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Ascents of size less than d in compositions

Research Article

Maisoon Falah1∗, Toufik Mansour1†

1 Department of Mathematics, University of Haifa, Haifa, Israel

Received 27 June 2010; accepted 18 October 2010

Abstract: A composition of a positive integer n is a finite sequence π1π2 . . . πm of positive integers such that π1+· · ·+πm = n.
Let d be a fixed number. We say that we have an ascent of size d or more (respectively, less than d) if πi+1 ≥ πi+d
(respectively, πi < πi+1 < πi + d). Recently, Brennan and Knopfmacher determined the mean, variance and
limiting distribution of the number of ascents of size d or more in the set of compositions of n. In this paper, we
find an explicit formula for the multi-variable generating function for the number of compositions of n according to
the number of parts, ascents of size d or more, ascents of size less than d, descents and levels. Also, we extend
the results of Brennan and Knopfmacher to the case of ascents of size less than d. More precisely, we determine
the mean, variance and limiting distribution of the number of ascents of size less than d in the set of compositions
of n.
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1. Introduction

A composition of n ∈ N is an ordered m-tuple π1π2 . . . πm of positive integers whose sum is n. The number of summandsor letters, namely m, is called the number of parts of the composition. For example, the compositions of 4 are 1111, 112,121, 211, 22, 13, 31 and 4. It is well known that the number of compositions of n is given by 2n−1. We denote the set ofcompositions of n with m parts by Cn,m and the set of compositions of n by Cn.Let d ≥ 1 be any integer and let π = π1π2 . . . πm be any composition of n. We say that we have a descent, ascent,or level at i in π if πi > πi+1, πi < πi+1, or πi = πi+1, respectively. We say that we have an ascent of size d or more(respectively, ascent of size less than d) at i in π if πi+1 ≥ πi + d (respectively, πi < πi+1 < πi + d). For instance,
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there are 2 ascents of size 2 or more (respectively, two ascents of size less than 3) that occur in the composition
σ = 141224, namely 14 and 24 (respectively, 12 and 24). Also σ contains one descent (41), three ascents (14, 12 and24) and one level (22). We denote the number of descents, ascents of size d or more, ascents of size less than d, levelsin π by des (π), asc+

d (π), asc−d (π), lev (π), respectively. Clearly, the number of ascents in a composition π is given byasc+1 (π) = asc+
d (π) + asc−d (π), for all d ≥ 1.In recent years, questions relating to statistics of compositions of n have attracted quite a lot of attention: see [7] andreferences therein. For instance, Brennan and Knopfmacher [1] studied the mean, variance and asymptotic distributionof the number of ascents of size d or more in compositions of n. In this paper we generalize these results by studyingthe generating function for the number of compositions of n according to the number of parts, number of ascents of size

d or more, number of ascents of size less than d, number of descents and number of levels, as discussed in Section 2.In particular, in Section 3 we determine the mean, variance and asymptotic distribution of the number of ascents of sizeless than d in compositions of n.
2. Enumeration of compositions according to ascents of size less than d

Let Fd(z, u, w;p, q, r, s) be the multi-variable generating function for the number of compositions of n with exactly mparts, the number of ascents of size d or more, the number of ascents of size less than d, number of descents and numberof levels, that is,
Fd(z, u, w) = Fd(z, u, w;p, q, r, s) = ∑

n,m≥0 z
num

∑
π∈Cn,m

wπmpasc+
d (π)qasc−d (π)rdes (π)slev (π),

where we use z to mark (the keyword “mark” is a part of the symbolic combinatorics vocabulary, see [4]) the compositionsize (that is, the number n), u to mark the number of parts (that is, the number m), w to mark the last part, p to markthe ascents of size d or more, q to mark the ascents of size less than d, r to mark the descents, and s to mark the levels.The main goal of this section is to find an explicit formula for the generating function Fd(z, u, 1;p, q, r, s), that is, thegenerating function for the number of compositions of n with exactly m parts according to the number of ascents of size
d or more, the number of ascents of size less than d, number of descents and number of levels. To do this, we study ageneral generating function Fd(z, u, w;p, q, r, s) by using the “adding-the-slice” technique [1, 3, 8]. As we show in thissection, the “slice” technique is based on adding a new part on the rightmost of a composition with exactly k parts tointroduce a composition with exactly k + 1 parts. Actually, this is the main reason for creating the variable w whichmarks the last part of a composition.Let π = π1π2 . . . πm be any composition of n with exactly m parts and let a = πm be the value of the last part of thecomposition π. We proceed from a composition with m parts to a composition with m+ 1 parts. We denote by Fd,k (z, w)the generating function for the number of compositions of n with a fixed number m of parts according to the last part,the number of ascents of size d or more, the number of ascents of size less than d, and the number of descents andnumber of levels. That is,

Fd,m(z, w) = Fd,m(z, w;p, q, r, s) = ∑
n≥0 z

n
∑

π∈Cn,m

wπmpasc+
d (π)qasc−d (π)rdes (π)slev (π).

Consider the set of compositions with k parts with last part a. In generating a composition with exactly k + 1 partsfrom a composition with exactly k parts, we have an ascent of size d or more whenever the last part has value at least
a+d, we have an ascent of size less than d whenever the new last part has any value from a+ 1 to a+d− 1, we havea descent whenever the new last part has any value from 1 to a− 1, and for the value a of the new last part we have alevel. This gives the following rule for adding a new part or “slice” to the end of the composition:

wa → r
a−1∑
j=1 (zw)j + s(zw)a + q

a+d−1∑
j=a+1(zw)j + p

∑
j≥a+d(zw)j

= r zw − (zw)a1− zw + s(zw)a + q (zw)a+1 − (zw)a+d1− zw + p (zw)a+d1− zw ,
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which implies the following result.
Lemma 2.1.
For all k ≥ 1,

Fd,k+1(z, w) = rzw1− zw Fd,k (z, 1) + s − r + (q − s) zw + (p − q)(zw)d1− zw Fd,k (z, zw). (1)
Let Gd(z, u, w) = Fd(z, u, w) − 1 = ∑

k≥1 Fd,k (z, w)uk . By multiplying (1) by uk+1 and summing over k ≥ 1, we obtainthat
Gd(z, u, w)− Fd,1(z, w)u = rzuw1− zw Gd(z, u, 1) + (

s − r + (q − s) zw + (p − q)(zw)d)u1− zw Gd(z, u, zw).
Using the initial condition Fd,1(z, w) = zw1−zw which holds immediately from the definitions, we obtain

Gd(z, u, w) = zuw1− zw + rzuw1− zw Gd(z, u, 1) + (
s − r + (q − s) zw + (p − q)(zw)d)u1− zw Gd(z, u, zw). (2)

In order to give an explicit formula for the generating function Gd(z, u, w), we need the following lemma.
Lemma 2.2.
Let A(z, w) be any bivariate analytic generating function in the poly-disk |z| ≤ ρ < 1 and |w| ≤ 1. Assume that A(z, w)
satisfies A(z, 0) = 0 and

A(z, w) = f(z, w) + g(z, w)A(z, zw).
Then

A(z, w) = ∑
j≥0
(
f(z, zjw) j−1∏

i=0 g(z, ziw)) .
Proof. Iterating the recursion for A(z, w), we obtain

A(z, w) = f(z, w) + g(z, w)A(z, zw) = f(z, w) + g(z, w) f(z, zw) + g(z, w)g(z, zw)A(z, z2w)= f(z, w) + g(z, w) f(z, zw) + g(z, w)g(z, zw) f(z, z2w) + g(z, w)g(z, zw)g(z, z2w)A(z, z3w).
Continuing this iteration and using the fact that A(z, zjw) → 0 as j → ∞ for |z| ≤ ρ < 1 and |w| ≤ 1, we obtain theresult.
Note that the above lemma can be seen as a two dimensional analogue of [3, equation (9)] (for another similar resultsee [7, Lemma 5.45]).Applying Lemma 2.2 on the equation (2), we obtain

Gd(z, u, w) = ∑
j≥1
[(

zjujw1− zjw + rzjujw1− zjw Gd(z, u, 1)) j−1∏
i=1

s − r + (q − s) ziw + (p − q)(ziw)d1− ziw
]
, (3)

which implies the following result.
Theorem 2.3.
The generating function Fd(z, u, 1;p, q, r, s) is given by

1 +∑j≥1
( (1−r)zjuj1−zj ∏j−1

i=1 s−r+(q−s)zi+(p−q)zid1−zi
)

1−∑j≥1
(
rzjuj1−zj ∏j−1

i=1 s−r+(q−s)zi+(p−q)zid1−zi
) .
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Proof. Substituting w = 1 in (3) we obtain that
Gd(z, u, 1) = ∑

j≥1
[(

zjuj1− zj + rzjuj1− zj Gd(z, u, 1)) j−1∏
i=1

s − r + (q − s) zi + (p − q) zid1− zi
]
.

If we solve this equation for Gd(z, u, 1), then
Gd(z, u, 1) = ∑

j≥1
(
zjuj1−zj ∏j−1

i=1 s−r+(q−s)zi+(p−q)zid1−zi
)

1−∑j≥1
(
rzjuj1−zj ∏j−1

i=1 s−r+(q−s)zi+(p−q)zid1−zi
) .

Thus, by Fd(z, u, 1) = 1 + Gd(z, u, 1) we get the desired result.
We end this section by presenting several applications for the above theorem.
Example 2.4.Theorem 2.3 gives

Fd(z, u, 1; 1, 1, 1, 1) = 11− zu1−z = 1− z1− z (1 + u) = 1 +∑
n≥1 u (1 + u)n−1zn = 1 +∑

n≥1
n∑
k=1
(
n − 1
k − 1

)
ukzn,

which implies that the number of compositions of n with k parts is given by (n−1
k−1), which is a well known result.

Example 2.5.Another application of Theorem 2.3 gives
Fd(z, u, 1;p, p, r, s) = 1 + (1− r)∑j≥1

(
zjuj1−zj ∏j−1

i=1 s−r+(p−s)zi1−zi
)

1− r∑j≥1
(
zjuj1−zj ∏j−1

i=1 s−r+(p−s)zi1−zi
) ,

which is the generating function for the number of compositions of n according to the number of parts, ascents, de-scents and levels. On the other hand, Heubach and Mansour [6] found another expression for the generating function
Fd(z, u, 1;p, p, r, s). They showed that

Fd(z, u, 1;p, p, r, s) = 1 + (1− r)∑j≥1
(

zju1−zju(s−r) ∏j−1
i=1 1−ziu(s−p)1−ziu (s−r)

)
1− r∑j≥1

(
zju1−zju(s−r) ∏j−1

i=1 1−ziu(s−p)1−ziu(s−r)
) .

Comparing the two results gives the following identity
∑
j≥1
(

zjuj1− zj j−1∏
i=1

s − r − (s − p) zi1− zi
) = ∑

j≥1
(

zju1− zju (s − r) j−1∏
i=1

1− ziu (s − p)1− ziu (s − r)
)
.

Example 2.6.Theorem 2.3 for q = r = s = 1 gives
1

Fd(z, u, 1;p, 1, 1, 1) = 1−∑
j≥1

(p − 1)j−1zj+d(j2)uj∏j
i=1(1− zi) ,

as shown in equations (2.3) and (2.4) in [1].
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Another application of Theorem 2.3 can be formulated as follows. A Carlitz composition1 of n, introduced in [2], is acomposition of n in which no adjacent parts are the same. In other words, a Carlitz composition π is a composition withlev (π) = 0. If we substitute s = 0 in the generating function Fd(z, u, 1;p, q, r, s), then Theorem 2.3 gives the generatingfunction CFd(z, u;p, q, r) for the number of Carlitz compositions of n according to number of parts, ascents of size d ormore, ascents of size less than d and descents.
Corollary 2.7.
The generating function CFd(z, u;p, q, r) is given by

1 +∑j≥1
( (1−r)zjuj1−zj ∏j−1

i=1 −r+qzi+(p−q)zid1−zi
)

1−∑j≥1
(
rzjuj1−zj ∏j−1

i=1 −r+qzi+(p−q)zid1−zi
) .

3. Ascents of size less than d

In this section we determine the mean and variance of the number of ascents of size less than d in compositions of n.From Theorem 2.3 we obtain
1

G(z, q) = 1
Fd(z, 1, 1; 1, q, 1, 1) = 1−∑

j≥1
zj1− zj j−1∏

i=1
(q − 1) zi + (1− q) zid1− zi

= 1−∑
j≥1 (q − 1)j−1 zj1− zj j−1∏

i=1
zi − zid1− zi = 1−∑

j≥1 (q − 1)j−1 z1+2+···+j1− zj j−1∏
i=1

1− zid−i1− zi
= 1−∑

j≥1 (q − 1)j−1 z(j+12 )1− zj
∏j−1

i=1 (1− zi(d−1))∏j−1
i=1(1− zi) = 1−∑

j≥1
(q − 1)j−1z(j+12 )∏j

i=1(1− zi)
j−1∏
i=1
(1− zi(d−1)).

This implies
G(z, 1) = 11− z1−z = 1− z1− 2z = 1 +∑

n≥1 2n−1zn,
confirming that the coefficient of zn in G(z, 1) is given by 2n−1, for all n ≥ 1, since there are 2n−1 compositions of n. Theexpected value of the number of ascents of size less than d is

[zn] ∂∂q G(z, q)|q=1[zn]G(z, 1) = [zn] ∂∂q G(z, q)|q=12n−1 .

In order to obtain an explicit expression, we write
1

G(z, q) = 1− z1− z − (q − 1) z3(1− zd−1)(1− z)(1− z2) −∑
j≥3

(q − 1)j−1z(j+12 )∏j
i=1(1− zi)

j−1∏
i=1
(1− zi(d−1))

which gives
∂
∂q G(z, q)∣∣∣

q=1 = G2(z, 1) z3(1− zd−1)(1− z)(1− z2) .
1 Originally called waves by L. Carlitz in [2], and also known as Smirnov sequences (see [5], page 68). Named Carlitz
compositions by Knopfmacher and Prodinger in [8] in honor of L. Carlitz.
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Hence,
∂
∂q G(z, q)∣∣∣

q=1 = z3(1− zd−1)(1− 2z)2(1 + z) ,which implies
[zn] ∂∂q G(z, q)∣∣∣

q=1 = 19 ((3n − 5)2n−2 − (3n − 3d − 2)2n−d−1 + (−1)n−1 + (−1)n−1−d),
for n ≥ d+ 2. After dividing by 2n−1, the total number of compositions of n, we obtain the following result.
Theorem 3.1.
The expected number of ascents of size less than d in the compositions of n is

E(n) = 118 (3n − 5− (3n − 3d − 2) 21−d) + (−1)n−1 + (−1)n−1−d9 · 2n−1 ,

for n ≥ d. Moreover, for fixed d, as n → ∞,

E(n) = n6 (1− 21−d) +O(1).
Note that the above theorem for d = 1 agrees with the fact that the number of ascents of size less than d = 1 in thecompositions of n is zero.In order to find the variance we first need to compute ∂2

∂q2 G(z, q)|q=1. From the definitions we have
∂2
∂q2 1

G(z, q) ∣∣∣q=1 = −2 z6(1− zd−1)(1− z2d−2)(1− z)(1− z2)(1− z3) ,
which implies

∂2
∂q2 G(z, q)∣∣∣

q=1 = 2G2(z, 1) z6(1− zd−1)(1− z2d−2)(1− z)(1− z2)(1− z3) + 2 ( ∂
∂q G(z, q))2∣∣

q=1
G(z, 1)

= 2z6(1− zd−1)(1− z2d−2)(1 + z)(1− z3)(1− 2z)2 + 2 ( ∂
∂q G(z, q))2∣∣

q=1(1− z)/(1− 2z)
= 2z6(1− zd−1)(2− z2 − zd−1 − zd − zd+1 − z2d−2 + z2d−1 + 2z2d)(1− z3)(1 + z)2(1− 2z)3 .

Then the coefficient of zn, n ≥ 3d+ 5 (the numerator of the generating function ∂2
∂q2 G(z, q)|q=1 is a polynomial of degree3d+ 5), in 21−n ∂2

∂q2 G(z, q)|q=1 is given by
b(n) = 6h (n − 6− 2d)− 2h (n − 8)− 4h (n − 5− 3d) + 4h (n − 5− 2d)

− 2h (n − 6− d)− 2h (n − 4− 3d) + 4h (n − 6)− 6h (n − 5− d) + 2h (n − 3− 3d),
where

h(n) = (−1)n(37 + i
√3)(1 + i

√3)n + (37− i√3)(1− i√3)n1029 · 22n + n(−1)n27 · 2n − 1− (−1)n3 · 2n+1 + 329261 (147n2 + 511n+ 558)
and i2 = −1. Here h(n) represents the coefficient of zn in the series expansion of 21−n(1− z3)−1(1 + z)−2(1− 2z)−3 and
b(n) represents the coefficient of zn in the series expansion of 21−n ∂2

∂q2 G(z, q)|q=1. Hence, we can state the followingresult.
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Theorem 3.2.
The variance of the expected number of ascents of size less than d in the compositions of n is given by

V(n) = b(n) + E(n)− (E(n))2,
for all n ≥ 3d+ 5. Moreover, for fixed d, as n → ∞,

V(n) ∼ n756 (29 + 4(21d+ 31) 2−d − 4(127 + 42d) 4−d + 288 · 2−3d).
Now we will find the limit distribution of our random variable. To do this, we refer the reader to Theorem IX.9 in [4].A short version of this theorem is as follows: Let H(z, t) = 1

A(z,t) be a bivariate function that is bivariate analytic at(z, t) = (0, 0) and has nonnegative coefficients at (0, 0). Suppose that H(z, 1) is meromorphic in z ≤ r with only a simplepole at z = ρ for some positive ρ < r. Then the distribution of the random variable with probability Pn(t) = [zn ]H(z,t)[zn ]H(z,1)converges to a Gaussian distribution with a speed of convergence of O(n−1/2). To check our conditions, we denote
∂i+j
∂zi∂tj A(z, t)|(z,t)=(ρ,1) by cij . From Theorem IX.9 of [4] we need to show that

c01c10 6= 0, (4)
ρc210c02 − ρc10c01c11 + ρc20c201 + c201c10 + ρc01c210 6= 0. (5)

In our case, H(z, q) = G(z, q) = 1
A(z,q) , where
A(z, q) = 1−∑

j≥1
(q − 1)j−1z(j+12 )∏j

i=1(1− zi)
j−1∏
i=1
(1− zi(d−1)).

Since A(z, 1) = 1−2z1−z , we have that ρ = 12 , which implies
c01 = 13

( 12d−1 − 1) ,
c10 = −4,
c02 = − 221

(1− 12d−1
)(1− 122d−2

)
,

c11 = −289 + 289 · 2d−1 + 2(d − 1)3 · 2d−1 ,
c20 = −16.

Therefore, we have c10c01 = −43 ( 12d−1 − 1) and
ρc210c02 − ρc10c01c11 + ρc20c201 + c201c10 + ρc01c210 = 4189

( 12d−1 − 1)( 142d−1 + 21d2d−1 + 127− 3622d−2
)
6= 0,

which satisfy the conditions (4) and (5), for any positive integer d. Thus we deduce,
Theorem 3.3.
The distribution of the number of ascents of size less than d in compositions of n converges to a Gaussian distribution,
with a speed of convergence of O(n−1/2), with mean E(n) and variance V(n) given in Theorem 3.1 and 3.2.

Corollary 2.7 gives an explicit formula for the generating function for the number of Carlitz compositions according tothe number of ascents of size d or more (respectively, less than d). Using similar techniques as described in this paper,one can obtain the mean, variance and asymptotic distribution of the number of ascents of size d or more (respectively,less than d) in Carlitz compositions.
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