ∈ FT one has dom fS ∩ ( dom f̂T + (p, p∗)) 6= ∅ and
the function f∗S�

(
f̂∗T + 〈(p∗, p), (·, ·)〉) is lower semicontinuous at (p∗, p) and exact at (p∗, p),

and this is further equivalent to

for all p∗ ∈ X ∗ there exist fS ∈ FS and fT ∈ FT with dom fS ∩ ( dom f̂T + (p, p∗)) 6= ∅ such that
the function f∗S�

(
f̂∗T + 〈(p∗, p), (·, ·)〉) is lower semicontinuous at (p∗, p) and exact at (p∗, p).

Starting from Corollary 3.3 we are able to introduce a sufficient condition for the surjectivity of S(p + ·) + T (·) for agiven p ∈ X .
Theorem 3.4.
Let p ∈ X. Then R (S(p+ ·) + T (·)) = X ∗ if

for each p∗ ∈ X ∗ there exist fS ∈ FS and fT ∈ FT with dom fS ∩ ( dom f̂T + (p, p∗)) 6= ∅ such that
the function f∗S�

(
f̂∗T + 〈(p∗, p), (·, ·)〉) is lower semicontinuous on X ∗ × {p} and exact at (p∗, p). (RC)

Next we characterize the surjectivity of S + T via a condition involving representative functions. The first result followsdirectly from Theorem 3.2, while the second one is a direct consequence of the first.
Theorem 3.5.
Let p∗ ∈ X ∗. The following statements are equivalent:

(i) p∗ ∈ R (S + T );
(ii) for all fS ∈ FS and fT ∈ FT one has dom fS ∩ ( dom f̂T + (0, p∗)) 6= ∅ and the function f∗S�

(
f̂∗T + 〈p∗, ·〉) is lower

semicontinuous at (p∗, 0) and exact at (p∗, 0);
(iii) there exist fS ∈ FS and fT ∈ FT with dom fS ∩ ( dom f̂T + (0, p∗)) 6= ∅ such that the function f∗S�

(
f̂∗T + 〈p∗, ·〉) is

lower semicontinuous at (p∗, 0) and exact at (p∗, 0).
Corollary 3.6.
One has R (S + T ) = X ∗ if and only if

for all p∗ ∈ X ∗, fS ∈ FS , fT ∈ FT one has dom fS ∩ ( dom f̂T + (0, p∗)) 6= ∅ and
the function f∗S�

(
f̂∗T + 〈p∗, ·〉) is lower semicontinuous at (p∗, 0) and exact at (p∗, 0),

and this is further equivalent to

for all p∗ ∈ X ∗ there exist fS ∈ FS and fT ∈ FT with dom fS ∩ ( dom f̂T + (0, p∗)) 6= ∅
such that the function f∗S�

(
f̂∗T + 〈p∗, ·〉) is lower semicontinuous at (p∗, 0) and exact at (p∗, 0).

From Corollary 3.6 one can deduce a sufficient condition to have S + T surjective.
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Theorem 3.7.
One has R (S + T ) = X ∗ if

for all p∗ ∈ X ∗ there exist fS ∈ FS and fT ∈ FT with dom fS ∩ ( dom f̂T + (0, p∗)) 6= ∅ such
that the function f∗S�

(
f̂∗T + 〈p∗, ·〉) is lower semicontinuous on X ∗ × {0} and exact at (p∗, 0). (RC)

Remark 3.8.In the literature there were given other regularity conditions guaranteeing surjectivity of S+T , namely, for fixed fS ∈ FSand fT ∈ FT ,
- (cf. [9, Corollary 2.7]) dom fT = X × X ∗,- (cf. [14, Theorem 30.2]) dom fS − dom f̂T = X × X ∗,- (cf. [16, Corollary 4]) {0} × X ∗ ⊆ sqri (dom fS − dom f̂T ),

where sqri denotes the strong quasi relative interior of a given set, respectively. It is obvious that the first one impliesthe second, whose fulfillment yields the third condition. This one yields(
fS + f̂T (·, · − p∗))∗(x∗, 0) = min

u∗∈X∗,u∈X

[
f∗S(x∗ − u∗, −u) + f̂∗T (u∗, u) + 〈p∗, u〉] for all x∗, p∗ ∈ X ∗,

which is equivalent, when dom fS ∩ (dom f̂T + (0, p∗)) 6= ∅ (condition fulfilled in all the three regularity conditions givenabove), to the fact that whenever p∗ ∈ X ∗ the function f∗S�(f̂∗T + 〈p∗, ·〉) is lower semicontinuous at (x∗, 0) and exact at(x∗, 0) for all x∗ ∈ X ∗. It is obvious that this implies (RC) and below we present a situation where (RC) holds, while theconditions for surjectivity of S + T listed above do not.
Example 3.9.Let X = R and consider the operators S, T : R ⇒ R defined by

Sx =

{0} if x > 0,(−∞, 0] if x = 0,
∅ otherwise, T x = {R if x = 0,

∅ otherwise, x ∈ R.

One notices easily that, considering the functions f, g : R → R, f = δ[0,+∞) and g = δ{0}, which are proper, convexand lower-semicontinuous, we have S = ∂f and T = ∂g, thus S and T are maximal monotone. It is obvious thatR (S + T ) = R. The Fitzpatrick families of both S and T contain only their Fitzpatrick functions, because f and g aresublinear functions. We have
φS(x, x∗) = {0 if x ≥ 0, x∗ ≤ 0,+∞ otherwise, and φT (x, x∗) = {0 if x = 0,+∞ otherwise.

Therefore
φ∗S(x∗, x) = {0 if x∗ ≤ 0, x ≥ 0,+∞ otherwise, and φ∗T (x∗, x) = {0 if x = 0,+∞ otherwise.Then domφS − dom φ̂T = R+ × R, where R+ = [0,+∞), and it is obvious that {0} × R is not included insqri (domφS − dom φ̂T ) = (0,+∞)×R. Consequently, the three conditions mentioned in Remark 3.8 fail in this situation.On the other hand, for p∗, x, x∗ ∈ R one has

φ∗S�
(
φ̂∗T + 〈p∗, ·〉)(x∗, x) = {0 if x ≥ 0,+∞ if x < 0.

This function is lower semicontinuous on R× R+ and exact at all (x∗, x) ∈ R× R+. Consequently, (RC) is valid in thiscase.
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Remark 3.10.Following Remark 2.2, when one of fS and fT is continuous, (RC) is automatically fulfilled. It is known (see for instance[14]) that the domain of the Fitzpatrick function attached to the duality map

J : X ⇒ X ∗, Jx = ∂12 ‖x‖2 = {x∗ ∈ X ∗ : ‖x‖2 = ‖x∗‖2∗ = 〈x∗, x〉}, x ∈ X,

which is a maximal monotone operator, is the whole product space X × X ∗. By [15, Theorem 2.2.20] it follows that φJis continuous, thus by Corollary 3.3 we obtain that S(p + ·) + J(·) is surjective whenever p ∈ X . Thus we rediscover aproperty of maximal monotone operators. Moreover, employing Corollary 3.6 one gets that S+J is surjective, rediscoveringRockafellar’s classical surjectivity theorem for maximal monotone operators [14, Theorem 29.5].
The last results we derive from the main one are connected to the situation when 0 lies in the range of S + T .
Corollary 3.11.
One has 0 ∈ R (S + T ) if and only if

for all fS ∈ FS and fT ∈ FT one has dom fS ∩ dom f̂T 6= ∅ and
the function f∗S�f̂∗T is lower semicontinuous at (0, 0) and exact at (0, 0),

and this is further equivalent to

there exist fS ∈ FS and fT ∈ FT with dom fS ∩ dom f̂T 6= ∅ such that
the function f∗S�f̂∗T is lower semicontinuous at (0, 0) and exact at (0, 0).

From Corollary 3.11 one can deduce a sufficient condition to be sure that 0 ∈ R (S + T ).
Theorem 3.12.
One has 0 ∈ R (S + T ) if

there exist fS ∈ FS and fT ∈ FT with dom fS ∩ dom f̂T 6= ∅ such that
the function f∗S�f̂∗T is lower semicontinuous on X ∗ × {0} and exact at (0, 0). (R̃C)

Remark 3.13.Other regularity conditions guaranteeing 0 ∈ R (S + T ) were given in [4, Theorem 4.5], (0, 0) ∈core ( co (G (S))− co (G (−T ))), where core denotes the algebraic interior of a given set and co its convex hull, and[16, Lemma 1], (0, 0) ∈ sqri (dom fS − dom f̂T ), respectively. Following similar arguments to the ones in Remark 3.8 onecan show that both yield (R̃C). Checking the situation from Example 3.9, we see that the condition involving sqri fails,while (R̃C) is fulfilled. As core ( co (G (S))− co (G (−T ))) = int(R+ × (−R+)− {0} ×R) = (0,+∞)×R does not contain(0, 0), it is straightforward that (R̃C) is indeed weaker than both abovementioned conditions for 0 ∈ R (S + T ).
Remark 3.14.One can notice via (1) that (2) can be rewritten when p∗ = 0 and p = 0 as

inf
x∈X,x∗∈X∗

[
fS(x, x∗) + f̂T (x, x∗)] = max

u∗∈X∗,u∈X

[
− f∗S(−u∗, −u)− f̂∗T (u∗, u)], (7)

i.e. there is strong duality for the convex optimization problem formulated above in the left-hand side of (7) and itsFenchel dual problem. When (ū, ū∗) ∈ X × X ∗ is an optimal solution of the dual problem, i.e. the point where themaximum in the right-hand side of (7) is attained, one obtains ū∗ ∈ S(ū) and −ū∗ ∈ T (ū). Employing now Proposition2.3 we obtain fS(ū, ū∗) = f∗S(−ū∗, −ū) = 〈ū∗, ū〉 and f̂T (ū, ū∗) = f̂∗T (ū∗, ū) = −〈ū∗, ū〉, therefore
fS(ū, ū∗) + f̂T (ū, ū∗) = f∗S(−ū∗, −ū) + f̂∗T (ū∗, ū) = 0.
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Thus, the infimum in the left-hand side of (7) is attained, i.e. the primal optimization problem given there has anoptimal solution, too. As strong duality for it holds, we are now in the situation called total duality [5, Section 17],which happens when the optimal objective values of the primal and dual coincide and both these problems have optimalsolutions. Therefore we can conclude that for this kind of optimization problems when strong Fenchel duality holds theprimal problem has an optimal solution, too.
Remark 3.15.Given p ∈ X and p∗ ∈ X ∗, the function f∗S�

(
f̂∗T + 〈(p∗, p), (·, ·)〉) can be replaced in conditions (ii)–(iii) from Theo-rem 3.2 with (f∗S − 〈(p∗, p), (·, ·)〉)�f̂∗T without altering the statement. The other conditions considered above can becorrespondingly rewritten, too.

4. Applications

4.1. T is the normal cone of a closed convex set

Let U ⊆ X be a nonempty closed convex set. Its normal cone NU is a maximal monotone operator. Taking T = NU , itsonly representative function is fNU (x, x∗) = δU (x) + σU (x∗), (x, x∗) ∈ X ×X ∗. From our main statements we obtain in thiscase the following results.
Corollary 4.1.
Let p ∈ X. Then R (S(p+ ·) +NU (·)) = X ∗ if and only if

for all p∗ ∈ X ∗ and fS ∈ FS one has dom fS ∩ (U × dom σ−U + (p, p∗)) 6= ∅ and the function

(y∗, y) 7→ inf
x∈−U, x∗∈X∗

[(
f∗S − 〈(p∗, p), (·, ·)〉)(y∗ − x∗, y − x) + σU (x∗)]

is lower semicontinuous at (p∗, p) and the infimum within is attained when (y∗, y) = (p∗, p),
(8)

and this is further equivalent to

for all p∗ ∈ X ∗ there exists fS ∈ FS with dom fS ∩ (U × dom σ−U + (p, p∗)) 6= ∅
such that the function (8) is lower semicontinuous at (p∗, p) and the infimum within
is attained when (y∗, y) = (p∗, p).

Corollary 4.2.
Let p ∈ X. Then R (S(p+ ·) +NU (·)) = X ∗ if

for all p∗ ∈ X ∗ there exists fS ∈ FS with dom fS ∩ (U × dom σ−U + (p, p∗)) 6= ∅
such that the function (8) is lower semicontinuous on X ∗ × {p} and
the infimum within is attained when (y∗, y) = (p∗, p). (RCU )

Corollary 4.3.
One has 0 ∈ R (S +NU ) if

there exists fS ∈ FS with dom fS ∩ (U × dom σ−U ) 6= ∅ such that
the function (y∗, y) 7→ infx∈U{(f∗S(·, y+ x)�σU )(y∗)} is lower semicontinuous
on X ∗ × {0} and the infimum within is attained when (y∗, y) = (0, 0). (RC0)

Remark 4.4.A stronger than (RC0) regularity condition for 0 ∈ R (S +NU ), namely 0 ∈ core (co (D (S)−U)), was considered in [4,Corollary 5.7].
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Not without importance is the question how one can equivalently characterize surjectivity of a maximal monotone operatorvia its representative functions. To answer this question, take U = X . Then T = NX , i.e. Tx = {0} for all x ∈ X , andthe Fenchel representative function of NX is (x, x∗) 7→ δX (x) + σX (x∗) = δ{0}(x∗). Then S + T = S and surjectivity of Scan be characterized, via Corollary 4.1, as follows.
Corollary 4.5.
One has R (S) = X ∗ if and only if

for all p∗ ∈ X ∗ and fS ∈ FS the function y∗ 7→ −
(
f∗S(y∗, ·))∗(p∗) is lower

semicontinuous at p∗ and there exists x ∈ X such that p∗ ∈
(
∂f∗S(p∗, ·))(x),

and this is further equivalent to

for all p∗ ∈ X ∗ there exists fS ∈ FS such that the function y∗ 7→ −
(
f∗S(y∗, ·))∗(p∗)

is lower semicontinuous at p∗ and there exists x ∈ X such that p∗ ∈
(
∂f∗S(p∗, ·))(x).

Proof. Corollary 4.1 asserts the equivalence of the surjectivity of the maximal monotone operator S to the lowersemicontinuity at (p∗, 0) of the function (y∗, y) 7→ infx∈X,x∗∈X∗ [(f∗S − 〈p∗, ·〉)(y∗ − x∗, y + x) + σX (x∗)] concurring withthe attainment of the infimum within when (y∗, y) = (p∗, 0), for every p∗ ∈ X ∗. Taking a closer look at this function,we note that it can be simplified to (y∗, y) 7→ infx∈X [f∗S(y∗, y + x) − 〈p∗, y + x〉
], which can be further reduced to

y∗ 7→ −
(
f∗S(y∗, ·))∗(p∗). For p∗ ∈ X ∗, the attainment of the infimum from above when (y∗, y) = (p∗, 0) means actually theexistence of x ∈ X such that f∗S(p∗, x)− 〈p∗, x〉 = −(f∗S(p∗, ·))∗(p∗), which is nothing but p∗ ∈ (∂f∗S(p∗, ·))(x).

Remark 4.6.In [9, Corollary 2.2] it is said that S is surjective if dom (φS) = X ×X ∗. This result can be obtained as a consequence ofCorollary 4.5, via Remark 2.2.
Remark 4.7.Determining when 0 ∈ R (S) is important even beyond optimization. Via Corollary 4.5 we can provide the followingsufficient condition for this:

there exists fS ∈ FS such that the function y∗ 7→ −(f∗S(y∗, ·))∗(0) is lowersemicontinuous and there exists x ∈ X such that p∗ ∈ (∂f∗S(0, ·))(x).
4.2. S and T are subdifferentials

Take proper convex lower semicontinuous functions f, g : X → R. Let first T = ∂g and consider for it the Fenchelrepresentative function. Then Corollary 3.3 yields the following statement.
Corollary 4.8.
Let p ∈ X. Then R (S(p+ ·) + ∂g(·)) = X ∗ if and only if

for all p∗ ∈ X ∗ and fS ∈ FS one has dom fS ∩ ( domg × (− domg∗) + (p, p∗)) 6= ∅ and the function
f∗S�

(
g(−·) + g∗(·) + 〈(p∗, p), (·, ·)〉) is lower semicontinuous at (p∗, p) and exact at (p∗, p),

and this is further equivalent to

for all p∗ ∈ X ∗ there exists fS ∈ FS with dom fS ∩ ( domg × (− domg∗) + (p, p∗)) 6= ∅ such that
the function f∗S�

(
g(−·) + g∗(·) + 〈(p∗, p), (·, ·)〉) is lower semicontinuous at (p∗, p) and exact at (p∗, p).
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The other statements in Section 3 can be particularized for this special case, too. However, we give here only aconsequence of Theorem 3.12.
Corollary 4.9.
One has 0 ∈ R (S + ∂g) if

there exists fS ∈ FS with dom fS ∩ ( domg × (− domg∗)) 6= ∅ such that the function
f∗S�

(
g(−·) + g∗(·)) is lower semicontinuous on X ∗ × {0} and exact at (0, 0).

Remark 4.10.In [9, Proposition 2.9] it was proven that when g and g∗ are real-valued, the monotone operator S(p+·)+∂g(·) is surjectivewhenever p ∈ X . This statement can be rediscovered as a consequence of Corollary 4.8, too. Using [15, Proposition2.1.6] one obtains that g and g∗ are continuous. Then the Fenchel representative function of ∂g is continuous and (seeRemark 2.2) this yields the fulfillment of the regularity condition from Corollary 4.8. Consequently, S(p + ·) + ∂g(·) issurjective whenever p ∈ X .
Take now also S = ∂f , to which we associate the Fenchel representative function, too. Let the function ĝ : X → R bedefined by ĝ(x) = g(−x). Corollary 3.3 yields the following result.
Corollary 4.11.
Let p ∈ X. If dom f ∩ (p+ domg) 6= ∅, then R (∂f(p+ ·) + ∂g(·)) = X ∗ if and only if

for all p∗ ∈ X ∗ one has dom f∗ ∩ (p∗ − domg∗) 6= ∅,
the function f�(ĝ+ p∗) is lower semicontinuous at p and exact at p
and the function f∗�(g∗ + p) is lower semicontinuous at p∗ and exact at p∗.

Moreover, from Corollary 4.9 one can deduce the following statement.
Corollary 4.12.
One has 0 ∈ R (∂f + ∂g) if dom f ∩ domg 6= ∅, dom f∗ ∩ (− domg∗) 6= ∅ and

f�ĝ is lower semicontinuous at 0 and exact at 0, and
the function f∗�g∗ is lower semicontinuous and exact at 0.
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