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1. Introduction
Given a field K and a group G, the inverse problem of Galois theory asks whether or not there exists a Galois fieldextension L of K such that the Galois group of L over K is isomorphic to G. Extensive research has focused on small2-groups, asking, for each group, what are necessary and sufficient conditions on a field K for the group to be realizable.Realizability conditions for groups of order 64 that are direct products of smaller groups are easily derived from thosefor the component groups, but complete conditions have been found for very few other groups of order 64. In this work,we provide necessary and sufficient conditions for the realizability of 134 groups of order 64. Combining these with theknown conditions for the cyclic group and those that are direct products of smaller groups leaves unsolved only 66 ofthe 267 groups of order 64.Compilations of conditions for the realizability of groups of order 2, 4, 8, and 16 can be found in [6] and [10]. Conditionsfor groups of order 32 can be found or derived from results in [2, 4, 5, 7, 11–13].For fields of characteristic 2, a classic result of Witt [14] solves the realizability problem for finite 2-groups in general.Therefore, all fields in this paper are assumed to have characteristic other than 2.
∗ E-mail: grundman@brynmawr.edu
† E-mail: tara.smith@uc.edu

846



H.G. Grundman, T.L. Smith

Throughout, we use Cn and Dn to denote the cyclic and dihedral groups of order n, respectively. Although there isno universally accepted notation for small 2-groups, in general, two common numbering schemes can be found in [3]and in [8]. In this paper, we use G(r,s) to denote the group of order 64 corresponding to r in Hall and Senior’s list [8]and to [64, s] in GAP’s small groups library [3]. Group presentations for these groups can be found in Carson’s index of2-groups [1].
2. Methods

We begin by defining the Galois embedding problem and explaining its relationship to the Galois realizability problem.Given a Galois extension L/K and a short exact sequence
1 −−−−−→ N −−−−−→

ι
E −−−−−→

ψ
Gal (L/K ) −−−−−→ 1, (1)

the Galois embedding problem of L/K and (1) asks if there exist a Galois field extension M/K with L ⊂ M and ahomomorphism φ :Gal (M/K )→ E such that ψφ :Gal (M/K )→ Gal (L/K ) is the natural restriction of Galois groups. Thepair (M/K, φ) is called a proper solution if φ is surjective. We can assume, without loss of generality, that φ is injective.Further, when the short exact sequence has kernel C2 and is not split, φ is necessarily surjective.Let G be a group with normal subgroup N ∼= C2, such that the short exact sequence
1 −−−−−→ C2 −−−−−→ι G −−−−−→

ψ
G/N −−−−−→ 1 (2)

is not split. If the group G is realizable over K , so there exists a Galois extension M of K with Gal (M/K ) ∼= G,then by basic Galois theory, there exists an intermediate field L with Gal (L/K ) ∼= G/N. This in turn implies that theGalois embedding problem given by L/K and (2) is solvable. Conversely, if the Galois embedding problem given by
L/K and the non-split extension (2) is solvable, then there exists a Galois field extension M/K with an isomorphism
φ :Gal (M/K )→ G, and thus G is realizable over K . So the realizability of G over K is equivalent to the realizabilityof G/N over K , say by a field L, and the solvability of the Galois embedding problem given by L/K and (2).We use a method of Ledet [10] to determine the obstructions for 34 non-split embedding problems with kernel C2 andquotient (C2)r × (C4)s × (D8)t . As described above, this allows us to solve the realizability problem for these groups.Specifically we use Theorem 2.2, below, a detailed proof of which can be found in [7].We extend this method to one applying to an additional 100 groups, as follows. Let N1 and N2 be disjoint normalsubgroups of a group G, each of order two, and consider the short exact sequence

1 −−−−−→ N1N2 −−−−−→ι G −−−−−→
ψ

G/N1N2 −−−−−→ 1. (3)
It is easy to see that the group G is realizable over K if and only if G/N1N2 is realizable over K , say by the field L,and the Galois embedding problem given by L/K and (3) is properly solvable.Let L be an extension of K with Gal (L/K ) ∼= G/(N1N2). By the following theorem [9], it suffices to consider embeddingproblems associated to the short exact sequences

1 −−−−−→ N1N2/N1 −−−−−→ι G/N1 −−−−−→π2 G/N1N2 −−−−−→ 1, (4)
and 1 −−−−−→ N1N2/N2 −−−−−→ι G/N2 −−−−−→π1 G/N1N2 −−−−−→ 1. (5)
Theorem 2.1.
The Galois embedding problem given by L/K and (3) is solvable if and only if the Galois embedding problems given by
L/K and (4) and by L/K and (5) are both solvable.
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To state Theorem 2.2 [7, Theorem 1], we need the following notation and well-known characterizations of certain exten-sions. Let L/K be a (C2)r × (C4)s × (D8)t-extension, so L is the composite of a (C2)r-extension, a (C4)s-extension, and a(D8)t-extension.Any (C2)r-extension of K can be written in the form K
(√a1, . . . ,√ar), where the ai are quadratically independentelements of K̇ = K − {0}. The Galois group of the extension is generated by σ1, . . . , σr , where σi(√aj ) = (−1)δij√aj forall i, j ≤ r.Any (C4)s-extension can be written as

K
(√

qr+1(ar+1 +√ar+1), . . . ,√qr+s(ar+s +√ar+s)) ,
where the ai are quadratically independent elements of K̇ , qi ∈ K̇ , and for each i, r < i ≤ s, there exists εi ∈ K̇ suchthat ai = ε2

i +1 or, equivalently, (ai, −1) = 1 in Br (K ). The Galois group of the extension is generated by σr+1, . . . , σr+s,where σi (√qi(ai +√ai)) = qiεi
√ai√

qi(ai+√ai) and σi (√qj (aj +√aj )) = √qj (aj +√aj ) for all i 6= j .
Finally, any (D8)t-extension can be written as

K
(√

qr+s+1(αr+s+1 + βr+s+1√ar+s+1),√br+s+1, . . . ,
√
qr+s+t(αr+s+t + βr+s+t√ar+s+t),√br+s+t) ,

where ai, bj ∈ K̇ are quadratically independent, aibi = α2
i −aiβ2

i , αi ∈ K , and βi, qi ∈ K̇ for all i, r+ s < i ≤ r+ s+ t.Such αi and βi ∈ K̇ exist if and only if (a,−b) = 1 in Br (K ). The Galois group of the extension is generated by theautomorphisms {σi, τi|r + s < i ≤ r + s+ t} where
• σi

(√
qi(αi + βi

√ai)) = qi
√
aibi√

qi(αi+βi√ai) for all i;
• σi

(√
qj (αj + βj

√aj )) = √qj (αj + βj
√aj ) for all i 6= j;

• σi
(√
bj
) = √bj for all j;

• τi
(√
qj (αj + βj

√aj )) = √qj (αj + βj
√aj ) for all i, j;

• τi(√bj ) = (−1)δij√bj for all i, j .
It follows that the Galois group of L/K is generated by {σi, τj |1 ≤ i ≤ r + s + t, r + s < j ≤ r + s + t}, where the σiand τi that generate each factor are defined as above, with the additional requirement that σi and τi fix the elementscorresponding to the j th factor for all i 6= j .
Theorem 2.2.
Let K be a field and let L be a (C2)r × (C4)s × (D8)t-extension of K . Let {σ1, . . . , σr+s+t , τr+s+1, . . . , τr+s+t} be a minimal
generating set of Gal (L/K ) such that |σi| = 2 for i ≤ r, |σi| = 4 for r < i ≤ r + s, σ 4

i = τ2
i = (σiτi)2 = 1 for i > r + s,

σiσj = σjσi and τiτj = τjτi for all i, j, and σiτj = τjσi for all i 6= j. Let

1 −−−−−→ C2 −−−−−→ E −−−−−→ (C2)r × (C4)s × (D8)t −−−−−→ 1 (6)
be a non-split extension of groups, and choose pre-images g1, . . . , gr+s+t ∈ E of σ1, . . . , σr+s+t and hr+s+1, . . . , hr+s+t ∈ E
of τr+s+1, . . . , τr+s+t . Where appropriate, let −1 denote the image of −1 in E. Then the obstruction to the embedding
problem given by L/K and (6) is

r∏
i=1 (ai, −1)di × r+s∏

i=r+1[(ai, 2)(−1, qi)]di × r+s+t∏
i=r+s+1

[[(ai, −2)(−bi, 2αiqi)]di (bi, −1)ei (ai, −1)fi]
×
∏
i<j

(ai, aj )dij ×∏
i<j

(ai, bj )eij ×∏
i<j

(bi, bj )fij ,
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where g2
i = (−1)di for i ≤ r; g4

i = (−1)di for r < i ≤ r + s+ t; h2
i = (−1)ei for r + s < i ≤ r + s+ t; higi = (−1)fig3

ihi
for r + s < i ≤ r + s+ t; gigj = (−1)dijgjgi for all i, j; gihj = (−1)eijhjgi for all 1 ≤ i < j, with r + s < j ≤ r + s+ t;
and hihj = (−1)fijhjhi for r+ s < i < j ≤ r+ s+ t. (If αi = 0, then −bi is a square in K̇ and we set (−bi, 2αiqi) = 1 inBr (K ).)
3. Results and sample proofs

Our results are given in Tables 1–8, which give necessary and sufficient conditions for the realizability of the group overa field K in terms of the group of square classes in K̇ and the Brauer group of K . The tables are organized by thekernels and quotients of the related embedding problems; the first three tables corresponding to C2-kernels, the rest to
C2 × C2-kernels. The quotients are indicated in the table captions.In each table, the first column indicates the group, using the notation described in Section 1. The second column giveslabels for the elements of K̇ that are required to be quadratically independent. The third column lists the elements ofBr (K ) required to be trivial, expressed in terms of the elements in the previous column and, for some groups, unrestrictedelements q and q′ in K̇ .We now give detailed proofs for two representative groups, the first using a C2-kernel, the second using a C2×C2-kernel.Proofs for the other groups follow the same general outline. We first consider the group

G(58,124) = 〈x, y, z | x2, y8, y4z4, zxz5x, xyxy7, yzy7z7〉.
Theorem 3.1.
The group G(58,124) is realizable as a Galois group over a field K if and only if there exist quadratically independent
elements a, b, and c ∈ K̇ and q, q′ ∈ K̇ such that (a,−1) = (b,−c) = (ab,−2)(q,−1)(q′, −c) = 1 in Br (K ).
Proof. The group C4 × D8 is realizable over K if and only if there exist quadratically independent elements a1, a2,and b2 ∈ K̇ such that (a1, −1) = (a2, −b2) = 1. Let L/K be a C4 ×D8-extension, if one exists.Using the notation of Theorem 2.2 for the generators of C4 ×D8, consider the exact sequence

1 −−−−−→ C2 −−−−−→
−17→y4 G(58,124) −−−−−→x7→τ2y7→σ1z7→σ2

C4 ×D8 −−−−−→ 1.
Let g1 = y, g2 = z, and h2 = x in G(58,124). Then d1 = d2 = 1 and, since x is of order 2, e2 = 0. Now xz = z3ximplies that f3 = 0 and, since y is central, d12 = e12 = 0. Therefore, in the notation introduced before Theorem 2.2, theobstruction to the embedding problem given by L/K and (3) is (a1, 2)(−1, q1)(a2, −2)(−b2, 2α2q2).Thus G(58,124) is realizable over K if and only if there exist quadratically independent elements a1, a2, and b2 ∈ K̇ suchthat (a1, −1) = (a2, −b2) = (a1a2, −2)(q,−1)(q′, −b2) = 1 in Br (K ) where q = q1 and q′ = 2α2q2.
For an example with kernel C2 × C2, we consider the group

G(53,97) = 〈w, x, y, z | w4 = x2 = y4 = y2z2 = 1, xw = wxz3, zw = wz3, zx = xz3, y ∈ Z〉.
Theorem 3.2.
The group G(53,97) is realizable as a Galois group over a field K if and only if there exist quadratically independent
elements a, b, c ∈ K̇ such that (a,−b) = (a,−1) = (a, 2)(c,−1)(−b, q) = 1 in Br (K ).
Proof. The group C2 × D8 is realizable over K if and only if there exist three quadratically independent elements
a1, a2, b2 ∈ K̇ such that (a2, −b2) = 1. Let L/K be a C2 ×D8-extension, if one exists.
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Using the notation of Theorem 2.2 for the generators of C2 ×D8, consider the exact sequence
1 −−−−−→ C2 × C2 −−−−−−→(−1,1) 7→w2(1,−1) 7→y2

G(53,97) −−−−−→w7→σ2τ2x7→τ2y7→σ1
z7→σ22

C2 ×D8 −−−−−→ 1. (7)
By Theorem 2.1, the embedding problem given by L/K and (7) is solvable if and only if the embedding problems givenby L/K and each of the sequences

1 −−−−−→ C2 −−−−−→
−17→y2 G(53,97)/〈w2〉 −−−−−→

w7→σ2τ2x7→τ2y7→σ1
z7→σ22

C2 ×D8 −−−−−→ 1 (8)
and 1 −−−−−→ C2 −−−−−→

−1 7→w2 G(53,97)/〈y2〉 −−−−−→
w7→σ2τ2x7→τ2y7→σ1
z7→σ22

C2 ×D8 −−−−−→ 1 (9)
are solvable. In the notation of Theorem 2.2, let g1 = y, g2 = wx, and h2 = x. Then for (8), d1 = d2 = f2 = 1 arethe only nontrivial exponents and so the obstruction is (a1, −1)(a2, −2)(−b2, 2α2q2)(a2, −1). For (9), f2 = 1 is the onlynontrivial exponent, yielding the obstruction (a2, −1). The theorem follows.
Table 1. C2 × (C4)2, (C2)3 × C4, and (C2)5 Quotients

Group Quad ind Trivial elements in Br (K )
G(30,57) a, b, c (a,−1), (b,−1), (a, b)(c,−1)
G(32,86) a, b, c (a,−1), (b,−1), (ac, b)(c, 2)(q,−1)
G(106,199) a, b, c, d (a,−1), (a, b)(c,−d)
G(107,201) a, b, c, d (a,−1), (−a, b)(c, bd)
G(108,200) a, b, c, d (a,−1), (a, b)(c, d)(cd,−1)
G(109,249) a, b, c, d (a,−1), (a, 2b)(c, d)(q,−1)
G(105,266) a, b, c, d, e (a,−1)(b,−c)(d, e)

Table 2. (C2)2 ×D8 Quotients

Group Quad ind Trivial elements in Br (K )
G(77,206) a, b, c, d (c,−d), (ab,−1)(a, c)
G(78,213) a, b, c, d (c,−d), (bd,−1)(a, d)
G(112,256) a, b, c, d (c,−d), (a, c)(bd,−1)(c, 2)(−d, q)
G(157,227) a, b, c, d (c,−d), (a, bc)(c,−1)
G(158,231) a, b, c, d (c,−d), (a,−b)(b,−d)
G(159,229) a, b, c, d (c,−d), (a,−bc)(b,−1)
G(160,228) a, b, c, d (c,−d), (a, b)(ad,−1)
G(169,215) a, b, c, d (c,−d), (a, d)(b, cd)
G(170,216) a, b, c, d (c,−d), (a, c)(b,−d)
G(171,218) a, b, c, d (c,−d), (a,−c)(b,−cd)
G(172,217) a, b, c, d (c,−d), (a, cd)(b,−c)(c,−1)
G(241,257) a, b, c, d (c,−d), (−a, b)(c, 2)(−d, q)
G(242,258) a, b, c, d (c,−d), (2a, c)(ad, b)(−d, q)
G(243,259) a, b, c, d (c,−d), (a, b)(−b, d)(c, 2)(−d, q)
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Table 3. C4 ×D8 Quotients

Group Quad ind Trivial elements in Br (K )
G(58,124) a, b, c (a,−1), (b,−c), (ab,−2)(q,−1)(q′, −c)
G(84,67) a, b, c (a,−1), (b,−c), (a, b)
G(85,71) a, b, c (a,−1), (b,−c), (a, c)
G(86,66) a, b, c (a,−1), (b,−c), (−a, b)
G(88,70) a, b, c (a,−1), (b,−c), (−a, c)
G(91,69) a, b, c (a,−1), (b,−c), (a, bc)(b,−1)
G(92,68) a, b, c (a,−1), (b,−c), (a, bc)(c,−1)
G(99,116) a, b, c (a,−1), (b,−c), (a, 2b)(q,−1)
G(100,117) a, b, c (a,−1), (b,−c), (a, 2c)(q,−1)
G(117,123) a, b, c (a,−1), (b,−c), (2a, b)(q,−c)
G(118,121) a, b, c (a,−1), (b,−c), (−2a, b)(q,−c)
G(119,122) a, b, c (a,−1), (b,−c), (2a, b)(c,−1)(q,−c)
G(122,125) a, b, c (a,−1), (b,−c), (ab, 2)(q,−1)(q′, −c)

Table 4. (C2)2 × C4 Quotients

Group Quad ind Trivial elements in Br (K )
G(33,112) a, b, c (a,−1), (a, 2)(q,−1), (a, bc)(b,−1)
G(81,60) a, b, c (a,−1), (a, b), (a, c)
G(82,65) a, b, c (a,−1), (−a, b), (−a, c)
G(83,61) a, b, c (a,−1), (a, b), (−a, c)
G(87,72) a, b, c (a,−1), (a, b), (b,−1)(−b, c)
G(89,62) a, b, c (a,−1), (a, b), (a, c)(b,−1)
G(90,63) a, b, c (a,−1), (−a, c), (a, bc)(b,−1)
G(93,64) a, b, c (a,−1), (a, b)(c,−1), (a, bc)(b,−1)
G(94,88) a, b, c (a,−1), (a, b), (a, 2c)(q,−1)
G(95,104) a, b, c (a,−1), (−a, b), (a, 2c)(q,−1)
G(96,89) a, b, c (a,−1), (a, b), (a, 2)(b, c)(q,−1)
G(97,105) a, b, c (a,−1), (−a, b), (a, 2c)(b, c)(q,−1)
G(98,113) a, b, c (a,−1), (−a, c)(b,−1), (a, 2b)(q,−1)
G(101,127) a, b, c (a,−1), (−ab, c)(b,−1), (a, 2b)(q,−1)
G(102,114) a, b, c (a,−1), (a, c)(b,−1), (a, 2c)(b, c)(q,−1)
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Table 5. (C2)4 Quotients

Group Quad ind Trivial elements in Br (K )
G(79,214) a, b, c, d (a, bc)(c,−1), (a,−d)(d,−1)
G(80,210) a, b, c, d (a,−1)(b, c), (bd,−1)(c, d)
G(161,235) a, b, c, d (−a, d)(b,−1), (b,−c)(c,−1)
G(162,238) a, b, c, d (−a, d)(c,−d), (a,−b)(b,−1)
G(163,232) a, b, c, d (a, d)(b,−d), (b, c)(−a, d)
G(164,234) a, b, c, d (a,−1)(b, c), (a,−cd)(d,−1)
G(165,240) a, b, c, d (abc,−1)(b, c), (a, d)(abd,−1)
G(166,236) a, b, c, d (a,−1)(−b, c), (a, bd)(d,−1)
G(167,233) a, b, c, d (a,−1)(−b, c), (a, d)(b,−1)
G(168,237) a, b, c, d (a,−1)(−b, c), (a,−bd)(d,−1)
G(173,224) a, b, c, d (a, c)(b, d), (a,−d)(d,−1)
G(174,225) a, b, c, d (a, b)(−c, d), (b,−c)(c,−1)
G(175,219) a, b, c, d (a, b)(−b, d), (a, bd)(b, c)
G(176,221) a, b, c, d (a,−b)(c,−1), (−a, d)(b, c)
G(177,220) a, b, c, d (a,−1)(−c, d), (a, d)(b, c)
G(178,223) a, b, c, d (a, d)(b,−d), (a, d)(b,−1)(−ab, c)
G(179,222) a, b, c, d (a, b)(−b, c), (a, c)(b,−d)(d,−1)
G(183,242) a, b, c, d (a, d)(b, c), (a, bd)(c, d)
G(184,241) a, b, c, d (−a, c)(b, d), (−ab, d)(b, c)
G(185,243) a, b, c, d (a, c)(bc, d), (a, c)(b,−c)(ac, d)
G(186,244) a, b, c, d (a, c)(a, d)(b, c), (a, c)(ac,−1)(b, d)
G(187,245) a, b, c, d (a, cd)(b,−d)(d,−1), (acd,−1)(a, d)(b, c)

Table 6. (C4)2 Quotients

Group Quad ind Trivial elements in Br (K )
G(37,17) a, b (a,−1), (b,−1), (a, b), (ab, 2)(q,−1)
G(38,3) a, b (a,−1), (b,−1), (a, 2)(q,−1), (2a, b)(q′, −1)

Table 7. C2 ×D8 Quotients: Part I

Group Quad ind Trivial elements in Br (K )
G(53,97) a, b, c (a,−b), (a,−1), (a, 2)(c,−1)(−b, q)
G(54,108) a, b, c (a,−b), (b,−1), (a, 2)(c,−1)(−b, q)
G(113,99) a, b, c (a,−b), (a,−1), (a,−2c)(−b, q)
G(114,98) a, b, c (a,−b), (a,−1), (a, 2c)(b, c)(−b, q)
G(115,100) a, b, c (a,−b), (a,−1), (a, 2c)(b,−1)(−b, q)
G(116,109) a, b, c (a,−b), (b,−1), (a,−2c)(−b, q)
G(144,73) a, b, c (a,−b), (a, c), (b, c)
G(145,76) a, b, c (a,−b), (a, c), (b,−c)(c,−1)
G(146,75) a, b, c (a,−b), (a, c), (b,−c)
G(147,74) a, b, c (a,−b), (a,−c)(c,−1), (ab, c)
G(148,80) a, b, c (a,−b), (a,−c)(c,−1), (−b, c)
G(149,79) a, b, c (a,−b), (−a, c)(b,−1), (b, c)
G(150,77) a, b, c (a,−b), (a,−c)(c,−1), (b, c)
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Table 8. C2 ×D8 Quotients: Part II

Group Quad ind Trivial elements in Br (K )
G(151,78) a, b, c (a,−b), (a, c)(b,−1), (b, c)
G(152,81) a, b, c (a,−b), (a, c)(b,−c), (a,−c)(c,−1)
G(188,174) a, b, c (a,−b), (−b, c), (a, 2)(−b, q)
G(189,173) a, b, c (a,−b), (−b, c), (a,−2)(−b, q)
G(190,181) a, b, c (a,−b), (b,−c)(c,−1), (a, 2)(−b, q)
G(191,179) a, b, c (a,−b), (b,−c)(c,−1), (a,−2)(−b, q)
G(192,175) a, b, c (a,−b), (−b, c), (a, 2)(b,−1)(−b, q)
G(193,167) a, b, c (a,−b), (a,−1)(−b, c), (a,−2)(−b, q)
G(194,168) a, b, c (a,−b), (a,−1)(−b, c), (a,−2)(b,−1)(−b, q)
G(195,147) a, b, c (a,−b), (b,−c), (a, 2)(−b, q)
G(196,146) a, b, c (a,−b), (b, c), (a,−2)(−b, q)
G(197,148) a, b, c (a,−b), (b, c), (a, 2)(b,−1)(−b, q)
G(198,176) a, b, c (a,−b), (−b, c), (a,−2)(bc,−1)(−b, q)
G(199,180) a, b, c (a,−b), (b,−c)(c,−1), (a,−2)(b, c)(−b, q)
G(200,169) a, b, c (a,−b), (a,−1)(−b, c), (a,−2)(b, c)(−b, q)
G(201,128) a, b, c (a,−b), (a,−c), (a, 2)(−b, q)
G(202,131) a, b, c (a,−b), (a, c), (a,−2)(−b, q)
G(203,129) a, b, c (a,−b), (ab, c), (a,−2)(−b, q)
G(204,132) a, b, c (a,−b), (a, c), (a, 2)(b,−1)(−b, q)
G(205,140) a, b, c (a,−b), (−a, c), (a, 2)(−b, q)
G(206,141) a, b, c (a,−b), (−a, c), (a,−2)(b,−1)(−b, q)
G(207,155) a, b, c (a,−b), (a,−c)(c,−1), (a, 2)(−b, q)
G(208,142) a, b, c (a,−b), (−a, c), (a,−2)(−b, q)
G(209,157) a, b, c (a,−b), (a,−c)(c,−1), (a,−2)(−b, q)
G(210,156) a, b, c (a,−b), (a,−c)(c,−1), (a,−2)(b,−1)(−b, q)
G(211,143) a, b, c (a,−b), (−a, c), (a, 2)(b,−1)(−b, q)
G(212,158) a, b, c (a,−b), (a,−c)(c,−1), (a, 2)(b,−1)(−b, q)
G(213,161) a, b, c (a,−b), (ab, c)(b,−1), (a, 2)(−b, q)
G(214,162) a, b, c (a,−b), (a, c)(b,−c), (a,−2)(−b, q)
G(215,164) a, b, c (a,−b), (a,−c)(b,−1), (a,−2)(−b, q)
G(216,165) a, b, c (a,−b), (a, c)(b,−1), (a, 2c)(−b, q)
G(217,130) a, b, c (a,−b), (ab, c), (a, 2)(b, c)(−b, q)
G(218,133) a, b, c (a,−b), (a, c), (a, 2)(b,−c)(−b, q)
G(219,144) a, b, c (a,−b), (−a, c), (a, 2)(c,−1)(−b, q)
G(220,145) a, b, c (a,−b), (−ab, c), (a,−2)(c,−1)(−b, q)
G(221,159) a, b, c (a,−b), (a,−c)(c,−1), (a,−2c)(−b, q)
G(222,160) a, b, c (a,−b), (a,−c)(c,−1), (a, 2c)(b,−1)(−b, q)
G(223,163) a, b, c (a,−b), (a,−c)(b, c), (a, 2)(c,−1)(−b, q)
G(224,166) a, b, c (a,−b), (ab, c)(b,−1), (a, 2)(b, c)(−b, q)
G(225,177) a, b, c (a,−b), (−b, c), (a, 2c)(−b, q)
G(226,178) a, b, c (a,−b), (−b, c), (a,−2c)(c,−1)(−b, q)
G(227,182) a, b, c (a,−b), (b,−c)(c,−1), (a, 2c)(b,−1)(−b, q)
G(228,150) a, b, c (a,−b), (b, c), (a, 2c)(−b, q)
G(229,149) a, b, c (a,−b), (b,−c), (a, 2c)(−b, q)
G(230,151) a, b, c (a,−b), (b, c), (a, 2c)(b,−1)(−b, q)
G(231,171) a, b, c (a,−b), (a,−1)(−b, c), (a,−2c)(−b, q)
G(232,170) a, b, c (a,−b), (a,−1)(−b, c), (a, 2c)(b, c)(−b, q)
G(233,172) a, b, c (a,−b), (a,−1)(−b, c), (a,−2c)(b,−1)(−b, q)
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