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1. Introduction

Given a field K and a group G, the inverse problem of Galois theory asks whether or not there exists a Galois field
extension L of K such that the Galois group of L over K is isomorphic to G. Extensive research has focused on small
2-groups, asking, for each group, what are necessary and sufficient conditions on a field K for the group to be realizable.
Realizability conditions for groups of order 64 that are direct products of smaller groups are easily derived from those
for the component groups, but complete conditions have been found for very few other groups of order 64. In this work,
we provide necessary and sufficient conditions for the realizability of 134 groups of order 64. Combining these with the
known conditions for the cyclic group and those that are direct products of smaller groups leaves unsolved only 66 of
the 267 groups of order 64.

Compilations of conditions for the realizability of groups of order 2, 4, 8, and 16 can be found in [6] and [10]. Conditions
for groups of order 32 can be found or derived from results in [2, 4, 5, 7, 11-13].

For fields of characteristic 2, a classic result of Witt [14] solves the realizability problem for finite 2-groups in general.
Therefore, all fields in this paper are assumed to have characteristic other than 2.
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Throughout, we use C, and D, to denote the cyclic and dihedral groups of order n, respectively. Although there is
no universally accepted notation for small 2-groups, in general, two common numbering schemes can be found in [3]
and in [8]. In this paper, we use G to denote the group of order 64 corresponding to r in Hall and Senior’s list [8]
and to [64, s] in GAP’s small groups library [3]. Group presentations for these groups can be found in Carson’s index of
2-groups [1].

2. Methods

We begin by defining the Galois embedding problem and explaining its relationship to the Galois realizability problem.
Given a Galois extension L/K and a short exact sequence

1 N E —— Gal(L/K) —— 1, (1)

the Galois embedding problem of L/K and (1) asks if there exist a Galois field extension M/K with L C M and a
homomorphism ¢:Gal (M/K) — E such that ¢:Gal (M/K) — Gal (L/K) is the natural restriction of Galois groups. The
pair (M/K, ¢) is called a proper solution if ¢ is surjective. We can assume, without loss of generality, that ¢ is injective.
Further, when the short exact sequence has kernel G, and is not split, ¢ is necessarily surjective.

Let G be a group with normal subgroup N = G, such that the short exact sequence

1 G G GIN 1 )

is not split. If the group G is realizable over K, so there exists a Galois extension M of K with Gal(M/K) = G,
then by basic Galois theory, there exists an intermediate field L with Gal (L/K) = G/N. This in turn implies that the
Galois embedding problem given by L/K and (2) is solvable. Conversely, if the Galois embedding problem given by
L/K and the non-split extension (2) is solvable, then there exists a Galois field extension M/K with an isomorphism
¢:Gal(M/K) — G, and thus G is realizable over K. So the realizability of G over K is equivalent to the realizability
of G/N over K, say by a field L, and the solvability of the Galois embedding problem given by L/K and (2).

We use a method of Ledet [10] to determine the obstructions for 34 non-split embedding problems with kernel G, and
quotient (G)" x (C4)° x (Dsg)!. As described above, this allows us to solve the realizability problem for these groups.
Specifically we use Theorem 2.2, below, a detailed proof of which can be found in [7].

We extend this method to one applying to an additional 100 groups, as follows. Let N; and N, be disjoint normal
subgroups of a group G, each of order two, and consider the short exact sequence

T N1N2 G v G/N1N2 — (3)

It is easy to see that the group G is realizable over K if and only if G/N;N; is realizable over K, say by the field L,
and the Galois embedding problem given by L/K and (3) is properly solvable.

Let L be an extension of K with Gal(L/K) = G/(N1N,). By the following theorem [9], it suffices to consider embedding
problems associated to the short exact sequences

1 —— NiN,/INy ——— GINy ——— GINN\N; —— 1, 4)
t 7
and
1 —— NiNoINy ——— GINy ——— GINNN; —— 1. (5)
i T

Theorem 2.1.
The Galois embedding problem given by L/K and (3) is solvable if and only if the Galois embedding problems given by
L/K and (4) and by L/K and (5) are both solvable.
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To state Theorem 2.2 [7, Theorem 1], we need the following notation and well-known characterizations of certain exten-
sions. Let L/K be a (G)" x (C4)° x (Dg)-extension, so L is the composite of a (C;)~extension, a (Cy)*-extension, and a
(Dg)“extension.

Any (G;)-extension of K can be written in the form K (ﬁ,...,ﬁ), where the a; are quadratically independent
elements of K = K — {0}. The Galois group of the extension is generated by oy, ..., g,, where oi(y/a;) = (—1)% /a; for
alli,j <r.

Any (Cy)*-extension can be written as

K (\/qr+1(ar+1 + \Y ar+1)r s \/qr+s(ar+s + V ar+s)

where the al- are quadratically independent elements of f(, g; € K, and for each i, r < i < s, there exists ¢; € K such
that a; = €2+1 or, equivalently, (a;, —1) = 1 in Br(K). The Galois group of the extension is generated by 0,1, ..., 0,

where g; (w/ (a; +Va)) = \/% and 0; (\/q;(a; + /@) = \/q;(0; + /a)) for all i # j.

Finally, any (Dg)-extension can be written as

K (\/qr+5+1 (ar+5+1 + Br+s+1 V ar+s+1)r Vv br+s+1 ] \/qr+s+t(ar+s+t + Br+s+t\/ Ur+5+t)r V br+s+t ’

where a;, b; € K are quadratically independent, a;b; = a? —a;8?, a; € K, and B;, q; € Kforalli,r+s<i<r+s+t.
Such ¢; and B; € K exist if and only if (@, —b) = 1 in Br(K). The Galois group of the extension is generated by the
automorphisms {o;, 7;|r + s < i < r + s+ t} where

g; (\/ O(l + Bl l ) \/qmaij—iﬁb\/* for all i;

o (/e + Bjv/@))) = \/4,(e; + Bj/@)) for all i # j;
i (\/b;) = ~/bj for all j;

7 (v/a,(; + Bj/a)) = /a,(e; + B;/@) for all i, j;
7ihy/bj) = (—1)%+/b; for all i, .

It follows that the Galois group of L/K is generated by {o;, ;|1 < i < r+s+t,r+s <j<r+s+t}, where the g
and t; that generate each factor are defined as above, with the additional requirement that o; and 7; fix the elements
corresponding to the j* factor for all i # j.

Theorem 2.2.

Let K be a field and let L be a (G,)" x (Cy)* x (Ds)'-extension of K. Let {01, ..., Oristt, Trist1s-- -, Trasit} be a minimal
generating set of Gal (L/K) such that |o;| =2 fori <r, |o;| =4 forr <i<r+s 0} =17 =(an)>=1fori>r+s,
0,0; = 0;0; and 7;7; = 7;7; for all i, j, and 0;7; = T;0; for all i # j. Let

1 G E (G)" x (Ga)° x (Dg) ——— 1 (6)
be a non-split extension of groups, and choose pre-images g1, ..., G4t € Eof 01, ..., Orysirand hpysiq, ..o hpsiy € E
of Trysi1, ..., Trrsit- Where appropriate, let —1 denote the image of —1 in E. Then the obstruction to the embedding

problem given by L/K and (0) is

[N =% x [l 2(=1.01% x [ [lten =2(=bi, 201" (b1, =1 (ai, ~1)"
i=1 i=r+1 i=r+s+1
x [ @i @) < [ (@i b)) x [ (b, b))
i<j i<j i<j
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where g7 = (—=1)4 fori < r; g} = (=N forr<i<r+s+t;h?= (=1 forr+s<i<r+s+t hg;=(-1)iglh,
forr+s<i<r+s+t; gig; = (—"1)%g;g; for all i,j; g:h; = (=1)%h;g; for all 1 < i < j, withr+s<j<r+s+t
and hih; = (—1)lihih; forr+s <i<j<r+s+t (Ifq; =0, then —b; is a square in K and we set (—b;, 2a;q;) =1 in
Br (K).)

3. Results and sample proofs

Our results are given in Tables 1-8, which give necessary and sufficient conditions for the realizability of the group over
a field K in terms of the group of square classes in K and the Brauer group of K. The tables are organized by the
kernels and quotients of the related embedding problems; the first three tables corresponding to C,-kernels, the rest to
G, x Gy-kernels. The quotients are indicated in the table captions.

In each table, the first column indicates the group, using the notation described in Section 1. The second column gives
labels for the elements of K that are required to be quadratically independent. The third column lists the elements of
Br (K) required to be trivial, expressed in terms of the elements in the previous column and, for some groups, unrestricted
elements g and ¢’ in K.

We now give detailed proofs for two representative groups, the first using a C,-kernel, the second using a G, x C,-kernel.
Proofs for the other groups follow the same general outline. We first consider the group

5

Gis8124) = (x, g,z|x2, ys, y4z4,zxz x,xyxg7, yzy7z7>.

Theorem 3.1.
The group Gsg 124y is realizable as a Galois group over a field K if and only if there exist quadratically independent
elements a, b, and ¢ € K and q, ¢’ € K such that (a, —1) = (b, —c) = (ab, —2)(g, —=1)(q’, —¢) = 1 in Br(K).

Proof. The group Cy x D is realizable over K if and only if there exist quadratically independent elements a4, a5,
and b, € K such that (a1, =1) = (a2, —b) = 1. Let L/K be a G4 x Dg-extension, if one exists.

Using the notation of Theorem 2.2 for the generators of C4; x Dg, consider the exact sequence

1 G C(58,124) T Cy x Dg — 1.

—Ty? yrd

20

3

Let g1 =y, g2 = z, and hy, = x in Gpgr29). Then dy = d; = 1 and, since x is of order 2, e; = 0. Now xz = z°x

implies that f; = 0 and, since y is central, di, = e;; = 0. Therefore, in the notation introduced before Theorem 2.2, the
obstruction to the embedding problem given by L/K and (3) is (a1, 2)(—1, g1)(a2, =2)(—b2, 2a2q2).

Thus Gsg 124y 1s realizable over K if and only if there exist quadratically independent elements a4, a;, and b, € K such
that (ay, —1) = (a2, —b2) = (a1a2, —2)(q, —1)(¢’, —b2) = 1 in Br(K) where g = g1 and q’ = 2mq>. O

For an example with kernel G, x C,, we consider the group
Gi307) = <W,X, y,z| wh=x% = g4 = y2z2 =1, xw = wxz>, zw = wz>, zx = x2°, y e Z>.

Theorem 3.2.
The group Gis39 is realizable as a Galois group over a field K if and only if there exist quadratically independent
elements a, b, c € K such that (a, —b) = (a, —1) = (a,2)(c, =1)(—=b, q) = 1 in Br (K).

Proof. The group G, x D is realizable over K if and only if there exist three quadratically independent elements
ay, a2, by € K such that (a2, —by) = 1. Let L/K be a G, x Dg-extension, if one exists.
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Using the notation of Theorem 2.2 for the generators of G, x Dg, consider the exact sequence

T - C2 X C2 -'T.) 0(53 97) .WH—UzT.—> Cz X Da -
(1. 1)y ot (/)
Z>—>ﬂ2

By Theorem 2.1, the embedding problem given by L/K and (7) is solvable if and only if the embedding problems given
by L/K and each of the sequences

1 Cz 2 0(53'97)/<W2> EE— Cz X Da — 1

WHUZ T2
i ®)

705

sy

and

1 G C(53,97)/<y2) s G xDg —— 1

e e )

y=oq
ocd

are solvable. In the notation of Theorem 2.2, let g1 = y, go = wx, and h, = x. Then for (8), dy = d, = f, =1 are
the only nontrivial exponents and so the obstruction is (a1, —1)(a2, —2)(—b2, 2a2q2)(a2, —1). For (9), f, =1 is the only
nontrivial exponent, yielding the obstruction (a2, —1). The theorem follows. O

Table 1. G, x ()2, (G2)® x G4, and (C2)® Quotients

Group Quad ind Trivial elements in Br (K)
G30,57) a,b,c (a,=1),(b,=1),(a, b)(c, —1)
G(32,86) a,b,c (a,=1), (b, =1),(ac, b)(c,2)(q, —1)
Gpos99) @, b,c,d (a,—1),(a, b)(c, —d)
Guoz01)  a,b,c,d (a,=1),(—a, b)(c, bd)
Gi(108,200) a,b,c,d (a,—1),(a, b)(C d)(cd, —1)
Groope9) @, b,c,d (a,=1), (a,2b)(c, d)(g, —1)
Guose6)  a,b,c,d,e  (a,=1)(b,—c)(d, e)
Table 2. ()2 x Ds Quotients
Group Quad ind  Trivial elements in Br(K)
G77,206) a,b,c,d  (c,—d) (ab,—T)(a,c)
G78,213) a,b,c,d  (c,—d),(bd,—1)(a,d)
Gaizse)  a,b,c.d (¢, —d), (a,c)(bd, —=1)(c,2)(—d, q)
Gus7227y  a,b,c,d (¢, —d),(a, bc)(c, —1)
Gusspzy  a.b,c,d  (c,—d), (a,—b)(b,—d)
Gpso,20)  a,b,c,d  (c,—d),(a,—bc)(b,—1)
Gusozey  a.b.c,d  (c,—d),(a, b)(ad,—1)
Gueop1s)  a,b,c,d (¢, —d), (a,d)(b, cd)
G170,216) a,b,c, d (c,—d), (a, c)(b, —d)
G171,218) a,b,c,d (c,—d), (a, —c)(b, —cd)
Gp72,217) a,b,c,d (¢, —d), (a, cd)(b, —c)(c, —1)
Gomsyy  a.b,e,d  (c,—d), (—a,b)(c,2)(—d, q)
G258y a,b,c.d  (c,—d),(2a,c)(ad, b)(— d:‘?)
Gpa3as9  a,b,c,d  (c,—=d) (a,b)(=b,d)(c,2)(—d, q)
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Table 3. ¢ x Ds Quotients

Group Quad ind  Trivial elements in Br (K)

Gis8,129) a,b,c (a,=1), (b, —c), (ab, =2)(q, —1)(q, —c)

Gg4,67) ab,c (a,=1),(b,—c),(a,b)

Gss,71) a,b,c (a,—1),(b, —c), (a,c)

G(s6,66) a,b,c (a,=1), (b, —c), (—a, b)

Gss,70) a,b,c (a,—1),(b,—¢),(—a,c)

C(91,69) a,b,c (U —1) (b C) (G bt.‘)( 1)

G(gzlﬁg) U,b,C (G 71) (b C) (U bC)(C 71)

G99,116) ab,c (a,=1),(b,—c), (a,2b)(q, —1)

Gpoo117y  a,b,c (a,=1), (b, —c), (a,2¢)(q, —1)

Gu7123y  a,b,c (a,=1), (b, —c), (2a, b)(q, —¢)

Guga2ry  a,b,c (a,=1), (b, —c),(—2a, b)(q, —¢)

Gu9a22)  a,b,c (a,=1),(b, —c), (2a, b)(c, —1)(q, —¢)

Gpaz25)  a,b,c (a, 1), (b, —c), (ab, 2)(q, —1)(q’, —¢)
Table 4. (¢;)? x ¢, Quotients

Group Quad ind  Trivial elements in Br(K)

G3112) ab,c (a,=1),(a,2)(q, 1), (a, be)(b, —1)

G81,60) a,b,c (a,=1),(a,b),(a,c)

6(32,65) U,b,C (G, 1),( a,b) ( G,C)

G(s3,61) a,b,c (a,—1),(a, b),(—a,c)

Gg7,72) a,b,c (a,—1),(a,b), (b, =1)(—b,¢c)

G(89,62) a,b,c (a,—1),(a, b), (a, c)(b,—1)

G(90,63) a,b,c (a,=1),(—a,c), (a, bc)(b,—1)

G(03,64) a,b,c (a,—1),(a, b)(c,—1),(a, bc)(b, —1)

Gioa,88) a,b,c (a,=1),(a,b), (a,2¢)(q, 1)

Gosioy  a.bc  (a,~1).(~a,b),(,20)(g, 1)

G(96,89) a,b,c (a,=1),(a,b), (a,2)(b, c)(q.—1)

Gorass  abc  (a,~1),(~a,b),(a,20)(b, c)(q, 1)

G98,113) a,b,c (a,=1),(=a, c)(b, =1), (a,2b)(q, —1)

Guor1z7y  a,b,c (a,=1), (=ab, c)(b,—1),(a,2b)(q, 1)

Guozi19)  a,b,c (a,=1), (a, c)(b, =1), (a, 2¢)(b, c)(g, —1)
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Table 5. (¢;)* Quotients

Group Quad ind  Trivial elements in Br(K)
G(79,214) a,b,c,d (a,bc)(c,—1), (a, —d)(d, —1)
Gg0,210) a,b,e,d  (a,=1)(b,¢), (bd,—1)(c, d)
Guer,235y  a,b,c.d  (=a,d)(b,=1),(b,—c)(c,—1)
Gue2238y a,b,c,d  (—a,d)(c,—d), (a,—b)(b,—1)
Guesasy)  a,b,c,d  (a,d)(b,—d), (b, c)(~a,d)
Guea sy  a.b,c.d  (a,=1)(b,c). (a,—cd)(d,—1)
G165,240) a,b,c,d (abc, —1)(b, ¢), (a, d)(abd, —1)
Gueo2s6) a,b,c,d  (a,—1)(=b,¢),(a,bd)(d, 1)
Guez233y  a,b,c,d  (a,=1)(=b,¢),(a,d)(b,—1)
Gues2s7)  a,b,c,d  (a,=1)(=b,¢),(a,—bd)(d, -1)
Gur3224y  a,b,c,d  (a,c)(b,d), (a,—d)(d, 1)
Guyazs)y  a,b,e,d  (a,b)(—c,d), (b, —c)(c,—1)
G(175'21g) a,b,c,d (U b)( b d),(a,bd) b C)
Guze221y  a,b,c,d  (a,=b)(c,=1),(=a,d)(b,c)
Gurz220 a,b,c,d  (a,=1)(—c, d), (a,d)(b,c)
G(173'223) a,b,c,d (CI d)(b d) (G d)(b —1)( Gb,C)
G(17g'222) U,b,C,d (H b)( b C), G,C)(b,fd)(d, 71)
Gpgsoay)  a,b,c,d  (a,d)(b,c), (a,bd)(c, d)
Gpgaay  a,b,c.d  (=a,c)(b,d),(—ab,d)(b,c)
G185,243) a,b,c,d (a, ¢)(bc, d), (a, c)(b, —c)(ac, d)
Gpgeaey  a,b,c,d  (a,c)(a,d)(b,c), (a,c)(ac,—1)(b, d)
Gpgroes)  a,b,c,d  (a,cd)(b,—d)(d, —1), (acd, —1)(a, d)(b, c)
Table 6. (¢;)? Quotients
Group Quad ind  Trivial elements in Br(K)
Ggerayy  ab (a,=1),(b, 1), (a, b), (ab, 2)(q, 1)
Ggs3 ab (a,=1),(b,=1),(a,2)(q, 1), (2a, b)(q’, —1)
Table 7. ¢ x Ds Quotients: Part |
Group Quad ind  Trivial elements in Br (K)
Geory  abc (a,=b),(a,=1),(a,2)(c, =1)(=b. q)
Giaa08)  a,b,c (a,=b), (b, =1).(a,2)(c, =1)(=b, q)
Guazge  a,b,c (a,—=b),(a,=1),(a,—=2¢)(=b, q)
Gaagsy a,b,c (a,—b),(a,=1),(a,2¢c)(b, c)(—b, q)
Gaisi00)  a,b,c (a,—b), (a,—1),(a,2¢)(b, =1)(—b, q)
Guie100) @, b, c (a,=b), (b, =1),(a, =2c)(=b, q)
Guaa73y  a,b,c (a,=b),(a,c), (b, c)
Guasze)  a,b,c (a,—b),(a,c), (b, —c)(c, 1)
Gpse75  a.b,c (a,—=b),(a,c), (b, —c)
G147,74) a, b, c (a,—b), (a, —c)(c, 1), (ab, c)
Guggoy a,b,c (a,=b),(a,—c)(c, —1),(=b, c)
Guag79) @, b,c (a,=b), (—a,c)(b,—1),(b, c)
Guso77y  a.b,c (a,=b), (a,—c)(c, 1), (b, )
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Table 8. ¢, x Ds Quotients: Part Il

Group Quad ind  Trivial elements in Br(K)

G51,78) ab,c (a,=b),(a,c)(b,—1),(b, c)

G152,81) a,b,c (a,—b),(a, c)(b, —¢), (a, —c)(c, —1)
Gugsi74y  a,b,c (a,=b),(=b,c),(a,2)(~b, q)

Gpgo173  a.b.c (a,=b),(=b,c),(a,=2)(~b, q)

Gaoos1y  a,b,c (a,=b), (b, —c)(c, 1), (a,2)(—b, q)
Guot1799 @, b,c (a,—b), (b, —c)(c, —1), (a, =2)(—b, q)
Guoza75)  a,b,c (a,=b),(=b,c),(a,2)(b, —1)(—b, q)
Guoze7y  a,b,c (a,=b),(a,=1)(=b,¢),(a,=2)(=b, q)
Gpioae8) 0, b, c (a,=b),(a,=1)(=b, c), (a,=2)(b, —1)(—b. q)
Gosaa7)  a,b,c (a,=b), (b, —c), (a,2)(—b, q)

Gos146) @, b, (a,—=b), (b, c),(a, =2)(—b, q)

Guoz48y  a,b,c (a,=b), (b, c), (a,2)(b, =1)(=b, q)
Gogi7e) @, b, c (a,=b),(=b, c),(a,=2)(bc, =1)(=b, q)
Gigo80) @, b, c (a,=b), (b, —c)(c, =1), (a, =2)(b, c)(—b, q)
Gpooe9) @, b, c (a,—b), (a,=1)(=b, c), (a, =2)(b, c)(—b, q)
Gpo1128y  a,b,c (a,=b),(a,—c),(a,2)(=b, q)

Gpoz131y @b, c (a,=b),(a,c), (a,—2)(—b, q)

Gpo329) @b, c (a,—b),(ab, c),(a, —2)(—b, q)

Gpoan3y a,b.c (a,—b),(a,c), (a,2)(b, —1)(—b, q)
Gposa0)  a.b.c (a,=b),(=a,c), (a,2)(=b,q)

Gpoos1a1y  a,b,c (a,=b),(=a,c),(a,=2)(b,=1)(=b, q)
Gpo7as5  a,b,c (a,—b),(a,—c)(c, —1),(a,2)(—b, q)
Gposi42)  a,b,c (a,=b),(—a,c), (a,—2)(-D,q)

Gpogs7)  a.b.c (a,=b),(a,—c)(c, —1),(a, =2)(—b, q)
Gpio1ss) @b, c (a,=b),(a,=c)(c,=1),(a, =2)(b, =1)(=b, q)
Geija3)  a,b,c (a,=b),(=a,c),(a,2)(b,—1)(—b,q)
Goizisey  a,b,c (a,=b), (a,—=c)(c,—1),(a,2)(b, =1)(=b, q)
Gpi3ie1)  a.b.c (a,—=b), (ab, c)(b,—1),(a,2)(—b, q)
Goia162)  a,b,c (a,=b),(a,c)(b,—c),(a,=2)(=b, q)
Gpisieq)  a,b,c (a,—b),(a,—c)(b,—1),(a,=2)(—b, q)
G165 a,b,c (a,=b),(a, c)(b,—1),(a,2¢c)(=b, q)
Gpi7430) a.b.c (a,=b),(ab, c), (a,2)(b, c)(—b, q)

Goig133y  a,b.c (a,=b).(a,c).(a,2)(b,—c)(=b. q)
Gpioaa9y @, b,c (a,=b),(=a,c),(a,2)(c,—1)(—b, q)
Gp45y  a,b,c (a,—b),(—ab,c),(a, =2)(c, =1)(—b, q)
G159 a,b,c (a,=b),(a,—c)(c, —1),(a, —2c)(—b, q)
Gonae0)  a,b,c (a,=b),(a,=c)(c,=1).(a, 2c)(b, =1)(—b, q)
G363 a,b,c (a,=b),(a,—c)(b, ), (a,2)(c,—1)(—D, q)
Gpate6) @b, c (a,=b),(ab, c)(b,—1),(a, 2)(b, c)(—b, q)
Gosa77)  a,b,c (a,=b),(=b, c),(a,2¢c)(—b, q)

Goxwa78  a,b,c (a,=b),(=b,c), (a,=2c)(c, =1)(=b, q)
G782 a,b,c (a,=b), (b, —c)(c, —1), (a, 2c)(b, —1)(=b, q)
Gasaso)  a,b,c (a,=b). (b, c), (a,2¢)(—b, q)

G949) @, b, c (a,—=b), (b, —c),(a,2c)(—b, q)

G151y a,b,c (a,=b), (b, c),(a,2c)(b, =1)(—b, q)
Gesia71y  a,b.c (a,=b),(a,=1)(=b, c), (a, —2¢c)(—Db, q)
Gp321700  a,b,c (a,=b), (a,=1)(— ,c) (a,2¢)(b, c)(—b,q)
G372 a.b, (a,—b), (a, =1)(=b, ¢), (a, —2c)(b, —1)(=b. q)
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