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Abstract: Let C r0 [0, t] denote the analogue of the r-dimensional Wiener space, define Xt : C r [0, t]→ R2r by Xt (x) = (x(0), x(t)).
In this paper, we introduce a simple formula for the conditional expectations with the conditioning function Xt .
Using this formula, we evaluate the conditional analytic Feynman integral for the functional

Γt (x) = exp
{∫ t

0
θ(s, x(s))dη(s)

}
φ(x(t)), x ∈ C r [0, t],

where η is a complex Borel measure on [0, t], and θ(s, ·) and φ are the Fourier–Stieltjes transforms of the complex
Borel measures on Rr . We then introduce an integral transform as an analytic operator-valued Feynman integral
over C r [0, t], and evaluate the integral transform for the function Γt via the conditional analytic Feynman integral
as a kernel.
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1. Introduction

Let r be a positive integer and let C r
0 [0, t] denote the r-dimensional Wiener space. Cameron and Storvick [3] introduced a

very general analytic operator-valued function space Feynman integral Janq (F ), on C r
0 [0, t], which maps an L2(Rr)-function
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ψ into an L2(Rr)-function Janq (F )ψ. In [4, 15], the existence of the analytic operator-valued Feynman integral Janq (F ) as an
operator from L1(R) to L∞(R) was studied. Chung, Park and Skoug [12] showed that it can be expressed by the formula

(
Janq (F )ψ

)
(~ξ) =

(
q

2πit

) r
2
∫

Rr
Eanfq [F|X ](~ξ)(~η)ψ(~η) exp

{
qi
2t ‖~η −

~ξ‖2Rr
}
dmr

L(~η), (1)

where mr
L is the r-dimensional Lebesgue measure on the Borel class of Rr and Eanfq [F|X ] is the conditional analytic

Feynman integral of F given X . Further work extending the above L(L1, L∞)-theory with the conditional analytic
Feynman integrals was made by Cho [8], over the space C0(B) of Wiener paths in abstract Wiener space B which
generalizes the space C r

0 [0, t] [16, 18]. In fact, the conditional Wiener integral over C0(B) was introduced by Chang,
Cho, Song and Yoo [6, 7] and they derived a simple formula for the conditional Wiener integral with the conditioning
function X : C0(B)→ B defined by X (x) = x(t), which calculates directly the conditional Wiener integral in terms of the
Wiener integral. Applying this simple formula to a certain function F defined on C0(B), Cho [8] obtained the analytic
operator-valued Feynman integral Janq (F ) : Lp1 (B)→ Lp2 (B), 1 ≤ p1, p2 ≤ ∞, using the formula

(
Janq (F )ψ

)
(ξ) =

∫

B
Eanfq [F|X ](ξ)(η)ψ(η)dmt1/2 (η), ξ ∈ B, (2)

where mt1/2 is the probability distribution of X on the Borel class of B.

In this paper, we further develop the concepts of (1) and (2) on another generalized Wiener space (C r [0, t], wr
φ), the

analogue of the r-dimensional Wiener space associated with the probability measure φ on the Borel class of R [13, 19].
For the conditioning function Xt : C r [0, t] → R2r defined by Xt(x) = (x(0), x(t)), we proceed to express the analytic
L(L1, L∞)-operator valued Feynman integrals in terms of the conditional analytic Feynman integrals. In fact, with the
conditioning function Xt , we introduce a simple formula for the conditional wr

φ-integrals over C r [0, t] and using this
formula, we then evaluate the conditional analytic Feynman wr

φ-integral Eanfq [Γt |Xt ] for the functional

Γt(x) = exp
{∫ t

0
θ(s, x(s))dη(s)

}
φ(x(t)), x ∈ C r [0, t],

which is important in quantum mechanics and Feynman integration theories, where η is a complex Borel measure on [0, t],
and θ(s, ·) and φ are the Fourier–Stieltjes transforms of the complex Borel measures on Rr . Finally, we establish that
for a nonzero real q, the analytic operator-valued Feynman integral Janq (Γt) exists as an element of L

(
L1(Rr), L∞(Rr)

)
,

the space of the bounded linear operators from L1(Rr) to L∞(Rr), and it is given by the formula

(
Janq (Γt)ψ

)
(~ξ) =

(
q

i
√

2πt

)r ∫

R2r
Eanfq [Γt |Xt ](~ξ)(~η1, ~η2)ψ(~η2)Ψ(−iq, ~η1 − ~ξ) exp

{
iq‖~η2 − ~η1‖2Rr

2t

}
d(mr

L)2(~η1, ~η2)

for ~ξ ∈ Rr and ψ ∈ L1(Rr), where Ψ is the analytic extension of the probability density of φr . Thus Janq (Γt) can be
interpreted as an integral transform with the kernel

(
q

i
√

2πt

)r
exp
{
iq‖~η2 − ~η1‖2Rr

2t

}
Eanfq [Γt |Xt ](~ξ)(~η1, ~η2)Ψ(−iq, ~η1 − ~ξ).

2. An analogue of the r-dimensional Wiener space

Throughout this paper, let C and C+ denote the set of complex numbers and the subset of complex numbers with positive
real parts, respectively, and let C∼+ = {λ ∈ C : Re λ ≥ 0} \ {0}. Further, let mL denote the Lebesgue measure on the
Borel class B (R) of R.
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Now, we introduce the probability measure wr
φ on

(
C r [0, t], B (C r [0, t])

)
, where B (C r [0, t]) denotes the Borel σ-algebra of

C r [0, t].

For a positive real t, let C = C [0, t] be the space of all real-valued continuous functions on the closed interval [0, t] with
the supremum norm. For ~t = (t0, t1, . . . , tn) with 0 = t0 < t1 < . . . < tn ≤ t, let J~t : C [0, t]→ Rn+1 be the function given
by

J~t(x) = (x(t0), x(t1), . . . , x(tn)).

For Bj , j = 0, 1, . . . , n, in B (R), the subset J−1
~t

(∏n
j=0 Bj

)
of C [0, t] is called an interval. Let I be the set of all such

intervals. For a probability measure φ on (R, B (R)), let

mφ



J−1
~t




n∏

j=0

Bj







 =




n∏

j=1

1
2π(tj − tj−1)





1
2 ∫

B0

∫

∏n
j=1 Bj

exp




−
1
2

n∑

j=1

(uj − uj−1)2
tj − tj−1




dmn
L (u1, . . . , un)dφ(u0).

Then B (C [0, t]) coincides with the smallest σ-algebra generated by I and there exists a unique probability measure
wφ on

(
C [0, t], B (C [0, t])

)
such that wφ(I) = mφ(I) for all I in I . This measure wφ is called an analogue of the Wiener

measure associated with the probability measure φ [13, 19]. Let C r = C r [0, t] be the product space of C [0, t] with the
product measure wr

φ . Since C [0, t] is a separable Banach space, we have B (C r [0, t]) =
∏r

j=1 B (C [0, t]). This probability
measure space

(
C r [0, t], B (C r [0, t]), wr

φ
)

is called an analogue of the r-dimensional Wiener space.

Lemma 2.1 ([13, Lemma 2.1]).
If f : Rn+1 → C is a Borel measurable function, then we have

∫

C
f
(
x(t0),x(t1), . . . , x(tn)

)
dwφ(x)

∗
=




n∏

j=1

1
2π(tj − tj−1)





1
2 ∫

R

∫

Rn
f(u0, u1, . . . , un) exp




−
1
2

n∑

j=1

(uj − uj−1)2
tj − tj−1




dmn
L (u1, . . . , un)dφ(u0),

where
∗
= means that if either side exists, then both sides exist and they are equal.

Let {ek : k = 1, 2, . . .} be a complete orthonormal subset of L2[0, t] such that each ek is of bounded variation. For v in
L2[0, t] and x in C [0, t], we put

(v, x) = lim
n→∞

n∑

k=1

∫ t

0
〈v, ek〉ek (s)dx(s)

if the limit exists. Here 〈·, ·〉 denotes the inner product over L2[0, t]. (v, x) is called the Paley–Wiener–Zygmund integral
of v with respect to x. Note that 〈·, ·〉 also denotes the dot product over Euclidean space.

3. A simple formula for the conditional wr
φ-integrals and the operator-valued

function space integrals

In this section we derive a simple formula for the analogue of the conditional Wiener integrals over C r [0, t] with the
vector-valued conditioning function Xt given by Xt(x) = (x(0), x(t)). First we define the conditional wr

φ-integral over
C r [0, t].
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Definition 3.1.
Let F : C r [0, t] → C be integrable and let X be a random vector on C r [0, t] assuming that the value space of X is a
normed space with the Borel σ-algebra. Then, we have the conditional expectation E [F|X ] of F given X [17]. Further,
there exists a PX -integrable complex-valued function ψ on the value space of X such that E [F|X ](x) = (ψ ◦ X )(x) for
wr
φ-a.e. x ∈ C r [0, t], where PX is the probability distribution of X . The function ψ is called the conditional wr

φ-integral
of F given X and it is also denoted by E [F|X ].

Let 0 = t0 < t1 < . . . < tn−1 < tn = t be a partition of [0, t]. For any x in C r [0, t], define the polygonal function [x] of x
on [0, t] by

[x](s) = x(tj−1) + s − tj−1

tj − tj−1
(x(tj )− x(tj−1)), tj−1 ≤ s ≤ tj , j = 1, . . . , n.

Similarly, for ~ξn+1 = (~ξ0, ~ξ1, . . . , ~ξn) ∈ R(n+1)r , we define the polygonal function [~ξn+1] of ~ξn+1 by the right hand side of
the above equality where x(tj−1) and x(tj ) are replaced by ~ξj−1 and ~ξj , respectively.

In the following theorem, we introduce a simple formula for conditional wr
φ-integrals on C r [0, t]. The proof of the theorem

is given in [9–11].

Theorem 3.2.
Let F : C r [0, t] → C be integrable and Xn+1 : C r [0, t] → R(n+1)r be given by Xn+1(x) = (x(t0), x(t1), . . . , x(tn)). Then for
PXn+1-a.e. ~ξn+1 ∈ R(n+1)r , we have,

E [F|Xn+1](~ξn+1) = E [F (x − [x] + [~ξn+1])],

where PXn+1 is the probability distribution of Xn+1 on
(
R(n+1)r , B (R(n+1)r)

)
.

Let Xt : C r [0, t] → R2r be given by Xt(x) = (x(0), x(t)) and let F : C r [0, t] → C be a function. Further, let X λ,~ξ
t (x) =

Xt(λ−
1
2 x+ ~ξ) and F λ,~ξ (x) = F (λ− 1

2 x+ ~ξ) for λ > 0 and for ~ξ ∈ Rr . Suppose that for λ > 0, F λ,~ξ is integrable over C r [0, t]
for ~ξ ∈ Rr . Then for ~ξ ∈ Rr , we have, by Theorem 3.2,

E [F λ,~ξ |X λ,~ξ
t ](~η1, ~η2) = E

[
F
(
λ− 1

2

(
x(·)− x(0)− ·t (x(t)− x(0))

)
+ ~η1 + ·t (~η2 − ~η1)

)]

for P
Xλ,

~ξ
t

-a.e. (~η1, ~η2) ∈ R2r , where P
Xλ,

~ξ
t

is the probability distribution of X λ,~ξ
t on

(
R2r , B (R2r)

)
. Let

(Kλ(F ))(~η1, ~η2) = E
[
F
(
λ− 1

2

(
x(·)− x(0)− ·t (x(t)− x(0))

)
+ ~η1 + ·t (~η2 − ~η1)

)]
. (3)

If (Kλ(F ))(~η1, ~η2) has the analytic extension Jλ(~η1, ~η2) on C+ as a function of λ, then it is called the conditional analytic
Wiener wr

φ-integral of F over C r [0, t] given Xt with parameter λ and denoted by

Jλ(~η1, ~η2) = Eanwλ [F|Xt ](~ξ)(~η1, ~η2)

for λ ∈ C+. For a nonzero real q, if the limit

lim
λ→−iq

Eanwλ [F|Xt ](~ξ)(~η1, ~η2)

exists, where λ approaches −iq through C+, then it is called the conditional analytic Feynman wr
φ-integral of F over

C r [0, t] given Xt with parameter q and we write

lim
λ→−iq

Eanwλ [F|Xt ](~ξ)(~η1, ~η2) = Eanfq [F|Xt ](~ξ)(~η1, ~η2).

Next we define the analytic operator-valued function space integral.
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Definition 3.3.
Let F : C r [0, t]→ C be a function. For any λ > 0, ψ in L1(Rr) and ~ξ in Rr , let ψλ,~ξt (x) = ψ(λ− 1

2 x(t) + ~ξ) and

(Iλ(F )ψ)(~ξ) =
∫

C r
F λ,~ξ (x)ψλ,~ξt (x)dwr

φ(x).

If Iλ(F )ψ is in L∞(Rr) as a function of ~ξ and if the correspondence ψ → Iλ(F )ψ gives an element of L ≡ L
(
L1(Rr), L∞(Rr)

)
,

we say that the operator-valued function space integral Iλ(F ) exists. Next suppose that there exists an L-valued function
which is weakly analytic in C+ and agrees with Iλ(F ) on (0,∞). Then this L-valued function is denoted by Ianλ (F ) and
is called the analytic operator-valued Wiener integral of F associated with parameter λ. Finally, for a nonzero real q
suppose that there exists an operator Janq (F ) in L such that for every ψ in L1(Rr), Ianλ (F )ψ converges weakly to Janq (F )ψ, as
λ approaches −iq through C+. Then Janq (F ) is called the analytic operator-valued Feynman integral of F with parameter
q.

Note that in Definition 3.3, the weak limit and the weak analyticity are based on the weak∗ topology on L∞(Rr) induced
by its pre-dual L1(Rr) [4, 15].

Lemma 3.4.
Let λ > 0 and ~ξ ∈ Rr . Suppose that φr is a continuous measure with respect to mr

L. Then P
Xλ,

~ξ
t
� (mr

L)2 and

dP
Xλ,

~ξ
t

d(mr
L)2

(~η1, ~η2) =
(

λ√
2πt

)r
exp

{
−λ‖~η2 − ~η1‖2Rr

2t

}
dφr
dmr

L
(λ 1

2 (~η1 − ~ξ))

for (mr
L)2-a.e. (~η1, ~η2) ∈ R2r .

Proof. For a Borel subset B of R2r we have by Lemma 2.1

P
Xλ,

~ξ
t

(B) =
(

1√
2πt

)r ∫

Rr

∫

Rr
χB
(
λ− 1

2 ~u0 + ~ξ, λ− 1
2 ~u1 + ~ξ

)
exp

{
−‖~u1 − ~u0‖2Rr

2t

}
dφr
dmr

L
(~u0)dmr

L(~u0)dmr
L(~u1)

since φr � mr
L. Let ~η1 = λ− 1

2 ~u0 + ~ξ and ~η2 = λ− 1
2 ~u1 + ~ξ . By the change of variable and Fubini theorems, we have,

P
Xλ,

~ξ
t

(B) =
(

λ√
2πt

)r ∫

Rr

∫

Rr
χB(~η1, ~η2) exp

{
−λ‖~η2 − ~η1‖2Rr

2t

}
dφr
dmr

L
(λ 1

2 (~η1 − ~ξ))dmr
L(~η1)dmr

L(~η2)

which completes the proof.

Theorem 3.5.
Let the assumptions and notations be given as in Lemma 3.4. For F : C r [0, t] → C, suppose that Eanwλ [F|Xt ](~ξ)(~η1, ~η2)
exists on C+ × R3r , and for each bounded subset Ω of C+, there exists MΩ ≥ 0 such that |Eanwλ [F|Xt ](~ξ)(~η1, ~η2)| ≤ MΩ
for all λ ∈ Ω and all (~ξ, ~η1, ~η2) ∈ R3r . Further, suppose that there exists a function Ψ on C+×Rr satisfying the following
conditions:

(i) for each λ > 0 and ~η ∈ Rr , Ψ(λ, ~η) = dφr
dmrL

(λ 1
2 ~η),

(ii) for each ~η ∈ Rr , Ψ(λ, ~η) is analytic on C+ as a function of λ,

(iii) for each bounded subset Ω of C+, Ψ is bounded on Ω× Rr .

912



D.H. Cho

Then for λ ∈ C+, the analytic operator-valued Wiener integral Ianλ (F ) exists as an element of L
(
L1(Rr), L∞(Rr)

)
and is

given by

(Ianλ (F )ψ)(~ξ) =
(

λ√
2πt

)r ∫

R2r
Eanwλ [F|Xt ](~ξ)(~η1, ~η2)ψ(~η2)Ψ(λ, ~η1 − ~ξ) exp

{
−λ‖~η2 − ~η1‖2Rr

2t

}
d(mr

L)2(~η1, ~η2) (4)

for ψ ∈ L1(Rr) and mr
L-a.e. ~ξ ∈ Rr . In addition, suppose that for a nonzero real q and ~ξ ∈ Rr , Eanfq [F|Xt ](~ξ)(~η1, ~η2)

exists for (~η1, ~η2) ∈ R2r . Moreover, suppose that Ψ can be extended to (C+ ∪ {−iq}) × Rr with the following two
additional conditions:

(ii)′ for each ~η ∈ Rr , Ψ(λ, ~η) is continuous at λ = −iq as a function of λ,

(iii)′ there exists a function Φq ∈ L1(Rr) satisfying

|Ψ(λ, ~η)| ≤ |Φq(~η)| for all (λ, ~η) ∈ Ωε × Rr , (5)

where Ωε = {λ ∈ C+ : |λ+ iq| < ε} for some real ε > 0.

Then the analytic operator-valued Feynman integral Janq (F ) exists as an element of L
(
L1(Rr), L∞(Rr)

)
and it is given by

(4) where λ and Eanwλ are replaced by −iq and Eanfq , respectively.

Proof. Let λ > 0, ψ ∈ L1(Rr) and ~ξ ∈ Rr . With the notation from Definition 3.3, we have, by Definition 3.1

(Iλ(F )ψ)(~ξ) =
∫

C r
F λ,~ξ (x)ψλ,~ξt (x)dwr

φ(x) =
∫

C r
E [F λ,~ξψλ,~ξt |X

λ,~ξ
t ](X λ,~ξ

t (x))dwr
φ(x).

For (~η1, ~η2) ∈ R2r , we have,

ψ
(
λ− 1

2

(
x(t)− x(0)− t

t (x(t)− x(0))
)

+ ~η1 + t
t (~η2 − ~η1)

)
= ψ(~η2)

which implies

(Iλ(F )ψ)(~ξ) =
∫

R2r
(Kλ(F ))(~η1, ~η2)ψ(~η2)dPXλ,~ξt

(~η1, ~η2),

where Kλ(F ) is given by (3). Now suppose that Ψ satisfies (i), (ii) and (iii). By (i), Lemma 3.4, and the change of variable
theorem we have

(Iλ(F )ψ)(~ξ) =
(

λ√
2πt

)r ∫

R2r
(Kλ(F ))(~η1, ~η2)ψ(~η2)Ψ(λ, ~η1 − ~ξ) exp

{
−λ‖~η2 − ~η1‖2Rr

2t

}
d(mr

L)2(~η1, ~η2).

Let Ωλ be a bounded subset of C+ containing λ. Then for any ~ξ ∈ Rr we have

|(Iλ(F )ψ)(~ξ)| ≤ MΩλ‖Ψ‖Ωλ,∞
(

λ√
2πt

)r ∫

R2r
|ψ(~η2)| exp

{
−λ‖~η2 − ~η1‖2Rr

2t

}
d(mr

L)2(~η1, ~η2)

= λ r
2MΩλ‖Ψ‖Ωλ,∞‖ψ‖L1(Rr ),

(6)

where ‖Ψ‖Ωλ,∞ denotes the essential supremum of Ψ on Ωλ×Rr so that Iλ(F )ψ ∈ L∞(Rr) and Iλ(F ) ∈ L
(
L1(Rr), L∞(Rr)

)
.

For ψ ∈ L1(Rr) let (Qλ(F )ψ)(~ξ) be the right hand side of (4) for (λ, ~ξ) ∈ C+ × Rr and let Ω be any bounded subset of
C+. Using the same method we have for λ ∈ Ω and ~ξ ∈ Rr

|(Qλ(F )ψ)(~ξ)| ≤ MΩ‖Ψ‖Ω,∞||ψ‖L1(Rr )

(
|λ|2
Re λ

) r
2

(7)
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so that Qλ(F )ψ ∈ L∞(Rr) and Qλ(F ) ∈ L
(
L1(Rr), L∞(Rr)

)
for λ ∈ C+. Furthermore, Qλ(F ) = Iλ(F ) on (0,∞), and

(Qλ(F )ψ)(~ξ) is an analytic function of λ ∈ C+ by (7) and Morera’s theorem. Using (7), the ML-inequality, Fubini’s
theorem, and the dominated convergence theorem, we can easily show that

∫
Rr (Qλ(F )ψ)(~ξ)ψ1(~ξ)dmr

L(~ξ) is analytic on
C+ for any ψ1 ∈ L1(Rr) by Morera’s theorem, which implies that Iλ(F ) is weakly analytic on C+. Hence Ianλ (F ) exists
and Ianλ (F ) = Qλ(F ) for λ ∈ C+. Further, suppose that Ψ satisfies (ii)′ and (iii)′. For ψ ∈ L1(Rr) let (Janq (F )ψ)(~ξ) be the
right hand side of (4) for ~ξ ∈ Rr where λ and Eanwλ are replaced by −iq and Eanfq , respectively. Then we have by (ii)′
and (5)

|(Janq (F )ψ)(~ξ)| ≤ MΩε

(
|q|√
2πt

)r ∫

R2r
|ψ(~η2)| |Φq(~η1 − ~ξ)| d(mr

L)2(~η1, ~η2) < MΩε‖ψ‖L1(Rr )‖Φq‖L1(Rr )

(
ε + |q|√

2πt

)r
≡ CΩε

which implies Janq (F )ψ ∈ L∞(Rr) and Janq (F ) ∈ L
(
L1(Rr), L∞(Rr)

)
. Since both integrands in the representations of

(Ianλ (F )ψ)(~ξ) and (Janq (F )ψ)(~ξ) are bounded by MΩε |ψ(~η2)| |Φq(~η1 − ~ξ)|, which is independent of the complex numbers in
Ωε ∪{−iq} and integrable as a function of (~η1, ~η2) ∈ R2r , we have, by the dominated convergence theorem,

(Ianλ (F )ψ)(~ξ)→ (Janq (F )ψ)(~ξ)

as λ approaches −iq through C+. By (5), (Ianλ (F )ψ)(~ξ) is also bounded by CΩε for any λ ∈ Ωε and ~ξ ∈ Rr so for
ψ1 ∈ L1(Rr), (Ianλ (F )ψ)(~ξ)ψ1(~ξ) and (Janq (F )ψ)(~ξ)ψ1(~ξ) are bounded by CΩε |ψ1(~ξ)|. Now, we have by the dominated
convergence theorem

∫

Rr
(Ianλ (F )ψ)(~ξ)ψ1(~ξ)dmr

L(~ξ)→
∫

Rr
(Janq (F )ψ)(~ξ)ψ1(~ξ)dmr

L(~ξ)

as λ → −iq through C+, that is, Ianλ (F )ψ converges weakly to Janq (F )ψ as λ approaches −iq through C+, which completes
the proof.

Next we give an example of φr which is not normally distributed.

Example 3.6.
For ~η = (η1, . . . , ηr) ∈ Rr and λ ∈ C∼+, let

dφr
dmr

L
(~η) =

(
1
π

)r r∏

j=1

1
1 + η2

j
and Ψ(λ, ~η) =

(
1
π

)r r∏

j=1

1
1 + λη2

j
.

Then φr is a probability measure on the Borel class of Rr and the condition (i) of Theorem 3.5 is satisfied. Further, for
~η ∈ Rr , Ψ(λ, ~η) is analytic on C+ and continuous on C∼+ because 1 + λη2

j 6= 0 for λ ∈ C∼+, satisfying conditions (ii) and
(ii)′ of Theorem 3.5. Now we have for (λ, ηj ) ∈ C∼+ × R

∣∣∣∣
1

1 + λη2
j

∣∣∣∣
2

= 1
(1 + η2

j Re λ)2 + (η2
j Im λ)2

≤ min
{

1, 1
1 + η4

j (Im λ)2

}

which satisfies conditions (iii) and (iii)′ of Theorem 3.5. Let F be a function satisfying the assumptions of Theorem 3.5.
Applying Theorem 3.5 to F , for any nonzero real q, we conclude that the analytic operator-valued Feynman integral
Janq (F ) exists as an element of L

(
L1(Rr), L∞(Rr)

)
and it is given by

(Janq (F )ψ)(~ξ) =
(

q
πi
√

2πt

)r ∫

R2r
Eanfq [F|Xt ](~ξ)(~η1, ~η2)ψ(~η2)

[ r∏

j=1

1
1− iq(η1,j − ξj )2

]
exp

{
iq‖~η2 − ~η1‖2Rr

2t

}
d(mr

L)2(~η1, ~η2)

for ψ ∈ L1(Rr) and ~ξ = (ξ1, . . . , ξr) ∈ Rr , where ~η1 = (η1,1, . . . , η1,r). Note that the probability distribution φ having the
above density for r = 1 is known as the Cauchy distribution [1, p. 211].
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Using the same method as used in the proof of Theorem 3.5 but without (6) and (7), we can easily prove the following
theorem.

Theorem 3.7.
If the conditions (iii) and (iii)′ in Theorem 3.5 are replaced by the condition: for each bounded subset Ω of C+ there
exists a function ΦΩ ∈ L1(Rr) satisfying

|Ψ(λ, ~η)| ≤ |ΦΩ(~η)| for all (λ, ~η) ∈ Ω× Rr , (8)

then the statement of Theorem 3.5 holds true.

4. The operator-valued function space integrals via the conditional analytic
Feynman integrals

We begin this section with introducing the Banach algebra Swrφ corresponding to Cameron and Storvick’s [5] Banach
algebra S.

Now, letM(Lr2[0, t]) be the space of the complex Borel measures on Lr2 ≡ Lr2[0, t] and let Swrφ be the space of the functions
of the form:

F (x) =
∫

Lr2 [0,t]
exp




i
r∑

j=1

(vj , xj )




dσ (~v), x = (x1, . . . , xr) ∈ C r [0, t], (9)

where σ ∈ M(Lr2[0, t]), ~v = (v1, . . . , vr) ∈ Lr2[0, t]. Using the same method as in [5], it can be shown that Swrφ is a Banach
algebra.

Using the well-known integration formula

∫

R
exp {−au2 + ibu}dmL(u) =

(
π
a

) 1
2
exp

{
−b

2

4a

}
(10)

for a ∈ C+ and any real b, we have the following theorem by Corollary 3.3 of [10].

Theorem 4.1.
Let Xt : C r [0, t] → R2r be given by Xt(x) = (x(0), x(t)) and let F ∈ Swrφ be given by (9). Then we have for λ ∈ C+ and
~ξ ∈ Rr

Eanwλ [F|Xt ](~ξ)(~η1, ~η2) =
∫

Lr2 [0,t]
exp

{
− 1

2λt
[
t‖~v‖2Lr2 − ‖

~Vt‖2Rr
]
+ i
t 〈~η2 − ~η1, ~Vt〉

}
dσ (~v) (11)

for (~η1, ~η2) ∈ R2r , where ~Vt =
( ∫ t

0 v1(s)ds, . . . ,
∫ t

0 vr(s)ds
)
. Moreover, for any nonzero real q, Eanfq [F|Xt ] is given by the

right hand side of (11) where λ is replaced by −iq.

For F ∈ Swrφ given by (9), we know from Theorem 4.1 that Eanw [F|Xt ] is bounded by ‖σ‖, where ‖σ‖ denotes the total
variation of σ . Combining Lemma 3.4, Theorems 3.5, 3.7 and 4.1, we have the following theorem.

Theorem 4.2.
Let the assumptions be given as in Lemma 3.4 and let F ∈ Swrφ . Suppose that for a nonzero real q there exists a
function Ψ on (C+ ∪ {−iq}) × Rr satisfying the conditions (i), (ii), (ii)′ of Theorem 3.5, and either (iii) and (iii)′ of
Theorem 3.5 or (8) of Theorem 3.7. Then the analytic operator-valued Feynman integral Janq (F ) exists as an element of
L
(
L1(Rr), L∞(Rr)

)
and it is given by (4) where λ and Eanwλ are replaced by −iq and Eanfq , respectively (Eanfq [F|Xt ] is

given by Theorem 4.1).
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Theorem 4.3.
Let the assumptions and notations be given as in Theorem 4.1. Furthermore, suppose that φr is normally distributed
with the mean vector ~0 and the variance-covariance matrix α2Ir , where Ir is the r-dimensional identity matrix. Then for
λ ∈ C+ the analytic operator-valued Wiener integral Ianλ (F ) exists as an element of L

(
L1(Rr), L∞(Rr)

)
and it is given by

(Ianλ (F )ψ)(~ξ) =
[

λ
2π(t + α2)

] r
2
∫

Lr2 [0,t]
exp

{
− 1

2λt
[
t‖~v‖2Lr2 − ‖

~Vt‖2Rr
]}∫

Rr
ψ(~η)H

(
λ, ~ξ, ~η, 1t

~V
)
dmr

L(~η)dσ (~v) (12)

for ψ ∈ L1(Rr) and mr
L-a.e. ~ξ ∈ Rr , where

H(λ, ~ξ, ~η, ~ζ) = exp
{
− λ

2α2 ‖~ξ − ~η‖
2
Rr −

tα2

2λ(t + α2)

∥∥∥∥~ζ + λi
α2 (~ξ − ~η)

∥∥∥∥
2

Rr

}
(13)

for λ ∈ C∼+ and ~ζ ∈ Rr . Furthermore, for any nonzero real q the analytic operator-valued Feynman integral Janq (F )
exists as an element of L

(
L1(Rr), L∞(Rr)

)
and it is given by (12) where λ is replaced by −iq.

Proof. By the assumptions, the hypothesis of Lemma 3.4 is satisfied and we have dφr
dmrL

(~η) =
(

1√
2πα

)r
exp

{
− ‖~η‖

2
Rr

2α2

}

for mr
L-a.e. ~η ∈ Rr . We also know from Theorem 4.1 that Eanw [F|Xt ] is bounded. Let Ψ(λ, ~η) =

(
1√
2πα

)r
exp

{
− λ‖~η‖2Rr

2α2

}

for (λ, ~η) ∈ C+ × Rr . Then Ψ satisfies the conditions (i), (ii) and (iii) of Theorem 3.5, so the existence of the analytic
operator-valued Wiener integral Ianλ (F ) follows. Now, for λ ∈ C+, ~ξ ∈ Rr and ψ ∈ L1(Rr) we have by (4), (10), Theorem
4.1, and Fubini’s theorem,

(Ianλ (F )ψ)(~ξ) =
(

λ
2πα
√
t

)r ∫

Lr2 [0,t]
exp

{
− 1

2λt
[
t‖~v‖2Lr2 − ‖

~Vt‖2Rr
]}∫

Rr
ψ(~η2)

×
∫

Rr
exp

{
i
t 〈~η2 − ~η1, ~Vt〉 −

λ‖~η2 − ~η1‖2Rr
2t − λ‖~η1 − ~ξ‖2Rr

2α2

}
dmr

L(~η1)dmr
L(~η2)dσ (~v)

=
(

λ
2πα
√
t

)r ∫

Lr2 [0,t]
exp

{
− 1

2λt
[
t‖~v‖2Lr2 − ‖

~Vt‖2Rr
]}∫

Rr
ψ(~η2) exp

{
− λ

2α2 ‖~ξ − ~η2‖2Rr
}

×
∫

Rr
exp

{
−λ2

t + α2

tα2 ‖~η2 − ~η1‖2Rr + i
〈
~η2 − ~η1,

1
t
~Vt + λi

α2 (~ξ − ~η2)
〉}

dmr
L(~η1)dmr

L(~η2)dσ (~v)

=
[

λ
2π(t + α2)

] r
2
∫

Lr2 [0,t]
exp

{
− 1

2λt
[
t‖~v‖2Lr2 − ‖

~Vt‖2Rr
]}∫

Rr
ψ(~η2)H

(
λ, ~ξ, ~η2,

1
t
~V
)
dmr

L(~η2)dσ (~v)

which proves the first part of the theorem. To complete the proof, we must prove the existence of Janq (F ). For ψ ∈ L1(Rr)
and ~ξ ∈ Rr , let (Janq (F )ψ)(~ξ) be the right hand side of (12) where λ is replaced by −iq. Since

∣∣∣∣H
(
λ, ~ξ, ~η, 1t

~V
)∣∣∣∣ =

∣∣∣∣exp
{
− λ

2(t + α2)‖
~ξ − ~η‖2Rr −

α2

2λt(t + α2)‖
~Vt‖2Rr −

i
t + α2

〈~Vt , ~ξ − ~η
〉}∣∣∣∣ ≤ 1,

Ianλ (F )ψ converges weakly to Janq (F )ψ as λ approaches −iq through C+ by the dominated convergence theorem. This
completes the proof.

5. The series expansions for the function space integrals

LetM(Rr) be the class of all complex Borel measures on Rr and G be the set of all C-valued functions θ on [0,∞)×Rr

which have the form

θ(s, ~u) =
∫

Rr
exp {i〈~u, ~w〉} dσs(~w), (14)

where {σs : s ∈ [0,∞)} is the family fromM(Rr) satisfying the following conditions:
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(1) for each Borel subset E of Rr , σs(E) is a Borel measurable function of s on [0, t],

(2) ‖σs‖ ∈ L1[0, t].

We have the following theorem.

Theorem 5.1.
For a positive integer n, let

Fn(x) =
[∫ t

0
θ(s, x(s))ds

]n
(15)

for x ∈ C r [0, t], where θ ∈ G is given by (14). Then Fn ∈ Swrφ which implies the existence of Eanfq [Fn|Xt ] for any nonzero
real q by Theorem 4.1, and for ~ξ ∈ Rr it is given by

Eanfq [Fn|Xt ](~ξ)(~η1, ~η2) = n!
∫

∆n

∫

Rnr
A(~s, ~v, ~η1, ~η2)B(−iq, ~s, ~v)d

( n∏

j=1

σsj

)
(~v)d~s (16)

for (~η1, ~η2) ∈ R2r , where s0 = 0, sn+1 = t, ~s = (s1, . . . , sn), ~v = (~v1, . . . , ~vn) ∈ Rnr , ∆n = {~s : 0 < s1 < . . . < sn < t},

A(~s, ~v, ~η1, ~η2) = exp
{
i
t

n∑

j=1

〈
(t − sj )~η1 + sj~η2, ~vj

〉
}

and for λ ∈ C∼+,

B(λ, ~s, ~v) = exp
{
− 1

2λt2
n+1∑

j=1

(sj − sj−1)

∥∥∥∥∥

n∑

l=j

(t − sl)~vl −
j−1∑

l=1

sl~vl

∥∥∥∥∥

2

Rr

}
. (17)

Proof. It is not difficult to show, using the same process as in [5], that Fn ∈ Swrφ . Using the simplex method [14], we
have

Fn(x) = n!
∫

∆n

∫

Rnr
exp

{
i

n∑

j=1

〈x(sj ), ~vj〉
}
d
( n∏

j=1

σsj

)
(~v)d~s.

Let Ξn(~s) = n!
[∏n+1

j=1
1

2π(sj−sj−1)

]r/2
and let (Kλ(Fn))(~η1, ~η2) be given by (3) for λ > 0 and (~η1, ~η2) ∈ R2r . Then we have,

by Lemma 2.1,

(Kλ(Fn))(~η1, ~η2) = n!
∫

C r

∫

∆n

∫

Rnr
A(~s, ~v, ~η1, ~η2)

× exp
{
iλ− 1

2

n∑

j=1

〈
x(sj )− x(0)− sj

t (x(t)− x(0)), ~vj
〉}

d
( n∏

j=1

σsj

)
(~v)d~sdwr

φ(x)

= Ξn(~s)
∫

∆n

∫

Rnr
A(~s, ~v, ~η1, ~η2)

×
∫

R(n+1)r

∫

Rr
exp

{
iλ− 1

2

n∑

j=1

〈
~uj − ~u0 −

sj
t (~un+1 − ~u0), ~vj

〉
− 1

2

n+1∑

j=1

‖~uj − ~uj−1‖2Rr
sj − sj−1

}

dφr(~u0)dm(n+1)r
L (~u1, . . . , ~un, ~un+1)d

( n∏

j=1

σsj

)
(~v)d~s.
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For j = 1, . . . , n+ 1, let ~ζj = ~uj − ~uj−1. Then, by the change of variable theorem,

(Kλ(Fn))(~η1, ~η2) = Ξn(~s)
∫

∆n

∫

Rnr
A(~s, ~v, ~η1, ~η2)

∫

R(n+1)r
exp

{
iλ− 1

2

n∑

j=1

〈 j∑

l=1

~ζl −
sj
t

n+1∑

l=1

~ζl, ~vj

〉
− 1

2

n+1∑

j=1

‖~ζj‖2Rr
sj − sj−1

}

dm(n+1)r
L (~ζ1, . . . , ~ζn, ~ζn+1)d

( n∏

j=1

σsj

)
(~v)d~s

= Ξn(~s)
∫

∆n

∫

Rnr
A(~s, ~v, ~η1, ~η2)

∫

R(n+1)r
exp

{
i√
λt

n+1∑

j=1

〈
~ζj ,

n∑

l=j

(t − sl)~vl −
j−1∑

l=1

sl~vl

〉
− 1

2

n+1∑

j=1

‖~ζj‖2Rr
sj − sj−1

}

dm(n+1)r
L (~ζ1, . . . , ~ζn, ~ζn+1)d

( n∏

j=1

σsj

)
(~v)d~s

∗∗
= n!

∫

∆n

∫

Rnr
A(~s, ~v, ~η1, ~η2)B(λ, ~s, ~v)d

( n∏

j=1

σsj

)
(~v)d~s,

where the last equality follows from (10). The theorem now follows from Morera’s theorem and the dominated convergence
theorem.

Theorem 5.2.
Let

Ft(x) = exp
{∫ t

0
θ(s, x(s))ds

}

for x ∈ C r [0, t], where θ ∈ G is given by (14). Then Ft ∈ Swrφ which implies, by Theorem 4.1, the existence of Eanfq [Ft |Xt ]
for any nonzero real q. For ~ξ ∈ Rr it is given by

Eanfq [Ft |Xt ](~ξ)(~η1, ~η2) = 1 +
∞∑

n=1

1
n!E

anfq [Fn|Xt ](~ξ)(~η1, ~η2)

for (~η1, ~η2) ∈ R2r , where Eanfq [Fn|Xt ](~ξ)(~η1, ~η2) is given by (16) in Theorem 5.1.

Proof. It is not difficult to show that Ft ∈ Swrφ using the same process as used in [5]. By the Maclaurin series of the
exponential function we have,

Ft(x) = 1 +
∞∑

n=1

1
n!Fn(x) for x ∈ C r [0, t], (18)

where Fn is given by (15). Further, we have for any x ∈ C r [0, t]

|Ft(x)| ≤ 1 +
∞∑

n=1

1
n! |Fn(x)| ≤ 1 +

∞∑

n=1

1
n!

[∫ t

0
‖σs‖ ds

]n
= exp

{∫ t

0
‖σs‖ ds

}

so that the convergence of (18) is uniform. Now the theorem follows.

Let φ(~u) =
∫
Rr exp{i〈~u, ~w〉}dν(~w) for ν ∈ M(Rr). Then for λ > 0, x ∈ C r [0, t] and (~η1, ~η2) ∈ R2r , we have

φ
(
λ− 1

2

(
x(t)− x(0)− t

t (x(t)− x(0))
)

+ ~η1 + t
t (~η2 − ~η1)

)
= φ(~η2). (19)

Furthermore, it is not difficult to show that Gn ∈ Swrφ using the same process as in [5], where Gn(x) = Fn(x)φ(x(t)) for
x ∈ C r [0, t] and Fn is given by (15), so that we have the following theorem by Theorem 5.2.
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Theorem 5.3.
Let the assumptions and notations be given as in Theorem 5.2. For x ∈ C r [0, t] let

Gn(x) = Fn(x)φ(x(t)) and Gt(x) = Ft(x)φ(x(t)),

where φ(~u) =
∫
Rr exp {i〈~u, ~w〉} dν(~w) for ν ∈ M(Rr). Then Gn, Gt ∈ Swrφ which implies, by Theorem 4.1, the existence

of Eanfq [Gn|Xt ] and Eanfq [Gt |Xt ] for any nonzero real q. For ~ξ ∈ Rr , Eanfq [Gn|Xt ] and Eanfq [Gt |Xt ] are given by

Eanfq [Gn|Xt ](~ξ)(~η1, ~η2) = φ(~η2)Eanfq [Fn|Xt ](~ξ)(~η1, ~η2)

and

Eanfq [Gt |Xt ](~ξ)(~η1, ~η2) = φ(~η2)Eanfq [Ft |Xt ](~ξ)(~η1, ~η2) = φ(~η2) +
∞∑

n=1

1
n!E

anfq [Gn|Xt ](~ξ)(~η1, ~η2)

for (~η1, ~η2) ∈ R2r , where Eanfq [Fn|Xt ](~ξ)(~η1, ~η2) and Eanfq [Ft |Xt ](~ξ)(~η1, ~η2) are given in Theorems 5.1 and 5.2, respectively.

Combining Lemma 3.4, Theorems 3.5, 3.7, 5.1, 5.2, and 5.3, we have the following theorem.

Theorem 5.4.
Let the assumptions and notations be as given in Lemma 3.4 and Theorems 5.1, 5.2 and 5.3.

(1) Suppose that there exists a function Ψ on C+×Rr satisfying the conditions (i) and (ii) of Theorem 3.5, and either
(iii) of Theorem 3.5 or (8) of Theorem 3.7. Then for λ ∈ C+ the analytic operator-valued Wiener integrals Ianλ (Fn)
and Ianλ (Gn) exist as elements of L

(
L1(Rr), L∞(Rr)

)
and they are given by (4) where F is replaced by Fn and Gn,

respectively (for λ ∈ C+, Eanwλ [Fn|Xt ] is given by the right hand side of the equality
∗∗
= in the proof of Theorem

5.1). Furthermore, as an element of L
(
L1(Rr), L∞(Rr)

)
, the analytic operator-valued Wiener integral Ianλ (Ft) is

given by

(Ianλ (Ft)ψ)(~ξ) = (Ianλ (1)ψ)(~ξ) +
∞∑

n=1

1
n! (I

an
λ (Fn)ψ)(~ξ) (20)

for ψ ∈ L1(Rr) and ~ξ ∈ Rr , where

(Ianλ (1)ψ)(~ξ) =
(

λ√
2πt

)r ∫

R2r
ψ(~η2)Ψ(λ, ~η1 − ~ξ) exp

{
−λ‖~η2 − ~η1‖2Rr

2t

}
d(mr

L)2(~η1, ~η2).

The analytic operator-valued Wiener integral Ianλ (Gt) is also given by

(Ianλ (Gt)ψ)(~ξ) =
(

λ√
2πt

)r ∫

R2r
φ(~η2)ψ(~η2)Ψ(λ, ~η1 − ~ξ) exp

{
−λ‖~η2 − ~η1‖2Rr

2t

}
d(mr

L)2(~η1, ~η2)

+
∞∑

n=1

1
n! (I

an
λ (Gn)ψ)(~ξ).

(21)

(2) Suppose that for a nonzero real q there exists a function Ψ on (C+ ∪ {−iq}) × Rr satisfying the conditions
(i) and (ii) of Theorem 3.5, and either (iii) and (iii)′ of Theorem 3.5 or (8) of Theorem 3.7. Then the analytic
operator-valued Feynman integrals Janq (Fn), Janq (Gn), Janq (Ft) and Janq (Gt) exist as elements of L

(
L1(Rr), L∞(Rr)

)

and each of them is given by the corresponding expression of the analytic operator-valued Wiener integral in (1)
where λ is replaced by −iq, Eanwλ is replaced by Eanfq and Ianλ is replaced by Janq .
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Theorem 5.5.
Suppose that φr is normally distributed with the mean vector ~0 and the variance-covariance matrix α2Ir . Let the
assumptions and notations be as given in Theorems 5.1 and 5.3. Then for any nonzero real q, the analytic operator-
valued Feynman integral Janq (Gt) exists as an element of L

(
L1(Rr), L∞(Rr)

)
and for ψ ∈ L1(Rr) and ~ξ ∈ Rr , it is given

by

(Janq (Gt)ψ)(~ξ) =
[

q
2πi(t + α2)

] r
2
∫

Rr
ψ(~η)φ(~η) exp

{
iq

2(t + α2)‖~η −
~ξ‖2Rr

}
dmr

L(~η) +
∞∑

n=1

1
n! (J

an
q (Gn)ψ)(~ξ), (22)

where

(Janq (Gn)ψ)(~ξ) = n!
[

q
2πi(t + α2)

] r
2
∫

∆n

∫

Rnr
B(−iq, ~s, ~v)

∫

Rr
ψ(~η)φ(~η) exp

{
i

n∑

j=1

〈~η, ~vj〉
}

×H
(
−iq, ~ξ, ~η, 1t

n∑

j=1

(sj − t)~vj

)
dmr

L(~η)d
( n∏

j=1

σsj

)
(~v)d~s ;

~v = (~v1, . . . , ~vn) ∈ Rnr , and H and B are given by (13) and (17), respectively.

Proof. The existence of Janq (Gt) is guaranteed by Theorems 4.3 and 5.3. Let Ψ be given as in the proof of Theorem
4.3. Then, by (1) of Theorem 5.4, (Ianλ (Gt)ψ)(~ξ) is given by (21) for λ ∈ C+, ~ξ ∈ Rr and ψ ∈ L1(Rr). Furthermore, we
have by (4), (10), Theorems 5.1, 5.3, and Fubini’s theorem

(Ianλ (Gn)ψ)(~ξ) =
(

λ√
2πt

)r ∫

R2r
Eanwλ [Fn|Xt ](~ξ)(~η1, ~η2)ψ(~η2)φ(~η2)Ψ(λ, ~η1 − ~ξ) exp

{
−λ‖~η2 − ~η1‖2Rr

2t

}
d(mr

L)2(~η1, ~η2)

= n!
(

λ
2πα
√
t

)r ∫

∆n

∫

Rnr
B(λ, ~s, ~v)

∫

Rr
ψ(~η2)φ(~η2) exp

{
i

n∑

j=1

〈~η2, ~vj〉
}

×
∫

Rr
exp

{
i
t

〈
~η2 − ~η1,

n∑

j=1

(sj − t)~vj

〉
− λ‖~η2 − ~η1‖2Rr

2t − λ‖~η1 − ~ξ‖2Rr
2α2

}
dmr

L(~η1)dmr
L(~η2)d

( n∏

j=1

σsj

)
(~v)d~s.

Using the same method as used in the proof of Theorem 4.3, we get

(Ianλ (Gn)ψ)(~ξ) = n!
[

λ
2π(t + α2)

] r
2
∫

∆n

∫

Rnr
B(λ, ~s, ~v)

∫

Rr
ψ(~η2)φ(~η2) exp

{
i

n∑

j=1

〈~η2, ~vj〉
}

×H
(
λ, ~ξ, ~η2,

1
t

n∑

j=1

(sj − t)~vj
)
dmr

L(~η2)d
( n∏

j=1

σsj

)
(~v)d~s.

Further, a simple calculation shows that

(
λ√
2πt

)r ∫

R2r
φ(~η2)ψ(~η2)Ψ(λ, ~η1 − ~ξ) exp

{
−λ‖~η2 − ~η1‖2Rr

2t

}
d(mr

L)2(~η1, ~η2)

=
[

λ
2π(t + α2)

] r
2
∫

Rr
φ(~η2)ψ(~η2) exp

{
− λ

2(t + α2)‖~η2 − ~ξ‖2Rr
}
dmr

L(~η2).

The theorem now follows by use of the dominated convergence theorem.
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6. The stability theories

In the previous sections, we established the analytic operator-valued Feynman integrals for the functions which belong
to Swrφ , via the conditional analytic Feynman wr

φ-integrals over the generalized Wiener paths. In this section, which is
the main section of the present paper, we do the same things for functionals that need not belong to the Banach algebra
Swrφ .

Let η be a complex Borel measure on [0, t]. Then η = µ + ν can be decomposed uniquely into the sum of a continuous
measure µ and a discrete measure ν. Further, let δpj denote the Dirac measure with total mass 1 concentrated at pj .

Let G∗ be the set of all C-valued functions θ on [0,∞)× Rr which are of the form

θ(s, ~u) =
∫

Rr
exp {i〈~u, ~w〉} dσs(~w), (23)

where {σs : s ∈ [0,∞)} is the family fromM(Rr) satisfying the conditions:

(1) for each Borel subset E of Rr , σs(E) is a Borel measurable function of s on [0, t],

(2) ‖σs‖ ∈ L1
(
[0, t], B ([0, t]), |η|

)
.

Theorem 6.1.
Let m, n be two positive integers and let η = µ +

∑m
j=1 wjδpj , where 0 < p1 < . . . < pm < t and the wj ’s are in C. Let

θ ∈ G∗ be given by (23) and Λn(x) =
[ ∫ t

0 θ(s, x(s))dη(s)
]n for x ∈ C r [0, t]. Then for λ ∈ C+ and ~ξ ∈ Rr we have

Eanwλ [Λn|Xt ](~ξ)(~η1, ~η2) = n!
∑

q0+q1+...+qm=n

( m∏

j=1

wqj
j

qj !

)
∑

j0+j1+...+jm=q0

∫

∆q0;j0 ,...,jm

∫

Rnr

A1
(
j0, . . . , jm; ~η1, ~η2, ~s, ~v, ~h

)
B1
(
j0, . . . , jm; λ, ~s, ~v, ~h

)
d
( m∏

u=0

jm∏

v=1

σsu,v ×
m∏

u=1

σqupu

)
(~v, ~h)dµq0 (~s)

(24)

for (~η1, ~η2) ∈ R2r , where

A1
(
j0, . . . , jm; ~η1, ~η2, ~s, ~v, ~h

)
= exp

{
i
t

m∑

u=0

ju+1∑

v=1

〈
(t − su,v )~η1 + su,v~η2, ~vu,v

〉
}

and

B1
(
j0, . . . , jm; λ, ~s, ~v, ~h

)
= exp

{
− 1

2λt2
m∑

u=0

ju+1∑

v=1

(su,v − su,v−1)
∥∥∥∥∥

m∑

β=u+1

jβ+1∑

γ=1

(t − sβ,γ)~vβ,γ

+
ju+1∑

γ=v
(t − su,γ)~vu,γ −

v−1∑

γ=1

su,γ~vu,γ −
u−1∑

β=0

jβ+1∑

γ=1

sβ,γ~vβ,γ

∥∥∥∥∥

2

Rr

}

with the convention that ~s =
(
s0,1, . . . , s0,j0 , s1,1, . . . , s1,j1 , . . . , sm,1, . . . , sm,jm

)
for j0 + j1 + . . . + jm = q0, ∆q0 ;j0,...,jm =

{~s : 0 < s0,1 < . . . < s0,j0 < p1 < s1,1 < . . . < s1,j1 < p2 < . . . < pm < sm,1 < . . . < sm,jm < t},
~v = (~v0,1, . . . , ~v0,j0 , ~v1,1, . . . , ~v1,j1 , . . . , ~vm,1, . . . , ~vm,jm ), ~h = (~h1,1, . . . , ~h1,q1 , ~h2,1, . . ., ~h2,q2 , . . . , ~hm,1, . . . , ~hm,qm ), ~vm,jm+1 = ~0,
s0,0 = 0, sm,jm+1 = t, su−1,ju−1+1 = su,0 = pu and ~vu−1,ju−1+1 =

∑qu
v=1

~hu,v for u = 1, . . . , m. Moreover, for any nonzero real
q, Eanfq [Λn|Xt ](~ξ)(~η1, ~η2) is given by the right hand side of (24) where λ is replaced by −iq.
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Proof. For λ > 0 and (~η1, ~η2) ∈ R2r , let (Kλ(Λn))(~η1, ~η2) be given by (3) where F is replaced by Λn. Then we have, by
the binomial expansion and the simplex method [14],

(Kλ(Λn))(~η1, ~η2) = n!
∑

q0+q1+...+qm=n

( m∏

j=1

wqj
j

qj !

)

×
∫

C r

∫

∆q0

[ q0∏

j=1

θ
(
sj , λ−

1
2

(
x(sj )− x(0)− sj

t (x(t)− x(0))
)

+ ~η1 + sj
t (~η2 − ~η1)

)
dµq0 (s1, . . . , sq0 )

]

×
[ m∏

j=1

[
θ
(
pj , λ−

1
2

(
x(pj )− x(0)− pj

t (x(t)− x(0))
)

+ ~η1 + pj
t (~η2 − ~η1)

)]qj]
dwr

φ(x),

where ∆q0 = {(s1, . . . , sq0 ) : 0 < s1 < . . . < sq0 < t}. Let ~s, s0,0, su,0, sm,jm+1 and ∆q0 ;j0,...,jm be as in the assumptions.
Then we have, by (23),

(Kλ(Λn))(~η1, ~η2) = n!
∑

q0+q1+...+qm=n

( m∏

j=1

wqj
j

qj !

)
∑

j0+j1+...+jm=q0

∫

∆q0;j0 ,...,jm

∫

C r

[∫

Rq0r
exp

{
i

m∑

u=0

ju∑

v=1

〈
λ− 1

2

(
x(su,v )− x(s0,0)−

su,v
t (x(sm,jm+1)− x(s0,0))

)

+ ~η1 + su,v
t (~η2 − ~η1), ~vu,v

〉}
d
( m∏

u=0

jm∏

v=1

σsu,v

)
(~v)
]

×
[∫

R(q1+...+qm )r
exp

{
i

m∑

u=1

qu∑

v=1

〈
λ− 1

2

(
x(su,0)− x(s0,0)−

su,0
t (x(sm,jm+1)− x(s0,0))

)

+ ~η1 + su,0
t (~η2 − ~η1), ~hu,v

〉}
d
( m∏

u=1

σqupu

)
(~h)
]
dwr

φ(x)dµq0 (~s),

where ~v and ~h are given by the assumptions. For u = 1, . . . , m, let su−1,ju−1+1 = su,0, ~vu−1,ju−1+1 =
∑qu

v=1
~hu,v and let

~vm,jm+1 = ~0. Then we have, by Fubini’s theorem

(Kλ(Λn))(~η1, ~η2) = n!
∑

q0+q1+...+qm=n

( m∏

j=1

wqj
j

qj !

)
∑

j0+j1+...+jm=q0∫

∆q0;j0 ,...,jm

∫

Rnr
A1
(
j0, . . . , jm; ~η1, ~η2, ~s, ~v, ~h

)

×
∫

C r
exp

{
iλ− 1

2

m∑

u=0

ju+1∑

v=1

〈
x(su,v )− x(s0,0)−

su,v
t (x(sm,jm+1)− x(s0,0)), ~vu,v

〉}
dwr

φ(x)

d
( m∏

u=0

jm∏

v=1

σsu,v ×
m∏

u=1

σqupu

)
(~v, ~h)dµq0 (~s).

Let

S(j0, . . . , jm; ~s) = n!
[ m∏

u=0

ju+1∏

v=1

1
2π(su,v − su,v−1)

] r
2

.
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Then we have, by an application of Lemma 2.1,

(Kλ(Λn))(~η1, ~η2) =
∑

q0+q1+...+qm=n

( m∏

j=1

wqj
j

qj !

)
∑

j0+j1+...+jm=q0∫

∆q0;j0 ,...,jm

∫

Rnr
A1
(
j0, . . . , jm; ~η1, ~η2, ~s, ~v, ~h

)
S(j0, . . . , jm; ~s)

×
[∫

R(q0+m+1)r

∫

Rr
exp

{
iλ− 1

2

m∑

u=0

ju+1∑

v=1

〈
~ζu,v − ~ζ0,0 −

su,v
t (~ζm,jm+1 − ~ζ0,0), ~vu,v

〉

− 1
2

m∑

u=0

ju+1∑

v=1

‖~ζu,v − ~ζu,v−1‖2Rr
su,v − su,v−1

}
dφr(~ζ0,0)dm(q0+m+1)r

L (~ζ)
]

d
( m∏

u=0

jm∏

v=1

σsu,v ×
m∏

u=1

σqupu

)
(~v, ~h)dµq0 (~s),

where ~ζu−1,ju−1+1 = ~ζu,0 for u = 1, . . . , m and ~ζ =
(~ζ0,1, . . . , ~ζ0,j0+1, ~ζ1,1, . . . , ~ζ1,j1+1, . . . , ~ζm,1, . . . , ~ζm,jm+1

)
. Let ~zu,v =

~ζu,v − ~ζu,v−1 for u = 0, . . . , m; v = 1, . . . , ju + 1. By the change of variable theorem,

(Kλ(Λn))(~η1, ~η2) =
∑

q0+q1+...+qm=n

( m∏

j=1

wqj
j

qj !

)
∑

j0+j1+...+jm=q0∫

∆q0;j0 ,...,jm

∫

Rnr
A1
(
j0, . . . , jm; ~η1, ~η2, ~s, ~v, ~h

)
S(j0, . . . , jm; ~s)

×
[∫

R(q0+m+1)r
exp

{
iλ− 1

2

m∑

u=0

ju+1∑

v=1

〈u−1∑

β=0

jβ+1∑

γ=1

~zβ,γ +
v∑

γ=1

~zu,γ −
su,v
t

m∑

β=0

jβ+1∑

γ=1

~zβ,γ , ~vu,v

〉

− 1
2

m∑

u=0

ju+1∑

v=1

‖~zu,v‖2Rr
su,v − su,v−1

}
dm(q0+m+1)r

L (~z)
]

d
( m∏

u=0

jm∏

v=1

σsu,v ×
m∏

u=1

σqupu

)
(~v, ~h)dµq0 (~s),

where ~z = (~z0,1, . . . , ~z0,j0+1, ~z1,1, . . . , ~z1,j1+1, . . . , ~zm,1, . . . , ~zm,jm+1). Now,

(Kλ(Λn))(~η1, ~η2) =
∑

q0+q1+...+qm=n

( m∏

j=1

wqj
j

qj !

)
∑

j0+j1+...+jm=q0∫

∆q0;j0 ,...,jm

∫

Rnr

A1
(
j0, . . . , jm; ~η1, ~η2, ~s, ~v, ~h

)
S(j0, . . . , jm; ~s)

×
[∫

R(q0+m+1)r
exp

{
i√
λt

m∑

u=0

ju+1∑

v=1

〈
~zu,v ,

m∑

β=u+1

jβ+1∑

γ=1

(t − sβ,γ)~vβ,γ +
ju+1∑

γ=v
(t − su,γ)~vu,γ

−
v−1∑

γ=1

su,γ~vu,γ −
u−1∑

β=0

jβ+1∑

γ=1

sβ,γ~vβ,γ

〉
− 1

2

m∑

u=0

ju+1∑

v=1

‖~zu,v‖2Rr
su,v − su,v−1

}
dm(q0+m+1)r

L (~z)
]

d
( m∏

u=0

jm∏

v=1

σsu,v ×
m∏

u=1

σqupu

)
(~v, ~h)dµq0 (~s)
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= n!
∑

q0+q1+...+qm=n

( m∏

j=1

wqj
j

qj !

)
∑

j0+j1+...+jm=q0

∫

∆q0;j0 ,...,jm

∫

Rnr

A1
(
j0, . . . , jm; ~η1, ~η2, ~s, ~v, ~h

)
B1(j0, . . . , jm; λ, ~s, ~v, ~h)d

( m∏

u=0

jm∏

v=1

σsu,v ×
m∏

u=1

σqupu

)
(~v, ~h)dµq0 (~s),

where the last equality follows from (10). The results now follow from Morera’s theorem and the dominated convergence
theorem.

Using the same method as used in the proof of Theorem 5.1 above, we obtain the following corollaries.

Corollary 6.2.
Under the assumptions in Theorem 6.1, with the exception that η = µ, that is, η being a continuous measure,
Eanfq [Λn|Xt ](~ξ)(~η1, ~η2) is given by the right hand side of (16) in Theorem 5.1 where d~s is replaced by dµn(~s).

Corollary 6.3.
Under the assumptions in Theorem 6.1, with the exception η =

∑m
j=1 wjδpj , that is, η is a discrete measure,

Eanfq [Λn|Xt ](~ξ)(~η1, ~η2) is given by

Eanfq [Λn|Xt ](~ξ)(~η1, ~η2) = n!
∑

q1+...+qm=n

( m∏

j=1

wqj
j

qj !

)∫

Rnr
exp

{
i
t

m∑

u=1

qu∑

v=1

〈
(t − pu)~η1 + pu~η2, ~hu,v

〉

+ 1
2qit2

m+1∑

u=1

(pu − pu−1)

∥∥∥∥∥

m∑

β=u

qβ∑

v=1

(t − pβ)~hβ,v −
u−1∑

β=1

qβ∑

v=1

pβ~hβ,v

∥∥∥∥∥

2

Rr

}
d
( m∏

u=1

σqupu

)
(~h)

where p0 = 0, pm+1 = t and ~h =
(~h1,1, . . . , ~h1,q1 , ~h2,1, . . . , ~h2,q2 , . . . , ~hm,1, . . . , ~hm,qm

)
.

Using the same methods as used in the proof of Theorem 5.2, we can easily prove the following theorem.

Theorem 6.4.
Let

Λt(x) = exp
{∫ t

0
θ(s, x(s))dη(s)

}

for x ∈ C r [0, t], where θ ∈ G∗ is given by (23). Then Eanfq [Λt |Xt ] exists for any nonzero real q and for ~ξ ∈ Rr it is given
by

Eanfq [Λt |Xt ](~ξ)(~η1, ~η2) = 1 +
∞∑

n=1

1
n!E

anfq [Λn|Xt ](~ξ)(~η1, ~η2)

for (~η1, ~η2) ∈ R2r , where Eanfq [Λn|Xt ](~ξ)(~η1, ~η2) is given by (24) in Theorem 6.1 where λ is replaced by −iq.

By (19) and Theorem 6.4, we have the following theorem.
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Theorem 6.5.
Let the assumptions and notations be given as in Theorem 6.4. For x ∈ C r [0, t] let

Γn(x) = Λn(x)φ(x(t)) and Γt(x) = Λt(x)φ(x(t))

where φ(~u) =
∫
Rr exp {i〈~u, ~w〉} dν(~w) for ν ∈ M(Rr). Then Eanfq [Γn|Xt ] and Eanfq [Γt |Xt ] exist for any nonzero real q,

and for ~ξ ∈ Rr they are given by

Eanfq [Γn|Xt ](~ξ)(~η1, ~η2) = φ(~η2)Eanfq [Λn|Xt ](~ξ)(~η1, ~η2)

and

Eanfq [Γt |Xt ](~ξ)(~η1, ~η2) = φ(~η2)Eanfq [Λt |Xt ](~ξ)(~η1, ~η2) = φ(~η2) +
∞∑

n=1

1
n!E

anfq [Γn|Xt ](~ξ)(~η1, ~η2)

for (~η1, ~η2) ∈ R2r , where Eanfq [Λn|Xt ](~ξ)(~η1, ~η2) and Eanfq [Λt |Xt ](~ξ)(~η1, ~η2) are given in Theorems 6.1 and 6.4, respectively.

Combining Lemma 3.4, Theorems 3.5, 3.7, 6.1, 6.4, and 6.5, we have the following theorem.

Theorem 6.6.
Let the assumptions and notations be as given in Lemma 3.4 and Theorems 6.1, 6.4 and 6.5 above.

(1) Suppose that there exists a function Ψ on C+ × Rr satisfying conditions (i) and (ii) of Theorem 3.5, and either
(iii) of Theorem 3.5 or (8) of Theorem 3.7. Then for λ ∈ C+ the analytic operator-valued Wiener integrals Ianλ (Λn)
and Ianλ (Γn) exist as elements of L

(
L1(Rr), L∞(Rr)

)
and they are given by (4) where F is replaced by Λn and Γn,

respectively (Eanwλ [Λn|Xt ](~ξ)(~η1, ~η2) is given in Theorem 6.1). Furthermore, as an element of L
(
L1(Rr), L∞(Rr)

)
,

the analytic operator-valued Wiener integral Ianλ (Λt) exists and is given by (20) in Theorem 5.4 where Ft and Fn
are replaced by Λt and Λn, respectively. The analytic operator-valued Wiener integral Ianλ (Γt) also exists and is
given by (21) in Theorem 5.4 where Gt and Gn are replaced by Γt and Γn, respectively.

(2) Suppose that for a nonzero real q there exists a function Ψ on (C+ ∪{−iq})×Rr satisfying conditions (i) and (ii)
of Theorem 3.5, and either (iii) and (iii)′ of Theorem 3.5 or (8) of Theorem 3.7. Then the analytic operator-valued
Feynman integrals Janq (Λn), Janq (Γn), Janq (Λt) and Janq (Γt) exist as elements of L

(
L1(Rr), L∞(Rr)

)
and each of them is

given by the corresponding expression of the analytic operator-valued Wiener integral in (1) where λ is replaced
by −iq, Eanwλ is replaced by Eanfq and Ianλ is replaced by Janq .

Combining the methods used in the proofs of Theorems 4.3 and 5.5 above, our final theorem follows readily.

Theorem 6.7.
Suppose that φr is normally distributed with the mean vector ~0 and the variance-covariance matrix α2Ir . Let the
assumptions and notations be as given in Theorems 6.1 and 6.5. Then for any nonzero real q the analytic operator-
valued Feynman integral Janq (Γt) exists as an element of L

(
L1(Rr), L∞(Rr)

)
and is given by (22) in Theorem 5.5 where

Gt and Gn are replaced by Γt and Γn, respectively, at that

(
Janq (Γn)ψ

)
(~ξ) = n!

[
q

2πi(t + α2)

] r
2 ∑

q0+q1+...+qm=n

( m∏

j=1

wqj
j

qj !

)
∑

j0+j1+...+jm=q0∫

∆q0;j0 ,...,jm

∫

Rnr
B1
(
j0, . . . , jm;−iq, ~s, ~v, ~h

)

×
[∫

Rr
ψ(~η)φ(~η) exp

{
i

m∑

u=0

ju+1∑

v=1

〈~η, ~vu,v〉
}
H
(
−iq, ~ξ, ~η, 1t

m∑

u=0

ju+1∑

v=1

(su,v − t)~vu,v

)
dmr

L(~η)
]

d
( m∏

u=0

jm∏

v=1

σsu,v ×
m∏

u=1

σqupu

)
(~v, ~h)dµq0 (~s)
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for ψ ∈ L1(Rr) and ~ξ ∈ Rr , where H and B1 are given in Theorems 4.3 and 6.1, respectively.

Remark 6.8.
• The conditions of Theorems 4.3, 5.5 and 6.7 are independent of those in Lemma 3.4, Theorems 3.5 and 3.7 if φr is

normally distributed.

• If η = µ +
∑m

j=1 wjδpj , where 0 ≤ p1 < . . . < pm ≤ t, we can obtain all the results in the present section with
minor modifications.

• If η = µ +
∑∞

j=1 wjδpj , then using the following version of the ℵ0-nomial formula [14, p. 41]

( ∞∑

p=0

bp

)n

=
∞∑

h=0

∑

q0+q1+...+qh=n,qh 6=0

n!
q0!q1! . . . qh!

bq0
0 b

q1
1 . . . bqhh ,

we can obtain the results of Theorems 6.1, 6.4, 6.5, 6.6 and 6.7 with minor modifications.
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