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1. Introduction

Let X = (X, ‖ · ‖) be a complex Banach lattice with the real part XR and the positive convex cone X+ (cf. [15], [8, ChapterC], [7]) and let L(X ) be the Banach space of all bounded linear operators on X . We are concerned with abstract linearVolterra integro-differential equations in the Banach lattice X of the form
ẋ(t) = Ax(t) + ∫ t

0 B(t − s)x(s)ds, (1)
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† E-mail: phanhngoc@yahoo.com

966



S. Murakami, P.H. Anh Ngoc

where A is the infinitesimal generator of a C0-semigroup (T (t))t≥0 on X and B(·) : R+ = [0,+∞)→ L(X ) is continuousat t with respect to the operator norm. In addition, we assume that
(T (t))t≥0 is a compact semigroup and ∫ +∞

0 ‖B(t)‖ dt < +∞. (2)
In [5], Hino and Murakami gave primary criteria for the uniform asymptotic stability of the zero solution of (1) in termsof invertibility of the characteristic operator

zIX − A −
∫ +∞

0 e−ztB(t)dt (IX is the identical operator on X )
on the closed right half plane as well as integrability of the resolvent of (1).In a very recent paper, for X being a finite dimensional space, P.H.A. Ngoc et al. [12] studied positivity of the equation (1)(which is characterized by (eAt)t≥0 being a positive matrix semigroup on Rn×n and B(t) ∈ Rn×n+ for all t ≥ 0) and showedthat for positive equations, the invertibility of the characteristic matrix on the closed right half plane reduces to that of
zIn−

(
A+∫ +∞0 B(t)dt); here In denotes the n×n identical matrix. Consequently, such a positive equation is uniformlyasymptotically stable if and only if the spectral bound of the matrix A + ∫ +∞0 B(t)dt is negative, or equivalently, theassociated linear ordinary differential equation

ẋ(t) = (A+ ∫ +∞
0 B(s)ds) x(t), t ≥ 0, (3)

is asymptotically stable, a surprising result.In the present paper, we first introduce the notion of positive linear Volterra integro-differential equations in Banachlattices. Then, we give a characterization of positive linear Volterra equations of the form (1) in terms of positivityof the C0-semigroup generated by A and positivity of the kernel function B(·). Furthermore, we prove that under theassumptions of positivity of the C0-semigroup generated by A and positivity of the kernel function B(·), the uniformasymptotic stability of (1) is still determined by the spectral bound of the operator A + ∫ +∞0 B(t)dt. Finally, we dealwith problems of robust stability of (1) under structured perturbations. Some explicit stability bounds with respect tothese perturbations are given. An example is given to illustrate the obtained results. Our analysis is based on thetheory of positive C0-semigroups on Banach lattices, see e.g. [1], [8].
2. Preliminaries

Let (T (t))t≥0 be a strongly continuous semigroup (or shortly, C0-semigroup) of bounded linear operators on the complexBanach space (X, ‖ · ‖). Denote by A the generator of the semigroup (T (t))t≥0 and by D (A) its domain. That is,
D (A) = {x ∈ X : lim

t→0 T (t)x − x
t ∈ X

}
and

Ax = lim
t→0 T (t)x − x

t , x ∈ D (A).Since A is a closed operator, D (A) is a Banach space with the graph norm
‖x‖D (A) = ‖x‖+ ‖Ax‖, x ∈ D (A). (4)

The resolvent set ρ(A), by definition, consists of all λ ∈ C for which (λIX − A) has a bounded linear inverse in X. Thecomplement of ρ(A) in C is called the spectrum of A and denoted by σ (A). In general, by the same way as in the above,one can define the resolvent set ρ(A) and the spectral set σ (A) for an arbitrary linear operator
A : D (A) ⊂ X → X.

With the C0-semigroup (T (t))t≥0, we associate the following quantities:
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(1) the spectral bound s(A),
s(A) = sup {<λ : λ ∈ σ (A)},

where σ (A) is the spectrum of the linear operator A, and <λ denotes the real part of λ ∈ C;
(2) the growth bound ω(A),

ω(A) = inf {ω ∈ R : there exists M > 0 such that ‖T (t)‖ ≤ Meωt for all t ≥ 0}.
It is well known that

−∞ ≤ s(A) ≤ ω(A) < +∞, (5)
see, e.g. [1], [8].Next, the C0-semigroup (T (t))t≥0 is called

(1) Hurwitz stable if σ (A) ⊂ C− = {λ ∈ C : <λ < 0},
(2) strictly Hurwitz stable if s(A) < 0,
(3) uniformly exponentially stable if ω(A) < 0.

It is well known that for an eventually norm continuous semigroup, that is,
lim
t→t0 ‖T (t)− T (t0)‖ = 0 for some t0 ≥ 0,

we have s(A) = ω(A), see e.g. [8]. So, the strict Hurwitz stability and the uniform exponential stability of eventuallynorm continuous semigroups coincide.To make the presentation self-contained, we give some basic facts on Banach lattices which will be used in the sequel(see, e.g. [15]). Let X 6= {0} be a real vector space endowed with an order relation ≤. Then X is called an ordered
vector space. Denote the positive elements of X by X+ = {x ∈ X : x ≥ 0}. If furthermore the lattice property holds,that is, if x ∨ y = sup {x, y} ∈ X for x, y ∈ X, then X is called a vector lattice. It is important to note that X+ is
generating, that is,

X = X+ − X+ = {x − y : x, y ∈ X+}.The modulus |x| of x ∈ X is defined by |x| = x ∨ (−x). If ‖ · ‖ is a norm on the vector lattice X satisfying the lattice
norm property, that is, if

|x| ≤ |y| ⇒ ‖x‖ ≤ ‖y‖, x, y ∈ X, (6)
then X is called a normed vector lattice. If, in addition, (X, ‖ · ‖) is a Banach space then X is called a (real) Banach
lattice.We now extend the notion of Banach lattices to the complex case. For this extension all underlying vector lattices Xare assumed to be relatively uniformly complete, that is, if for every sequence (λn)n∈N in R satisfying ∑∞

n=1 |λn| < +∞,for every x ∈ X and every sequence (xn)n∈N in X it holds that
0 ≤ xn ≤ λnx ⇒ sup

n∈N

( n∑
i=1 xi

)
∈ X.

Now let X be a relatively uniformly complete vector lattice. The complexification of X is defined by XC = X + ıX , where
ı = √−1. The modulus of z = x + ıy ∈ XC is defined by

|z| = sup0≤φ≤2π |(cosφ)x + (sinφ)y| ∈ X. (7)
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A complex vector lattice is defined as the complexification of a relatively uniformly complete vector lattice endowed withthe modulus (7). If X is normed then
‖x‖ = ‖|x|‖, x ∈ XC, (8)

defines a norm on XC satisfying the lattice norm property. If X is a Banach lattice then XC endowed with the modulus(7) and the norm (8) is called a complex Banach lattice. Throughout this paper, for simplicity of presentation, we write
X, XR instead of XC, X , respectively. Let ER, FR be real Banach lattices and T ∈ L(ER, FR). Then T is called positive,denoted by T ≥ 0, if T (E+) ⊂ F+. By S ≤ T we mean T − S ≥ 0, for T , S ∈ L(ER, FR).An operator T ∈ L(E, F ) is called real if T (ER) ⊂ FR. An operator T ∈ L(E, F ) is called positive, denoted by T ≥ 0, if
T is real and T (E+) ⊂ F+. We introduce the notation

L+(E, F ) = {T ∈ L(E, F ) : T ≥ 0}. (9)
For T ∈ L+(E, F ), we emphasize a simple but important fact that

‖T‖ = sup
x∈E+,‖x‖=1 ‖Tx‖, (10)

see e.g. [15, p. 230].
3. Characterization of positive linear Volterra integro-differential equations in
Banach lattices

Let X be a complex Banach lattice endowed with the real part XR and the positive convex cone X+ and let L(X ) bethe Banach space of all bounded linear operators on X . In what follows, C ([0, σ ], X ) denotes the Banach space of all
X-valued continuous functions on [0, σ ], equipped with the supremum norm.Consider an abstract Volterra integro-differential equation in X defined by (1), where A is the infinitesimal generator ofa C0-semigroup (T (t))t≥0 on X and B(·) : R+ → L(X ) is continuous with respect to the operator norm. In addition, weassume that (2) holds true.For any (σ, φ) ∈ R+ × C ([0, σ ], X ), there exists a unique continuous function x : R+ → X such that x ≡ φ on [0, σ ] andthe following relation holds:

x(t) = T (t − σ )φ(σ ) + ∫ t

σ
T (t − s) {∫ s

0 B(s − τ)x(τ)dτ} ds, t ≥ σ, (11)
see e.g. [3]. The function x is called a (mild ) solution of the equation (1) on [σ,+∞), and denoted by x( · ; σ, φ).
Definition 3.1.We say that (1) is positive if x(t; σ, φ) ∈ X+ for all t ∈ [σ,+∞), whenever (σ, φ) ∈ R+ × C ([0, σ ], X+).
We are now in the position to state and prove the first main result of this paper.
Theorem 3.2.
If A generates a positive C0-semigroup (T (t))t≥0 on X and B(t) ≥ 0 for every t ≥ 0 then (1) is positive. Conversely, if (1)
is positive and A is the infinitesimal generator of a positive C0-semigroup (T (t))t≥0 on X then B(t) ≥ 0 for each t ≥ 0.
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Proof. Suppose A generates a positive C0-semigroup (T (t))t≥0 on X and B(t) ≥ 0 for every t ≥ 0. Fix (σ, φ) ∈
R+ × C ([0, σ ], X+) and x(t) = x(t; σ, φ), t ≥ σ. By (11), we have

x(t + σ ) = T (t)φ(σ ) + ∫ t+σ
σ

T (t + σ − s) {∫ s

0 B(s − τ)x(τ)dτ} ds, t ≥ 0.
This implies that

x(t + σ ) = T (t)φ(σ ) + ∫ t

0 T (t − s) {∫ s+σ
0 B(s+ σ − τ)x(τ)dτ} ds, t ≥ 0.

Thus,
x(t + σ ) = T (t)φ(σ ) + ∫ t

0 T (t − s) {∫ σ

0 B(s+ σ − τ)φ(τ)dτ + ∫ s+σ
σ

B(s+ σ − τ)x(τ)dτ} ds

= f(t) + ∫ t

0 T (t − s) {∫ s

0 B(s − τ)x(τ + σ )dτ} ds, t ≥ 0,
where

f(t) = T (t)φ(σ ) + ∫ t

0 T (t − s) {∫ σ

0 B(s+ σ − τ)φ(τ)dτ} ds, t ≥ 0. (12)
Set y(t) = x(t + σ ), t ≥ 0. Then, y(·) satisfies

y(t) = f(t) + ∫ t

0 T (t − s) {∫ s

0 B(s − τ)y(τ)dτ} ds, t ≥ 0. (13)
Fix t0 > 0. Consider the operator L defined by

L : C ([0, t0], X )→ C ([0, t0], X )
ψ 7→ Lψ(t) = f(t) + ∫ t

0 T (t − s) {∫ s

0 B(s − τ)ψ(τ)dτ}ds, t ∈ [0, t0],
where f(·) is defined as in (12). By induction, it is easy to show that for ψ1, ψ2 ∈ C ([0, t0], X ) and k ∈ N, we have

∥∥Lkψ2(t)− Lkψ1(t)∥∥ ≤ Mk tk
k! ‖ψ2 − ψ1‖C ([0,t0 ],X ) for all t ∈ [0, t0],

where M = M1M2 and M1 = maxs∈[0,t0 ] ‖T (s)‖,M2 = ∫ t00 ‖B(s)‖ ds. Thus, Lk is a contraction for k ∈ N sufficiently large.Fix a k0 ∈ N sufficiently large and set S = Lk0 . By the contraction mapping principle, there exists a unique solutionof the equation y = Ly in C ([0, t0], X ). Moreover, it is well known that the sequence (Smψ0)m∈N = (Lmk0ψ0)m∈N, withan arbitrary ψ0 ∈ C ([0, t0], X ), converges to this solution in the space C ([0, t0], X ). Choose ψ0 ∈ C ([0, t0], X+). Since(T (t))t≥0 is a positive semigroup, B(t) ≥ 0 and f(t) ∈ X+ for all t ≥ 0, it follows that Lmk0ψ0 ∈ C ([0, t0], X+) for all
m ∈ N. Taking (13) into account, we derive that

Lmk0ψ0 → y(·) ∈ C ([0, t0], X+) as m → +∞.
Thus, y(t) = x(t+ σ ) ∈ X+ for all t ∈ [0, t0]. Recall that t0 is an arbitrary fixed positive number. Hence, letting t0 →∞,we get x(t) ∈ X+ for all t ≥ σ.Conversely, assume that the equation (1) is positive and A is the infinitesimal generator of a positive C0-semigroup(T (t))t≥0 on X . We first show that B(t) is real for each t ≥ 0. Let σ > 0 and a ∈ X+ be given. For each integer n such
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that 1/n < σ , consider a function φn ∈ C ([0, σ ], X+) defined by φn(t) = a if t ∈ [0, σ − 1/n] and φn(t) = n(σ − t)a if
t ∈ (σ − 1/n, σ ]. By the positivity of (1) we have x(t; σ, φn) ≥ 0 for any t ≥ σ , and hence

1
h x(h+ σ, σ, φn) = 1

h

(
T (h)φn(σ ) + ∫ σ+h

σ
T (h+ σ − s) (∫ s

0 B(s − τ)x(τ; σ, φn)dτ) ds
)

= 1
h

∫ σ+h
σ

T (h+ σ − s) (∫ s

0 B(s − τ)x(τ; σ, φn)dτ) ds ≥ 0
for any h > 0. Observe that

lim
h→+0

[ 1
h

∫ σ+h
σ

T (h+ σ − s) (∫ s

0 B(s − τ)x(τ; σ, φn)dτ) ds
] = ∫ σ

0 B(σ − τ)x(τ; σ, φn)dτ = ∫ σ

0 B(σ − τ)φn(τ)dτ.
Thus, ∫ σ0 B(σ − τ)φn(τ)dτ ≥ 0 and by letting n → ∞, we get ∫ σ0 B(s)ads ≥ 0 for any σ ≥ 0. Therefore,

∫ t+h
t

B(s)ads = ∫ t+h
0 B(s)a ds − ∫ t

0 B(s)ads ∈ X+ − X+ = XR

for any t ≥ 0 and h > 0. Consequently,
B(t)a = lim

h→+0
(1
h

∫ t+h
t

B(s)ads) ∈ XR, a ∈ X+.

This yields, B(t)XR ⊂ XR, which means that B(t) is real for each t ≥ 0.Next, we show that B(t) ≥ 0 for each t ≥ 0. Let (σ, φ) ∈ R+ ×C ([0, σ ], X+) with φ(σ ) = 0 be given. By the positivity of(1), we have y(t) = x(t + σ ; σ, φ) ≥ 0 on [0,∞). Note that y satisfies
y(t) = T (t)φ(σ ) + ∫ t+σ

σ
T (t + σ − s) {∫ s

0 B(s − τ)x(τ)dτ} ds

= ∫ t

0 T (t − u) {∫ σ+u
0 B(σ + u − τ)x(τ)dτ} du = ∫ t

0 T (t − u)p(u)du, t ≥ 0,
where

p(u) = ∫ σ+u
0 B(σ + u − τ)x(τ)dτ.

Let λ ∈ R be sufficiently large so that supt≥0 (e(−λ+1)t‖T (t)‖) < ∞. It follows that λ ∈ ρ(A) and
R(λ, A)x = ∫ +∞

0 e−λt T (t)x dt, x ∈ X.

In particular, by [4, Theorem 2.16.5] we see that λ ∈ ρ(A∗) and R(λ, A∗) = R(λ, A)∗ because of λ ∈ ρ(A). Let v∗+ be anarbitrary element in (X ∗)+, the space of all positive bounded linear functionals on X . Set v∗ = R(λ, A∗)v∗+. Then, wehave v∗ ∈ D (A∗) and
〈v∗, y(t)〉 = 〈v∗,∫ t

0 T (t − u)p(u)du〉 , t ≥ 0,
where 〈·, ·〉 denotes the canonical duality pairing of X ∗ and X . Since y(t) ≥ 0, the positivity of (T (t))t≥0 implies that

R(λ, A)y(t) = ∫ +∞
0 e−λuT (u)y(t)du ≥ 0,
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and hence 〈v∗, y(t)〉 = 〈v∗+, R(λ, A)y(t)〉 ≥ 0 since v∗+ ≥ 0. Consequently, (d+/dt)〈v∗, y(t)〉|t=0 ≥ 0 since 〈v∗, y(0)〉 =
v∗(0) = 0. Notice that AR(λ, A) = −IX + λR(λ, A). It follows that

(AR(λ, A))∗ = −IX∗ + λR(λ, A)∗ = −IX∗ + λR(λ, A∗) = A∗R(λ, A∗),
and we thus get

d+
dt

〈
v∗,
∫ t

0 T (t − u)p(u)du〉 = d+
dt

〈
v∗+, R(λ, A) ∫ t

0 T (t − u)p(u)du〉
= lim

h→+0 1
h

{〈
v∗+, R(λ, A) ∫ t+h

0 T (t + h − u)p(u)du − R(λ, A) ∫ t

0 T (t − u)p(u)du〉}
= lim

h→+0
{〈

v∗, 1
h

∫ t+h
t

T (t + h − u)p(u)du〉+〈v∗+, R(λ, A)T (h)− IX
h

∫ t

0 T (t − u)p(u)du〉}
= 〈v∗, p(t)〉+〈v∗+, AR(λ, A) ∫ t

0 T (t − u)p(u)du〉 = 〈v∗, p(t)〉+ 〈(AR(λ, A))∗v∗+, y(t)〉
= 〈v∗, p(t)〉+ 〈A∗R(λ, A∗)v∗+, y(t)〉 = 〈v∗, p(t)〉+ 〈A∗v∗, y(t)〉.

Hence,
d+
dt 〈v

∗, y(t)〉|t=0 = 〈v∗, p(0)〉+ 〈A∗v∗, y(0)〉 = 〈v∗,∫ σ

0 B(σ − τ)x(τ)dτ〉
= 〈R(λ, A)∗v∗+,∫ σ

0 B(σ − τ)φ(τ)dτ〉 = 〈v∗+, R(λ, A) ∫ σ

0 B(σ − τ)φ(τ)dτ〉 ,
and, consequently, 〈v∗+, R(λ, A) ∫ σ0 B(σ − τ)φ(τ)dτ〉 ≥ 0. Rewriting φ(σ − τ) as ψ(τ), we have

〈
v∗+, R(λ, A) ∫ σ

0 B(u)ψ(u)du〉 ≥ 0 (14)
for any v∗+ ∈ (X ∗)+ and any ψ ∈ C ([0, σ ];X+) with ψ(0) = 0. We claim that

R(λ, A)B(t)a ≥ 0 for all t ∈ (0, σ ], a ∈ X+. (15)
Seeking a contradiction, we assume that there are t1 ∈ (0, σ ] and a ∈ X+ such that R(λ, A)B(t1)a 6∈ X+. Notice that
R(λ, A)B(t1)a ∈ XR by R(λ, A) ≥ 0 and B(t)a ∈ XR. Since X+ is a closed convex cone and R(λ, A)B(t1)a 6∈ X+, thereexists a v∗+ ∈ X ∗ such that 〈v∗+, R(λ, A)B(t1)a〉 < inf{〈v∗+, x〉 | x ∈ X+} = l, see e.g. [6, Chapter 3, Theorem 6]. Note thatfor any x ∈ X+ and n = 1, 2, . . . we have l ≤ 〈v∗+, nx〉 = n〈v∗+, x〉, or equivalently, l/n ≤ 〈v∗+, x〉. This yields 〈v∗+, x〉 ≥ 0for any x ∈ X+, and consequently l ≥ 0 as well as l ≤ 〈v∗+, 0〉 = 0. It follows that l = 0 and 〈v∗+, R(λ, A)B(t1)a〉 > 0.Hence v∗+ ∈ (X ∗)+, and moreover there exists an interval [c, d] ⊂ (0, σ ) satisfying 〈v∗+, R(λ, A)B(t)a〉 < 0 for all t ∈ [c, d].Then one can choose a nonnegative scalar continuous function χ so that χ(0) = 0 and

〈
v∗+,
∫ σ

0 R(λ, A)B(t)χ(t)adt〉 = ∫ σ

0
〈
v∗+, R(λ, A)B(t)a〉χ(t)dt < 0,

which leads to a contradiction by considering χ(t)a as ψ(t) in (14).Finally, it follows from (15) and the fact that limλ→+∞ λR(λ, A)x = x for any x ∈ X , that B(t) ≥ 0 for t ∈ [0, σ ]. Since
σ > 0 is arbitrary, B(t) ≥ 0 for all t ≥ 0. This completes the proof.
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Remark 3.3.In the study of linear Volterra equations of type (1), the resolvent R(t) which is introduced as the inverse Laplacetransform of [λ − A−B(λ)]−1 plays a crucial role; see e.g. [2, 14]. Observe that the resolvent does not appear explicitlyin the proof of Theorem 3.2. But the solution y(t) of (13) with T (t)x in place of f(t) is identical with R(t)x, and hencethe former part in the proof of Theorem 3.2 indeed proves the positivity of the operator R(t). Thus one can also establishthe former part of Theorem 3.2 by applying the expression formula (in terms of the resolvent) (e.g. [5, Proposition 2.4])for solutions of nonhomogeneous equations.In particular case of X = Rn×n, it has been shown in [12] (Theorem 3.7) that the equation (1) is positive if and onlyif A generates a positive C0-semigroup (T (t))t≥0 on Rn×n and B(t) ∈ Rn×n+ for every t ≥ 0. However, for equations ininfinite dimensional spaces, it is still an open question whether the positivity of (1) implies that A generates a positive
C0-semigroup (T (t))t≥0 in X? If this is true then as in the case of positive equations in finite dimensional spaces, (1)is positive if and only if A generates a positive C0-semigroup (T (t))t≥0 on X and B(t) ∈ L+(X ) for every t ≥ 0, byTheorem 3.2.Finally, it is worth noticing that the proof of Theorem 3.2 is much more difficult than that of Theorem 3.7 in [12].
4. Stability and robust stability of positive linear Volterra integro-differential
equations in Banach lattices

4.1. An explicit criterion for uniform asymptotic stability of positive equations in Banach lattices

In this subsection, by exploiting positivity of equations, we give an explicit criterion for the uniform asymptotic stabilityof positive equations. We recall here the notion of the uniform asymptotic stability of equation (1). For more details andfurther information, we refer readers to [5].
Definition 4.1.The zero solution of (1) is said to be uniformly asymptotically stable (shortly, UAS) if and only if

(a) for any ε > 0, there exists δ(ε) > 0 such that for any (σ, φ) ∈ R+ × C ([0, σ ];X ), ‖φ‖[0,σ ] = sup0≤s≤σ ‖φ(s)‖ < δ(ε)implies that ‖x(t; σ, φ)‖ < ε for all t ≥ σ ;(b) there is δ0 > 0 such that for each ε1 > 0 there exists l(ε1) > 0 such that for any (σ, φ) ∈ R+ × C ([0, σ ];X ),
‖φ‖[0,σ ] < δ0 implies that ‖x(t; σ, φ)‖ < ε1 for all t ≥ σ + l(ε1).

Note that we continue to assume that (2) holds true.
Theorem 4.2 ([5]).
Assume that A generates a compact semigroup. Then the following statements are equivalent:

(i) the zero solution of (1) is UAS.

(ii) λIX − A −
∫ +∞0 e−λsB(s)ds is invertible in L(X ) for all λ ∈ C, <λ ≥ 0.

Before stating and proving the main result of this subsection, we prove an auxiliary lemma.
Lemma 4.3.
Assume that A generates a positive compact semigroup (T (t))t≥0 on X and P ∈ L(X ), Q ∈ L+(X ). If

|Px| ≤ Q|x| for all x ∈ X,

then
ω(A+ P) = s(A+ P) ≤ s(A+Q) = ω(A+Q).
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Proof. Let (G(t))t≥0 and (H(t))t≥0 be the C0-semigroups with the infinitesimal generators A+P and A+Q, respectively.Since A generates the compact semigroup (T (t))t≥0, so do A+P and A+Q, see e.g. [1, 8]. This implies that s(A+P) =
ω(A + P) and s(A + Q) = ω(A + Q), see e.g. [1, 8]. By the well-known property of compact C0-semigroups, we get
eσ (C ) = σ (M(1))\{0}, where C is the infinitesimal generator of any compact C0-semigroup (M(t))t≥0 on X ; see e.g. [1,Corollary IV.3.11]. Hence we have eω(C ) = r(M(1)), where r(M(1)) is the spectral radius of the operator M(1). Thus, itremains to show that

r(G(1)) ≤ r(H(1)).
Note that (G(t))t≥0 and (H(t))t≥0 are defined respectively by

G(t)x = lim
n→+∞(T (t/n)e(t/n)P )nx, H(t)x = lim

n→+∞(T (t/n)e(t/n)Q)nx, x ∈ X,

for each t ≥ 0; see e.g. [8, p. 44] and see also [1, Theorem III.5.2]. By the positivity of (T (t))t≥0 and the hypothesis of
|Px| ≤ Q|x|, x ∈ X, it is easy to see that

|G(1)x| ≤ H(1)|x|, x ∈ X.

Then, by induction
|G(1)kx| ≤ H(1)k |x|, x ∈ X, k ∈ N. (16)

From the property of a norm on Banach lattices (6), it follows from (16) and (10) that ‖G(1)k‖ ≤ ‖H(1)k‖. By thewell-known Gelfand’s formula, we have r(G(1)) ≤ r(H(1)), which completes the proof.
We are now in the position to prove the main result of this section.
Theorem 4.4.
Assume that A generates a positive compact semigroup (T (t))t≥0 on X and B(t) ≥ 0 for all t ≥ 0. Then the following
statements are equivalent:

(i) the zero solution of (1) is UAS;

(ii) s
(
A+ ∫ +∞0 B(τ)dτ) < 0.

Proof. (ii)⇒(i) Assume that the zero solution of (1) is not UAS. By Theorem 4.2, λIX − A − ∫ +∞0 e−λsB(s)ds is notinvertible for some λ ∈ C, <λ ≥ 0. This implies that λ ∈ σ(A+ ∫ +∞0 e−λsB(s)ds). Hence,
0 ≤ <λ ≤ s(A+ ∫ +∞

0 e−λsB(s)ds) .
On the other hand, it is easy to see that

∣∣∣∣ ∫ +∞
0 e−λsB(s)ds · x∣∣∣∣ ≤ ∫ +∞

0 B(s)ds |x|,
by the hypothesis of B(t) ≥ 0 for all t ≥ 0. Thus,

0 ≤ s(A+ ∫ +∞
0 e−λsB(s)ds) ≤ s(A+ ∫ +∞

0 B(s)ds)
by Lemma 4.3.
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(i)⇒(ii) For every λ ≥ 0, we put Φλ = ∫ +∞0 B(t)e−λt dt and f(λ) = s(A + Φλ). Consider the real function defined by
g(λ) = λ − f(λ), λ ≥ 0. We show that g(0) = −s(A + Φ0) > 0. Since B(·) is positive, by almost the same argument asin [1, Proposition VI.6.13] one can see that f(λ) is non-increasing and left continuous at λ > 0. Hence g(λ) is increasingand left continuous at λ with limλ→+∞ g(λ) = +∞. We assert that the function g(λ) is right continuous at λ ≥ 0. Indeed,if this assertion is false, then there is a λ0 ≥ 0 such that s+ = limε→+0 f(λ0 +ε) < s0 = f(λ0). Notice that s0 = s(A+Φλ0 )and Ã = A+Φλ0 generates a positive and compact C0-semigroup (eÃt)t≥0. It follows that s0 = s(Ã) ∈ σ (Ã) by [1, TheoremVI.1.10]. Take a t0 ∈ ρ(Ã). Since

σ (R(t0, Ã)) \ {0} = { 1
t0 − µ : µ ∈ σ (Ã)}

by [1, Theorem IV.1.13], we get 1/(t0−s0) ∈ σ (R(t0, Ã)). Observe that 1/(t0−s0) is isolated in the spectrum σ (R(t0, Ã)) ofthe compact operator R(t0, Ã). Therefore, if s1 is sufficiently close to s0 and s1 6= s0, then 1/(t0 − s1) is sufficiently closeto 1/(t0 − s0); hence 1/(t0 − s1) 6∈ σ (R(t0, Ã)), in particular, s1 6∈ σ (Ã). Therefore one can choose an s1 ∈ (s+, s0) so that
s1 ∈ ρ(Ã), that is, s1IX −A−Φλ0 has a bounded inverse (s1IX −A−Φλ0 )−1 in L(X ). In the following, we will show that(s1IX − A − Φλ0 )−1 ≥ 0. Since s+ < s1, it follows that s(A+ Φλ0+ε) < s1 for small ε > 0. Then [1, Lemma VI.1.9] impliesthat (s1IX − A − Φλ0+ε)−1 ≥ 0 and

(
s1IX − A − Φλ0+ε)−1x = ∫ +∞

0 e−s1t exp ((A+ Φλ0+ε)t) x dt, x ∈ X.

Note that
s1IX − A − Φλ0+ε = s1IX − A − Φλ0 + (Φλ0 − Φλ0+ε) = (IX − (Φλ0+ε − Φλ0 )R(s1, Ã))(s1IX − Ã)

and
‖(Φλ0+ε − Φλ0 )R(s1, Ã)‖ ≤ ∫ +∞

0 ‖B(τ)e−λ0τ (1− e−ετ )‖ dτ ‖R(s1, Ã)‖ ≤ ∫ +∞
0 ‖B(τ)‖(1− e−ετ )dτ ‖R(s1, Ã)‖ → 0

as ε → +0. Therefore, if ε > 0 is small then ∥∥(Φλ0+ε−Φλ0 )R(s1, Ã)∥∥ < 1/2. Hence IX − (Φλ0+ε−Φλ0 )R(s1, Ã) is invertibleand (
IX − (Φλ0+ε − Φλ0 )R(s1, Ã))−1 = +∞∑

n=0
{(Φλ0+ε − Φλ0 )R(s1, Ã)}n.

It follows that (
s1IX − A − Φλ0+ε)−1 = R(s1, Ã) +∞∑

n=0
{(Φλ0+ε − Φλ0 )R(s1, Ã)}n.

We thus get
∥∥(s1I − A − Φλ0+ε)−1 − (s1I − A − Φλ0 )−1∥∥ = ∥∥∥∥∥R(s1, Ã) +∞∑

n=1
{(Φλ0+ε − Φλ0 )R(s1, Ã)}n∥∥∥∥∥

≤ ‖R(s1, Ã)‖ +∞∑
n=1
∥∥(Φλ0+ε − Φλ0 )R(s1, Ã)∥∥n = ‖R(s1, Ã)‖ ‖(Φλ0+ε − Φλ0 )R(s1, Ã)‖1− ‖(Φλ0+ε − Φλ0 )R(s1, Ã)‖

≤ 2‖R(s1, Ã)‖2 ∫ +∞
0 ‖B(τ)‖(1− e−ετ )dτ → 0, ε → +0.

Then the positivity of (s1I − A−Φλ0+ε)−1 follows from the positivity of (s1I − A−Φλ0 )−1, as desired. Applying [1, LemmaVI.1.9] again, we get s1 > s(A + Φλ0 ) = s0, a contradiction to the fact that s1 < s0. Thus, f(λ) and g(λ) must be rightcontinuous at λ ≥ 0.Assume on the contrary that g(0) ≤ 0. Since the function g is continuous on [0,+∞) and limλ→+∞ g(λ) = +∞, there isa λ1 ≥ 0 such that g(λ1) = 0; that is, λ1 = s(A+ Φλ1 ).
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Since A+ Φλ1 generates a positive semigroup and s(A+ Φλ1 ) > −∞, by virtue of [1, Theorem VI.1.10] λ1 = s(A+ Φλ1 ) ∈
σ (A + Φλ1 ). Since A + Φλ1 generates a compact C0-semigroup, it follows from [1, Corollary IV.1.19] that σ (A + Φλ1 ) isidentical with Pσ (A+Φλ1 ), the point spectrum of A+Φλ1 . Thus, there exists a nonzero x1 ∈ X such that (A+Φλ1 )x1 = λ1x1;that is, Ax1 + ∫ +∞0 B(τ)e−λ1τx1dτ = λ1x1. Put x(t) = eλ1tx1 for t ∈ R. Then, it is easy to see that

ẋ(t) = Ax(t) + ∫ +∞
0 B(τ)x(t − τ)dτ, t ∈ R;

hence x satisfies the ”limit” variant of (1). By virtue of [5, Proposition 2.3], the zero solution of this limit equation is UASbecause of the uniform asymptotic stability of (1). Hence we must get limt→+∞ ‖x(t)‖ = 0. However, ‖x(t)‖ = eλ1t‖x1‖ ≥
‖x1‖ > 0 for t ≥ 0, a contradiction. This completes the proof of the implication (i)⇒(ii).
Remark 4.5.Throughout this paper, the strong assumption on continuity of B in the operator norm is imposed. It may be expectedthat this assumption may be replaced by the weaker assumption that B(t) is strongly continuous at t. In fact, the normcontinuity of B is needed only to apply Theorem 4.2 which is essentially used in the proof of Theorem 4.4. Therefore,if Theorem 4.2 ([5, Theorem 3.3]) holds true under the weaker condition on B(t), then one would be able to replace thestrong assumption by the weaker one. Unfortunately, the authors have not succeeded in proving Theorem 4.2 under theweaker assumption.As will be shown in the example of the last section, there are some Volterra integro-differential equations with a kernelfunction of bounded linear operators, which are derived from partial integro-differential equations as abstract equationson some Banach lattices. In [1, Section IV.7.c] and [14], however, Volterra integro-differential equations with the kernelfunction which is of the form B(t) = a(t)A, where a ∈ W 1,1(R+,C), are treated. We point out that B(t) in this paper isrestricted to bounded linear operators; hence our result is not applicable to the equations with the kernel function ofthe form a(t)A, and further improvements so as to cover the wider class of equations must be done.
4.2. Robust stability of positive linear Volterra equations in Banach lattices

Let A generate a positive semigroup (T (t))t≥0 on X and let B(t) ≥ 0 for all t ≥ 0. Assume that (2) holds true and theequation (1) is UAS. We now consider a perturbed equation of the form
ẋ(t) = (A+ F∆C )x(t) + ∫ t

0
(
B(t − s) +DΓ(t − s)E) x(s)ds, t ≥ 0, (17)

where F ∈ L(Y , X ), C ∈ L(X, Z ), D ∈ L(U,X ), E ∈ L(X, V ) are given operators and ∆ ∈ L(Z, Y ), Γ(·) ∈
L1(R+, L(V ,U)) ∩ C (R+, L(V ,U)) are unknown disturbances. Here and hereafter X, Y , Z, U, V , . . . are assumed to becomplex Banach lattices.We shall measure the size of a pair of perturbation (∆,Γ(·)) ∈ L(Z, Y )× [L1(R+, L(V ,U)) ∩ C (R+, L(V ,U))] by

‖(∆,Γ(·))‖ = ‖∆‖+ ∫ +∞
0 ‖Γ(s)‖ ds.

The main problem here is to find a positive number α such that (17) remains UAS whenever
‖(∆,Γ(·))‖ = ‖∆‖+ ∫ +∞

0 ‖Γ(s)‖ ds < α.

Theorem 4.6.
Let A generate a positive compact semigroup (T (t))t≥0 on X and B(t) ≥ 0 for all t ≥ 0. Suppose the equation (1) is UAS
and F ∈ L+(Y , X ), C ∈ L+(X, Z ), D ∈ L+(U,X ), E ∈ L+(X, V ). Then (17) is still UAS whenever

‖(∆,Γ(·))‖ < 1max
P∈{F,D},Q∈{C,E}

∥∥Q(− A − ∫ +∞0 B(s)ds)−1P∥∥ .
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To prove the above theorem, we need the following auxiliary lemma.
Lemma 4.7.
Let A generate a positive compact semigroup (T (t))t≥0 on X and B(t) ≥ 0 for all t ≥ 0, and let P ∈ L+(U,X ),
Q ∈ L+(X, Z ). If (1) is UAS then

sup
λ∈C, <λ≥0

∥∥∥∥∥Q
(
λI − A −

∫ +∞
0 e−λsB(s)ds)−1

P
∥∥∥∥∥ = ∥∥∥∥∥Q

(
−A −

∫ +∞
0 B(s)ds)−1

P
∥∥∥∥∥ .

Proof. For a fixed λ ∈ C, <λ ≥ 0, we set W (λ) = ∫ +∞0 e−λsB(s)ds. It is well known that A+W (λ) with the domain
D (A+W (λ)) = D (A) is the generator of a compact C0-semigroup (Vλ(t))t≥0 satisfying

Vλ(t)x = lim
n→∞

(
T
(
t
n

)
e t
nW (λ))n x for t ≥ 0, x ∈ X, (18)

see e.g. [8, p. 44]. Since B(s) ≥ 0 for all s ≥ 0, it follows that
|W (λ)x| = ∣∣∣∣(∫ +∞

0 e−λsB(s)ds) x∣∣∣∣ ≤ ∫ +∞
0 B(s)ds |x| = W (0)|x|, x ∈ X.

By Lemma 4.3, we get
s(A+W (λ)) = ω(A+W (λ)) ≤ ω(A+W (0)) = s(A+W (0)), λ ∈ C, <λ ≥ 0.

Since (1) is UAS, we have
ω(A+W (λ)) ≤ s(A+W (0)) < 0

by Theorem 4.4. For λ ∈ C, <λ ≥ 0, we can represent
(
λIX − A −

∫ +∞
0 e−λsB(s)ds)−1

x = ∫ +∞
0 e−λtVλ(t) x dt, x ∈ X, (19)

By (18)–(19) and the positivity of (T (t))t≥0 and B(t) ≥ 0 for all t ≥ 0, we get
∣∣∣∣∣
(
λIX − A −

∫ +∞
0 e−λsB(s)ds)−1

x

∣∣∣∣∣ ≤ ∫ +∞
0 V0(t)|x| dt = (−A − ∫ +∞

0 B(s)ds)−1
|x|,

for every λ ∈ C, <λ ≥ 0. Furthermore, since P ∈ L+(U,X ) and Q ∈ L+(X, Z ), it follows that
∣∣∣∣∣Q
(
λIX − A −

∫ +∞
0 e−λsB(s)ds)−1

Pu
∣∣∣∣∣ ≤ Q

(
−A −

∫ +∞
0 B(s)ds)−1

P|u| for all u ∈ U,

for every λ ∈ C, <λ ≥ 0. Therefore, by (6) we get
∥∥∥∥∥Q
(
λIX − A −

∫ +∞
0 e−λsB(s)ds)−1

Pu
∥∥∥∥∥ ≤

∥∥∥∥∥Q
(
−A −

∫ +∞
0 B(s)ds)−1

P|u|
∥∥∥∥∥ for all u ∈ U.

This completes the proof.
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Proof of Theorem 4.6. Assume that the perturbed equation (17) is not UAS for some (∆,Γ(·)) ∈ L(Y , Z ) ×
L1(R+, L(V ,U)) ∩ C (R+, L(V ,U)). It follows from Theorem 4.2 that

λIX − (A+ F∆C )− ∫ +∞
0 e−λs(B(s) +DΓ(s)E)ds,

is not invertible for some λ ∈ C, <λ ≥ 0. Thus,
λ ∈ σ

(
A+ F∆C + ∫ +∞

0 e−λs(B(s) +DΓ(s)E)ds) .
Since A is the generator of a compact semigroup, so is A + F∆C + ∫ +∞0 e−λs(B(s) + DΓ(s)E)ds. Therefore, λ is aneigenvalue of this operator by [1, Corollary IV.1.19]. This implies that(

A+ F∆C + ∫ +∞
0 e−λs(B(s) +DΓ(s)E)ds) x = λx,

for some x ∈ X , x 6= 0. Since (1) is UAS, λIX − A − ∫ +∞0 e−λsB(s)ds is invertible. We thus get(
λIX − A −

∫ +∞
0 e−λsB(s)ds)−1 (

F∆Cx + ∫ +∞
0 e−λsDΓ(s)Ex ds) = x.

From x 6= 0 it follows that max {‖Cx‖, ‖Ex‖} > 0. Let Q ∈ {C,E}, that is, Q = C or Q = E . Multiplying the lastequation by Q from the left, we get
Q
(
λIX − A −

∫ +∞
0 e−λsB(s)ds)−1

F∆Cx +Q
(
λIX − A −

∫ +∞
0 e−λsB(s)ds)−1

D
∫ +∞

0 e−λsΓ(s)dsEx = Qx.

This yields ∥∥∥∥∥Q
(
λIX − A −

∫ +∞
0 e−λsB(s)ds)−1

F

∥∥∥∥∥ ‖∆‖ ‖Cx‖+∥∥∥∥∥Q
(
λIX − A −

∫ +∞
0 e−λsB(s)ds)−1

D

∥∥∥∥∥∫ +∞
0 |e−λs| ‖Γ(s)‖ ds ‖Ex‖ ≥ ‖Qx‖.

By Lemma 4.7, we derive that∥∥∥∥∥Q
(
−A −

∫ +∞
0 B(s)ds)−1

F

∥∥∥∥∥ ‖∆‖ ‖Cx‖+ ∥∥∥∥∥Q
(
−A −

∫ +∞
0 B(s)ds)−1

D

∥∥∥∥∥∫ +∞
0 ‖Γ(s)‖ ds ‖Ex‖ ≥ ‖Qx‖.

Therefore,
max

P∈{F,D},Q∈{C,E}

∥∥∥∥∥Q
(
−A −

∫ +∞
0 B(s)ds)−1

P
∥∥∥∥∥
(
‖∆‖+ ∫ +∞

0 ‖Γ(s)‖ ds) ≥ ‖Qx‖max {‖Cx‖, ‖Ex‖} .
Choose Q ∈ {C,E} such that ‖Qx‖ = max {‖Cx‖, ‖Ex‖}. Then we obtain

max
P∈{F,D},Q∈{C,E}

∥∥∥∥∥Q
(
−A −

∫ +∞
0 B(s)ds)−1

P
∥∥∥∥∥
(
‖∆‖+ ∫ +∞

0 ‖Γ(s)‖ ds) ≥ 1,
which is equivalent to

‖(∆,Γ(·))‖ = ‖∆‖+ ∫ +∞
0 ‖Γ(s)‖ ds ≥ 1max

P∈{F,D},Q∈{C,E}

∥∥Q(− A − ∫ +∞0 B(s)ds)−1P∥∥ .
This ends the proof.
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Remark 4.8.It is important to note that the problem of finding the maximal α > 0 such that any perturbed equation of the form (17)remains UAS whenever ‖(∆,Γ(·))‖ < α, is still open even for Volterra equations in finite dimensional spaces. This is theproblem of computing stability radii of linear equations which has attracted a lot of attention from researchers duringthe last twenty years, see e.g. [9]–[12] and the references therein.
We now present two results of the problem of computing stability radii of equation (1) in some special cases of pertur-bation. More precisely, we now deal with perturbed equations of the form

ẋ(t) = (A+D0∆E)x(t) + ∫ t

0
(
B(t − s) +D1Γ(t − s)E) x(s)ds, t ≥ 0, (20)

where D0 ∈ L(Y0, X ), E ∈ L(X, Z ), D1 ∈ L(Y1, X ) are given and ∆ ∈ L(Z, Y0); Γ(·) ∈ L1(R+, L(Z, Y1))∩C(R+, L(Z, Y1))are unknown disturbances.Clearly, (20) is a particular case of (17) with C = E , F = D0 and D = D1. We introduce classes of perturbations definedas
DC = {(∆,Γ) : ∆ ∈ L(Z, Y0), Γ(·) ∈ L1(R+, L(Z, Y1)) ∩ C(R+, L(Z, Y1))},
DR = {(∆,Γ) : ∆ ∈ LR(Z, Y0), Γ(·) ∈ L1(R+, LR(Z, Y1)) ∩ C(R+, LR(Z, Y1))},
D+ = {(∆,Γ) : ∆ ∈ L+(Z, Y0), Γ(·) ∈ L1(R+, L+(Z, Y1)) ∩ C(R+, L+(Z, Y1))}.

Then, the complex, real and positive stability radius of (1) under perturbations of the form
A A+D0∆E, F (·) F (·) +D1Γ(·)E,

are defined, respectively, by
rC = inf {‖(∆,Γ)‖ : (∆,Γ) ∈ DC, (20) is not UAS},
rR = inf {‖(∆,Γ)‖ : (∆,Γ) ∈ DR, (20) is not UAS},
r+ = inf {‖(∆,Γ)‖ : (∆,Γ) ∈ D+, (20) is not UAS}.

Here and in what follows, by convention, we define inf ∅ = +∞ and 1/0 = +∞. By the definition, it is easy to see that
rC ≤ rR ≤ r+.

Theorem 4.9.
Let A generate a positive compact semigroup (T (t))t≥0 on X, B(t) ≥ 0 for all t ≥ 0, E ∈ L+(X, Z ), and Di ∈ L+(Yi, X ),
i = 0, 1. If (1) is UAS then

rC = rR = r+ = 1max
i=0,1

∥∥E(− A − ∫ +∞0 B(s)ds)−1Di
∥∥ . (21)

Proof. Observe that
rC ≥

1max
i=0,1

∥∥E(− A − ∫ +∞0 B(s)ds)−1Di
∥∥

by Theorem 4.6. Since rC ≤ rR ≤ r+, it remains to show that
r+ ≤ 1max

i=0,1
∥∥E(− A − ∫ +∞0 B(s)ds)−1Di

∥∥ . (22)
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Assume that max
i=0,1

∥∥∥∥∥E
(
−A −

∫ +∞
0 B(s)ds)−1

Di

∥∥∥∥∥ = ∥∥∥∥∥E
(
−A −

∫ +∞
0 B(s)ds)−1

Di0
∥∥∥∥∥ > 0

for some i0 ∈ {0, 1}. Note that A + ∫ +∞0 B(τ)dτ generates a positive C0-semigroup and since (1) is UAS, s(A +∫ +∞0 B(τ)dτ) < 0 by Theorem 4.4. This implies that R(0, A+∫ +∞0 B(τ)dτ) = (−A−∫ +∞0 B(τ)dτ)−1 ≥ 0 by [1, LemmaVI.1.9]. Therefore E(− A − ∫ +∞0 B(τ)dτ)−1Di0 ∈ L+(Yi0 , Z ). Let 0 < ε <
∥∥E(− A − ∫ +∞0 B(s)ds)−1Di0

∥∥. By (10), onecan choose u ∈ (Yi0 )+, ‖u‖ = 1, so that
∥∥∥∥∥E
(
−A −

∫ +∞
0 B(τ)dτ)−1

Di0u
∥∥∥∥∥ >

∥∥∥∥∥E
(
−A −

∫ +∞
0 B(τ)dτ)−1

Di0
∥∥∥∥∥− ε.

Since z0 = E
(
− A −

∫ +∞0 B(τ)dτ)−1Di0u ∈ Z+, there exists a positive f ∈ Z ∗, ‖f‖ = 1, satisfying f(z0) = ‖z0‖ =∥∥E( − A − ∫ +∞0 B(τ)dτ)−1Di0u
∥∥ (cf. [7, Proposition 1.5.7], [17, p. 249]). We now consider the operator ∆ : Z → Yi0defined by

z 7→ ∆z = f(z)∥∥E(− A − ∫ +∞0 B(τ)dτ)−1Di0u
∥∥u.

It is clear that ∆ ∈ L+(Z, Yi0 ) and ‖∆‖ = 1/∥∥E( − A − ∫ +∞0 B(τ)dτ)−1Di0u
∥∥. Set x0 = (

− A −
∫ +∞0 B(s)ds)−1Di0u.Then Ex0 = E

(
− A −

∫ +∞0 B(s)ds)−1Di0u = z0, and hence
∆Ex0 = f(z0)∥∥E(− A − ∫ +∞0 B(τ)dτ)−1Di0u

∥∥ u = ‖z0‖∥∥E(− A − ∫ +∞0 B(τ)dτ)−1Di0u
∥∥ u = u.

Then x0 6= 0 because of u 6= 0. Moreover, we have
x0 = (−A − ∫ +∞

0 B(s)ds)−1
Di0 (∆Ex0),

or equivalently, (
A+Di0∆E + ∫ +∞

0 B(s)ds) x0 = 0.
Consider the case of i0 = 0. Then ∆ ∈ L+(Z, Y0) and (A + D0∆E + ∫ +∞0 B(s)ds)x0 = 0, which implies 0 ∈ σ

(
A +

D0∆E + ∫ +∞0 B(s)ds). Hence
r+ ≤ ‖(∆, 0)‖ = ‖∆‖ = 1∥∥E(− A − ∫ +∞0 B(τ)dτ)−1D0u∥∥ < 1∥∥E(− A − ∫ +∞0 B(τ)dτ)−1Di0

∥∥− ε .
We next consider the case of i0 = 1. Then ∆ ∈ L+(Z, Y1) and (A + D1∆E + ∫ +∞0 B(s)ds)x0 = 0. Define Γ(t) = e−t∆for all t ≥ 0. Then Γ(·) ∈ L1(R+, L+(Z, Y1)) ∩ C(R+, L(Z, Y1)), and it satisfies (A + ∫ +∞0 (B(s) + D1Γ(s)E)ds)x0 =(
A+ ∫ +∞0 B(s)ds+D1∆E)x0 = 0, whence 0 ∈ σ(A+ ∫ +∞0 (B(s) +D1Γ(s)E)ds). Therefore,

r+ ≤ ‖(0,Γ)‖ = ‖∆‖ = 1∥∥E(− A − ∫ +∞0 B(τ)dτ)−1D1u∥∥ < 1∥∥E(− A − ∫ +∞0 B(τ)dτ)−1Di0
∥∥− ε .

Since ε can be arbitrarily small, we thus get (22).Finally, it is worth noticing that from the above argument and that of the proof of Theorem 4.6, rC = rR = r+ = +∞ ifand only if maxi=0,1 ∥∥E(− A − ∫ +∞0 B(s)ds)−1Di
∥∥ = 0. So (21) is obvious in this case. This completes the proof.
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Finally, we will treat perturbed equations of the form
ẋ(t) = (A+D∆E0)x(t) + ∫ t

0
(
B(t − s) +DΓ(t − s)E1)x(s)ds, t ≥ 0, (23)

where D ∈ L(Y , X ), E0 ∈ L(X, Z0), E1 ∈ L(X, Z1) are given and ∆ ∈ L(Z0, Y ), Γ(·) ∈ L1(R+, L(Z1, Y ))∩C(R+, L(Z1, Y ))are unknown disturbances.In other words, A and F (·) are now subjected to perturbations of the form:
A A+D∆E0, F (·) F (·) +DΓ(·)E1.

With an appropriate modification for the definition of stability radii, by the similar way as the above, we can get thefollowing
Theorem 4.10.
Let A generate a positive compact semigroup (T (t))t≥0 on X, B(t) ≥ 0 for all t ≥ 0, Ei ∈ L+(X, Zi), i = 0, 1, and
D ∈ L+(Y , X ). If the equation (1) is UAS, then

rC = rR = r+ = 1max
i=0,1

∥∥Ei(− A − ∫ +∞0 B(s)ds)−1D∥∥ .

5. An example

In this section we give an example which shows how our results (especially Theorems 4.4 and 4.6) are applicable in thestability analysis of concrete equations.We consider the partial integro-differential equation
∂x(t, ξ)
∂t = ∂2x(t, ξ)

∂ξ2 + d(ξ)x(t, ξ) + ∫ t

0 k(t − s, ξ)x(s, ξ)ds, t ≥ 0, ξ ∈ [0, 1], (24)
subject to the boundary condition

∂x(t, 0)
∂ξ = 0 = ∂x(t, 1)

∂ξ , t ≥ 0, (25)
where d : [0, 1] → R is a given continuous function with α = − sup0≤ξ≤1 d(ξ) > 0 and k : [0,∞) × [0, 1] → R is anonnegative continuous function satisfying sup0≤ξ≤1 k(t, ξ) ≤ K (t) for all t ≥ 0, where K is given and ∫ +∞0 K (t)dt < ∞.We first set up (24)–(25) as an abstract equation on a Banach lattice. To do this, we take X = C ([0, 1],C), the Banachlattice of all continuous complex valued functions on [0, 1], equipped with the supremum norm, and consider a linearoperator A defined by (Af)(ξ) = f ′′(ξ) + d(ξ)f(ξ), ξ ∈ [0, 1],
where

D (A) = {f ∈ C 2([0, 1]) : f ′(0) = f ′(1) = 0},
together with the operators B(t), t ≥ 0, defined by

(B(t)h)(ξ) = k(t, ξ)h(ξ), ξ ∈ [0, 1], h ∈ X.

Observe that B(t) is a positive bounded linear operator on X with operator norm ‖B(t)‖ = sup0≤ξ≤1 k(t, ξ) (≤ K (t)),together with the estimate ‖B(t)−B(̄t)‖ = sup0≤ξ≤1 |k(t, ξ)−k (̄t, ξ)|; consequently, the operator B(·) fulfils the condition
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B(·) ∈ L1(R+, L+(X )) ∩ C(R+, L+(X )) because of ∫ +∞0 K (t)dt < ∞. It remains to verify that A generates a positivecompact semigroup. As it is well known (e.g. [1, Ex. II.4.34–(1)]), (d2/dξ2, D (A)) generates a compact (analytic) positivecontraction semigroup (one dimensional diffusion semigroup), say (T0(t))t≥0. Introducing a bounded linear operator Mon X defined by (Mh)(ξ) = d(ξ)h(ξ), ξ ∈ [0, 1], h ∈ X,

which generates a uniformly continuous semigroup (eMt)t≥0, we see that A is a bounded perturbation of d2/dξ2, that is,
A = d2/dξ2 +M; consequently, by virtue of [1, Theorem II.4.29, Proposition III.1.12], A generates a compact (analytic)semigroup, say (T (t))t≥0. Notice that (eMt)t≥0 is positive because of (eMth)(ξ) = etd(ξ)h(ξ), ξ ∈ [0, 1]. Therefore, (T (t))t≥0is positive, since

T (t)h = lim
n→∞

[
T0
(
t
n

)
e t
nM
]n
h, h ∈ X,

for each t ≥ 0; see e.g. [8, p. 44].Observe that ∫∞0 B(t)dt is a positive bounded linear operator defined by
[(∫ +∞

0 B(t)dt)h] (ξ) = a(ξ)h(ξ), ξ ∈ [0, 1], h ∈ X,

where a(ξ) = ∫ +∞0 k(t, ξ)dt (≤ ∫ +∞0 K (t)dt < ∞). In what follows, we assume that
sup0≤ξ≤1(d(ξ) + a(ξ)) = −δ < 0 (26)

for a constant δ. Under this assumption, we will next show that the zero solution of the equation (1) set up in theforegoing paragraph is UAS. We claim that the semigroup (U(t))t≥0 generated by the operator A+ ∫ +∞0 B(t)dt satisfiesthe estimate
‖U(t)‖ ≤ e−δt , t ≥ 0. (27)

Indeed, if the claim holds true, then it follows from the well-known result (e.g. [1, Theorem II.1.10]) that s(A +∫ +∞0 B(t)dt) ≤ −δ together with the estimate ∥∥(λ − A − ∫ +∞0 B(t)dt)−1∥∥ ≤ 1/(<λ + δ) for any λ ∈ C with <λ > −δ;hence we conclude by Theorem 4.4 that the zero solution of (1) is UAS.Now we will prove (27). Let h ∈ D(A) be any element such that ‖h‖ < 1, and set u(t, ξ) = (U(t)h)(ξ), ξ ∈ [0, 1], t ≥ 0.Then u is a classical solution of the partial differential equation
∂u(t, ξ)
∂t = ∂2u(t, ξ)

∂ξ2 + b(ξ)u(t, ξ), t ≥ 0, ξ ∈ [0, 1],
subject to the boundary condition

∂u(t, 0)
∂ξ = 0 = ∂u(t, 1)

∂ξ , t ≥ 0,
where b(t) = d(t) + a(t) (≤ −δ). Notice that −1 < u(0, ξ) < 1 for any ξ ∈ [0, 1]. We will verify that eδtu(t, ξ) < 1 forany (t, ξ) ∈ [0,∞)× [0, 1] by applying the strong maximum principle (e.g. [13, Theorems 3.6 and 3.7]). Indeed, if this isfalse, then there is a (t1, ξ1) ∈ (0,∞)× [0, 1] such that eδt1u(t1, ξ1) = 1 and eδtu(t, ξ) < 1 for any t < t1 and ξ ∈ [0, 1].Set v(t, ξ) = eδtu(t, ξ)− 1 for (t, ξ) ∈ [0, t1]× [0, 1]. On (0, t1]× (0, 1) we get

∂2v
∂ξ2 − ∂v

∂t = eδt ∂
2u
∂ξ2 − eδt

(
δu+ ∂u

∂t

) = eδt(−b(ξ)u − δu) = −(v + 1)(b(ξ) + δ),
or

∂2v
∂ξ2 − ∂v

∂t + (b(ξ) + δ)v = −(b(ξ) + δ) ≥ 0,
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together with the boundary condition
∂v(t, 0)
∂ξ = 0 = ∂v(t, 1)

∂ξ , t ≥ 0.
Since b(ξ) + δ ≤ 0 by the assumption, one can apply the strong maximum principle. Consequently, we get ξ1 = 0, or
ξ1 = 1 and v(t, ξ) < 0 for any (t, ξ) ∈ [0, t1]× (0, 1). Since v(t1, ξ1) = 0, we get by the strong maximum principle againthat ∂v

∂ξ < 0 at (t1, ξ1) if ξ1 = 0, and ∂v
∂ξ > 0 at (t1, ξ1) if ξ1 = 1; a contradiction to the boundary condition. Thus we musthave that eδtu(t, ξ) < 1 for any (t, ξ) ∈ [0,∞) × [0, 1]. In a similar way, one can deduce that eδtu(t, ξ) > −1 for any(t, ξ) ∈ [0,∞) × [0, 1]. Thus we get eδt |u(t, ξ)| < 1 on [0,∞) × [0, 1]; in other words, ‖U(t)h‖ ≤ e−δt for any h ∈ D(A)with ‖h‖ < 1. Since D(A) is dense in X , we get the desired estimate ‖U(t)‖ ≤ e−δt .Next we will discuss the stability of the perturbed equation (17) under the same conditions as above. Since ∥∥R(0, A+∫ +∞0 B(s)ds)∥∥ ≤ 1/δ, it follows that
∥∥∥∥∥Q
(
−A −

∫ +∞
0 B(s)ds)−1

P

∥∥∥∥∥ ≤ ‖Q‖ ‖P‖/δ.
Therefore, if a pair of perturbation (∆,Γ(·)) satisfies

‖(∆,Γ(·))‖ < δmax {‖P‖‖Q‖ : P ∈ {F,D}, Q ∈ {C, E}} ,
then it satisfies the condition in Theorem 4.6; hence the perturbed equation (17) is still UAS by Theorem 4.6.Summarizing these facts we get:
Proposition 5.1.
Under the prescribed conditions on the functions d and k in (24)–(25), the zero solution of the abstract equation (1) on
the Banach lattice X = C ([0, 1],C) is UAS whenever

sup0≤ξ≤1
(
d(ξ) + ∫ +∞

0 k(t, ξ)dt) = −δ < 0.
Furthermore, the zero solution of the perturbed equation (17) is UAS under the additional conditions on a pair of
perturbation (∆,Γ(·))

‖(∆,Γ(·))‖ < δmax {‖P‖‖Q‖ : P ∈ {F,D}, Q ∈ {C, E}} .
Remark 5.2.We emphasize that for the above result it is advantageous to apply Theorem 4.4 rather than Theorem 4.2. Indeed, theverification of (ii) in Theorem 4.4 is rather easy as seen above; but that of the condition (ii) in Theorem 4.2 is not.Finally we remark that the method employed in the stability analysis for (24)–(25) with one dimensional diffusion termis valid also in the stability analysis for the partial integro-differential equation with multi-dimensional diffusion term

∂x(t, ξ)
∂t = l∑

i=1
∂2x(t, ξ)
∂ξ2

i
+ d(ξ)x(t, ξ) + ∫ t

0 k(t − s, ξ)x(s, ξ)ds, t ≥ 0, ξ ∈ Ω,
subject to the Neumann-boundary condition, where Ω ⊂ Rl is a bounded domain with smooth boundary ∂Ω (e.g. C 2+µfor a µ ∈ (0, 1)). Indeed, we know by virtue of [16, Theorem 2] that the Laplacian operator ∑l

i=1 ∂2/∂ξ2
i with thedomain D = {f ∈ C 2(Ω̄) : ∂f/∂n = 0 on ∂Ω} (here ∂/∂n denotes the exterior normal derivative at ∂Ω) generates acompact analytic (positive) semigroup on the Banach lattice C (Ω̄); hence one can accomplish the stability analysis formulti-dimensional case, repeating the argument employed for one dimensional case.
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