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In the following, we prove that the set of all density preserving homeomorphisms of the unit interval is ΠΠΠ11-complete.Descriptive properties of other classes of homeomorphisms of the unit interval were investigated in [3].This paper is organized as follows. In Section 1 we give basic definitions and facts. In Section 2 we present the maintheorem which specifies descriptive set theoretical complexity of density preserving homeomorphisms.
1. Background information

We use standard set-theoretic notation. For the descriptive set-theoretical background we refer the reader to [4]. By
H ⊂ C [0, 1] we denote the set of all increasing autohomeomorphisms of [0, 1]. It is easy to see that H is a Gδ subset of
C [0, 1] and hence it is a Polish space.Let µ be the Lebesgue measure on R. For a measurable set E ⊂ R and a point x ∈ R, by d+(x, E) we denote theright-hand Lebesgue density of the set E at x, i.e. the number d+(x, E) = limh→0+ µ([x,x+h]∩E)

h , provided this limit exists.Analogously we define d−(x, E). Finally by d(x, E) we denote the density of E at x, i.e. the limit
d(x, E) = lim

h→0+
µ([x − h, x + h] ∩ E)2h .

If d(x, E) = 1, then we say that x is a density point of E . If d±(x, E) = 1, then we say that x is a one-sided densitypoint of E .A homeomorphism h ∈ H preserves density at x ∈ [0, 1], provided, for every measurable set S, h(x) is a density point ofthe set h(S) whenever x is a density point of S. If h ∈ H preserves density at every point of [0, 1], then we say that hpreserves density points. The set of all density preserving homeomorphisms in H is denoted by DPH.To characterize density preserving homeomorphisms we need the notion of an interval set. A set S is called an intervalset at a point x if there exist sequences (xn) and (yn) such that xn → x and y1 < x1 < y2 < x2 < ... < x or
x1 > y1 > x2 > y2 > ... > x such that S = ⋃n∈N[yn, xn].It can be easily seen that if S = ⋃n∈N[yn, xn] and x1 > y1 > x2 > y2 > ... > x, then

d+(x, S) = 1 if and only if ∑∞
k=n+1(xk − yk )
yn − x

→ 1
and if S = ⋃n∈N[yn, xn] and y1 < x1 < y2 < x2 < ... < x, then

d−(x, S) = 1 if and only if ∑∞
k=n+1(xk − yk )
x − xn

→ 1.
We will need the following facts regarding density preserving homeomorphisms taken from [1].
Theorem 1.1.
If h is a homeomorphism of [0, 1] onto itself which preserves density points, then h is absolutely continuous.

Theorem 1.2.
Let h be an absolutely continuous homeomorphism of [0, 1] onto itself. A necessary and sufficient condition for h to
preserve density points is that h preserves one-sided density points of every interval set.

Theorem 1.3.
If h is a continuously differentiable homeomorphism of [0, 1] onto itself and the derivative h′ never vanishes, then h
preserves density points.
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Let X be a Polish space. A subset A of X is called analytic if it is the projection of a Borel subset B of X ×X . A subset
C of X is called coanalytic if X \ C is analytic. The pointclasses of analytic and coanalytic sets are denoted by ΣΣΣ11 andΠΠΠ11, respectively. A set C ⊂ X is called ΠΠΠ11-hard if for every zero-dimensional Polish space Y and every coanalytic set
B ⊂ Y there is a continuous function f : Y → X such that f−1(C ) = B. A set is called ΠΠΠ11-complete if it is ΠΠΠ11-hard andcoanalytic.Let A be any set and let N stand for the set of all nonnegative integers. By A<N we denote the set of all finite sequencesof elements from A. For a sequence s = (s(0), s(1), ..., s(k − 1)) ∈ A<N and m ∈ A let |s| = k be the length of s, andlet ŝ m = (s(0), s(1), ..., s(k − 1), m) denote the concatenation of s and m; in a similar way we define the concatenationof two finite sequences. For a sequence α ∈ AN and n ∈ N, let α|n = (α(0), α(1), ..., α(n − 1)) ∈ A<N. Similarly for
s ∈ A<N and n ≤ |s|, let s|n = (s(0), s(1), ..., s(n − 1)) (additionally s|0 = ∅, where ∅ is the empty sequence). A set
T ⊂ A<N is called a tree if for every s ∈ T and every n ≤ |s| we have s|n ∈ T , in particular each tree contains theempty sequence ∅. We will use ∅ to denote the empty set and the empty sequence, but it will never lead to confusion.For any tree T define its body by [T ] = {α ∈ AN : ∀n α|n ∈ T}. By PTr2 we denote the set of all pruned trees on
{0, 1} (a tree T on A is pruned if for every s ∈ T there is m ∈ A with ŝ m ∈ T ). Let WF ∗2 = {T ∈ PTr2 : [T ]∩N = ∅},
IF ∗2 = PTr2 \ WF ∗2 , where N = {α ∈ {0, 1}N : ∃∞n α(n) = 1} (where for brevity ∃∞n denotes ”infinitely many n” and ∀∞ndenotes ”for all but finitely many n”). It is well known (cf. [4]) that WF ∗2 is ΠΠΠ11-complete.Let A be subset of a Polish space X and let C,D be disjoint subsets of a Polish space Y . By A ≤W (C,D) we mean thatthere is a continuous map f : X → Y with f−1(C ) = A and f−1(D) = X \A. Clearly, if A is ΠΠΠ11-complete and A ≤W (C,D),then C is ΠΠΠ11-hard.
2. Density preserving homeomorphisms

Fix two decreasing sequences (αn) and (βn) of positive real numbers tending to 0 with α1 < 1/4 and βn/αn → 0.We define Cantor schemes of closed intervals {Is : s ∈ {0, 1}<N}, {ILs : s ∈ {0, 1}<N \ {∅}}, {IRs : s ∈ {0, 1}<N \ {∅}}by recursion with respect to length n = |s| of s as follows:
(i) I∅ = [0, 1];
(ii) Let Is = [as, bs]. Then Isˆ0 and Isˆ1 have the length 12αn+1|Is| and they have the common centers with the left andthe right halves of Is, respectively;
(iii) Let Is = [as, bs]. Then ILs = [cs, as] and IRs = [bs, ds] are such that |ILs| = |IRs| = αn|Is|.

Note that ⋃γ∈{0,1}N ⋂n∈N Iγ|n = ⋂∞n=1⋃|s|=n Is is a perfect Lebesgue null subset of [0, 1].Now, for every T ∈ PTr2 we will define a sequence of continuous functions (fTn ). For this purpose fix T ∈ PTr2. Let fT1be a continuous function with
fT1 (0) = fT1 (c(0)) = fT1 (d(0)) = fT1 (c(1)) = fT1 (d(1)) = fT1 (1) = 1,

fT1 (x) = β1 for x ∈ I(0) ∪ I(1),
and piece-wise linear elsewhere on [0, 1]. To define fTn+1 for general n, we modify fTn on each interval Is with s ∈ T ,
|s| = n and s(n − 1) = 1. On Is = [as, bs] we can then define a continuous function fTn+1 with

fTn+1(as) = fTn+1(csˆ0) = fTn+1(dsˆ0) = fTn+1(csˆ1) = fTn+1(dsˆ1) = fTn+1(bs) = fTn (bs),
fTn+1(x) = βn+1fTn (bs) for x ∈ Isˆ0 ∪ Isˆ1,

and piece-wise linear elsewhere on Is. On the rest of [0, 1], a function fTn+1 remains unchanged, i.e. fTn+1(x) = fTn (x)for every point x ∈ [0, 1] \ ⋃{Is : s ∈ T , |s| = n, s(n − 1) = 1}. Since for every x ∈ [0, 1], the sequence (fTn (x)) isnonincreasing, the sequence (fTn ) is pointwise and monotonically convergent to some function fT .
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Now if f : [0, 1] → R is Lebesgue integrable, let ‖f‖L1 denote ∫ 10 |f(t)|dt. Recall that N = {
γ ∈ {0, 1}N :

γ has infinitely many 1′s}.
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Figure 1. Graph of fT1 .

Lemma 2.1.
The following statements hold:

(i) for every x, fT (x) = 0 if and only if x ∈
⋃
γ∈[T ]∩N ⋂ Iγ|n;

(ii) fT is Lebesgue integrable;

(iii) lim
n→∞

∥∥fTn − fT∥∥L1 = 0 uniformly on PTr2;
(iv) the mapping T 7→

∥∥fT∥∥L1 is continuous.

Proof. Parts (i) and (ii) follow directly from the construction. For (iii), if T ∈ PTr2 and n ∈ N, then fT and fTn candiffer only on the set ⋃|s|=n Is. Since limn→∞
∑
|s|=n |Is| = 0, the result follows. For (iv), if S, T ∈ PTr2 are such that

{s ∈ S : |s| < n} = {s ∈ T : |s| < n}, then fT and fS can differ only on the set ⋃|s|=n Is. Thus we get (iv).
Now, for every T ∈ PTr2 and x ∈ [0, 1], we put

gT (x) = 1
‖fT‖L1

∫ x

0 fT (t)dt.
By Lemma 2.1(ii), gT is absolutely continuous. Moreover, by Lemma 2.1(i), gT is strictly increasing, and hence gT ∈ H.
Lemma 2.2.
The mapping T 7→ gT is continuous.
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Descriptive properties of density preserving autohomeomorphisms of the unit interval

Proof. For every S ∈ PTr2, n ∈ N and x ∈ [0, 1], we define
gTn (x) = 1

‖fT‖L1
∫ x

0 fTn (t)dt.
Fix any ε > 0 and T ∈ PTr2. By Lemma 2.1(iii) and since there exists A > 0 such that ∥∥fS∥∥L1 ≥ A for every S ∈ PTr2,there exists n0 ∈ N such that for every n ≥ n0 and every S ∈ PTr2,∥∥gS − gSn∥∥sup < ε/3
(‖ · ‖sup denotes the supremum norm). Moreover, by Lemma 2.1(iv), the mapping T 7→ 1

‖fT ‖L1 is continuous and hencethere exists n1 ∈ N such that for every S ∈ PTr2 and n ≥ n1, if T ∩ {s : |s| < n} = S ∩ {s : |s| < n}, then∣∣∣∣ 1
‖fT‖L1 −

1
‖fS‖L1

∣∣∣∣ < ε3 .
Set n′ = max{n0, n1}+ 1. Then for every S ∈ PTr2 with T ∩ {s : |s| < n′} = S ∩ {s : |s| < n′} we have that fTn′ = fSn′ ,and therefore

∥∥gT − gS∥∥sup ≤ ∥∥gT − gTn′∥∥sup + ∥∥gTn′ − gSn′∥∥sup + ∥∥gSn′ − gS∥∥sup ≤ ε3 + ∥∥fTn′∥∥L1
∣∣∣∣ 1
‖fT‖L1 −

1
‖fS‖L1

∣∣∣∣ + ε3 < ε.

Theorem 2.3.
WF ∗2 ≤W (DPH,H \ DPH) and hence DPH is ΠΠΠ11-hard.

Proof. It suffices to prove that for every T ∈ PTr2,
T ∈ WF ∗2 if and only if gT ∈ DPH.

Let T ∈ PTr2 and x ∈ [0, 1]. If x /∈
⋃
γ∈{0,1}N ⋂n∈N Iγ|n or x ∈ ⋃γ∈{0,1}N\[T ]⋂n∈N Iγ|n, the construction of the sequence(fTn ) stops at some neighborhood U of x. Hence gT is continuously differentiable in U and (gT )′(y) = fT (y)

‖fT ‖L1 = fTn (y)
‖fT ‖L1 > 0for every y ∈ U and some n ∈ N. By Theorem 1.3, gT|U preserves density points. Since x ∈ U and U is open, gTpreserves density at x.Now, assume that x ∈ ⋃γ∈([T ]\N)⋂n∈N Iγ|n. We will show that gT preserves density at x for every interval set. Let

γ ∈ ([T ] \ N) be such that x ∈ ⋂n∈N Iγ|n and let n0 ∈ N be such that γ(n − 1) = 0 for every n ≥ n0. It is easy to seethat there exists β > 0 such that fT ≡ β on the set
Iγ|n0 \

⋃
n≥n0

(
IL(γ|n)ˆ1ˆ0 ∪ I(γ|n)ˆ1ˆ0 ∪ IR(γ|n)ˆ1ˆ0 ∪ IL(γ|n)ˆ1ˆ1 ∪ I(γ|n)ˆ1ˆ1 ∪ IR(γ|n)ˆ1ˆ1).

Now let M = ⋃n∈N[yn, xn] be any interval set at x. We need to consider two cases:
Case 1. y1 < x1 < x2 < y2 < ... < x and d−(x,M) = 1. Then fT is constant on [aγ|n0 , x), which easily implies
d−(gT (x), gT (M)) = 1.
Case 2. x1 > y1 > x2 > y2 > ... > x and d+(x,M) = 1. Since gT is increasing, we only have to prove that

lim
n→∞

∑
k≥n+1(gT (xk )− gT (yk ))
gT (yn)− gT (x) = 1.
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For every n ∈ N, let kn be such that yn ∈ Iγ|kn \ Iγ|(kn+1). Then there exists n1 ∈ N such that kn ≥ n0 for every n ≥ n1.Fix n ≥ n1. Then fT equals β on the set
Iγ|kn \

⋃
i=0,1

⋃
j=0,1

(
IL(γ|kn)ˆiˆj ∪ I(γ|kn)ˆiˆj ∪ IR(γ|kn)ˆiˆj).

Hence
∞∑

k=n+1
(
gT (xk )− gT (yk )) ≥ β( ∞∑

k=n+1(xk − yk )− 4∣∣I(γ|kn)ˆ0ˆ0∣∣− 8∣∣IL(γ|kn)ˆ0ˆ0∣∣)

≥ β
( ∞∑
k=n+1(xk − yk )− 12∣∣I(γ|kn)ˆ0ˆ0∣∣) ≥ β( ∞∑

k=n+1(xk − yk )− 6αkn+2∣∣I(γ|kn)ˆ0∣∣)

and
gT (yn)− gT (x) ≤ β (yn − x) .

We also have that
yn − x ≥

(
bγ|(kn+1) − bγ|(kn+2)) ≥ 12 ∣∣Iγ|(kn+1)∣∣.

Therefore we obtain∑∞
k=n+1(gT (xk )− gT (yk ))
gT (yn)− gT (x) ≥

∑∞
k=n+1(xk − yk )− 6αkn+2|I(γ|kn)ˆ0|

yn − x

= ∑∞
k=n+1(xk − yk )(yn − x) − 6αkn+2|I(γ|kn)ˆ0|(yn − x) ≥

∑
k≥n+1(xk − yk )(yn − x) − 6αkn+2|I(γ|kn)ˆ0|12 |I(γ|kn)ˆ0| .

Since kn →∞, if n → ∞, then lim
n→∞

∑
k≥n+1(gT (xk )− gT (yk ))
gT (yn)− gT (x) = 1.

This shows that if T ∈ WF ∗2 , then gT preserves density points for interval sets, hence and by Theorem 1.2, gT preservesdensity points.Now, let T ∈ IF ∗2 and let γ ∈ [T ] be a sequence with infinitely many 1’s. Define sequences (xk ) and (yk ) in thefollowing way: xk = bγ|k and yk = dγ|(k+1) for k = 1, 2, ..., and let x be the unique element of ⋂n∈N Iγ|n. Clearly,
x1 > y1 > x2 > y2 > ... > x and xn → x. It is enough to show that

(i) x is a right-sided density point of ⋃k∈N[yk , xk ];
(ii) gT (x) is not a right-sided density point of ⋃k∈N

[
gT (yk ), gT (xk )].

To prove (i) it is enough to show that
xk − yk
yk−1 − x → 1.

Let k ≥ 2. If γ(k) = 1, then
xk − yk = bγ|k − d(γ|k)ˆ1 = 14 (∣∣Iγ|k ∣∣− 2∣∣Iγ|(k+1)∣∣− 4∣∣ILγ|(k+1)∣∣)

= 14
(∣∣Iγ|k ∣∣− 212αk+1∣∣Iγ|k ∣∣− 412α2

k+1∣∣Iγ|k ∣∣) = 14 |Iγ|k | (1− αk+1 − 2α2
k+1)
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and
yk−1 − x ≤ yk−1 − a(γ|k)ˆ1 = dγ|k − a(γ|k)ˆ1= dγ|k − bγ|k + bγ|k − d(γ|k)ˆ1 + d(γ|k)ˆ1 − b(γ|k)ˆ1 + b(γ|k)ˆ1 − a(γ|k)ˆ1

= αk
∣∣Iγ|k ∣∣ + 14 ∣∣Iγ|k ∣∣ (1− αk+1 − 2α2

k+1) + 12α2
k+1∣∣Iγ|k ∣∣ + 12αk+1∣∣Iγ|k ∣∣ = ∣∣Iγ|k ∣∣ (αk + 14αk+1 + 14

)
.

Hence
xk − yk
yk−1 − x ≥

|Iγ|k |
( 14 − 14αk+1 − 12α2

k+1)
|Iγ|k |

( 14 + 14αk+1 + αk
) = 1− αk+1 − 2α2

k+11 + αk+1 + 4αk .

If γ(k) = 0, then
xk − yk = bγ|k − d(γ|k)ˆ0 = bγ|k −

aγ|k + bγ|k2 + aγ|k + bγ|k2 − d(γ|k)ˆ0
= 12∣∣Iγ|k ∣∣ + 14 ∣∣Iγ|k ∣∣ (1− αk+1 − 2α2

k+1) = 14 ∣∣Iγ|k ∣∣ (3− αk+1 − 2α2
k+1)

and
yk−1 − x ≤ dγ|k − a(γ|k)ˆ0 = dγ|k − a(γ|k)ˆ1 + a(γ|k)ˆ1 − c(γ|k)ˆ1 + c(γ|k)ˆ1 − d(γ|k)ˆ0 + d(γ|k)ˆ0 − b(γ|k)ˆ0 + b(γ|k)ˆ0 − a(γ|k)ˆ0

= 14∣∣Iγ|k ∣∣ (1 + αk+1 + 4αk ) + 12 ∣∣Iγ|k ∣∣α2
k+1 + 214 ∣∣Iγ|k ∣∣ (1− αk+1 − 2α2

k+1) + 12 ∣∣Iγ|k ∣∣α2
k+1 + 12∣∣Iγ|k ∣∣αk+1

= 14∣∣Iγ|k ∣∣ (3 + αk+1 + 4αk ) .
Hence

xk − yk
yk−1 − x ≥

3− αk+1 − 2α2
k+13 + αk+1 + 4αk .

Since αn → 0, then xk−yk
yk−1−x → 1.To prove (ii) fix an increasing sequence (nk ) of natural numbers with γ(nk − 1) = 1, k ∈ N, and let hk = gT (ynk )−gT (x),

k = 1, 2, ... Then
µ
(⋃

n∈N[yn, xn] ∩ [gT (x), gT (x) + hk ])
hk

= ∑
l≥nk+1 (gT (xl)− gT (yl))
gT (ynk )− gT (x) .

Moreover, ∑
l≥nk+1 (gT (xl)− gT (yl))
gT (ynk )− gT (x) + gT (ynk )− gT (xnk+1)

gT (ynk )− gT (x) ≤ 1,
so it suffices to show that lim

k→∞

gT (ynk )− gT (xnk+1)
gT (ynk )− gT (x) = 1.

Let k ∈ N. We have
gT (ynk )− gT (xnk+1)
gT (ynk )− gT (x) = ∫ ynk0 fT (t)dt − ∫ xnk+10 fT (t)dt∫ ynk0 fT (t)dt − ∫ x0 fT (t)dt = ∫ ynk

xnk+1 fT (t)dt∫ ynk
x fT (t)dt ≥

∫ ynk
xnk+1 fT (t)dt∫ ynk

aγ|(nk+1) fT (t)dt .
Note that [xnk+1, ynk ] = IRγ|(nk+1) and fT on IRγ|(nk+1) is linear with fT

(
xnk+1) = βnk+1fT (ynk ). Note also that[

aγ|(nk+1), xnk+1] = Iγ|(nk+1) and fT on Iγ|(nk+1) is less than or equal to fT (xnk+1). Using this we obtain∫ ynk

aγ|(nk+1) f
T (t)dt = ∫ xnk+1

aγ|(nk+1) f
T (t)dt + ∫ ynk

xnk+1 f
T (t)dt ≤ fT (xnk+1)∣∣Iγ|(nk+1)∣∣ + 12 (fT (xnk+1) + fT

(
ynk
)) ∣∣IRγ|(nk+1)∣∣

= βnk+1fT (ynk )∣∣Iγ|(nk+1)∣∣ + 12 (βnk+1fT (ynk ) + fT
(
ynk
))
αnk+1∣∣Iγ|(nk+1)∣∣
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and ∫ ynk

xnk+1 f
T (t)dt ≥ 12 fT (ynk )∣∣IRγ|(nk+1)∣∣ = 12 fT (ynk )αnk+1∣∣Iγ|(nk+1)∣∣.

Hence for any k ∈ N

gT (ynk )− gT (xnk+1)
gT (ynk )− gT (x) ≥ αnk+1

αnk+1(1 + βnk+1) + 2βnk+1 = 11 + βnk+1 + 2 βnk+1
αnk+1

.

Since βnk+1
αnk+1 → 0, we get

gT (ynk )− gT (xnk+1)
gT (ynk )− gT (x) → 1.

Corollary 2.4.
DPH is ΠΠΠ11-complete.

Proof. By Theorem 2.3 it is enough to prove that DPH is coanalytic. As usual c0 is the Banach space of all sequencestending to 0 with supremum norm. Let c+0 denote the set of all strictly decreasing sequences from c0, and let c−0 denotethe set of all strictly increasing sequences from c0. Then c+0 and c−0 , as Gδ subsets of c0, are Polish spaces. By Theorem1.1 and Theorem 1.2 it follows that f ∈ DPH if and only if
∀(an) ∈ c+0 ∀x ∈ [0, 1) {d+(x,⋃

n∈N

[x + a2n, x + a2n−1]) = 1 ⇒ d+(f(x), f (⋃
n∈N

[x + a2n, x + a2n−1]) = 1)} ,
∀(an) ∈ c−0 ∀x ∈ (0, 1] {d−(x,⋃

n∈N

[x + a2n−1, x + a2n]) = 1 ⇒ d−
(
f(x), f (⋃

n∈N

[x + a2n−1, x + a2n]) = 1)} ,
and f is absolutely continuous. Note that

d+ (0,⋃[a2n, a2n−1]) = 1 ⇐⇒ lim
h→0 λ(

⋃[a2n, a2n−1] ∩ [0, h])
h = 1 ⇐⇒ lim

n→∞

∞∑
k=n

a2k+1 − a2k+2
a2n = 1 ⇐⇒

⇐⇒ ∀t ∈ N ∃n0 ∀n ≥ n0
∞∑
k=n

a2k+1 − a2k+2
a2n > 1− 1

t ⇐⇒

⇐⇒ ∀t ∈ N ∃n0 ∀n ≥ n0 ∀p ∈ N ∃m0 ∀m ≥ m0
m∑
k=n

a2k+1 − a2k+2
a2n > 1− 1

t −
1
p .

From this we obtain that the set {(an) ∈ c+0 : d+(⋃n∈N[a2n, a2n+1], 0) = 1} is Borel. Note that if f ∈ H then
d+(f(x), f (⋃

n∈N

[x + a2n, x + a2n−1])) = 1 ⇐⇒

⇐⇒ ∀t ∈ N ∃n0 ∀n ≥ n0 ∀p ∈ N ∃m0 ∀m ≥ m0
m∑
k=n

f(x + a2k+1)− f(x + a2k+2)
f(x + a2n)− f(x) > 1− 1

t −
1
p .

This shows that the set{(f, (an), x) ∈ H× c+0 × [0, 1) : d+(f(x),⋃
n∈N

[f(x + a2n), f(x + a2n+1)]) = 1}
is Borel. Since {f ∈ H : f is absolutely continuous} is a Borel subset of H (this is an easy observation), then we obtainthat DPH is a coanalytic subset of H. The result follows.
It would be interesting to verify whether the same fact holds for I-density preserving homeomorphisms in H.
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