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1. Introduction

Let X = (X, || - ||) be a complex Banach lattice with the real part Xg and the positive convex cone X, (cf. [15], [8, Chapter
C], [7) and let L(X) be the Banach space of all bounded linear operators on X. We are concerned with abstract linear
Volterra integro-differential equations in the Banach lattice X of the form

x(t) = Ax(t) + [Ot B(t — s)x(s) ds, (M
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t E-mail: phanhngoc@yahoo.com
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where A is the infinitesimal generator of a Cy-semigroup (7 (t))is0 on X and B(-) : Ry = [0, +00) — L(X) is continuous
at t with respect to the operator norm. In addition, we assume that

+o0
(T(t))i0 is a compact semigroup and / |B(t)|| dt < +oo. 2)
0

In [5], Hino and Murakami gave primary criteria for the uniform asymptotic stability of the zero solution of (1) in terms
of invertibility of the characteristic operator

+oo
zlx — A —/ e ?'B(t) dt (Ix is the identical operator on X)
0

on the closed right half plane as well as integrability of the resolvent of (1).

In a very recent paper, for X being a finite dimensional space, P.H.A. Ngoc et al. [12] studied positivity of the equation (1)
(which is characterized by (e*');> being a positive matrix semigroup on R"*" and B(t) € R"*" for all t > 0) and showed
that for positive equations, the invertibility of the characteristic matrix on the closed right half plane reduces to that of
zl, — (A+ f0+°° B(t) dt); here I, denotes the n x n identical matrix. Consequently, such a positive equation is uniformly
asymptotically stable if and only if the spectral bound of the matrix A + f0+°° B(t) dt is negative, or equivalently, the
associated linear ordinary differential equation

xm:(A+Amngﬁxm, t>0, (3)

is asymptotically stable, a surprising result.

In the present paper, we first introduce the notion of positive linear Volterra integro-differential equations in Banach
lattices. Then, we give a characterization of positive linear Volterra equations of the form (1) in terms of positivity
of the Cy-semigroup generated by A and positivity of the kernel function B(-). Furthermore, we prove that under the
assumptions of positivity of the Cy-semigroup generated by A and positivity of the kernel function B(:), the uniform
asymptotic stability of (1) is still determined by the spectral bound of the operator A + f0+°° B(t) dt. Finally, we deal
with problems of robust stability of (1) under structured perturbations. Some explicit stability bounds with respect to
these perturbations are given. An example is given to illustrate the obtained results. Our analysis is based on the
theory of positive Co-semigroups on Banach lattices, see e.g. [1], [8].

2. Preliminaries

Let (T(t))t>0 be a strongly continuous semigroup (or shortly, Co-semigroup) of bounded linear operators on the complex
Banach space (X, | - ||). Denote by A the generator of the semigroup (T(t))>0 and by D(A) its domain. That is,

mm:{xexzpwﬂ%liex}

and
Ay — i X =X
t—0 t

. xEDA).

Since A is a closed operator, D(A) is a Banach space with the graph norm

Ixllo = lIx]l + [l Ax

.+ xeDA). 4

The resolvent set p(A), by definition, consists of all A € C for which (Aly — A) has a bounded linear inverse in X. The
complement of p(A) in C is called the spectrum of A and denoted by o(A). In general, by the same way as in the above,
one can define the resolvent set p(A) and the spectral set o(A) for an arbitrary linear operator

A: DA C X - X

With the Cy-semigroup (7(t))i>0, we associate the following quantities:

o967
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(1) the spectral bound s(A),
s(A) =sup {RA : A € a(A)},

where og(A) is the spectrum of the linear operator A, and RA denotes the real part of A € C;

(2) the growth bound w(A),

w(A) = inf {w €R : there exists M > 0 such that | T(f)]| < Me®" for all t > o}.

It is well known that

— 00 < 5(A) £ w(A) < 400, 5)
see, e.g. [1], [8].
Next, the Co-semigroup (7 (t))>o is called

(1) Hurwitz stable if c(A) CcC~ = {1 e C : RA < 0},
(2) strictly Hurwitz stable if s(A) <0,

(3) wniformly exponentially stable if w(A) < 0.

It is well known that for an eventually norm continuous semigroup, that is,

[lln? IT(t)— T(to)]| =0 for some ¢, >0,
—lo

we have s(A) = w(A), see e.g. [8]. So, the strict Hurwitz stability and the uniform exponential stability of eventually
norm continuous semigroups coincide.

To make the presentation self-contained, we give some basic facts on Banach lattices which will be used in the sequel
(see, e.g. [15]). Let X # {0} be a real vector space endowed with an order relation <. Then X is called an ordered
vector space. Denote the positive elements of X by X; = {x € X : x > 0}. If furthermore the lattice property holds,
that is, if x Vy = sup{x,y} € X for x,y € X, then X is called a vector lattice. It is important to note that X, is
generating, that is,

X=Xy =Xy ={x—y:xyeX}

The modulus |x| of x € X is defined by |x| = x V (—x). If || - || is a norm on the vector lattice X satisfying the lattice
norm property, that is, if

M <lyl = lIxI <lyl.  xyeX (6)
then X is called a normed vector lattice. If, in addition, (X, | - ||) is a Banach space then X is called a (real) Banach

lattice.

We now extend the notion of Banach lattices to the complex case. For this extension all underlying vector lattices X
are assumed to be relatively uniformly complete, that is, if for every sequence (A;)qen in R satisfying Yo, [A,] < +oo,
for every x € X and every sequence (x,),en in X it holds that

0<x, < Ax = sup(Zx,- c X.

neN i=1

Now let X be a relatively uniformly complete vector lattice. The complexification of X is defined by X¢ = X + (X, where
t =V —1. The modulus of z = x 4+ 1y € X¢ is defined by

|z] = sup |(cos ¢)x + (sin P)y| € X. (7)
0<p<2n
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A complex vector lattice is defined as the complexification of a relatively uniformly complete vector lattice endowed with
the modulus (7). If X is normed then
IxIE=1xtl. x € Xe, (8)

defines a norm on Xc satisfying the lattice norm property. If X is a Banach lattice then X endowed with the modulus
(7) and the norm (8) is called a complex Banach lattice. Throughout this paper, for simplicity of presentation, we write
X, Xr instead of X, X, respectively. Let Eg, Fr be real Banach lattices and T € L(Eg, Fr). Then T is called positive,
denotedby T >0, if T(E;)C FL.. ByS<Twemean T — S5 >0, for T,S € L(Eg, Fr).

An operator T € L(E, F) is called real if T(Eg) C Fg. An operator T € L(E, F) is called positive, denoted by T > 0, if
T is real and T(E;) C F;. We introduce the notation

L E F)={T eL(E F): T >0} (9)
For T € L, (E, F), we emphasize a simple but important fact that

ITI="sup [Tx]. (10)

x€E4 [x]|=1

see e.g. [15, p. 230].

3. Characterization of positive linear Volterra integro-differential equations in
Banach lattices

Let X be a complex Banach lattice endowed with the real part Xz and the positive convex cone X, and let L(X) be
the Banach space of all bounded linear operators on X. In what follows, C([0, o], X) denotes the Banach space of all
X-valued continuous functions on [0, ¢], equipped with the supremum norm.

Consider an abstract Volterra integro-differential equation in X defined by (1), where A is the infinitesimal generator of
a Go-semigroup (7 (t))is0 on X and B(:) : Ry — L£(X) is continuous with respect to the operator norm. In addition, we
assume that (2) holds true.

For any (o, ¢) € R, x C([0, g, X), there exists a unique continuous function x : R, — X such that x = ¢ on [0, o] and
the following relation holds:

x(t) = T(t — o)p(o) + /t T(t—ys) {/05 B(s — 7)x(1) dr} ds, t>o, (11)

see e.qg. [3]. The function x is called a (mild) solution of the equation (1) on [, +00), and denoted by x(-; g, @).

Definition 3.1.
We say that (1) is positive if x(t; o, ¢) € X, for all t € [0, +00), whenever (o, ¢) € R, x C([0, g], X3).

We are now in the position to state and prove the first main result of this paper.

Theorem 3.2.
If A generates a positive Co-semigroup (T (t))i>0 on X and B(t) > 0 for every t > 0 then (1) is positive. Conversely, if (1)
is positive and A is the infinitesimal generator of a positive Co-semigroup (T (t))i>0 on X then B(t) > 0 for each t > 0.




On stability and robust stability of positive linear Volterra equations in Banach lattices

970

Proof. Suppose A generates a positive Cy-semigroup (T(t))is0 on X and B(t) > 0 for every t > 0. Fix (0,¢) €
R, x C([0, 0], X;) and x(t) = x(t; g, ¢), t > 0. By (11), we have

x(t + 0) = T(t)p(o) + /Hw T(t+0—s) {[0 B(s — t)x(7) dr} ds, t>0.
This implies that

X(t + 0) = T(t)p(0) + /Ot T(t—s) {[0+ B(s + 0 — T)x(1) dr} ds, t>0.
Thus,

x(t + 0) = T(t)p(0) + /0, T(t—>s) {/0 B(s + 0 — 1)¢(1) dT + /W B(s + o — 1)x(1) dr} ds

=f(t)+/OtT(t—S){/OSB(S—T)X(T-{—U)dT} ds, t>0,

£(t) = T(H)¢(o) + /Ot T(t—>s) {/0 B(s + o — 1)¢(7) dr} ds, t>0. (12)

where

Set y(t) = x(t + 0), t > 0. Then, y(-) satisfies

y(t) = (1) + /0: T(t—s) {/0 B(s — T)y(r)dr} ds, t>0. (13)

Fix to > 0. Consider the operator L defined by

(0, to], X) = C((0, to], X)

Y L(t) = f(t) + / T(t—>s) {/ B(s — )¢ } ds, t €10, to),

where f(-) is defined as in (12). By induction, it is easy to show that for ¢y, ), € C([0, t], X) and k € N, we have

ktk
lL44(t) — Ligu(B)]| < —— o o — Willcqorxy  forall ¢ €0, to],

where M = MiM, and My = maxse(o,) | T(s)]|. M2 = fot(’ | B(s)|| ds. Thus, L¥ is a contraction for k € N sufficiently large.
Fix a ko € N sufficiently large and set S = L%. By the contraction mapping principle, there exists a unique solution
of the equation y = Ly in C([0, to], X). Moreover, it is well known that the sequence (S™(o)nen = (L™ 0o)men, with
an arbitrary i € C([0, to], X), converges to this solution in the space C([0, ty], X). Choose ¢y € C([0, t], X;). Since
(T(t))s=0 is a positive semigroup, B(t) > 0 and f(t) € X, for all t > 0, it follows that L™y, € C([0, to], X ) for all
m € N. Taking (13) into account, we derive that

L™y — y() € C([0, fo], Xo) as m — +oo.

Thus, y(t) = x(t + o) € X for all t € [0, t]. Recall that ty is an arbitrary fixed positive number. Hence, letting t, — oo,
we get x(t) € X, forall t > .

Conversely, assume that the equation (1) is positive and A is the infinitesimal generator of a positive Cy-semigroup
(T(t))r=0 on X. We first show that B(t) is real for each t > 0. Let 0 > 0 and @ € X be given. For each integer n such
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that 1/n < o, consider a function ¢, € C([0, o], X;) defined by ¢,(t) = a if t €[0,0 — 1/n] and ¢,(t) = n(o — t)a if
t € (¢ — 1/n, g]. By the positivity of (1) we have x(t; g, ¢,) > 0 for any t > ¢, and hence

%x(h +0,0 ¢, = (T(h)¢>n(a) + /U+h T(h+o0—5) (/5 B(s — 1)x(1; 0, ¢,,)dr) ds)
4 0

S| = |-

/Hh T(h+o—s) (/5 B(s — 1)x(1; 0, ¢n)dr) ds >0
4 0

for any h > 0. Observe that

Llim [% ]th T(h+0—5) (/OS B(s — 1)x(T; 0, ¢n) dr) ds] = ]00 B(o — 1)x(1; 0, ¢,) dT = /0” B(o — 1)¢,(7) dT.

h—+0

Thus, fOU B(o — 1)¢, (1) dT > 0 and by letting n — oo, we get fO” B(s)a ds > 0 for any o > 0. Therefore,

t+h t+h t
/ B(s)ads = / B(s)a ds — / B(s)ads € Xy — X, = Xg
t 0 0

for any t > 0 and h > 0. Consequently,

1 t+h
B(t)a = lim (f/ B(s)a ds) € Xg, a € X;.
t

h—+0 \ h

This yields, B(t)Xg C Xg, which means that B(t) is real for each t > 0.

Next, we show that B(t) > 0 for each t > 0. Let (0, ¢) € R, x C([0, g], X;) with ¢(g) = 0 be given. By the positivity of
(1), we have y(t) = x(t + 0; 0, $) > 0 on [0, 00). Note that y satisfies

y(1) = T(H)blo) + [ M Tt+o—s { /0 " Bs — o)x(1) df} ds

= /Ot T(t—u) {/00+u B(o + u — 1)x(7) dr} du = /Ot T(t — u)p(u)du, t>0,

where

a+u
plu) = / B(o +u—1)x(1)dT.
0
Let A € R be sufficiently large so that sup,.o (e[| T(t)]|) < oc. It follows that A € p(A) and

+o0
R(A, A)x :/ e M T(t)xdt, xeX.
0

In particular, by [4, Theorem 2.16.5] we see that A € p(A*) and R(A, A*) = R(A, A)* because of A € p(A). Let vi be an
arbitrary element in (X*),, the space of all positive bounded linear functionals on X. Set v* = R(A, A*)vi. Then, we
have v* € D(A*) and

(v, y(t) = <V*,/Ot T(t— U)p(U)du>, t>0,

where (-, -) denotes the canonical duality pairing of X* and X. Since y(t) > 0, the positivity of (T (t)):>o implies that
+00
R(AA) y(t) = / e~ M T(u)y(t)du >0,
0

971
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and hence (v*, y(t)) = (vi, R(A, A)y(t)) > 0 since vi > 0. Consequently, (d*/dt)(v*, y(t))|,—o > O since (v*, y(0)) =
v*(0) = 0. Notice that AR(A, A) = —Ix + AR(A, A). It follows that

(AR, A))* = —Ixs + AR(A, A)* = —x- + AR(A, A%) = A"R(A, AY),

and we thus get

d+ ! d+ !
Tt <v*,[0 T(t— u)p(u)du> = <vj_,R()\,A)/0 T(t— u)p(u)du>

1 {<vf;, R(A, A) /Hh T(t+h — u)p(u) du — R(A, A) /t T(t — u)p(u) du>}
0 0

t+h t
h;+0{<v*'%/t T(t+h —U)p(u)du> + <VLR()\,A)W/O T(t—u)P(U)du>}

(v, p(0) + <VLAR(/\,A) [0 T(t - u)p(u) du> = (v, p(1) + (ARG, A V2, y (1))

= (V" p(1) + (AR, AL, y(t)) = (V" p(1)) + (AT, y (1))

Il
g

I
5

Hence,

d+ o
G 0Mca = (pt0) + (4 y10) = (v, [ Blo — rxtry )

= <R()\,A)*vj:,joﬂ B(o — 1)¢(7) d‘r> = <vj‘r R(A, A) /0(7 B(o — 1)¢(7) d‘r> ,

and, consequently, (vi, R(A, A) foa B(o — 1)¢(1) dt) > 0. Rewriting ¢(0 — 7) as ¢(t), we have

<v1, R()\,A)[ B(u)y(u) du> >0 (14)
0
for any vi € (X*);+ and any ¢ € C([0, o]; X;) with ¢(0) = 0. We claim that
R A)B(t)a >0 forall te(0,0], ae X, (15)

Seeking a contradiction, we assume that there are t; € (0, 0] and a € X, such that R(A, A)B(t1)a ¢ X,. Notice that
R(A, A)B(t)a € Xg by R(A,A) > 0 and B(t)a € Xg. Since X, is a closed convex cone and R(A, A)B(ti)a ¢ X, there
exists a v; € X* such that (v, R(A, A)B(t1)a) < inf{(v},x) | x € X;} = [, see e.qg. [6, Chapter 3, Theorem 6]. Note that
forany x € Xy and n =1,2,... we have | < (v}, nx) = n{(v},x), or equivalently, {/n < (v}, x). This yields (vi,x) >0
for any x € X, and consequently [ > 0 as well as [ < (vi,0) = 0. It follows that [ = 0 and (vj,R(A,A)B(h)a) > 0.
Hence vi € (X*),, and moreover there exists an interval [, d] C (0, 0) satisfying (v, R(A, A)B(t)a) < 0 for all t € [c, d].
Then one can choose a nonnegative scalar continuous function y so that x(0) = 0 and

<vi,/a R(A, A)B(t)x(t)a dt> = /U(vj,R()\,A)B(t)a>X(t)dt< 0,
0 0

which leads to a contradiction by considering x(t)a as ((t) in (14).

Finally, it follows from (15) and the fact that lim,_, . AR(A, A)x = x for any x € X, that B(t) > 0 for t € [0, g]. Since
o > 0 is arbitrary, B(t) > 0 for all t > 0. This completes the proof. O
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e
Remark 3.3.

In the study of linear Volterra equations of type (1), the resolvent R(t) which is introduced as the inverse Laplace

transform of [A—A— B()\)]_1 plays a crucial role; see e.qg. [2, 14]. Observe that the resolvent does not appear explicitly
in the proof of Theorem 3.2. But the solution y(t) of (13) with T(t)x in place of f(t) is identical with R(t)x, and hence
the former part in the proof of Theorem 3.2 indeed proves the positivity of the operator R(t). Thus one can also establish
the former part of Theorem 3.2 by applying the expression formula (in terms of the resolvent) (e.g. [5, Proposition 2.4])
for solutions of nonhomogeneous equations.

In particular case of X = R"*", it has been shown in [12] (Theorem 3.7) that the equation (1) is positive if and only
if A generates a positive Co-semigroup (T (t))r>0 on R"*" and B(t) € R}*" for every t > 0. However, for equations in
infinite dimensional spaces, it is still an open question whether the positivity of (1) implies that A generates a positive
Co-semigroup (T(t))rs0 in X? If this is true then as in the case of positive equations in finite dimensional spaces, (1)
is positive if and only if A generates a positive Co-semigroup (7 (t))is0 on X and B(t) € L(X) for every t > 0, by
Theorem 3.2.

Finally, it is worth noticing that the proof of Theorem 3.2 is much more difficult than that of Theorem 3.7 in [12].

4. Stability and robust stability of positive linear Volterra integro-differential
equations in Banach lattices

4.1. An explicit criterion for uniform asymptotic stability of positive equations in Banach lattices

In this subsection, by exploiting positivity of equations, we give an explicit criterion for the uniform asymptotic stability
of positive equations. We recall here the notion of the uniform asymptotic stability of equation (1). For more details and
further information, we refer readers to [5].

Definition 4.1.
The zero solution of (1) is said to be uniformly asymptotically stable (shortly, UAS) if and only if

(a) for any € > 0, there exists d(e) > 0 such that for any (g, ¢) € Ry x C([0, 0]; X), | #ll0.0] = SUPp<s<s |P(s)]| < O(€)
implies that || x(t; o, ¢)|| < € for all t > o;

(b) there is 9 > 0 such that for each ¢, > 0 there exists [(e;) > 0 such that for any (g, ¢) € R, x C([0, g; X),
[ #lli0.0) < G0 implies that ||x(t; 0, @)|| < & for all t > o + [(er).

Note that we continue to assume that (2) holds true.

Theorem 4.2 ([5]).

Assume that A generates a compact semigroup. Then the following statements are equivalent:

(i) the zero solution of (1) is UAS.
(i) Alx —A— [["° e=*B(s) ds is invertible in L(X) for all A € C, %A > 0.

Before stating and proving the main result of this subsection, we prove an auxiliary lemma.

Lemma 4.3.
Assume that A generates a positive compact semigroup (T (t));>0 on X and P € L(X), Q € L (X). If

|Px| < Qlx| forall x € X,
then

WA+ P)=s(A+P) < s(A+ Q) = wA+ Q).

973
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Proof. Let (G(t))s0 and (H(t));s0 be the Cy-semigroups with the infinitesimal generators A+P and A+ Q, respectively.
Since A generates the compact semigroup (7(t));>0, S0 do A+ P and A+ Q, see e.g. [1, 8] This implies that s(A+ P) =
w(A+ P) and s(A+ Q) = w(A+ Q), see e.q. [1, 8. By the well-known property of compact Cy-semigroups, we get
e?©) = g(M(1))\{0}, where C is the infinitesimal generator of any compact Cy-semigroup (M(t))is0 on X; see e.g. [1,
Corollary 1V.3.11]. Hence we have e“(©) = r(M(1)), where r(M(1)) is the spectral radius of the operator M(1). Thus, it
remains to show that

r(G(1)) < r(H(1)).

Note that (G(t))r>0 and (H(t)):>o are defined respectively by

G(t)x = lim (T(t/n)el!MP)nx, H(t)x = lim (T(t/n)e®M)rx,  xe X,

for each t > 0; see e.g. [8, p. 44] and see also [1, Theorem 111.5.2]. By the positivity of (T(t))>0 and the hypothesis of
|Px| < Qlx|, x € X, it is easy to see that

IG)x| < H)x|,  x € X.

Then, by induction
|G(1)*x| < H(1)¥]x], xeX, kel (16)

From the property of a norm on Banach lattices (6), it follows from (16) and (10) that |G(1)¥|| < |[[H(1)¥]|. By the
well-known Gelfand'’s formula, we have r(G(1)) < r(H(1)), which completes the proof. O

We are now in the position to prove the main result of this section.

Theorem 4.4.
Assume that A generates a positive compact semigroup (T (t));>0 on X and B(t) > 0 for all t > 0. Then the following
statements are equivalent:

(i) the zero solution of (1) is UAS;

(i) s(A+ [;”° B(r)dt) < 0.

Proof. (ii)=(i) Assume that the zero solution of (1) is not UAS. By Theorem 4.2, Aly — A — f0+°° e B(s) ds is not
invertible for some A € C, A > 0. This implies that A € o(A + [, e**B(s) ds). Hence,

+00
ogwgs(AJr/ e’ASB(s)dS).
0

On the other hand, it is easy to see that

+o0
/ e ™ B(s)ds - x
0

by the hypothesis of B(t) > 0 for all t > 0. Thus,

Ogs(A+]0+mef*SB(s)ds) gs(A+[0mB(s)ds)

+o0
< / B(s) ds |x|,
0

by Lemma 4.3.
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()=(il) For every A > 0, we put &, = 0+°° B(t)e " dt and f(A) = s(A + ®,). Consider the real function defined by
g(A) = A —f(A), A > 0. We show that g(0) = —s(A + ®g) > 0. Since B(:) is positive, by almost the same argument as
in [1, Proposition VI.6.13] one can see that f(A) is non-increasing and left continuous at A > 0. Hence g(A) is increasing
and left continuous at A with lim,_, 1+ g(A) = +00. We assert that the function g(A) is right continuous at A > 0. Indeed,
if this assertion is false, then there is a A9 > 0 such that s* = lim._,1 f(Ag+ &) < 5o = f(Ay). Notice that 5o = s(A+d,))
and A = A+ ®,, generates a positive and compact Co-semigroup (e;"),zo. It follows that sq = s(A) € o(A) by [1, Theorem
VI.1.10]. Take a ty € p(A). Since
Rl A\ ) = {1, we ot

to—p

by [1, Theorem IV.1.13], we get 1/(to — so) € a(R(to, A)). Observe that 1/(ty — sg) is isolated in the spectrum o (R(ty, A)) of
the compact operator R(ty, A). Therefore, if s; is sufficiently close to sy and sy # so, then 1/(ty — 1) is sufficiently close
to 1/(ty — so); hence 1/(ty — s1) & o(R(to, A)), in particular, s; & o(A). Therefore one can choose an s; € (s*, sq) so that
sy € p(A), that is, sly — A — ®,, has a bounded inverse (si/x —A—®,)~" in £(X). In the following, we will show that
(s1lx —A—®,,)7" > 0. Since s* < sy, it follows that s(A + ®,,,.) < s; for small € > 0. Then [1, Lemma VI.1.9] implies

that (s1/x —A— <1>A0+5)_1 >0 and
4 +00
(51IX—A—¢A0H) x:/ e’s”exp((A—i-d)AOH)t)xdt, x e X.
0

Note that
sily —=A= Dy e =silx —A— by + (s — Pyoie) = (Ix — (Pagre — Pig)R(51,A)) (s11x — A)

and

+00

[(sgsc — B)R(s1, A)| < j 1B(x)e (1 — =7} dr | R(sy, A} < ] IB(OI(1 — e d |Ris1, A)] — 0

as £ — +0. Therefore, if £ > 0 is small then ||(®,,..c —P5,)R(s1, A)|| < 1/2. Hence Ix — (®;g+e — P)o)R(s1, A) is invertible
and
T +00 . ,
(Ix = (@syre = Di)R(51, A) " =D {(®sgre — ip)R(s1, A}
n=0

It follows that

+o0

(s1x = A= Bspic) " = Ris1, A {(®sgre — Di)R(s1, A}

n=0

We thus get

-1 1| —
T Fhote - T Y -
||(51l A—Dype) (s1l—A—=d,) H

Rs1,A) ) {(®rgse — D1)R(s1, A)}" H
n=1

”(q)/\o+£ - q)/\o)R(sﬁA)”
11— ”(q))\oJrE - q)/\o)R(ST'A)”

+o0
S HR(s1 AN Y [[(@sge = a)R(s1, A" = [R(s1, A

n=1

+0oo
< 2||R(s1,2\)||2[ 1B(7)|(1 — e~*7)dT — 0, € — +0.
0

Then the positivity of (s1/ — A— ®,,..)~" follows from the positivity of (si/ —A—®,,)~", as desired. Applying [1, Lemma
VI1.1.9] again, we get s; > s(A + ®,)) = so, a contradiction to the fact that s; < so. Thus, f(A) and g(A) must be right
continuous at A > 0.

Assume on the contrary that g(0) < 0. Since the function g is continuous on [0, +00) and lim,_, ., g(A) = +o0, there is
a A1 > 0 such that g(A;) = 0; that is, Ay = s(A+ ®,,).
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Since A+ ®,, generates a positive semigroup and s(A+ ®,,) > —oo, by virtue of [1, Theorem VI.1.10] Ay = s(A+ ®,,) €
(A + ®,,). Since A+ ®,, generates a compact Co-semigroup, it follows from [1, Corollary IV.1.19] that o(A + ®,,) is
identical with P,(A+®,,), the point spectrum of A+®,,. Thus, there exists a nonzero x; € X such that (A+®,, )x1 = A1xy;
that is, Ax; + f0+°° B(t)e ™ " x;dT = Ajx1. Put x(t) = eM1ix; for t € R. Then, it is easy to see that

x(t) = Ax(t) + /+oo B(t)x(t — 1)dT, teR;
0

hence x satisfies the "limit” variant of (1). By virtue of [5, Proposition 2.3], the zero solution of this limit equation is UAS
because of the uniform asymptotic stability of (1). Hence we must get lim;_, o, [|x(¢)|| = 0. However, || x(t)]| = e*!|x|| >
[[x1]| > 0 for t > 0, a contradiction. This completes the proof of the implication (i)=(ii). O

Remark 4.5.

Throughout this paper, the strong assumption on continuity of B in the operator norm is imposed. It may be expected
that this assumption may be replaced by the weaker assumption that B(t) is strongly continuous at t. In fact, the norm
continuity of B is needed only to apply Theorem 4.2 which is essentially used in the proof of Theorem 4.4. Therefore,
if Theorem 4.2 ([5, Theorem 3.3]) holds true under the weaker condition on B(t), then one would be able to replace the
strong assumption by the weaker one. Unfortunately, the authors have not succeeded in proving Theorem 4.2 under the
weaker assumption.

As will be shown in the example of the last section, there are some Volterra integro-differential equations with a kernel
function of bounded linear operators, which are derived from partial integro-differential equations as abstract equations
on some Banach lattices. In [1, Section IV.7.c] and [14], however, Volterra integro-differential equations with the kernel
function which is of the form B(t) = a(t)A, where a € W'(R,, C), are treated. We point out that B(t) in this paper is
restricted to bounded linear operators; hence our result is not applicable to the equations with the kernel function of
the form a(t)A, and further improvements so as to cover the wider class of equations must be done.

4.2. Robust stability of positive linear Volterra equations in Banach lattices

Let A generate a positive semigroup (7 (t)):>0 on X and let B(t) > 0 for all ¢t > 0. Assume that (2) holds true and the
equation (1) is UAS. We now consider a perturbed equation of the form

(1) = (A + FAC)x(t) + /t (B(t—s)+ DI'(t —s)E) x(s)ds,  t>0, (17)
0

where F € L(YV,X), C € L(X,Z), D € L(UX), E € L(X,V) are given operators and A € L(Z,Y), T'() €
'Ry, L(V,U)) N C(R,, L(V, U)) are unknown disturbances. Here and hereafter X,Y,Z, U, V,... are assumed to be
complex Banach lattices.

We shall measure the size of a pair of perturbation (A, () € £(Z,Y) x [L"(R,, L(V, U)) n C(R,, L(V, U))] by

umrmm=ww+4'uﬂww&

The main problem here is to find a positive number a such that (17) remains UAS whenever

nwrmm:WW+L"nnmws<a

Theorem 4.6.
Let A generate a positive compact semigroup (T (t))>0 on X and B(t) > 0 for all t > 0. Suppose the equation (1) is UAS
and Fe L (Y, X), Ce L (X,Z2),De L (UX), EeL,(X, V). Then (17) is still UAS whenever
1
lo(=A— ;™ Bs)ds) P

AT <

max
Pe{F,D},Qe{CE}
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To prove the above theorem, we need the following auxiliary lemma.

Lemma 4.7.
Let A generate a positive compact semigroup (T(t))=0 on X and B(t) > 0 for all t > 0, and let P € L. (U, X),
Qe Li(X,2). If (1) is UAS then

-1

0 (/\/ —A— /+oo e’“B(s)dS) P
0

-1

:HQ(—A—/OMB(S)ds) P|l.

Proof. For a fixed A € C, %A > 0, we set W(A) = [* e~ B(s) ds. It is well known that A + W()) with the domain
D(A+ W(A)) = D(A) is the generator of a compact Cy-semigroup (V)(t))r>0 satisfying

sup
AEC,RAZ0

n—o00

Vi(t)x = lim (T(%)e%W“)) x for t>0, xeX, (18)
see e.g. [8, p. 44]. Since B(s) > 0 for all s > 0, it follows that

IWA)x| = ‘(/Om e~ B(s) ds) x| < /0+°o B(s)ds|x| = WO)|x|,  x € X.

By Lemma 4.3, we get
s(A+ W(A) = w(A+ W(}) < w(A+ W(0)) = s(A+ W(0)), AreC, RA>O0.

Since (1) is UAS, we have
wA+ W(A) < s(A+W(0) <0

by Theorem 4.4. For A € C,RA > 0, we can represent
+00 =1 +00
()\IX —A-— / e~ B(s) ds) X = / e MV, (t) x dt, x € X, (19)
0 0
By (18)—(19) and the positivity of (T(t))i>o and B(t) > 0 for all t > 0, we get

+00 +00 —1
gjo Vo(t)|x| dt = (—A—j0 B(s)ds) x|,

for every A € C, RA > 0. Furthermore, since P € L, (U, X) and Q € L,(X, Z), it follows that

-1

+0o0
(/\IX—A—/ e~ B(s) ds) X
0

-1

'Q ()\IX —A— [0+oo e B(s) ds) Pu

-1

+00
<Q (—A—/ B(s)ds) Plu| forall veU,
0

for every A € C, RA > 0. Therefore, by (6) we get

+00 =1 +00 -1
”Q(A/X—A—/ e‘ASB(s)dS) Pu|| < Q(—A—/ B(s)ds) Plul| forall ue U.
0 0

This completes the proof. O
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Proof of Theorem 4.6. Assume that the perturbed equation (17) is not UAS for some (A, () € L(Y,Z) x
L'Ry, L(V,U))n C(Ry, L(V, U)). It follows from Theorem 4.2 that

+oo
Alx — (A4 FAC) — / e (B(s) + DI (s)E) ds
0
is not invertible for some A € C, RA > 0. Thus,
+00
A€o (/—\ + FAC + / e *(B(s) + DI (s)E) ds) )
0

Since A is the generator of a compact semigroup, so is A+ FAC + f0+°° e *(B(s) + DI (s)E) ds. Therefore, A is an
eigenvalue of this operator by [1, Corollary 1V.1.19]. This implies that

+0o0
(A + FAC + / e™**(B(s) + DI (s)E) ds) X = Ax,
0
for some x € X, x # 0. Since (1) is UAS, Alx — A — f e B(s) ds is invertible. We thus get

()\IX —A— /m e B(s) ds)
0

From x # 0 it follows that max {||Cx||, [|[Ex||} > 0. Let Q € {C, E}, thatis, Q = C or Q = E. Multiplying the last
equation by Q from the left, we get

0 (AIX —A— / +Ooe_ASB(5) ds)
0

This yields

-1 +oo
(FACX + / e~ DI (s)Ex ds) = x.
0

=1 +00
FACx+Q (/\IX—A—I e ™B(s)d ) D/ T(s)ds Ex = Qx.
0

—1

+o00
Ho (A/X —A- j e*B(s) ds) lal X+
0

+0oo =1
HQ (/\/x —A —I e~ B(s) ds) D
0

+o00
/0 e | I ()] ds | Ex]| > O]l

By Lemma 4.7, we derive that

HQ (—A—/OWB(s)ds)

Therefore,

-1 1

Q (—A—jOHX)B(s)ds)i D

AT CxI -+

jo IF(s)l ds | Ex]| > O]l

1
Q( A B‘S’ds) P (”A“+/0 ””5’”"5)2max{||6x||.||Ex||}’

Choose Q € {C, E} such that |Qx| = max {||Cx||, ||[Ex]||}- Then we obtain

Q(—A—/O B(s)ds) (||A||+/0 )| ds) >1,

]
Q- ~B(s)ds)”'P||’

max
Pe{F,D},Qe{C,E}

-1

max
Pe{F,D}, Qe{C,E}

which is equivalent to

IA T = JA] + j T Ir ) ds >

Pe{F, D} QE{C E}

This ends the proof. O
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Remark 4.8.

It is important to note that the problem of finding the maximal a > 0 such that any perturbed equation of the form (17)
remains UAS whenever ||(A, T(-))]| < a, is still open even for Volterra equations in finite dimensional spaces. This is the
problem of computing stability radii of linear equations which has attracted a lot of attention from researchers during
the last twenty years, see e.g. [912] and the references therein.

We now present two results of the problem of computing stability radii of equation (1) in some special cases of pertur-
bation. More precisely, we now deal with perturbed equations of the form

X(t) = (A + DoAE)x(t) + /t (B(t—s)+ Di[(t — )E) x(s)ds, >0, (20)
0

where Dy € L(Yo, X), E € L(X,Z), D1 € L(Y;,X) are givenand A € L(Z, Yy); T(-) € (R+,£(Z, Y1)) ﬂC(R+,£(Z, Y1))
are unknown disturbances.

Clearly, (20) is a particular case of (17) with C = E, F = Dy and D = D;. We introduce classes of perturbations defined
as

D= {(AT) : A€ L(Z o), T() € L'(Ry, £(Z, V1)) N C(Ry, £(Z, V1)) },
Do = {(A 1) : A€ La(Z Vo), T() € L'(Ry, Lr(Z, V1)) N C(Ry, Lr(Z, Y1)},
D, = {(AT): A€ LAZ Vo), T() € L' (Ry, L4(Z, V1)) N C(Ry, L4(Z, Y1)}

Then, the complex, real and positive stability radius of (1) under perturbations of the form
A~ A+ DoAE, F(-)~ F(:)+ Dil'(-)E,

are defined, respectively, by

re =inf {](A D) : ) € T, (20) is not UAS},
re = inf {[|(A,T)] : ) € D, (20) is not UAS},
re =inf{[(A 1) : ) € Dy, (20) is not UAS}.

Here and in what follows, by convention, we define inf@# = +00 and 1/0 = +o00. By the definition, it is easy to see that
re <rp <ry.
Theorem 4.9.

Let A generate a positive compact semigroup (T (t))i>0 on X, B(t) >0 forall t >0, E € L(X,Z), and D; € L(Y;, X),
i=0,1.If (1) is UAS then

1
rc =IR =TIy = (21)
max [|E( —A— [ B(s)ds) ' Dif|
Proof. Observe that
> ! =
max [[E(—A— [ B(s)ds) D
by Theorem 4.6. Since r¢ < rg < ry, it remains to show that
< 1+N = . (22)
max ||[E(—A— [;" B(s)ds)” D]

i=0,1
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Assume that

ma >0

X
i=0,1

+00 —1 +00 —1

E(—A—/ B(s)ds) D;|| = E(—A—/ B(s)ds) D;,
0 0

for some iy € {0,1}. Note that A + f B(t)dt generates a positive Cy- semlgroup and since ( ) is UAS, s(A +

[,7° B(t) dt) < 0 by Theorem 4.4. This implies that R(0, A+ [;"* B(t) dt) = ( A— dr) >0by[1, Lemma

VI.1.9]. Therefore £( —A— [ B(T)dT)_1D,-0 ELL(Y, Z) let0O<e<||E(— fo B(s) ds)_1D,-OH. By (10), one

can choose u € (Yj,)+, [u]| =1, so that
+00 -1
E (—A—/ B(T)dT) D;,
0

+00 -1
E(—A—/ B(T)dT) Di,u
0

—€.
Since zy = E( f+°° d‘r)qD,vOu € Z,, there exists a positive f € Z*, ||f| = 1, satisfying f(z) = |z =
||E( f T) dT) D, u|| (cf. [7, Proposition 1.5.7], [17, p. 249]). We now consider the operator A : Z — Y,
defined bg
z— Az = +£(Z) - u
IE(=A=Jo™ Blr)d7) " Dyul|
It is clear that A € £(Z,Y;)) and |A] = 1/|E( = A— [ B(r)dt)~ 1D,~0uH. Setxo = (—A— [ B(s)ds)” Dyu.
Then Exp = E( —A— f(]+°° B(s) d5)71 D;,u = zy, and hence
AExy = flo) — u= |zl - u=u.
|E(=A= [ B(t)dt) 'Dyu||  E(=A—f Blr)dt)~' Dyyu

Then xo # 0 because of u # 0. Moreover, we have

-1

o = (—/—\— / " Bls) ds) Dy (AEx),

or equivalently,

+00
(A + D, AE +/ B(s) ds) xo = 0.
0

Consider the case of iy = 0. Then A € L£,(Z,Yy) and (A + DoAE + [;" B(s) ds)xo = 0, which implies 0 € (A +
DoAE + f B(s) ds). Hence

1 1
< .
|E(= A= [;7°B(r)d7) ' Dou| ~ ||E(=A— [ B(r)d7) "Dy — €

< A0 = 1Al =

We next consider the case of iy = 1. Then A € L£,(Z, Y1) and (A + D/AE + f0+°° B(s) ds)xo = 0. Define I'(t) = e~ 'A
for all t > O Then I'(-) € L"(Ry, L4(Z, Y1) N C(Ry, L Z Y1)) and it satisfies (A + [,"(B(s) + Dil (s)E) ds)xo =
(A+ f s)ds + DiAE)x, =0, whence 0co(A+ f s) 4+ Dil'(s)E) ds). Therefore,

re < 0. D) = 1Al =

< .
|E(=A—f*B(r)dt) 'Diu|| ~ ||E(=A— [ B(r)d7) ' Dyl — e

Since € can be arbitrarily small, we thus get (22).

Finally, it is worth notlcing that from the above argument and that of the proof of Theorem 4.6, rc = rg = ry = +o0 if
and only if max;—g1 HE( f B(s) ds) D; H = 0. So (21) is obvious in this case. This completes the proof. O
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Finally, we will treat perturbed equations of the form
t
X(t) = (A+ DAEy)x(t) + / (B(t —s) + DI (t — s)Ey)x(s)ds, t>0, (23)
0

where D € L(Y, X), Ey € L(X,Z), E1 € L(X,Z;) are givenand A € L(Zy, V), T(-) € (R+,£(Z1, Y)) ﬂC(R+,£(Z1, Y))
are unknown disturbances.

In other words, A and F () are now subjected to perturbations of the form:
A~ A+ DAE,, F()~ F(:)+ DI ()E.

With an appropriate modification for the definition of stability radii, by the similar way as the above, we can get the
following

Theorem 4.10.
Let A generate a positive compact semigroup (T(t))s0 on X, B(t) > 0 for all t > 0, E; € L,(X,Z), i = 0,1, and
D e L.(Y, X). If the equation (1) is UAS, then

1

max||Ei( = A~ ;" Bs) ds) D

fc=mR=ry=

5. Anexample

In this section we give an example which shows how our results (especially Theorems 4.4 and 4.6) are applicable in the
stability analysis of concrete equations.

We consider the partial integro-differential equation

ox(t, °x(t, !
Xt 6) _ (LG + d(&)x(t, &) +/ k(t—s, &)x(s, &)ds, t>0, &e€l0,1] (24)

ot 042 0

subject to the boundary condition
0x(t,0) ox(t,1)

=0= . t>0, 25
9 R > (25)
where d : [0,1] — R is a given continuous function with @ = —supy.,.;d(§) > 0 and k : [0,00) x [0,1] = R is a

nonnegative continuous function satisfying supy s k(t, §) < K(t) for all ¢ > 0, where K is given and f0+°° K(t)dt < oo.

We first set up (24)—(25) as an abstract equation on a Banach lattice. To do this, we take X = C([0, 1], C), the Banach
lattice of all continuous complex valued functions on [0, 1], equipped with the supremum norm, and consider a linear
operator A defined by

(AN)(S) = ") +d(Of(S),  §€[0.1],

where

D(A) = {f € C¥(0,1)) : £(0) = £(1) = 0},

together with the operators B(t), t > 0, defined by
(B()h)(S) = k(t, §)h(S),  §€[0,1], heX.

Observe that B(t) is a positive bounded linear operator on X with operator norm ||B(t)|| = supyc.cq k(t, $) (< K(t)),
together with the estimate || B(t) — B(#)|| = supy<s<q |k(t, §) —k(%, &)|; consequently, the operator B(:) fulfils the condition
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B(-) e L1(R+,£+(X)) n C(R+,£+(X)) because of foﬁo K(t)dt < oo. It remains to verify that A generates a positive
compact semigroup. As it is well known (e.g. [1, Ex. 1.4.34—(1)]), (d?/d&?, D(A)) generates a compact (analytic) positive
contraction semigroup (one dimensional diffusion semigroup), say (To(t))rs0. Introducing a bounded linear operator M
on X defined by

(Mh)(§) = d(§)h(S), {01, heX,

which generates a uniformly continuous semigroup (e™!);>o, we see that A is a bounded perturbation of d?/d&?, that is,
A = d?/d& + M; consequently, by virtue of [1, Theorem 11.4.29, Proposition 111.1.12], A generates a compact (analytic)
semigroup, say (7 (t))s»0. Notice that (eM);5¢ is positive because of (eM'h)(&) = e h(&), & €[0,1]. Therefore, (T(t))i>0
is positive, since

T(t)h = lim [To (%) e%M] h,  heX,

n—o00

for each t > 0; see e.g. [8, p. 44].
Observe that fooo B(t)dt is a positive bounded linear operator defined by

[([m B(t)dt) h] ) = a@h@, £l hex,

where a(&) = [ k(t, &)dt (< [ K(t)dt < 00). In what follows, we assume that

sup (d(q) +a(&)) = =0 <0 (26)

0<8<1

for a constant 8. Under this assumption, we will next show that the zero solution of the equation (1) set up in the
foregoing paragraph is UAS. We claim that the semigroup (U(t))i>0 generated by the operator A+ f0+°° B(t) dt satisfies
the estimate

lu@l <e™,  t>0. (27)

Indeed, if the claim holds true, then it follows from the well-known result (e.g. [1, Theorem 11.1.10)) that s(A +
7 B(t) dt) < —& together with the estimate ||(A—A — 7 B(t) dt) || < 1/RA + 0) for any A € C with RA > —§;
hence we conclude by Theorem 4.4 that the zero solution of (1) is UAS.

Now we will prove (27). Let h € D(A) be any element such that ||h|| < 1, and set u(t, &) = (U(t)h)(&), £ €[0,1], t > 0.
Then u is a classical solution of the partial differential equation

du(t, &) _ du(t, )
ot &

+b(&)u(t,é),  t>0, {e[01],

subject to the boundary condition

du(t,0) = du(t,1)
R =0= ac t>0,

where b(t) = d(t) + a(t) (£ —6). Notice that —1 < u(0,&) < 1 for any & € [0, 1]. We will verify that e®*u(t, &) < 1 for
any (t, &) €10, 00) x [0, 1] by applying the strong maximum principle (e.g. [13, Theorems 3.6 and 3.7)). Indeed, if this is
false, then there is a (t1, &) € (0, 00) x [0, 1] such that e®"u(ty, &) = 1 and e®'u(t, &) < 1 forany t < t; and & €[0,1].
Set v(t, &) = edu(t, &) — 1 for (t, &) €0, 1] x [0,1]. On (0, t4] x (0, 1) we get

v ov 0%u ’ du ¢
@ At e’ o — el (5u + 5) = e%(—b(&)u — du) = —(v + 1)(b(Z) + 0),
or )
dv  dv
8752 — & + (b(f) + 5)‘/ = —(b(c-,() + 6) >0,
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together with the boundary condition
dv(t,0) av(t, 1)
=0= , t>0.
o0& o0& -

Since b(&) + 0 < 0 by the assumption, one can apply the strong maximum principle. Consequently, we get & = 0, or
& =1and v(t, &) <0 for any (¢, &) E [0, t1] x (0,1). Since v(t, &) =0, we get by the strong maximum principle again
that g—g <0at(ty,&)if& =0, and ¢ > 0 at (t1,cf1) if & =1; a contradiction to the boundary condition. Thus we must
have that e®'u(t, &) < 1 for any (t, E) € [0,00) x [0,1]. In a similar way, one can deduce that e®u(t, &) > —1 for any
(t, &) €0,00) x [0,1]. Thus we get e%|u(t,&)] < 1 on [0, 00) x ~% for any h € D(A)
with ||h]| < 1. Since D(A) is dense in X, we get the desired estimate ||U(t)|| < e™%".

Next we will discuss the stability of the perturbed equation (17) under the same conditions as above. Since ||R(O,A +
1,7 B(s) ds)|| < 1/5, it follows that

1

HQ (—A—l)+w8(s)d5)_ P

Therefore, if a pair of perturbation (A, I'(-)) satisfies

<[alieise.

0

[A T < max {[|P[|O| : P € {F,D}, Q€ {C,E}}’

then it satisfies the condition in Theorem 4.6; hence the perturbed equation (17) is still UAS by Theorem 4.6.

Summarizing these facts we get:

Proposition 5.1.
Under the prescribed conditions on the functions d and k in (24)—(25), the zero solution of the abstract equation (1) on
the Banach lattice X = C([0, 1], C) is UAS whenever

sup (d(5)+/+wk(t,5)dt) =-5<0.
0

0<é<t

Furthermore, the zero solution of the perturbed equation (17) is UAS under the additional conditions on a pair of
perturbation (A, T (+))
0

a{[IPIlIQl - P e {F,D}, Qe {C E}}

AT <
m

Remark 5.2.
We emphasize that for the above result it is advantageous to apply Theorem 4.4 rather than Theorem 4.2. Indeed, the
verification of (ii) in Theorem 4.4 is rather easy as seen above; but that of the condition (ii) in Theorem 4.2 is not.

Finally we remark that the method employed in the stability analysis for (24)—(25) with one dimensional diffusion term
is valid also in the stability analysis for the partial integro-differential equation with multi-dimensional diffusion term

Z:O?;a (O)x(t, &) + _/kﬁfafhhfwﬁ t>0, <eq,

subject to the Neumann-boundary condition, where Q C R! is a bounded domain with smooth boundary 9Q (e.g. C***
for a p € (0,1)). Indeed, we know by virtue of [16, Theorem 2| that the Laplacian operator Y_|_, 02/&2 with the

domain D = {f € C?(Q) : 9f/dn = 0 on dQ} (here d/dn denotes the exterior normal derivative at dQ) generates a
compact analytic (positive) semigroup on the Banach lattice C(Q); hence one can accomplish the stability analysis for
multi-dimensional case, repeating the argument employed for one dimensional case.
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