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1. Introduction

It is widely believed that mathematical programming should start with linear programming, where the objective function
is linear and constraints are linear inequalities in the unknowns. But how do we solve the inequalities? D.Gale [4]
wrote in 1969, "There is one group in the mathematical community who do know how to solve inequalities; these are the
people who work in linear programming. The situation here is again curious. Linear programming involves maximizing
or minimizing a linear function using variables which are required to satisfy a system of linear inequalities. Thus, in
order to solve a linear program one must in the process find a solution of these inequalities. It turns out, on the other
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hand, that the problem of solving inequalities can itself be thought of as linear programming problem in which one is
minimizing an artificial objective function... Logically one would first learn to solve the inequalities and then worry about
minimizing or maximizing over the set of solutions.” For solving inequalities D.Gale recommended using the lexicographic
variant of the simplex method of Dantzig, Orden and Wolfe [3].

However, linear inequalities are more complicated than linear equations. Equations as constraints can be transformed
into linear inequalities by replacing each equation with the opposing pair of inequalities, but linear inequalities cannot
be transformed into equations.

This paper focuses on finding solutions to systems of linear inequalities and other mathematical programming problems
by applying the least-squares method (see Section 3). This highly developed method is much older than the simplex
method, which was introduced by G.Dantzig only in the the mid-20th century. In the degenerate case the simplex
algorithm may stall, performing a number of iterations at a degenerate vertex before producing any improvement in the
objective value. With help of the least-squares method such a situation can be avoided.

The least-squares method is not only used in mathematics but also in statistics, physics etc., where mainly nonlinear
problems are solved by composing a certain number of similar linear least-squares problems, differing by a variable
or constraint. This paper proves that such an idea can also be used for solving linear and quadratic programming
problems. The least-squares technique and its applications to mathematical programming are described thoroughly
in [6]. The basic problem (Section 2) used is minimizing |Eu — f||?, st. x > 0, which is the NNLS (non-negative
least-squares) problem. It is equivalent to the phase | algorithm for simplex method, discussed by Leichner, Dantzig
and Davis in [7]. Their algorithm solves least-squares subproblems and guarantees strict improvement at each step for
degenerate problems. They consider the advantages of using the least-squares method in calculating the initial solution
to degenerate problems, but their initial solution does not depend on the objective function. The main contribution of
this paper is that this dependency exists, and moreover that the initial solution may even turn out to be optimal. The
calculation of the initial basis is of great importance since it determines, to a large extent, the amount of computation
that will be required to solve the LP problem, see [2].

The primal-dual simplex method solves a sequence of small phase | linear programming problems to improve the dual
solution. There is a description in [1] of a version of the primal-dual method, the least-squares primal-dual algorithm
(LSPD), that uses the non-negative least-squares sub-problem and is impervious to degeneracy. Unlike the classical
primal-dual simplex method, at each step of the LSPD algorithm a least-squares problem is solved. This algorithm
takes less than half the number of iterations required by the primal and dual simplex methods. The assumption set forth
in [1], though, is that the initial solution to the dual problem is already known. If not, it is suggested to add an extra
constraint and an extra variable to the primal problem, in line with the classical primal-dual simplex method. In this
case the dual problem has a trivial feasible solution, which is usually very far from the optimum though. In Sections 4
and 5 we consider finding the initial solution for the LSPD algorithm and for the primal-dual simplex method.

In line with [1] and [7], this paper uses orthogonal transformations of the least-squares method, which have a natural place
in linear programming computations since they leave the Euclidean length of a vector invariant. The use of Householder
transformations, for achieving greater accuracy, is thus warranted, although they are twice as time consuming as Gaussian
eliminations. The simplex method, which has been perfected for the last 60 years, is more suitable for solving stable
and non-degenerate problems.

The exact methods for solving linear and quadratic programming problems can for the most part be categorized as either
modified-simplex-type methods or projection methods. The former perform simplex-type pivots. The latter are based
upon projections onto active sets of constraints. Projection methods are usually more efficient for quadratic programming
problems and require less storage than methods of the modified simplex type. In this paper we present a projection-type
dual algorithm for solving systems of linear inequalities as well as linear and quadratic programming problems.

In Section 6, exact and approximate quadratic programming algorithms are described. In Section 7, the moving direction
for the nonlinear programming problem is found as the solution with minimal norm to the system of linear inequalities.

The main results of this paper are calculating the initial solution to the linear programming problem by applying
the least-squares method (Section 5), developing the theoretical foundation for the initial solution in Section 4, and
determining the moving direction for the non-linear programming problem (solving a system of linear inequalities using
the least-squares method, instead of computing an inverse matrix).
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2. The LS1 Algorithm for the non-negative least-squares (NNLS) problem

Consider the non-negative least-squares (NNLS) problem, which is an over or underdetermined system of linear equations
Du=f, u>0, (M
or

min {@(u) = 0.5|Du — f||’}, u >0, )

where D is an m x n matrix, u € R", and f € R™, see [6].

Assumption 2.1.
The columns of the matrix D and vector f are unit vectors,

IO =1, j=1,eun, If] = 1.

To solve the least-squares problem (1), three finite orthogonal methods are given in [6]. This paper proposes an algorithm
that corresponds to the first version of the second method in [6], in which the matrix of the system is not transformed in the
computation process. Instead, the QR-transformation is found, where Q is an orthogonal and R is an upper-trianqular
matrix. Then the least-squares solution is found using the upper-trianqular system.

LS1 Algorithm:

Step 0. Initialize u = 0, the set of active columns £ = §.
Step 1. Find maximum of inner products F; = (D;, f) = Fjo.

Step 2. If Fjp < 0, then u is the solution of problem (1), Stop;
Else £ = [E, D).

Step 3. Solve the NNLS problem ||f — Eug|? = min|f — Eu|?,u > 0.

Step 4. Find the maximum of inner products F; = (D;, f — Eug) = Fjo, and go to Step 2.

Remark 2.1.

The optimality and convergence of the LS1 algorithm are shown in Theorem 4.1 in [14].

Remark 2.2.
When a new variable is activated, we have to first find the corresponding column of the trianqular matrix R, then the
corresponding column of the inverse matrix R~" and finally using vector u, the new vector u (see [14]).

Remark 2.3.

In the LS1 algorithm rectangular systems of linear equations (1 x m,2 x m,...) are solved. LU-factorization for the
simplex method does not work for such a system. The columns corresponding to zero components u; in the solution are
removed even though they are linearly independent of the other columns. The solution improves strictly and there is no
degeneracy.

Remark 2.4.
The LS1 algorithm is similar to the revised simplex method. The matrix D of the system is not transformed, only the
trianqular matrix R is used for computing.
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Remark 2.5.

The Householder transformations used in the LS1 algorithm are memorized as products, and the algorithm’s stability
analysis is presented in [6]. The Householder triangularization needs mn?—n3/3 operations for solving the least-squares
problem (2).

Remark 2.6.

Similar algorithms for solving the NNLS problem, which are also based on the least-squares method, are described
in [6, 7, 9]. In these papers, determination of the variable becoming active or inactive is more complicated. As the
aforementioned papers do not present the results of solving NNLS explicitly, a comparison of different algorithms under
similar conditions is the focus of a forthcoming paper.

Remark 2.7.

The vectors [E, Dy in Step 2 are linearly independent, see Corollary 2.19 in [7] or [10]. For linearly dependent columns
D; the inner product F; = 0. The criterion for activating variables (Step 4) ensures "maximal” linearly independent
columns of the matrix D.

Remark 2.8.
In Step 0, the set of active columns E is empty. If we could easily pick out a starting set of linearly independent columns,
then we could start with them already in E, see [7].

3. Theorem of alternatives and the solution with minimal norm to the system
of linear inequalities

This section deals with finding the solution of a system of linear inequalities by applying the least-squares method.
We first show how to solve inequalities and then transform other mathematical programming problems to the system of
inequalities. This approach is suitable for degenerate and ill-conditioned problems.

Let us consider the basic problem
min{z = |x|?/2}, Ax < b, (3)

where A and b are given matrices with dimensions m x n and m x 1, and X(n x 1) is the solution with minimal norm.

Assumption 3.1.
The rows a; of the matrix A are non-zero vectors,

a,-||7’:0,i:1,...,m.

As shown in [6], problem (3) is equivalent to the least-squares problem
(b, U) = -1, ATu = 0' u> 0 (4)

or
min {o(u) = (1+ (b,u))* + |ATulI’}, u >0, (5)

where u € R™.

Farkas’ Lemma.
The system Ax < b has no solutions if and only if there is a vector u such that

(b,u)y=-1, ATu=0, u>0. (6)
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Let us compose the dual problem for (3):

min {w = —05|x|> + (y.b — Ax)}, —x—ATy =0, )
g,-(bi—(a,-,x)):(), i=1,...,m, yZO

Theorem 3.1 (Cline).
The relationships

. —ATG

v by ®)
b

YT b0y ©)

hold for the optimal solutions to problems (3), (4) and (7).

Equation (8) was proven by Cline [6], and equation (9) follows from the constraints of the dual problem (7) and equation
(8). Vector x is the gradient of the objective function (3); it is expressed as a linear combination of the constraint
gradients with non-positive coefficients [8].

Theorem 3.2 (of alternatives).
Exactly one of the following alternatives is true:

1) Ix € R" such that Ax < b, whereby the solution with minimal norm is

—ATq
1+ (b, 0)

%=
and G is the solution of the least-squares problem (4),

2) the set Q =[x : Ax < b] is empty and the least-squares problem (5) has an exact non-negative solution 0, ¢(0) = 0.

Remark 3.1.

The solution with minimal norm to the system of linear inequalities (3) may be found using the LS1 algorithm (see
Section 2). A detailed description of this process is presented in [14] together with the estimates characterizing the
performance of the algorithm.

4. Duality theorems and the least-squares solution to the LP problem

We consider the linear programming problem

min{z = (¢, x)} (10)
subject to
Ax=b, x>0,
and its dual
max{w = (b,y)}, yA<ec, (1)

where A, b, c are given matrices with dimensions m x n, m x 1 and 1 x n respectively, and x and y are n x 1 and 1 x m
vectors of variables.
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Assumption 4.1.
The columns A]- of the matrix A are non-zero vectors,

Al #£0j=1,..n,

]| # 0.

We now introduce into linear programming the notion of a b-basis which is a generalization of the basis.

Definition 4.1.
A set of linearly independent columns of a matrix A, [Ai1, Az, ..., Ai] = B, is said to be a b-basis if there exist positive
components x;; > 0,......, xi > 0 such that

ik
ZA,-kxik =b, k<m.
i1

Note that this notion of a b-basis differs from that of the simplex method, since our basis B may contain less than m
columns and that these columns may not be sufficient in themselves to span the column space of A. For example, if
there exists column A;, such that A;x; = b, x; > 0, then the b-basis is B = [A;] and the corresponding b-basic feasible
solution is x = (0,0, ,, x;,...0,0).

The least-squares method is effective in the case of a degenerate basis, with strict inprovement attained at each iteration,
see [7]. Unlike the simplex method, the least-squares method does not make use of variables whose values equal zero,
see Example 4.2.

Let us write for the dual problem of a system of linear inequalities
—(y,b) <=z, yA<c, (12)

which has unique solution with minimal norm §, when the parameter zy = Zyin = Wmax - In the general case this is
one of the optimal solutions to the dual problem. Let us define the NNLS problem (4) corresponding to this system of
inequalities:

—upzo+ (c,u)y=—-1, —uogb+Au=0, up>0, u=(u,.. u,,)T > 0. (13)

When constructing the dual problem (11) we rotated the initial problem by 90 degrees. In the corresponding least-squares
problem (13) we made another 90 degree rotation and obtained a form similar to the initial problem.

Next we shall study the relationships between problems (10)—(13). We will show that using problem (13) at each value
of the parameter z;, an initial solution can be found to the primal or dual problem, which may turn out to be an optimal
one or differ from it only slightly. The number k of positive variables ug, u, ...u, in the least-squares solution always
satisfies the inequalities

1<k<m+1,

since the number k cannot be larger than the number of linearly independent columns in that problem.

Theorem 4.1.

If primal problem (10) has an unbounded optimal solution, then for every zy, the least-squares problem (13) has an exact
solution U, (i) = 0.

If the primal problem has an unbounded optimal solution, then the dual problem is infeasible and according to Theorem
3.2 there exists a vector U such that ¢(d) = 0.
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Example 4.1.
min{z=-2x}, —xi+xx=1, x>0
Let us compose the least-squares problem (13):
—ugzo—2u1 =—-1, —ug—u1+u, =0, u>0.
If zyg > 0, then the exact solution is Uy = 1/z5, Uy =0 and U, = 1/z. If zg < 0, then Gy = 0,0, =1/2 and U, = 1/2.

Remark 4.1.

If the LP problem (10) is infeasible and the dual problem (11) has an unbounded solution, then for every z, the system
of linear inequalities (12) holds. We solve problem (13) and by using equation (8) obtain a feasible solution to the dual
problem (11). If both problems, primal and dual, are infeasible, then the least-squares problem (13) has an exact solution
0, o(0) = 0 for every z.

Case I. For the chosen parameter zy the inequality
Z0 > Znmin (,I 4)

holds.

Theorem 4.2.
In case of inequality (14), problem (13) has an exact solution Uy, U;, with corresponding b-basic solution X, where

X =

(15

oo

Proof. In Case |, system (12) does not hold. According to Farkas' Lemma, problem (13) has an exact solution, while
the complementary slackness theorem implies ug > 0. Dividing the constraints of problem (13) by this variable, we get
the b-basic solution with the following value for the objective function:

. 1
(c,x) = = + zp. (16)
0 0
Case Il
20 < Zmin- (1 7)

After finding the least-squares solution to problem (13), with the help of equation (8), we can calculate a feasible solution
to the dual problem (11) with the value of the objective function not less than z,. Let us denote by § the element with
minimal norm of the set of feasible solutions of the dual problem w = (g, b). If zy < W, we can calculate the element
with minimal norm of the dual problem using the least-squares solution of problem (13) and Theorem 3.2, with uy = 0. If
7o > w, we can find the feasible solution of the dual problem using equation (8), with the value of the objective function
w = zp (see Example 4.2).

Example 4.2.
Let us consider the LP problem
4 2075 -31 0 5 75
A= 5 3 19 =21 0 20 |, b=1{90 |, c=(-3,0 0 —171, 15, =2, =1, 1).
1210 0 84 15 0 —1 84 84
The exact solution is x = (15,0,0,0,0,15,96,0)” or x = (0,0,0,1,0,0,0,0)7, z,;, = =171, and y = (5, —7,1).

The results obtained by solving the least-squares problem (13) in Case | and the corresponding b-basic solutions are
given in Table 1. Table 2 presents the feasible solutions to the dual problem found in Case II.
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Table 1. Computing results for zg > zpin

20 0 1 2 3 4 5 6 7 8
-170 X 15 0 0 0 0 15 96 0
u 1 15 0 0 0 0 15 96 0
-160 X 0 0 0 1 0 0 0 0
u 0.091 0 0 0 0.091 0 0 0 0
-150 X 15 0 0 0 0 15 96 0
u 0.048 0.714 0 0 0 0 0.714 4571 0
150 X 0 0 0 0 0 70 0 1
u 0.003 0 0 0 0 0 0.242 0 0.003
1000 X 7 0 8 0 0 47 0 0
u 0.0009 0.006 0 0.007 0 0 0.042 0 0
Table 2. Computing results for zy < zpin
z0 0 1 2 3 4 5 6 7 8
71 y 5 7 1
u 0.046 0.855 0 0 0 0 0 6.371 0
-172 y 4.667 -6.733 1
u 0.048 0.892 0 0 0 0 0 6.648 0
173 y 4333 6467 1
u 0.051 0.932 0 0 0 0 0 6.946 0
-180 y 4.286 -6.429 1
u 0 0.064 0 0 0 0.109 0 2428 0
-1000 y 4.286 -6.429 1
u 0 0.064 0 0 0 0.109 0 2.428 0

5. Solving linear programming problems

Two possible ways of using the least-squares method for solving a linear programming problem are described in [1, 7] In
this section we consider finding the initial solution and a method for an approximate solution, both of which are based

on the least-squares method.

5.1. Initial solution

Theorem 4.2 is used for finding the initial solution. It is necessary to give the minimum of the objective function z; for the

initial problem (10) and to solve the least-squares problem (13). When solving the problem the value of the parameter

2o can be estimated more easily if problem (10) contains the constraints

[/'SXI'SUJ',

j=1,...

n.

If no such constraints are given, l;, u; can be estimated for each particular problem.

As seen in Table 1, if the values of zy are within the interval

Zmin < 20 S Zpin + A:

(18)



E. Ubi

for a particular A > 0, then we can immediately find the optimal solution to the initial problem (10) using the solution
of the least squares problem (13) and equation (15). If the chosen zj is too large, zyi, + A < zp, we can calculate the
feasible solution of the initial problem and continue with the simplex method. According to equation (16), when zy > Zi,
and the difference zy — zy, is small, the calculation process may become unstable since the optimal value of ug is large.

Table 2 presents the calculation results for Case Il. Once zy, is known, we can find the solution with minimal norm to
the dual problem by solving problem (13). Then we continue using the primal-dual simplex-method or the least-squares
primal-dual method.

If the least-squares problem (13) has an exact solution &, ¢(&) = 0, then for o > 0 we obtain a b-basic solution to
problem (10). If ¢(&) = 0 and 0y = 0, then both the primal and dual problems are infeasible. We solved the test problems
of low and medium dimensions given in the paper [8], and our initial experiments are very encouraging. To sum up, if the
LP is degenerate or ill-conditioned, or if we have no initial solution, then it is expedient to start the solution process
with the least-squares problem (13) and subsequently implement the respective simplex method.

The classical simplex method is based on computing the inverse matrix. In (12), the basis matrix in triangular form is
used for ill-conditioned problems instead of the inverse matrix. The primal and dual variable values are found from the
trianqular system, by transforming Householder reflections. At every step of the revised simplex method the following
two systems are to be solved

s ™
o X
T
o=
03
S &

where B is the basis matrix, ¢ is the part of vector ¢ corresponding to basic variables, and y = (y1, ..., yn) is the vector
of dual variables.

Let Q be an orthogonal m x m matrix such that QB = R is an upper trianqular matrix. There is no need to compute Q;
it will be presented as a product of m — 1 Householder transformations [6]. The necessary information is stored under
the main diagonal of the triangular matrix R (instead of zeros). The dual variables are sought in the form y = tQ, where
t is an m-vector, found from the triangular system tR = ¢. Finding the inverse matrix Q=" is not necessary either. In
order to find the dual variables y = (Q~"t")” one has to apply the m — 1 Householder transformations to the vector t"
in reverse order, see [13]. After finding the initial solution by solving problem (13) we can leave the basis matrix in the
triangular form, both in the first and the second case, and continue with the respective implementation of the simplex
method.

5.2. Approximate method
Let xx be the optimal solution to problem (10) and x(&) the least-squares solution to the NNLS problem
Ax=b, ex=-c", x>0, (21)

where T denotes the transpose and € > 0. In [12] it is shown that x(¢) — xx*, as € — 0, and the finite VL algorithm
for solving the NNLS problem is presented. For large and sparse matrices A, the well-known least-squares technique
should be used. Compute the sum of squares

@e(x)/e = (Ax — b, Ax — b)[2e + (c, ¢)/2¢ + (c, x) + €(x, x)/2.

Thus, the least-squares solution of problem (21) is equivalent to applying penalty functions and the reqularization
method to the LP problem. The term g(x, x)/2 guarantees the stability of the method and enables us to solve unstable
problems, see [12]. For example, a test problem with the Hilbert matrix is solved up to the 220th order, while many
implementations deal with 4th- to 10th-order matrices.
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6. Solving quadratic programming problems

6.1. Exact method
Consider the quadratic programming problem
min{0.5(y, By) + (d,y)}, Gy < h, (22)

where B is a positive-definite n x n matrix, G is an m x n matrix, y € R",d € R", and h € R". Using the Choleski
decomposition with B = D™D and shifting y = D~'x — B~'d, problem (22) is transformed to the basic problem (3): find
the solution with minimal norm to the system of linear inequalities

min{z = |x|?/2}, Ax < b, (23)

where A = GD™" and b = h + GB~'d. The computational results are presented in [15]. Compared to the modified-
simplex-type methods, the presented dual algorithm requires less storage and solves ill-conditioned problems more
precisely.

6.2. Approximate method
We shall consider the problem of finding an n-vector xx satisfying
min{z = |f — Ex|’}, Ax=b, x>0, (24)
where E is a p x n matrix, A is m x n matrix, f € R?, and b € R™. To solve this, consider the NNLS problem
Ax=b, eEx=c¢f, x>0, (25)

whose least-squares solution is denoted by x(g), € > 0. In [11] it is shown that x(g) — xx, as € — 0. Usually the
quadratic programming problem is formulated in the form of (22). If we transform the objective function z to this form,
then matrix E is squared, and its condition number must also be squared (depending on the definition of the condition
number). However, [11] recommends the opposite — to transform the objective function of problem (22) using the Cholesky
(square root) method to the form of (24).

7. Moving direction for linearly constrained problems
Let us consider the nonlinear programming problem
max{z = f(x1, X2, ..., x,)}, Ax <b, (26)

where A is an m x n matrix, and b € R™. Below we give a brief overview of the active set method, concentrating first
on determining the moving direction p* from the current point x*, where

k+

X = x4 sp*, k=0,1,2,... (27)

A detailed description of the straightforward part of the algorithm is provided in [5, 16], for when step s, has positive
length. In this case the vector x* + s grad f(x¥) is feasible. We examine the case where we have to find the projection
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of the gradient. We choose the moving direction according to Zoutendijk [16], using normalization N1. In this case, a
least-squares problem that changes for one constraint must be solved at every step. To find the projection p of gradf,
we solve the least-squares problem

min {zp = 0.5(pF + ... + p2)}, —(grad f(x*),p) < -1, Ap <0, (28)

where matrix A is the part of matrix A corresponding to the working set {i : (a;, x) = b;}. This problem is solved using
the LS1 algorithm from Section 2.

Remark 7.1.

If problem (28) is infeasible, then the condition for convergence is satisfied, and vector x* is the local optimal solution.
Example 7.1.
max{z=x+20+23—-01¢ -013}, x+23<12, 2q+x+x <16, x3<8 x>0
Step 0. Take x° = (2,4,4)7 as a starting point. The moving direction is found using the least-squares problem
min {zp = 0.5(p7 + p3 + p3)},  6/10ps —12/10p, — 2p3 < —1, p, +2p3 < 0.
The solution with minimal norm is p = p0 = 1/49(75, 20,—1O)T, and the step length is s = min{196/160,196/10} =

196/160 = sp.
Step 1. x" = x° + s0p° = 1/40(155, 180, 150)" .

min {zp = 0.5(p7 + p3 + p3)},
—9/40py — 44/40p, —2p3 < =1, pr+2p3 <0, 2pi+pa+p3 <0, p' =1/7(—40,160, —80)".

Step 2. x> = 1/17(65,80,62)".
min {zp = 0.5(p? + p2 + p2)}, —20/85p; —90/85p, — 170/85p3 < —1, pr+2p3 <0, 2p1+p2+p3 <0,
This system of inequalities has no solution, since the least-squares problem (4)
—uy =—1, —=20/85u1 +2u3 =0, —90/85u;+uz+u3=0, —170/85u;+2u;+u3=0, u>0

has exact solution ¢ = (1,80/85, 10/85)T. The vector x2 is an optimal solution.

8. Conclusion and future work

The simplex method and various interior point methods are still dominant algorithms used for solving LPs. However, for
degenerate and ill-conditioned problems these methods yield poor results. This paper introduced the LS1 algorithm for
solving the NNLS problem. It is used to obtain a stable solution to a system of linear inequalities as well as linear
and nonlinear programming problems. When the value of the objective function (z) is successfully estimated, then the
initial least-squares solution to the LP problem is optimal and the presented method may be less labor-intensive than
the simplex method. In its current form, z; is a parameter of the method, and it determines the amount of computation
required to solve the LP problem. In comparison, the simplex method does not have that obstacle.

Future work includes developing a better rule for determining the value z, for the objective function.
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