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In descriptive set theory the following phenomenon is known — sets with a simple description can be extremely complex,
for example they can be ﬂ]—complete. Many classical examples of such sets can be found in Kechris’ monograph [4].
They appear naturally in topology, in the theory of Banach spaces, the theory of real functions, and in other branches
of mathematics.

We consider the set of all density preserving homeomorphisms of the unit interval. Density preserving homeomorphisms
play an important role in real analysis. They first appeared in Bruckner’s paper [1] where the author studied questions
related to changes of variable with respect to approximately continuous functions. Some structural properties of density
preserving homeomorphisms were proved in [5]; in that paper density preserving homeomorphisms on the real plane
were also considered. Ostaszewski in [6] investigated connections between homeomorphisms preserving density point
and D-continuous functions, i.e. continuous mappings with the domain and range furnished with the density topology.
The Baire category analogs of density preserving homeomorphisms, namely Z-density preserving homeomorphisms, were
considered in [2].
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In the following, we prove that the set of all density preserving homeomorphisms of the unit interval is I'Il—complete.
Descriptive properties of other classes of homeomorphisms of the unit interval were investigated in [3].

This paper is organized as follows. In Section 1 we give basic definitions and facts. In Section 2 we present the main
theorem which specifies descriptive set theoretical complexity of density preserving homeomorphisms.

1. Background information

We use standard set-theoretic notation. For the descriptive set-theoretical background we refer the reader to [4]. By
H C CJ0, 1] we denote the set of all increasing autohomeomorphisms of [0,1]. It is easy to see that H is a G5 subset of
C[0, 1] and hence it is a Polish space.

Let y be the Lebesgue measure on R. For a measurable set E C R and a point x € R, by d*(x, E) we denote the
right-hand Lebesgue density of the set E at x, i.e. the number d*(x, E) = lim_o+ M provided this limit exists.

Analogously we define d(x, E). Finally by d(x, E) we denote the density of E at x, i.e. the limit

dix, E) = hli'g; p(x — h,;(h-‘r hln E).

If d(x, E) = 1, then we say that x is a density point of E. If d*(x, E) = 1, then we say that x is a one-sided density
point of E.

A homeomorphism h € H preserves density at x € [0, 1], provided, for every measurable set S, h(x) is a density point of
the set h(S) whenever x is a density point of S. If h € H preserves density at every point of [0, 1], then we say that h
preserves density points. The set of all density preserving homeomorphisms in H is denoted by DPH.

To characterize density preserving homeomorphisms we need the notion of an interval set. A set S is called an interval
set at a point x if there exist sequences (x,) and (y,) such that x, —» x and y1 < x1 < Yy < x2 < ... < x or
X1 > Y1 > x> yp > ... > x such that S =, cn[yn, Xa]-

It can be easily seen that if S =, cxlyn, Xa] @and X3 > y1 > x2 > y2 > ... > x, then

45, S) =1 ifand only if etk TYD g
Yn —X

and if S =J,cnlyn xa] and y1 < x73 < y2 < X2 < ... < x, then

d(x,S) =1 ifand only if ek ZY) g

X — X,
We will need the following facts regarding density preserving homeomorphisms taken from [1].

Theorem 1.1.
If h is a homeomorphism of [0, 1] onto itself which preserves density points, then h is absolutely continuous.

Theorem 1.2.
Let h be an absolutely continuous homeomorphism of [0, 1] onto itself. A necessary and sufficient condition for h to
preserve density points is that h preserves one-sided density points of every interval set.

Theorem 1.3.
If h is a continuously differentiable homeomorphism of [0, 1] onto itself and the derivative h’ never vanishes, then h
preserves density points.
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Let X be a Polish space. A subset A of X is called analytic if it is the projection of a Borel subset B of X x X. A subset
C of X is called coanalytic if X\ C is analytic. The pointclasses of analytic and coanalytic sets are denoted by | and
M}, respectively. A set C C X is called M}-hard if for every zero-dimensional Polish space Y and every coanalytic set
B C Y there is a continuous function f : ¥ — X such that f~'(C) = B. A set is called I'Il—complete if it is I'Il—hard and
coanalytic.

Let A be any set and let N stand for the set of all nonnegative integers. By A<N we denote the set of all finite sequences
of elements from A. For a sequence s = (s(0),s(1),...,s(k — 1)) € A<N and m € A let |s| = k be the length of s, and
let s"m = (s(0), s(1), ..., s(k — 1), m) denote the concatenation of s and m; in a similar way we define the concatenation
of two finite sequences. For a sequence a € AV and n € N, let a|n = ((0), a(1), ..., a(n — 1)) € A<N. Similarly for
s € AN and n < |s|, let s|n = (s(0), s(1), ..., s(n — 1)) (additionally s|0 = @, where @ is the empty sequence). A set
T C AN is called a tree if for every s € T and every n < |s| we have s|n € T, in particular each tree contains the
empty sequence @. We will use @ to denote the empty set and the empty sequence, but it will never lead to confusion.
For any tree T define its body by [T] = {a € AY : Vn a|n € T}. By PTr, we denote the set of all pruned trees on
{0,1} (a tree T on A is pruned if for every s € T there is m € Awith s"m € T). Let WF; = {T € PTry: [TINN = @},
IF; = PTr,\ WF;, where N = {a € {0,1}" : 3a(n) = 1} (where for brevity 3%° denotes "infinitely many n” and V%
denotes "for all but finitely many n”). It is well known (cf. [4]) that WF; is M}-complete.

Let A be subset of a Polish space X and let C, D be disjoint subsets of a Polish space Y. By A <y (C, D) we mean that
there is a continuous map f : X — Y with f~1(C) = Aand f~'(D) = X\ A. Clearly, if Ais I'I]—complete and A <w (C, D),
then C is M}-hard.

2. Density preserving homeomorphisms

Fix two decreasing sequences (a,) and (B,) of positive real numbers tending to 0 with &y < 1/4 and B,/a, — 0.

We define Cantor schemes of closed intervals {/s : s € {0,1}<"}, {/L; : s € {0,1}N\ {#}}, {IR : s € {0,1}<"\ {0} }
by recursion with respect to length n = |s| of s as follows:

(©) Iy =101

(it) Let Iy =[as, bs]. Then Iy~ and s~ have the length %a,,+1|ls| and they have the common centers with the left and
the right halves of I, respectively;

(iit) Let Iy = [as, bs]. Then ILs =[cs, as] and IR, = [bs, ds] are such that |ILs| = |IRs]| = a,|ls].

Note that U,co1yn Maen i = Mozt Uysj=a s is a perfect Lebesgue null subset of [0, 1].

Now, for every T € PTr, we will define a sequence of continuous functions (f]). For this purpose fix T € PTr,. Let f]
be a continuous function with

£1(0) = f{ (co) = £ (dig) = ] (cy) = f{ (dw) = £ (1) =1,
f1T(X) = 61 for x € I(O) U /(1),

and piece-wise linear elsewhere on [0,1]. To define fT,, for general n, we modify f! on each interval I, with s € T,

n+1
|s| = n and s(n — 1) = 1. On [, = [as, bs] we can then define a continuous function ], ; with

fnT+1(‘75) = fnT+1(CS”0) = fnT+1(d5”0) = fnT+1(CS”1) = fnT+1(d5”1) = fnT+1(b5) = f"T(bS)I

fra(x) = Basif, (bs) for x € Iy U sy,

T

and piece-wise linear elsewhere on /. On the rest of [0, 1], a function f],; remains unchanged, i.e. f1(x) = f](x)

for every point x € [0, 1]\ U{/ : s € T,|s| = n,s(n —1) = 1}. Since for every x € [0,1], the sequence (f](x)) is
nonincreasing, the sequence (f]) is pointwise and monotonically convergent to some function f7.
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Now if f : [0,1] — R is Lebesqgue integrable, let |f|;, denote f(; |[f(t)|dt. Recall that N = {y € {0,1}" :
y has infinitely many 1's}.

B T

0 o oo bo dpo cay aqy bpy dgy 1
Figure 1. Graphof /.

Lemma 2.1.
The following statements hold:

(i) for every x, f7(x) = 0 if and only if x € Uyerran N hins
(ii) fT is Lebesque integrable;
(iii) lim anT — )‘T||L1 = 0 uniformly on PTry;

(iv) the mapping T — HfTHL1 is continuous.

Proof. Parts (i) and (ii) follow directly from the construction. For (iii), if T € PTr; and n € N, then f7 and [ can
differ only on the set (J_, /. Since limy_e ) |, [ls| = 0, the result follows. For (iv), if S, T € PTr; are such that
{s€S:|s|<n}={seT:|s| <n} then f and f°> can differ only on the set Ulsjzn Is- Thus we get (iv). O

Now, for every T € PTr; and x € [0, 1], we put

T 1 Yor
(x) = ——— [ fT(t)dt.
7 1771, Jo

By Lemma 2.1(ii), g" is absolutely continuous. Moreover, by Lemma 2.1(i), g” is strictly increasing, and hence g’ € H.

Lemma 2.2.
The mapping T > g' is continuous.
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Proof. Forevery S € PTr, n e Nandx €[0,1], we define

1 /X
x) = f1(t)dt.
9000 =y fy

Fixany e >0and T € PTr,. By Lemma 2.1(iii) and since there exists A > 0 such that HfSHL1 > Aforevery S € PTr,
there exists ng € N such that for every n > ng and every S € PTr,,

19° = g2, < €/3

(]l - lsup denotes the supremum norm). Moreover, by Lemma 2.1(iv), the mapping T — is continuous and hence

1
[N
there exists nq € N such that for every S € PTrpand n > nqy, if TN {s:|s| < n}=Sn{s:|s| < n}, then

1
(LR /TP [ 7

<&
3

Set n’ = max{no, n1} + 1. Then for every S € PTry with TN {s:|s| <n’} = SN {s:|s| < n'} we have that f|, = f>,
and therefore

|+ S<e
S TR R

€
sup + ||g§l - gs”sup S § + ||f’;rl|

lg" = ¢°l.., < llg” = anll.,, + g0 — 9o

Theorem 2.3.
WF; <w (DPH, H \ DPH) and hence DPH is N;-hard.

Proof. It suffices to prove that for every T € PTr,,
T e WF; ifandonlyif g" € DPH.

Let T € PTry and x € [0,1] If x & U,cio1yn MNaen hin 07 X € U,eqo.1p0y7)Nnen Ivinr the construction of the sequence

T (y) i (y)
= >
10, — 10,

for every y € U and some n € N. By Theorem 1.3, ngU preserves density points. Since x € U and U is open, g

(fI) stops at some neighborhood U of x. Hence g is continuously differentiable in U and (g7)'(y) =

preserves density at x.

Now, assume that x € ,c(rn [Noen lvin- We will show that g’ preserves density at x for every interval set. Let
y € ((T]\ N) be such that x € (,cy /yj» and let ng € N be such that y(n — 1) = 0 for every n > nq. It is easy to see
that there exists 8 > 0 such that f" = B on the set

Tying \ U (IL(y\n)”1"0 U im0 U TR yiny 170 U IL iy 121 U Ly im0 U TR yjny 11 )
nx=ngp
Now let M = |, cnlyn. X»] be any interval set at x. We need to consider two cases:

Case 1. y; < x1 < x2 < Yy < ... < x and d=(x, M) = 1. Then 7 is constant on [a,n,, x), which easily implies
d=(g"(x),g" (M) = 1.

Case 2. x; > y1 > x2 >y > ... > x and d*(x, M) = 1. Since g is increasing, we only have to prove that

lim Zkznﬂ (gT(Xk) - gT(yk))

=1.
n—oo g™ (ya) — g7 (x)
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For every n € N, let k, be such that y, € Iy, \ lyjk,+1)- Then there exists n; € N such that k, > ng for every n > nj.
Fix n > nq. Then f7 equals B on the set

i \ U U (’L(y\kn)wU/(y\kn)*f/U/R(y\kn)w)-
i=0,1 j=0,1

Hence
> (g"x)—g"(y) > B ( > (= yx) = Hhypnr-oro| — 8|’L(ykn)"0A0’)
k=n+1 k=n+1
>pB ( Z (Xk — yi) — 12|/(y|l<n)‘0"0| ) >B ( Z (X — yi) — 6akn+2’l(y\k,,)“0‘
k=n+1 k=n+1
and

9" (yn) — 9" (x) <Blys —x).
We also have that

1
Yn = x 2 (byjkns1) = byisr2)) > illv\(kn+1)|-

Therefore we obtain

Y renialg’ () — 9" (yx) S 2 oeni1 (X = Yi) = 60, 121 lyjkn) 0]
97(yn) — g7 (x) - Yn — X
_ Lot =90 g ansallyiarol o Zisnnn k= U)o aksallyiol
(yn —x) (Yyo—x) (Yn —x) 3 vikayol

Since k, — oo, if n — oo, then

. Zk2n+1 (gT(Xk) - gT(yk)) _
T T )

This shows that if T € WF3, then g7 preserves density points for interval sets, hence and by Theorem 1.2, g7 preserves
density points.

Now, let T € IF; and let y € [T] be a sequence with infinitely many 1's. Define sequences (x¢) and (yi) in the
following way: x; = by and y, = dysr) for k = 1,2,.., and let x be the unique element of [,y /ya- Clearly,
X1 > Y1 > x> Yyy> ... > xand x, = x. It is enough to show that

(i) x is a right-sided density point of (J, cyly«, xcJ;

(i) g"(x) is not a right-sided density point of U,y [97 (yx). g7 (xi)]-

To prove (i) it is enough to show that
Xk — Yk
_—
Yk—1 — X

Let k > 2. If y(k) =1, then

1

Xe = Y = by — dyr = 3 ([hi] = 2| s | = 1 Lyyxen])

1 1 1 1
=3 |1y —2§ak+1|/y\k| - 4§0f/3+1‘/y|k| = 71l (1= a1 = 20¢4)
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and
Y1 — X < Ykt — Ayt = Ayl — Aiyliy
= dyjk — by + byik — dyir1 + doigr — byl + byt — Ayl
1 1 1 1 1
= C{k‘/y\ki + 1‘/‘,“(’ (1 — Olk41 —ZGEH) =+ iafﬂ‘/y‘d + iak+1|ly‘k| = |Iy|k| (Q’k + ZO(/<+1 + Z) .
Hence
Xk — |Iv\k| (4 O’k+1 - %C(IE_H) _ 1— a1 — ZO(/EH
yk—1 - X |Iy‘k|(z+zak+1 -I—(Xk) 1 + Qk41 + 4oy ’

If y(k) = 0, then

Oy + by + ayjk + by

5 5 — diyliyo

Xk = Yk = by — diyjyo = by —
1 1 5 1 5
= §|/v\k\ + 1|/v\k\ (1— s —20544) = 1|’vlk| (3 = ars1 — 2a54)
and
Y1 —x < dyje — Ayjo = dyie — Al 1 + Gyl — Sl 1 + Syl — dijgro + Ao — byjgro + biyikro — dgyio
1 1 1 1 1
= Z’/y|k| (1 + Q41 + 40(k) + i‘ly‘kiafﬂ + 22|’y|k’ (1 — Qg1 — 20(/3“) + §|/y‘k‘af+1 + §|/y|k’ak+1

1
= Z|IV|I<| B+ ks +4a).

Hence
Xk — Yk 3— Qi1 — 203,
Ykt —x = 3+ appr + 4o

Since a, — 0, then % — 1.
To prove (ii) fix an increasing sequence (ny) of natural numbers with y(ny —1) =1, k € N, and let hy = g"(y,,) — g (x),
k=1,2,... Then
#(Uneslyo 521019700, 9700 + hiel) _ iz (97 (00) = 97(9)
hi 9" (Yn) =97 (x)

Moreover,
Y o1 (9700 =97(W)  gT(yn,) — g7 (Xng 1)
g7 (Yn) — 9" (x) 9" (Yn)—g"x)

so it suffices to show that
9" (Yn) = 9" (n 1) _
k=eo g (yn) — g7 (x)

Let k € N. We have

gT(ynk) _ gT(Xnk+1) B Oélnk fT( )dt Xnk+1 fT( )dt B Liz’L fT(t)dt Lyn’i“ fT t)dt

97 (yn)—g™(x) [T dt—fOfT(t)dt T[T ET(dt T[T fT(t)dt

Dylnge+1)

Note that [xnkﬂ,y”k] = IRy|(n,+1) and fT on IRy|(n,+1) is linear with fT(xnk“) = Bnk“fT(ynk). Note also that
[aying+1)s Xng+1] = jing+1) and £7on Ly, 1) is less than or equal to £ (x,,41). Using this we obtain

Yny T Xn 41 T Ynye
[ rmnde= [ e [T 1000 ) ol + 5 (7 )+ £ (90)) Ry
IVl(n+1) IVl(ne+1) X +1

- Bnk+1f ynk)‘ly| nk+1)’ + Bnk+1f (ynk) + f (gnk ) ank+1 |Iy\(nk+1 |

SIGE
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I
and
Yny ‘] ’I
/ 1 (t)dt > ifT(ynk)VRyl(nwn\ = Q"T(Unk)%ﬂ|/v\(nk+1)|-

Xng+1

Hence for any k € N

gT(ynk) - gT(Xnk+1) ank+1 _ 1
9" Yn) =970 T anari (M Bust) +2Bust 14 B, 0+ Zi"k—*l
ng+
. Bn +1
Since == — 0, we get
A +1
gT(!TJnk) - gT()T(nk-H) 1
9" (yn) — 9" (x)
O
Corollary 2.4.

DPH is N}-complete.

Proof. By Theorem 2.3 it is enough to prove that DPH is coanalytic. As usual ¢ is the Banach space of all sequences
tending to 0 with supremum norm. Let ¢j denote the set of all strictly decreasing sequences from ¢y, and let ¢; denote
the set of all strictly increasing sequences from ¢p. Then ¢ and ¢;, as Gs subsets of ¢, are Polish spaces. By Theorem
1.1 and Theorem 1.2 it follows that f € DPH if and only if

Y(a,) € ¢ ¥x €10,1) {dJr (x, U[X+Gzn,X+02n1]) =1 = df (f(x),f(U[x+az,,,x+az,,1]) :1)},

neN neN
Y(a,) € ¢g Yx € (0,1] {d (X,U[X+02n1,X+Uzn] =1 = d (f(x),f(U[x—l—az,,1,x+az,,]) :1)]»,
neN neN

and f is absolutely continuous. Note that

A ) Gon1] N[0, h L= —
d* (O'U[GZIuaZn—'I]) =1 < ln (Ule> azh 110 [0, h) =1 nlLToZ 702“102 GoU2 _ g ey
—n n

oo
a —a 1
e VteNIn Vn2n ) 2 EE51- -

k—n azn t
" Gyt — G242 11
& VteNdngVn>ngVp e NdmgVm > mg Zi>1—f—7.
ken az, t P
From this we obtain that the set {(a,) € ¢ : d*(U,cn[020, 02041],0) = 1} is Borel. Note that if f € H then
d* (f(x),f ( U[x +a,, X+ az,,1]) =1 <
neN
" f(x + agir) — F(X + 0242 1 1
< VteNdngVn>noVpeNdmygVm>m 1—=——.
0 2 No Vp 0 2 Mo ; Fix + a) — F(x) t

This shows that the set

{(f, (a,),x) EH x ¢§ x[0,1) : d* (f(x), U [f(x + az2,), f(x + 02,-,+1)]) = 1]»

neN

is Borel. Since {f € H : f is absolutely continuous} is a Borel subset of H (this is an easy observation), then we obtain
that DPH is a coanalytic subset of H. The result follows. O

It would be interesting to verify whether the same fact holds for Z-density preserving homeomorphisms in H.
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