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Abstract: Let ([0, {]denote the analogue of the r-dimensional Wiener space, define X; : C'[0, t] — R? by X;(x) = (x(0), x(t)).
In this paper, we introduce a simple formula for the conditional expectations with the conditioning function X;.
Using this formula, we evaluate the conditional analytic Feynman integral for the functional

t
Fex) = exp {/0 (s, x(s)) dn(S)}¢(X(f)), x € C'0, 1],

where n is a complex Borel measure on [0, t], and 9(s, -) and ¢ are the Fourier—Stieltjes transforms of the complex
Borel measures on R’. We then introduce an integral transform as an analytic operator-valued Feynman integral
over C'[0, t], and evaluate the integral transform for the function I'; via the conditional analytic Feynman integral
as a kernel.
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1. Introduction

Let r be a positive integer and let C§[0, t] denote the r-dimensional Wiener space. Cameron and Storvick [3] introduced a
very general analytic operator-valued function space Feynman integral /7" (F), on Cg[0, t], which maps an L,(R")-function
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W into an Lp(R")-function J3"(F). In[4, 15], the existence of the analytic operator-valued Feynman integral J$"(F) as an
operator from L;(R) to L (R) was studied. Chung, Park and Skoug [12] showed that it can be expressed by the formula

U@ = (2] [ etrxidimom e { S 21k | aniin, o)

where m! is the r-dimensional Lebesque measure on the Borel class of R" and E®"/a[F|X] is the conditional analytic
Feynman integral of F given X. Further work extending the above L(L;, Ls)-theory with the conditional analytic
Feynman integrals was made by Cho [8], over the space Cy(B) of Wiener paths in abstract Wiener space B which
generalizes the space C[[0,t] [16, 18]. In fact, the conditional Wiener integral over Co(B) was introduced by Chang,
Cho, Song and Yoo [6, 7] and they derived a simple formula for the conditional Wiener integral with the conditioning
function X : Gy(B) — B defined by X(x) = x(t), which calculates directly the conditional Wiener integral in terms of the
Wiener integral. Applying this simple formula to a certain function F defined on Cy(B), Cho [8] obtained the analytic
operator-valued Feynman integral Jg"(F) : L, (B) — L,,(B), 1 < p1, p2 < 00, using the formula

(/3"(F)¢)(5)=/}BE“”'q[F|X](5)(n)¢I(n) dmap(n), ¢ €B, ()

where mup is the probability distribution of X on the Borel class of B.

In this paper, we further develop the concepts of (1) and (2) on another generalized Wiener space (C'[0, t], w,), the
analogue of the r-dimensional Wiener space associated with the probability measure ¢ on the Borel class of R [13, 19].
For the conditioning function X; : C'[0, t] — R?" defined by X:(x) = (x(0), x(t)), we proceed to express the analytic
L(Ly, Loy)-operator valued Feynman integrals in terms of the conditional analytic Feynman integrals. In fact, with the
conditioning function X;, we introduce a simple formula for the conditional w/-integrals over C'[0, t] and using this

¢
formula, we then evaluate the conditional analytic Feynman w;-integral E9"a[" | X;] for the functional

rf(x)zexp{ / e(s,x(s»dn(s)}wx(t)), xe o,

which is important in quantum mechanics and Feynman integration theories, where ) is a complex Borel measure on [0, t],
and O(s, -) and ¢ are the Fourier-Stieltjes transforms of the complex Borel measures on R". Finally, we establish that
for a nonzero real g, the analytic operator-valued Feynman integral J;"(T';) exists as an element of E(L1 (R"), Lm(Rr)),
the space of the bounded linear operators from L1(R") to L(R"), and it is given by the formula

r A w2
U@ = () [ @ i - e { I L g,

for £ € R" and ¢ € Li(R"), where W is the analytic extension of the probability density of ¢". Thus J§"(I's) can be
interpreted as an integral transform with the kernel

' iq|it, — i || 2. L2
(L) exp{m}E""fq[rtl)(t](é‘)(m,nz)W(—lq,n1 — 3.
iV 2t 2t

2. An analogue of the r-dimensional Wiener space

Throughout this paper, let C and C, denote the set of complex numbers and the subset of complex numbers with positive
real parts, respectively, and let C7 = {A € C: ReA > 0} \ {0}. Further, let m; denote the Lebesque measure on the
Borel class B(R) of R.
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Now, we introduce the probability measure w;, on (C'[0, 1], B(C"[0, t))), where B(C'[0, t)) denotes the Borel o-algebra of
C'[0, t].

For a positive real t, let C = C[0, t] be the space of all real-valued continuous functions on the closed interval [0, ] with
the supremum norm. For £ = (to, t;,..., t,) withO =ty < t; < ... < t, < t, let Jr: C[0, ] = R"*" be the function given
by

Jilx) = (x(to), x(tr), - . ., x(n))-

For B;,j = 0,1,...,n, in B(R), the subset J-"([7_, B;) of C[0,1] is called an interval. Let Z be the set of all such
intervals. For a probability measure ¢ on (R, B(R)), let

_ J ( j — Yj- )2 n
m, (/;1 (HB/)) [l_l e 1)} /BO/ exp{ 2 m}dmL(uh...,un)d(p(uo).

Then B(C[0, t]) coincides with the smallest g-algebra generated by Z and there exists a unique probability measure
w, on (Cl0, t], B(C[0, t])) such that wy(/) = my(/) for all / in Z. This measure w, is called an analogue of the Wiener
measure associated with the probability measure ¢ [13, 19]. Let C" = C'[0, t] be the product space of C[0, t] with the

product measure w,,. Since C[0, t] is a separable Banach space, we have B(C'[0, t]) = [;_, B(C[0, t]). This probability

measure space (C'[0, #], B(C'[0, ]) (p) is called an analogue of the r-dimensional Wiener space.

Lemma 2.1 ([13, Lemma 2.1]).

If f : R™" - C is a Borel measurable function, then we have

/C f(x(tg),x(t1), o ,x(tn)) dw,(x)

1 (uj — uj_q)?
f ’ yeeeaUp I S e d i yeelp d ,
|_|2m_t [ [ oo il SUCISIALAT

where = means that if either side exists, then both sides exist and they are equal.

Let {ex : k =1,2,...} be a complete orthonormal subset of L]0, t] such that each e, is of bounded variation. For v in
L,[0, t] and x in CJ0, t], we put

(v, x) nlLToZ/ v, ex)ex(s) dx(s)

if the limit exists. Here (-, ) denotes the inner product over L]0, t]. (v, x) is called the Paley—Wiener-Zygmund integral
of v with respect to x. Note that (-, -) also denotes the dot product over Euclidean space.

3. A simple formula for the conditional w-integrals and the operator-valued
function space integrals

In this section we derive a simple formula for the analogue of the conditional Wiener integrals over C'[0, t] with the
vector-valued conditioning function X; given by X:(x) = (x(0), x(t)). First we define the conditional w-integral over

1o, 1]
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Definition 3.1.

Let F : C'[0, t] — C be integrable and let X be a random vector on C'[0, t] assuming that the value space of X is a
normed space with the Borel o-algebra. Then, we have the conditional expectation E[F|X] of F given X [17]. Further,
there exists a Px-integrable complex-valued function ¢ on the value space of X such that E[F|X](x) = (¢ o X)(x) for
wy-a.e. x € C'[0, t], where Py is the probability distribution of X. The function ¢ is called the conditional w,-integral

2
of F given X and it is also denoted by E[F|X]

Let0=1ty < t; <...< t,_1 <t, =t be a partition of [0, t]. For any x in C'[0, t], define the polygonal function [x] of x
on [0, t] by

S — t/'_1
ti—ti4

[x](s) = x(tj—1) + x(t;) = x(ti)),  ta<s<t, j=1,....n

Similarly, for &1 = (&, &, ..., &,) € R+ we define the polygonal function [§n+1] of &1 by the right hand side of
the above equality where x(t;_1) and x(t;) are replaced by 3,-,1 and g?, respectively.

In the following theorem, we introduce a simple formula for conditional w;-integrals on C'[0, t]. The proof of the theorem
is given in [9-11].

Theorem 3.2.
Let F : C'[0,t] — C be integrable and X,;1 : C'[0, t] — RV be given by X,1(x) = (x(to), x(t1), - - ., x(t,)). Then for

Y
Py, -a.e. &1 € R we have,

E[F [ Xost)(&ns1) = E[F (x = [x] + [&1])].

where Py,

is the probability distribution of X,y on (R, BRI+1r)).

Let X; : C'[0,t] — R? be given by X;(x) = (x(0), x(t)) and let F : C'[0,t] — C be a function. Further, let XtA"?(x) =
XA~ 2x + &) and F*¥(x) = F(A"2x + &) for A > 0 and for & € R". Suppose that for A > 0, F*< is integrable over C'[0, ]
for 26 R’. Then for fe R", we have, by Theorem 3.2,

L4 ) = E[ £ (473 (x6) =0 = 500 =0 ) + 1+ 50— |
for P ,¢-ae. (ifi, 1) € R?, where P ¢ is the probability distribution of X/ on (R, B(R™)). Let

1

(PN ) = ] F (47 (50200 = 0t = w000 ) + 1+ 5= ) | ®)

If (Ky(F))(if1, if2) has the analytic extension Jy(if1, i) on C, as a function of A, then it is called the conditional analytic
Wiener wy,-integral of F over C'[0, t] given X, with parameter A and denoted by

I, i) = ET™[FIX)(E) (A, 7o)
for A € C,. For a nonzero real g, if the limit

lim E“™[F|X,)(&)(7, i)

A——iq

exists, where A approaches —iq through C,, then it is called the conditional analytic Feynman w,,-integral of F over
C'[0, t] given X; with parameter g and we write

lim E“™F X&), i2) = E“"[FIX (&), i)

A—>—iq

Next we define the analytic operator-valued function space integral.
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Definition 3.3. .
Let F : C'[0, {] — C be a function. For any A >0, ¢ in L;(R") and & in R", let /"*(x) = (A~ 2x(t) + &) and

Q) = [ P00 wdwy ),

If L(F)Y is in Ly (R") as a function of Z and if the correspondence ¢ — ,(F)y gives an element of £ = E(L1 (R"), Lw(R’)),
we say that the operator-valued function space integral I,(F) exists. Next suppose that there exists an L-valued function
which is weakly analytic in C, and agrees with [,(F) on (0, 00). Then this £-valued function is denoted by /{"(F) and
is called the analytic operator-valued Wiener integral of F associated with parameter A. Finally, for a nonzero real ¢
suppose that there exists an operator Jg"(F) in £ such that for every ¢ in L1(R"), [{"(F)¢ converges weakly to J¢"(F)¢, as
A approaches —iq through C,. Then Jg"(F) is called the analytic operator-valued Feynman integral of F with parameter

qg.

Note that in Definition 3.3, the weak limit and the weak analyticity are based on the weak* topology on L (R") induced
by its pre-dual L;(R") [4, 15].

Lemma 3.4.
Let A >0 and & € R'. Suppose that ¢" is a continuous measure with respect to mj. Then Px*'“f & (m})? and
t

dP . =212 dor

X A Ml — iz ] do” 1. 2
_ = e ———= IR I T (A —
d(m[)z(m'nz) (\/Tﬂ't) exp{ 2t dmz( il = <))

for (m?)?-a.e. (i, ) € R*.
Proof. For a Borel subset B of R* we have by Lemma 2.1

lld1 — dollr

1 ' -1 Z -1 = Z d(pr - re rie
P (B = (ﬁ) / /,XB(A 2o + 6,472 01 + &) exp {_T}Tm(uo) dmi (o) dmi (i)
since ¢" < mj. Let ij; = A*%Jo + 3 and i, = )\*%0’1 + 3 By the change of variable and Fubini theorems, we have,

1

A ' > o A i — if; 2’ do" (= 2 r{= r{=
Pucttl = o= ) [ [ xoti e { -SRI L EE G, - ) am i amii
e L

Xt
which completes the proof. O

Theorem 3.5.

Let the assumptions and notations be given as in Lemma 3.4. For F : C'[0,t] — C, suppose that E“™[F|X,)()(f, i)
exists on C. x R, and for each bounded subset Q of C,, there exists Mg > 0 such that |E""W*[F|Xt}(§)(ﬁ1, )| < Mq
for all A € Q) and all (3, i, i) € R*. Further, suppose that there exists a function W on C, x R" satisfying the following
conditions:

(i) for each A > 0 and ij € R', W(A, ij) = 32 (A7),

(ii) for each ij € R", W(A, i) is analytic on C, as a function of A,

(iii) for each bounded subset Q of C,, W is bounded on Q) x R".
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Then for A € C,, the analytic operator-valued Wiener integral I{"(F) exists as an element ofE(L1 (R, LM(R’)) and is
given by

. 2=
e = (A= [ e, dphv i - dep | -2 Y dpnn

for y € L1(R") and mj-a.e. & € R'. In addition, suppose that for a nonzero real q and & € R', E™"a[F|X,)()(, if2)
exists for (ifi, ) € R¥. Moreover, suppose that W can be extended to (C, U {—iq}) x R" with the following two
additional conditions:
(ii) for each if € R, W(A, ) is continuous at A = —iq as a function of A,
(i)' there exists a function ®, € L1(R") satisfying
WA, 7)| < |Pg(iF)| for all (A, ) € Qe x R, (5)

where Q. = {A € C, : |[A+ iq| < €} for some real € > 0.

Then the analytic operator-valued Feynman integral J3"(F) exists as an element 0f£(L1 (R", LM(R’)) and it is given by
(4) where A and E?™ are replaced by —iq and E°", respectively.

Proof. Let A>0, ¢ € [1(R") and & € R". With the notation from Definition 3.3, we have, by Definition 3.1
@ = [ FAout Wi = [ PG dug o

For (71, if2) € R%, we have,

which implies

(L(F)$)(&) = / (Ku(F)) iy, ) p(7e) APy, ),

R2r

where K)(F) is given by (3). Now suppose that W satisfies (i), (ii) and (iii). By (i), Lemma 3.4, and the change of variable
theorem we have

r 2 =2
@ = (| [ ot ot vin, i - &ep |- N dpa, .
st R t

Let Q, be a bounded subset of C, containing A. Then for any c? € R" we have

r 2 =2
AN < Moo (2= ) [ 1wt {22 dnpya, )

= )ﬁMQA ||k|'J||QA,oo||¢||L1(R')’

(6)

where ||¥[lq, o denotes the essential supremum of ¥ on O, x R" so that [,(F) € Loo(R") and ,(F) € L(Li(R"), Loo(R")).

For ¢ € Li(R") let (QA(F)¢) (&) be the right hand side of (4) for (A, &) € C; x R" and let Q) be any bounded subset of
C,. Using the same method we have for A € Q and 3 e R’

. )\ 2 5
QAP < Mal|Wllaool 14142y ( % ) Y
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so that Qx(F)Y € Lo(R") and Q,(F) € E(L1(R’),LM(R’)) for A € C,. Furthermore, Q,(F) = ,(F) on (0, 00), and
(QA(F)Lp)(f) is an analytic function of A € C, by (7) and Morera's theorem. Using (7), the ML-inequality, Fubini's
theorem, and the dominated convergence theorem, we can easily show that jR,(QA(F)L/;)(E)%(E) dmi(c?) is analytic on
C; for any ¢ € Li(R") by Morera’s theorem, which implies that /;(F) is weakly analytic on C,. Hence [{"(F) exists
and §"(F) = Qu(F) for A € C,. Further, suppose that W satisfies (ii)’ and (iii)’. For ¢y € L[1(R") let (j;;”(F)d;)(E’) be the
right hand side of (4) for & € R where A and E“" are replaced by —ig and E°", respectively. Then we have by (ii)’
and (5)

g0l < Mo, (L) [ 19400 — 81y, ) < Mo Wl el (D) = o

which implies Jg"(F)y € Lo(R") and J3"(F) € [,(L1(]R’),LDQ(R’)). Since both integrands in the representations of
(Ig"(F))(§) and (J2"(F)ip)(&) are bounded by Mo, [i)(if2)| @4 (i — )|, which is independent of the complex numbers in
Q. U{—iq} and integrable as a function of (i, f2) € R?, we have, by the dominated convergence theorem,

=

(5" (FY)(&) = Ug"(F))(&)

as A approaches —iq through C,. By (5), (lj”(F)L/;)(?) is also bounded by Cq_ for any A € Q. and & e R so for
Y € LR, (8" (F))(E)dn(S) and (J"(F)y)(S)yn (&) are bounded by Ca |1 (€)]. Now, we have by the dominated
convergence theorem

| Erun @ it~ [ Uz (P dmi )

as A — —iq through C, that is, [{"(F)¢ converges weakly to Jg"(F)y as A approaches —iq through C., which completes
the proof. O

Next we give an example of ¢" which is not normally distributed.

Example 3.6.
Forij=(m,....n) €ER"and A € C7, let

r

de' 1\"H 1 1\" 1
== d W f=|— —
dmi(ﬁ) (JT) D1+U,2 an (A7) (71’) |_|1+)\n/2

j=1

Then ¢" is a probability measure on the Borel class of R" and the condition (i) of Theorem 3.5 is satisfied. Further, for
i € R", W(A, 7j) is analytic on C, and continuous on C; because 1 + M,Z # 0 for A € C7, satisfying conditions (ii) and
(ii)" of Theorem 3.5. Now we have for (A, n;) € C; xR

1
14 A7

2
1 . { 1 }
= <mnil, ——
(1+ M Re A2 + (17 Im A2 T+ i(Im A2

which satisfies conditions (iii) and (iii)’ of Theorem 3.5. Let F be a function satisfying the assumptions of Theorem 3.5.
Applying Theorem 3.5 to F, for any nonzero real g, we conclude that the analytic operator-valued Feynman integral
Jg"(F) exists as an element of L'(L1 (RN, LDO(R’)) and it is given by

an 2\ _ q ' anfy Y = - 1 iq”ﬁ2_ﬁ1”2' n2(= =
e e N '[F|xr}(é)(m.nz)¢(nz>[|;|1_[.q(,m_ Ej)z]exp{ 7 o

for ¢ € L1(R") and & = (&, ..., &) € R", where i = (11, ..., m,). Note that the probability distribution ¢ having the
above density for r = 1 is known as the Cauchy distribution [1, p. 211].
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Using the same method as used in the proof of Theorem 3.5 but without (6) and (7), we can easily prove the following
theorem.

Theorem 3.7.
If the conditions (iil) and (iil)’ in Theorem 3.5 are replaced by the condition: for each bounded subset Q) of C, there
exists a function ®q € L41(R") satisfying

W, M) < [®a(d)|  forall (A7) € QxR (8)

then the statement of Theorem 3.5 holds true.

4. The operator-valued function space integrals via the conditional analytic
Feynman integrals

We begin this section with introducing the Banach algebra S, corresponding to Cameron and Storvick’s [5] Banach
algebra S.

Now, let M(L5[0, t]) be the space of the complex Borel measures on L5 = L5[0, t] and let S,,; be the space of the functions
of the form:

.

F(x) = /[0 ) exp {i (vj, xj) p do(¥), x = (x,...,x) € C0,1], (9)

L

j=1

where 0 € M(L3[0,t]), 7 = (v1,...,v,) € L0, t]. Using the same method as in [5], it can be shown that S, is a Banach
algebra.

Using the well-known integration formula

/exp {—au? + ibu} dm(u) = (f) ’ exp {— b? } (10)
R a

4a

for a € C, and any real b, we have the following theorem by Corollary 3.3 of [10].

Theorem 4.1.
Let X; : C'[0,t] — R be given by X(x) = (x(0), x(t)) and let F € S, be given by (9). Then we have for A € C and
feRr

anw, /= = 1 N _, I N Lo
EFXIRI 1) = [ e { =5 (171 = IV + 40— . V) doto) )

5[0t

for (i), i) € R, where V, = (fo va(s)ds, ..., [y vi(s)ds). Moreover, for any nonzero real q, E°"a[F|X,] is given by the
right hand side of (11) where A is replaced by —iq.

For F € S.;, given by (9), we know from Theorem 4.1 that £9"*[F|Xi] is bounded by ||o]|, where |o| denotes the total
variation of g. Combining Lemma 3.4, Theorems 3.5, 3.7 and 4.1, we have the following theorem.

Theorem 4.2.

Let the assumptions be given as in Lemma 3.4 and let F € S.;. Suppose that for a nonzero real q there exists a
function W on (C. U {—iq}) x R" satisfying the conditions (i), (i), (il) of Theorem 3.5, and either (iil) and (iil) of
Theorem 3.5 or (8) of Theorem 3.7. Then the analytic operator-valued Feynman integral J{" (F) exists as an element of
L(L1(R"), Lu(R")) and it is given by (4) where A and E°"*+ are replaced by —iq and E"'s, respectively (E°""a[F|X,] is
given by Theorem 4.1).
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Theorem 4.3.

Let the assumptions and notations be given as in Theorem 4.1. Furthermore, suppose that ¢" is normally distributed
with the mean vector 0 and the variance-covariance matrix a?l,, where I, is the r-dimensional identity matrix. Then for
A € C, the analytic operator-valued Wiener integral I{"(F) exists as an element ofE(L1 (R"), LOQ(Rr)) and it is given by

an 7\ _ A : =] 10 r
R B I A R L 9 L O R U R C I

27(t + )

~

for ¢ € L1(R") and mj-a.e. & e R', where

s o Az Lo ta’
HR 611, ¢) = exp | =55zl =l = 350

i 2
= } (13)
a Rr

for A € C7 and ¢ € R". Furthermore, for any nonzero real q the analytic operator-valued Feynman integral J3"(F)
exists as an element ofE(L1 (R", LM(R’)) and it is given by (12) where A is replaced by —iq.

{+ S5(E-1)

r r A2
Proof. By the assumptions, the hypothesis of Lemma 3.4 is satisfied and we have g—,‘r’;i(r'f) = ( 217w() exp {—”g‘#}

for mj-a.e. j € R". We also know from Theorem 4.1 that E“"¥[F|X,] is bounded. Let W(A, 7j) = (\/217a )rexp{ A”;JZR’ }
for (A, i) € C; x R". Then W satisfies the conditions (i), (ii) and (iii) of Theorem 3.5, so the existence of the analytic
operator-valued Wiener integral /{"(F) follows. Now, for A € C,, ZeR and ¢ € L1(R") we have by (4), (10), Theorem
4.1, and Fubini's theorem,

> A g 1 _
EE0O = (57 [ ee]arlrk -1} [ o

i oo M —dmlE MFE =R, s
Xj, eXP{;Mz—'ﬁ'Vr}— ” ZZt e _ Al 12012 I dm (i) dmi(if2) da(V)

A e — e / , Az
= (sraa) Lo, o0 {0 = 1} [ wiroe {518l

At +a? 1o Ao. o
< [ e =5 = e+ i Ve 2= ) g dng ) ot

A z . 1,
= [m] /LE[OJ]QXP{ ZAt[t” ”L’ _||Vr||Rr ]’/ Y(if2) ()\ g, flz,t )dmL(Uz)dU(_')

which proves the first part of the theorem. To complete the proof, we must prove the existence of J¢"(F). For ¢ € L4(R")
and Z € R, let (jg"(F)Lp)(;?) be the right hand side of (12) where A is replaced by —iq. Since
i >

c o1 @ L
‘H()\'ffﬂﬁ\/)‘z eXP{ 2(t+az)||5 ’7||Rr—m||vr||n2v—W<Vt"f—’7>H <1,

I"(F)¢ converges weakly to J¢"(F) as A approaches —iq through C, by the dominated convergence theorem. This
completes the proof. O

~

5. The series expansions for the function space integrals

Let M(R") be the class of all complex Borel measures on R" and G be the set of all C-valued functions 6 on [0, 00) x R"
which have the form

O(s, @) = /R exp {i(d, W)} da,(W), (14)

where {o, : s € [0, 00)} is the family from M(R") satisfying the following conditions:
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(1) for each Borel subset E of R, o5(E) is a Borel measurable function of s on [0, t],

(2) llosll € L]0, 2]

We have the following theorem.

Theorem 5.1.
For a positive integer n, let

n

Fox) = [ /0 r 0(s, x(s)) ds] (15)

for x € C'(0, t], where 6 € G is given by (14). Then F, € S, which implies the existence of E"'[F,|X;] for any nonzero
real q by Theorem 4.1, and for ZeRitis given by

EmnE X &) =nt [ [ AS ) Bl-ig. 5 7 d ( [o, ) () ds (16)
n JROT =
for (i, >) € R¥, where sg =0, Sp41 =t, 8= (51,...,8,), V=(#,..., %) ER", A, ={3:0< 51 < ... <5, < t},

n
i
AV, i, if2) _exp{ Z t—slm-l-sjr)z,vj)]»

j=1
and for A € C7,

n+1

B()\,§’,|7):exp{ ZAtZZ —5j1)

2
}‘ (17)
w

Proof. 1t is not difficult to show, using the same process as in [5], that F, € S,;. Using the simplex method [14], we

have
F,,(x):n!// exp{i
A, JROT

n j—1
E (t—s)v — E sV
=) =1

(x(s;), 7)) } (I_las) (V) .

rl2
Let =,(3) = n! |17 ! and let (Ki(F,))(ifi, /) be given by (3) for A > 0 and (if;, ) € R*. Then we have,
g y

j=1 271(sj=sj-1)

by Lemma 2.1,
Foni ) =t [ [ [ A v
Xexp{i)\ <xs,)—x(o L x(t) = x(0)) 7, >} (l—la) V) ds dw(x)
=_ns?)j”[RW (5.7, . )
] exp{u

de' (ite) dm""" (ity, ...,Jn,Jn+1)d(|_|asl.)(\7)d§’.
j=1

Bl

n n+1

s; i — i
Z<ﬁj—ﬁo— T](ﬁnJr'l —170).‘7j> Z 14 /_ = 1”]Rr}
=

_5/1

Nl=
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Forj=1,....,n+1, let Z/ = (i — if;_1. Then, by the change of variable theorem,

n+1 n+1

UF N 1) ==, [ [ A [ )exp{u“zZ<Zc,—Zc,.,> ZZSM’”R’}
n nr n+1)r j

_ — _5]1

dm(Ln+1)r(Z1; sy 6nr 6n+1) d ( |_| Os; ) (\7) ds
j=1

i = 1 1IR
S (S, V. i, 1i2) ex 3y (t—s)yn =Y s )—=y IR
j/,, /R"f i 1) /"+1 P \HTZ ' Z( ; S = % T Si-

n

dm{"*"" (61,...,Zn,fn+1)d(|_|as,)(v*)ds*
j=1

_n|[/ A7, i, i) B A5\7)d(|_|05)¢)d§’,

where the last equality follows from (10). The theorem now follows from Morera'’s theorem and the dominated convergence
theorem. O

Theorem 5.2.
Let

Fi(x) = exp {]ot O(s, x(s)) ds}

for x € C'(0, t], where 6 € G is given by (14). Then F € S, which implies, by Theorem 4.1, the existence of Eorfa[Fy| X;]
for any nonzero real q. For & € R' it is given by

E™[F,|1X,)( E) i) =1+ Z E”"fq[l—_ | X ]( E) i, i)

n=1

for (i), i) € R, where E®a[F,|X,)(&)(7, f2) is given by (16) in Theorem 5.1.

Proof. 1t is not difficult to show that F; € S,;, using the same process as used in [5]. By the Maclaurin series of the
exponential function we have,

o0 1 .
F)=1+) —Falx) for xeCo.1, (18)
n=1
where F, is given by (15). Further, we have for any x € C'[0, t]

%) 1 ) 1 t n t
Fal< 143l <1+ Y | [ladas] e ] [olos)
n=1 : n=1 ’

so that the convergence of (18) is uniform. Now the theorem follows. O

Let ¢(&) = [, exp{i(d, W)}dv(W) for v € M(R"). Then for A >0, x € C'[0, t] and (i, if,) € R, we have

P (,r% (X(t) — x(0) - ;(X(t) - x(O))) + i+ ;(ﬁz - m)) = ¢(ih)- (19

Furthermore, it is not difficult to show that G, € S,; using the same process as in [5] where G,(x) = F,(x)$(x(t)) for
x € C'[0,t] and F, is given by (15), so that we have the following theorem by Theorem 5.2.
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e
Theorem 5.3.

Let the assumptions and notations be given as in Theorem 5.2. For x € C'[0, t] let

Go(x) = Fa(x)@(x(t)) and = Gi(x) = Fi(x)¢(x(1)),

where §(d) = [, exp {i(d, W)} dv(W) for v.€ M(R'). Then G,, G; € S, which implies, by Theorem 4.1, the existence
of E”""?[C,7|X,] and E””f‘i[C,|X,] for any nonzero real q. For & € R", E*"9[G,|X;] and E°"'[G,|X,] are given by

ET[G X)), ) = pli2) EC 9 [Fo | X () (1, i)

and

E (G X @) ) = ST F XN ) = 9l +Y_ - E(G, X @) 7o)

n=1

for (if1, i) € R¥, where E“a[F,|X,)(&)(if1, i) and E®a[F,|X,)(&)(7, i2) are given in Theorems 5.1 and 5.2, respectively.

Combining Lemma 3.4, Theorems 3.5, 3.7, 5.1, 5.2, and 5.3, we have the following theorem.

Theorem 5.4.

Let the assumptions and notations be as given in Lemma 3.4 and Theorems 5.1, 5.2 and 5.3.

(1) Suppose that there exists a function ¥ on C, x R" satisfying the conditions (i) and (ii) of Theorem 3.5, and either
(iit) of Theorem 3.5 or (8) of Theorem 3.7. Then for A € C. the analytic operator-valued Wiener integrals 1" (F,)
and 1§"(G,) exist as elements ofE(L1 (R"), LM(R’)) and they are given by (4) where F is replaced by F, and G,,

respectively (for A € C,, E®™[F,|X;] is given by the right hand side of the equality = in the proof of Theorem
51). Furthermore, as an element ofE(L1(Rr), LM(R’)), the analytic operator-valued Wiener integral IJ"(F;) is
given by

o]

(" (FNE) = (" ())& + ) ,j, 1§ (Fa))(&) (20)

n=1

for ¢ € L1(R") and Z e R’, where

r 7 o_ml2
@ = (=) [ v - geef-AEZRE oy, .

The analytic operator-valued Wiener integral I]"(G;) is also given by

2 =2
G = A=) [ otmautnrvin - & ewp { -2 g,
@
+Z—(/””((;,, ).

Suppose that for a nonzero real q there exists a function ¥ on (Cy U {—iq}) x R’ satisfying the conditions
(1) and (ii) of Theorem 3.5, and either (iil) and (iii) of Theorem 3.5 or (8) of Theorem 3.7. Then the analytic
operator-valued Feynman integrals JJ"(F,), J5"(Gn), J3"(F:) and J3"(G:) exist as elements ofE(L1 (R"), LM(R’))
and each of them is given by the corresponding expression of the analytic operator-valued Wiener integral in (1)
where A is replaced by —iq, E°™ is replaced by E°™s and 19" is replaced by 5"

B




Operator-valued Feynman integral via conditional Feynman integrals on a function space

920

Theorem 5.5.

Suppose that ¢" is normally distributed with the mean vector 0 and the variance-covariance matrix o®l,. Let the
assumptions and notations be as given in Theorems 5.1 and 5.3. Then for any nonzero real q, the analytic operator-
valued Feynman integral J3"(G;) exists as an element ofE(L1 (R"), Lm(Rr)) and for ¢ € L1(R") and & € R’, it is given

by

-

/ Llf(ﬁ)¢(ﬁ)exr3{ St ||n—f||Rf}dmLﬁ>+Z—U°" ATt B >)

n=1

Us" (G = [m]

where

0@ =nt| sl | [ [ i [ ¢(f7)¢(r7)exp{t; .9 }

]

a1 o d .
—iq, &1, ) (s — t)v,-) dmL(rT)d(l_las,)(V) ds ;
j=1 j=1

V= {(h,...,V,) €R", and H and B are given by (13) and (17), respectively.

Proof.  The existence of J"(G) is guaranteed by Theorems 4.3 and 5.3. Let W be given as in the proof of Theorem

4.3. Then, by (1) of Theorem 5.4, (lg"(G,)Lp)(f) is given by (21) for A € C,, & € R and ¢ € L1(R"). Furthermore, we
have by (4), (10), Theorems 5.1, 5.3, and Fubini's theorem

T
Gn@ = (2= [ Emtrba awom o, i - 8 e { -2 gy, )
- ( )]/ 8057 [ wii)s nz)exp{lZ(ﬁz,Vj)}
j=1

exp{ <

Using the same method as used in the proof of Theorem 4.3, we get

2

Ay = llge A =Sl | s [ .
Z(S/ —t > _ “ 2 5 1||]R _ ” 12a2 ”]R dmL(rh)dmL(nZ)d |_|0.S/ (\7) dzg.
j=1

(/f“(C,,)l,[/)(f) = [m] /A Ran)\ S, ‘7)/ (i) o(if) eXP{lZ (2, V) ]’
n j=1

x H(A, & i, } > (si— t)v,-) dmj(if,) d(|_| o, ) (¥) d3.

j=1 j=1
Further, a simple calculation shows that
A\ N Lz Al — i || N2(a R
o) [ SR — & exp § ~ SRS (. )

V2t
A
[m] /¢(nz¢(nz)eXP{ m”flz 5||Rr}dmL 2):

The theorem now follows by use of the dominated convergence theorem. O
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6. The stability theories

In the previous sections, we established the analytic operator-valued Feynman integrals for the functions which belong
to Syy, via the conditional analytic Feynman wy-integrals over the generalized Wiener paths. In this section, which is
the main section of the present paper, we do the same things for functionals that need not belong to the Banach algebra

Suj-

Let n be a complex Borel measure on [0, t]. Then n = p+ v can be decomposed uniquely into the sum of a continuous
measure p and a discrete measure v. Further, let §,; denote the Dirac measure with total mass 1 concentrated at p;.

Let G* be the set of all C-valued functions 6 on [0, 00) x R" which are of the form

O(s, @) = /R exp {i(d, W)} da,(W), (23)

where {05 : s €[0,00)} is the family from M(R") satisfying the conditions:
(1) for each Borel subset E of R", 0;(E) is a Borel measurable function of s on [0, t],
) llo]l € La([0. 1], B(0, 1)), [nl)-

Theorem 6.1.
Let m, n be two positive integers and let n = p + Z]m1 w;0p,, where 0 < py < ... <p, <t and the w;s are in C. Let

6 € G* be given by (23) and N\,(x) = [fo 0(s, x(s)) dr](s)]’ for x € C'[0, t]. Then for A € C, and & e R we have

E™ XN @), i) =t Y (l_l Mq/i ) =

qo+qi+..+qm=n Jotih++im=q0

njm (24)
/ /A1 (joo -+ jmi 1, 712,87, 1) Bi(jo, - - - jmi A, S, V. ) (l_”_ltfswxl_laq“) 7, h) du%(3)
A u=0v=1
q0ifg.---im R
for (ify, if2) e R%, where
i m ju+l
A1(j0:~~~rjm;’71:’72:§: v, —EXP{tZZ t_suv 1+5uv’72:Vuv>}
u=0 v=1
and
m ju+1 m IB‘*'1
B1(jo,...,jm;)\,§’,\7,h)=e><p{ ZMZZZSUV Suy—1) Z Z(f—ssv )Vs.y
u=0 v=1 B=u+1 y=1
ju+1 u—1jgH1
+Z = Suy)Vuy — Zsuvvuv ZZSBVVBV }
y=v B=0 y=1 Rr
with the convention that § = (50,1,...,50,/0,51'1,...,51,,1,...,5,,,1,.. s,,,jm) for jo+ ji + ...+ jm = qo. Dggijo,..jn =
{8:0 < s01 < ... < s0jp < p1 <5110 < o< s <K p2 <o < Py < Spp < ool < Sy, <t}
V= (‘70,1'--'r\70,j0r‘7|,1r---r\71,j1r---:\7m,1:---r\7m,j,,,)r h = (h1,1r" h1q1rh21r"'r hZ,qzy---yhm,1r---rhm,q",)r \7m,jm+‘| =0,
s00 =0, Simjn+1 = t, Su—tj, 1+1 = Su0 = Pu and Vy_1j, 41 = > J hy, foru=1,...,m. Moreover, for any nonzero real

q, E“[A| X (&) (71, 72) is given by the right hand side of (24) where A is replaced by —igq.

921
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Proof. For A >0 and (7, 72) € R¥, let (K;(A,))(71, f2) be given by (3) where F is replaced by A,. Then we have, by
the binomial expansion and the simplex method [14],

m qaj
(KA, ) =t 3 (I_IV;,,)

qo+qi+..+qm=n \ j=1
90 ; S,
<[ [ [l‘le(s,. (x50 =200 = st = xt0n) + 1+ L —m)du%(s1,...,sqo)]
Aqo j=1
pi pj qj
o F1[e (a7 (o0 = x0 = 2t 00 ) .+ 2= ) | awgio
j=1
where Agy = {(s1,...,5¢)) : 0 < 51 < ... <5 < t}. Let S, 00, Su0, Smju+1 and Aggijo...jn be as in the assumptions.

Then we have, by (23),

m qj
(Ka(A))(ih, i12) = n! Z (l_lwf) Z

|
qo+q1+...+qm=n \ j=1 qi Jot+jr+-+jm=qo
J

m Ju
| [ [, e {f Y3 (3% (tsua) = xs00) = 25 s 0) = x50
" /R0 u=0 v=1
m  jm
+ 1y + 2y — ), v>} d(|_||_|asw ) (m]

u=0v=1

m  qu
X |:/]R(171+~»+Qm|f {l u Z<)\ 2 (X(Su 0) — x(s00) — ST(X(Sm]m-H) X(soo)))

=1 v=1

+ i + SL;'O (2 — >]> (l_ldg‘j’) ]dW (x) du(3),

u=1

q90:f0:jm

R R

where 7 and h are given by the assumptions. For u =1,...,m, let s,_1;, 41 = Su0, Vuz1j, 141 = ZZ; h,, and let
N

Vm,jn+1 = 0. Then we have, by Fubini’s theorem

m Wg/
(Ka(Au)) (i1, i12) = n! Z (l_lq/' Z
do+qr+tqm=n \ j=1 1/ Jo+i+-..+im=qo
|

.

/ Ai(fo -+ jimi 11, 2, 8,7, h)

m ju+1
></ exp{t)\ }ZZ<X(SUV —x(sog)——(x(smjmﬂ) x(s0,0)), vuv>}dw;(x)
u=0 v=1
m  Im
d(l_”_lasuvxl_loq”) 7, h) dp®(3).
u=0v=1

Let

r

m ju+l 2
P "'[l_' o r 1)]

u=0 v=1

922
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Then we have, by an application of Lemma 2.1,

m qj
KA )= Y (I_I ’) >

qo+q1+-+qm=n q;t Jo+ir+.+im=0o

/ / Ai(for- - 1 jmi 11, 2,57, 0) Slos - -+ fimi 5)

Bqgifg.--im

m jutl
_1 3 Suyv 4 -
|:/Rm°+m+nr /]RI’ eXP { 2 Z Z<Cu v (0,0 - 7((:11 Jm+1 G0,0)r Vu,v>

m jutl Z
_ 1 i ”CU v~ Cuy— ”]%Q’ d(pr(Zoo) dm(ﬂ0+’"+1)’(2)
2 Suy — Suv—1 ' t

d ( ﬁ ﬁ 0s,, % ﬁ ol ) (V, ) dp®(3),

BN

u=0v=1

where {1, ,s1 = Qoo foru =1,....mand ¢ = (Gorr--. Cojps1s Gt Crjpsts oo G oo o Cmjsn ). Let 2, =
Cuy— Cuy—1 foru=0,...,m;v=1,...,j, +1. By the change of variable theorem,

9j

KA = (I_IW’.) >

qo+q1+..+qm=n \ j=1 q;* Jo+j1+--+in=q0

/ / A1(j0y---,jmiﬁ1yﬁz,§,vyﬁ)5(jo,---,jm?g)
A '.,..,jm R/’rr

4010
m jut+l [ u— 1//3‘*'1 v s m gt
x exp U\_7 E E y T E Zyy — o Z8,v+ Vv
Rlag+m+1)r t
u=0 v=1 \ B=0 y=1 y=1 B=0 y=1

1" Ju+1

||Z,V||D2§, o m90+m+1r
- = E ———— tdm; (2
2 = "7 Suv ~ Suv-
u=0 v=

(l_”_lasw X |—|U‘7") 7, h) du®(3),

u=0v=1

> > > > > > >
where 7 = (Zy4, . .. 1 20,jo+10 2000 - Dt e 2 e ,Zm,j,,,+1)~ Now,

m qj
(KaAa)(ir, 712) = Z (|_|W’,) Z

qotart—ran=n \ j=1 T | joriv+—Fin=qo

[/A1(jo,...,/m;m,ﬁz,aviﬁ)suo,...,jm;s*)

qG0iigs--im K"

. m ju+1 m  jgtl Ju+1
o AT ES b w5 w w(RR TS wiEwon S

uOv1

A

B=u+1 y=1
v—1 u—1 jg+1 m_jutl
v - 1 | |ZUV||R' dm\Gom+1)r
- SuyVuy — SgyVBy 3 PR— my 2

y=1 B=0 y=1 u=0 v=1 "V uv—1

m jm m

.
oI e % e | o
u=0v=1 u=1

223
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=nl ) (ﬁwﬁj) >

qo+qq1+...+qm=n ql joth+-+jm=q0

m  jm
/ /A1(jo,...,jm;ﬁ1,ﬁ2,§,\7,ﬁ)B1(jo,...,jm;)\,§,\7,ﬁ |_||_|05UVX|_|Uqu v, duqo(g’)

u=0v=1
Aaqgijgim B

where the last equality follows from (10). The results now follow from Morera’s theorem and the dominated convergence
theorem. O

Using the same method as used in the proof of Theorem 5.1 above, we obtain the following corollaries.

Corollary 6.2.
Under the assumpttons in Theorem 6.1, with the exception that n = y, that is, n being a continuous measure,
Enfa[ A, | X )(E) (T, o) is given by the right hand side of (16) in Theorem 5.1 where d3 is replaced by du"(3).

Corollary 6.3.

Under the assumptions in Theorem 6.1, with the exception n = 27:1 W/5P/' that is, n is a discrete measure,
E“a[ A, |X:)() (1, 72) is given by

m qj i m
E (A X&), i) = nt Y (l‘lZ’,)/R { ZZ (t = pu)ity + puita, )

G+ +Hqm=n \ j=1 u=1 v=1

m+1 m u=1 48
2qltZZ = Pu-1) Zzt_pﬁhﬁv ZZPBhBV } |_|Uqu) h
B=u v=1 B=1 v=1 Rr

1

where Po :0/ Pm+1 = tand h = (h1,‘lr~~-;h1,q1rh2,1:--4th,qzr--whm,h-Hrhm,qm)-

Using the same methods as used in the proof of Theorem 5.2, we can easily prove the following theorem.

Theorem 6.4.
Let

Ae(x) = exp{/O O(s, x(s)) dn(s)}

for x € C'[0, t}, where 6 € G* is given by (23). Then E°™a[A\,|X,] exists for any nonzero real q and for & € R it is given
by

o 1 5
E" AN X)) i, iT2) =1+ Z HE”""’[/\nIXt](E)(%  112)

n=1

for (i, if2) € R, where Ea[A,|X,)(&)(7H1, 72) is given by (24) in Theorem 6.1 where A is replaced by —iq.

By (19) and Theorem 6.4, we have the following theorem.
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e
Theorem 6.5.

Let the assumptions and notations be given as in Theorem 6.4. For x € C'[0, t] let

Fa(x) = Aa(x)@(x(2)) and  T4(x) = Ai(x)$(x(1))

where ¢ = [o exp {i(d@, W)} dv(W) for v € M(R"). Then E°"'a[[",|X,] and E*"a[[";|X,] exist for any nonzero real g,
and for & € R’ they are given by

E T [ X @) (i, ) = (i) E ™A X)(E) (71, 1T2)

and

ENIT X, 1) = JUIE NN, ) = BU) + Y~ X, 2

n=1

for (i1, i) € R?, where E°"a[A, |X,] i) and E°™a[A¢| X:]( E) i1, i2) are given in Theorems 6.1 and 6.4, respectively.

Combining Lemma 3.4, Theorems 3.5, 3.7, 6.1, 6.4, and 6.5, we have the following theorem.

Theorem 6.6.

Let the assumptions and notations be as given in Lemma 3.4 and Theorems 6.1, 6.4 and 6.5 above.

(1) Suppose that there exists a function ¥ on C, x R’ satisfying conditions (i) and (ii) of Theorem 3.5, and either
(i) of Theorem 3.5 or (8) of Theorem 3.7. Then for A € C, the analytic operator-valued Wiener integrals I{"(\,)
and [{"(I",) exist as elements 0f£(L1 (R"), LOQ(R’)) and they are given by (4) where F is replaced by \, and I,
respectively (E”"W*[/\H|X,](§)(ﬁ1, i) is given in Theorem 6.1). Furthermore, as an element 0f£(L1 (R"), LM(R’)),
the analytic operator-valued Wiener integral I{" () exists and is given by (20) in Theorem 5.4 where F; and F,
are replaced by N\ and N\,, respectively. The analytic operator-valued Wiener integral I{"(I'y) also exists and is
given by (21) in Theorem 5.4 where G; and G, are replaced by I'y and T",,, respectively.

(2) Suppose that for a nonzero real q there exists a function ¥ on (C, U {—iq}) x R’ satisfying conditions (i) and (ii)
of Theorem 3.5, and either (iii) and (iii)" of Theorem 3.5 or (8) of Theorem 3.7. Then the analytic operator-valued
Feynman integrals J3"(\,), J3" (), 43" (Ae) and J3"(T';) exist as elements of L(L1(R"), Lo(R")) and each of them is
given by the corresponding expression of the analytic operator-valued Wiener integral in (1) where A is replaced
by —iq, E9™ is replaced by E®"'a and I?" is replaced by Jg"

Combining the methods used in the proofs of Theorems 4.3 and 5.5 above, our final theorem follows readily.

Theorem 6.7.

Suppose that ¢" is normally distributed with the mean vector 0 and the variance-covariance matrix ol,. Let the
assumptions and notations be as given in Theorems 6.1 and 6.5. Then for any nonzero real q the analytic operator-
valued Feynman integral J3"(I';) exists as an element 0f£(L1 (R"), LDQ(]R’)) and is given by (22) in Theorem 5.5 where
G and G, are replaced by 'y and ", respectively, at that

% m 7/’
(Je () ) (&) IM[m] > (l_lel) >
=

qotart—tan=n \ j=1 T | jotjr+tin=ao
/

[31(/'0,--~,jm;—iq,§’,\7,/7)
]Rnr

q0:J0-m

m ju+1 m Jju+1
x[] ﬁ)¢rﬂeXp{lZZ }H —iq.¢ ,,}ZZ(sw r)vw)dmL(ﬁ)]
u=0 v=1 u=0 v=1
m  Im
(I‘Iﬂ% <[ o |5y
u=0v=1 u=1

225
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for ¢ € L1(R") and & € R’, where H and By are given in Theorems 4.3 and 6.1, respectively.

Remark 6.8.

e The conditions of Theorems 4.3, 5.5 and 6.7 are independent of those in Lemma 3.4, Theorems 3.5 and 3.7 if ¢" is
normally distributed.

elfn=p+ Z;"=1 w;0p;, where 0 < py < ... < p, < t, we can obtain all the results in the present section with
minor modifications.

elfn=up+ Z;’; w;0p;, then using the following version of the Xo-nomial formula [14, p. 41]

T

! o0 nl
— . q0 1,91 qh
) ) CbPbY b,

Ig4!
0:g1:...4gp
h=0 qo+q1+...+q,=n,qy#0 qo°q q

p=0
we can obtain the results of Theorems 6.1, 6.4, 6.5, 6.6 and 6.7 with minor modifications.
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