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To work our way towards the very canonical but rather difficult relationship between the notions appearing in the title, itis appropriate to review briefly the classical problems that make up the background of our study, and whose importancewill be initially regarded as self-evident. Thus, we are given a polynomial
f(x1, x2, . . . , xn)

whose coefficients will be assumed to be in Z for the sake of simplicity. The set of solutions to the equation
f(x) = 0

can be considered in any number of different environments such as
Z, Z[1/62], Q, Z[i], Q[i], . . . , Q[i, π], . . . , R, C, Qp, Cp, . . .
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Fundamental groups and Diophantine geometry

In recent decades, the designation of the equation as Diophantine has not been a reference to any particular property ofthe equation itself, but rather calls attention to our primary focus on contexts closer to the beginning of the list, althoughhow far we might extend the scope is better left undetermined. In any case, there are famous results corresponding todifferent lines of demarcation, such as the one that says
xn + yn = zn

has only the obvious solutions in Z as long as n ≥ 3, or where
f(x, y) = 0

for a generic f of degree at least 4 has only finitely many solutions in Q(i, π, e).Elementary coordinate geometry can be brought to bear on some such questions as a potent tool for describing solutionsets, or least for generating solutions. A simple but already interesting case is a quadratic equation in two variables,say
x2 + y2 = 1.

By visualizing the real solution set as a circle, we might come upon the idea of considering the intersections with linesthat pass through the specific point (−1, 0), where the set-up has already encouraged us casually to refer to a solutionusing geometric terminology. The lines are described using equations y = m(x + 1) for various m whereby algebraicsubstitution leads to the constraint
x2 + (m(x + 1))2 = 1

or (1 +m2)x2 + 2m2x +m2 − 1 = 0.
A deeper connection to algebra comes from the observation that one solution x = −1 is already rational, so that wheneverthe slope m is rational, the other solution is also bound to be rational. As we vary m, we can generate thereby allthe other rational solutions to the equation, for example, (−99/101, 20/101) corresponding to m = 10. It seems that thevisually compelling nature of the solution set in a sufficiently big field provides valuable insight into finding solutionsin much smaller fields. Incidentally, I am sure you are aware also that this procedure leads to the famous Pythagorean
triples involved in equations like 992 + 202 = 1012.
The elementary elegance of the method described becomes progressively harder to retain with the increasing complexityof the problem, measured, for example, by the degree of the equation. Nevertheless, it is instructive to consider oneexample of degree 3:

x3 + y3 = 1729.
One verifies with the help of Ramanujan that (9, 10) is a solution, so the case of the circle might motivate us to considerlines through it. Unfortunately, the previous argument for the rationality of intersection points fails as the associatedconstraint becomes cubic. But if we want to start out generating just one other solution, a more subtle idea is to considerthe tangent line to the real curve at the point (9, 10), because then, the corresponding cubic equation will have 9 as a
double root. To spell this out, calculate the equation of the tangent line,

81(x − 9) + 100(y − 10) = 0
or

y = (−81/100)x + 1729/100,
and substitute to obtain the equation

x3 + ((−81/100)x + 1729/100)3 = 1729.
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We have arranged for x = 9 to be a double root, and hence, the remaining root is forced to be rational. Even by hand,you can (tediously) work out the resulting rational point to be
(−24561/271, 24580/271).

Repeating the procedure with the points that are successively obtained thus actually provides us with infinitely manyrational solutions. Here, you must pause to consider the possibility that repetition will just move us (quasi-)periodicallyaround finitely many points, but there is a well-known theorem of Nagell and Lutz that tells us this cannot happen giventhe denominator of the solution at hand.Geometric techniques of the same general flavor can be made considerably more sophisticated, with nice applicationsto varieties of simple type as might be defined by equations of low degree in a greater number of variables. But inthe present lecture we wish to explain the important conceptual shift that occurred in the 1960’s, whereby Diophantineproblems acquired an intrinsically geometric nature by way of two foundational ideas of Grothendieck.The first one, elementary in comparison to the second, associates to the polynomial f(x) the ring
A := Z[x]/(f(x)).

This leads to a natural correspondence between solutions (b1, . . . , bn) of f(x) = 0 in a ring B, and ring homomorphisms
A→B

That is, an arbitrary n-tuple b = (b1, . . . , bn) determines a ring homomorphism Z[x]→B that sends xi to bi, which factorsthrough the quotient ring A exactly when b is a zero of f(x). The spatial intuition is supposed to arise from the ideathat a commutative ring R with 1 can be viewed as the ring of functions on a space, its spectrum

Spec(R),
whose underlying set consists of the prime ideals of R . This correspondence reverses arrows reflecting the intuition thata map of spaces should pull functions backwards by composition. Thus, the solutions in B of f(x) = 0 come into bijectionwith the set of maps Spec(B)→X := Spec(A),conventionally denoted by

X (B).Even before considering such difficult maps, it is pleasant to note that an obvious map
X
↓Spec(Z)

corresponds to the inclusion
Z→A = Z[x]/(f(x))using which we think of X as a fibration over Spec(Z). Then the solutions in Z, the elements of X (Z), are precisely the

sections

whose underlying set consists of the prime ideals of R. This correspondence reverses arrows reflecting
the intuition that a map of spaces should pull functions backwards by composition. Thus, the solutions
in B of f(x) = 0 come into bijection with the set of maps

Spec(B)→X := Spec(A),

conventionally denoted by
X(B).

Even before considering such difficult maps, it is pleasant to note that an obvious map

X
↓

Spec(Z)

corresponds to the inclusion
Z→A = Z[x]/(f(x))

using which we think of X as a fibration over Spec(Z). Then the solutions in Z, the elements of X(Z),
are precisely the sections

X

Spec(Z)
��

P

]]

of the fibration. The remarkable upshot of this formulation is that the study of solutions to equations
is subsumed into the study of maps whose very nature compels us to consider as the most basic in all
of mathematics. This perspective is of late provenance in the theory of Diophantine equations, but
still provides at this point its most fundamental justification.

The second idea involves a sophisticated construction whereby spaces like Spec(Q) or Spec(Z) are
endowed with very non-trivial topologies that go beyond scheme theory (by which we mean the global
theory of such spectra). We will not review the precise definitions in this summary, since it appears
by now well-known that a Grothendieck topology on an object T allows open sets to be certain maps
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of the fibration. The remarkable upshot of this formulation is that the study of solutions to equations is subsumed into thestudy of maps whose very nature compels us to consider as the most basic in all of mathematics. This perspective is oflate provenance in the theory of Diophantine equations, but still provides at this point its most fundamental justification.The second idea involves a sophisticated construction whereby spaces like Spec(Q) or Spec(Z) are endowed with verynon-trivial topologies that go beyond scheme theory (by which we mean the global theory of such spectra). We will notreview the precise definitions in this summary, since it appears by now well-known that a Grothendieck topology on anobject T allows open sets to be certain maps with range T from domains that are not necessarily subsets of T . On a’usual’ topological space, one could make the topology finer by allowing as open sets maps
U→T

that are local homeomorphisms. This would allow covering spaces of T , for example, to be regarded as an ’open set.’ Anopen covering then is a collection {Ui→T}i∈I of such maps with the property that the union of the images is T . But thisdoes not give anything essentially new. By definition each such U→T is a local homeomorphism, so that coverings byfamilies of usual open subsets is co-final among all such exotic open coverings. That is to say, any covering {Ui→T}i∈Iin the generalized sense has a refinement
{Vij ↪→T}

where each Vij ↪→T is an open embedding that factors through one of the Ui:
Vij→Ui→T.

This fact induces an equivalence of categories between the category of usual sheaves and sheaves in this refinedtopology.However, in algebraic geometry, there are many maps that behave formally like local homeomorphisms without actuallybeing so. These are the so-called étale maps between schemes. A nice and fairly general class of examples arise frommaps Spec(B)→Spec(A)
corresponding to maps of rings A→B where B has the form

A[x]/(f(x))
for a monic polynomial f(x). The constraint we wish to impose is that the fibers of Spec(B) over Spec(A), which havethe form Spec(k [x]/(f̄(x)))
for residue fields k of A, should have the same number of elements, indicating an absence of ramification. For this, weneed to prevent f(x) from having multiple roots in any such residue field. This amounts to the condition that f(x) and
f ′(x) should not have common roots point-wise, or that the discriminant of f should be a unit in A. The obvious map

Spec(C[t][x]/(x2 − t))→Spec(C[t]),
is not étale, the discriminant of x2 − t being the non-unit 4t, while

Spec(C[t, t−1][x]/(x2 − t))→Spec(C[t, t−1]),
is étale.
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Allowing étale maps as open subsets gives a genuinely richer topology to a scheme than the Zariski topology. Theconnected étale coverings of Spec(Q), for example, are maps
Spec(F )→Spec(Q),

where F is a finite field extension of Q. For Spec(Z), one can construct an open covering using the two maps
Spec(Z[i][1/2])→Spec(Z)

and Spec(Z[(1 +√−7)/2][1/7])→Spec(Z).
The (co-)homology theory associated to sheaves in the étale topology has been spectacularly applied to the arithmeticgeometry of schemes in the past many decades, with results well-enough known not to require a separate survey. Lessknown perhaps, is that Grothendieck’s exotic topologies can also lead to interesting homotopy groups, whose structuresare only recently being probed at any depth. One such direction is the motivic homotopy theory of Voevodsky, aboutwhich we will say nothing. The emphasis here instead is on rather recent developments in a somewhat older homotopytheory belonging to the étale fundamental group and its variations. In particular, we will focus exclusively on theapplication of the theory to Diophantine problems.The beginning point is surprisingly elementary, wherefrom the theory obtains a substantial portion of its charm. Lettherefore X be a variety defined over Q and G = π1(X (C), b) the usual topological fundamental group of the spaceobtained from the complex points of X . For any point x ∈ X (C), we can also consider the homotopy classes of paths

π1(X (C);b, x)
from b to x. Then π1(X (C);b, x) has the natural structure of a principal G-bundle, or a G-torsor, in that G naturallyacts on π1(X (C);b, x) via composition of paths, and the choice of any p ∈ π1(X (C);b, x) induces a bijection

G ' π1(X (C);b, x)
g 7→ pg

via the action. Since this principal bundle lives on a topological point, of course it is trivial. However, we see even herethat the variation of π1(X (C);b, x) in x is not at all trivial in general. That is to say, the triviality of the individual Pxis not different from the triviality of the fibers of even a complicated vector bundle. To be more precise on this point,choose a pointed universal covering space
f : (X̃ (C), b̃)→(X (C), b).

Then lifting of paths determines natural bijections
π1(X (C);b, x) ' X̃ (C)x

between homotopy classes of paths and the fibers of the universal covering space. In fact, it is natural to construct X̃ (C)as
∪xπ1(X (C);b, x)

topologized so that the obvious projection that takes π1(X (C);b, x) to x is a local homeomorphism. In any case, we seethereby that the principal bundles in question form the fibers of a map
f : (X̃ (C), b̃)→(X (C), b)
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that can be highly non-trivial. In fact, we will see that the lack of a canonical isomorphism G ' π1(X (C);b, x) is theessential ingredient underlying our ability to endow π1(X (C);b, x) with a genuinely non-trivial structure of a principal
G-bundle within suitably enriched contexts.As far as Diophantine problems are concerned, we will of course be interested in the situation where b and x are bothrational points in X (Q). As it stands, the principal bundles π1(X (C);b, x) cannot pick out such special points as beingdifferent in any way from generic points. There are several ways to remedy this, of which the (ostensibly) easiest oneto explain is the passage to the pro-finite completion. That is, define

G∧ := lim←−
N�G,[G:N]<∞G/N

and
P∧ := lim←−

N�G,[G:N]<∞P ×G G/Nfor any principal G-bundle P. Here, P ×G G/N is the pushout torsor, obtained by taking the quotient of the product
P × G/N by the diagonal G-action, g(p, x) = (pg, g−1x).Then the basic and remarkable fact is that G∧ is a sheaf of groups on the étale topology of Spec(Q) while π1(X (C);b, x)∧is a principal bundle for G∧ in this topology. This statement is demystified just a little bit by recalling that a sheaf onSpec(Q) is simply a set equipped with a continuous action of Γ = Gal(Q̄/Q). Nevertheless, it remains to see that theGalois group will indeed act on an object that arose thus out of ordinary topology.Accounting for the action is an isomorphism

π1(X (C), b)∧ ' πet1 (X̄ , b)
where

X̄ = X ×Spec(Q) Spec(Q̄)
is X regarded as a variety over Q̄, while πet1 refers to the pro-finite étale fundamental group. It is the latter object onwhich Γ will act naturally.The definition will be reviewed after a brief return to usual topology. For a manifold M and an element b ∈ M,the fundamental group π1(M,b) of M with base-point b can be defined in at least two different ways avoiding directreference to topological loops. One way is to note first that a loop l acts naturally on the fiber over b of any coveringspace N→M of M using the monodromy of a lifting l̃ of l to N:

lN : Nb ' Nb.

This bijection is compatible with composition of loops on the one hand, and with maps between covering spaces, on theother. That is, (ll′)N = lN ◦ l′N , and if f : N→P is a map of covering spaces, then
f ◦ lN = lP ◦ f

as maps from Nb to Pb. It is something of a surprise that the only way to give such a compatible collection ofautomorphisms is in fact using an element of the fundamental group. The concise way to state this is via the functor
Fb : Cov(M)→Sets

that associates to each covering N its fiber Nb over b. Then the fact in question is that
π1(M,b) ' Aut(Fb)
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with the Aut understood in the sense of invertible natural transformations of a functor.Now given a variety V , we can use this approach to define the étale fundamental group simply by changing the categoryof coverings. So we let Covet(V )
be the finite étale covers of V and, for any point b ∈ V , consider the functor Fet

b that takes W→V to the fiber Wb. Then
πet1 (V , b) := Aut(Fet

b ).
Similarly,

πet1 (V ;b, x) := Isom(Fet
b , Fet

x ).
These superb definitions have been around at least since the 1960’s, but it is rather striking that variation of the base-point has not been really attended to until fairly recently. The primary impetus for a serious reassessment appears tohave come from the interaction with the Hodge theory of the fundamental group.Nevertheless, constructions of the same general nature have now become commonplace in mathematics, the best knownbeing associated to the notion of a Tannakian category, whereby the automorphisms of suitable functors defined onagreeable categories give rise to group schemes. Here we will content ourselves with mentioning two more examples.Fix a non-Archimedean completion Qp of Q and consider the category

Locet(V ,Qp)
of locally constant sheaves of finite-dimensional Qp-vector spaces on V considered in the étale topology. There is stilla fiber functor

Falg
b : Locet(V ,Qp)→VectQp ,now taking values in Qp-vector spaces, that associates to each sheaf its stalk at b. (In comparing with the previoussituation, it would be useful for the audience to have some intuition for the notion that a locally constant Qp-sheaf is a’linearized’ version of a covering space.) Now define
πalg,Qp1 (V , b) := Aut⊗(Falg

b ),
the Qp-pro-algebraic completion of πet1 (V , b). The ⊗ in the superscript refers to the fact that the automorphisms arerequired to be compatible not just with the morphisms in the category, but also the tensor product structure. As thename suggests, it is a pro-algebraic group over Qp.When we replace all local systems by unipotent ones, i.e., those that admit a filtration

L = L0 ⊃ L1 ⊃ · · · Ln ⊃ Ln+1 = 0
such that each quotient Li/Li+1 is isomorphic to a direct sum of the constant sheaf Qp, one again gets a categoryUnet(V ,Qp) of the right sort to which one can restrict the previous fiber functor

Fu
b : Unet(V ,Qp)→VectQp .

The Qp-pro-unipotent completion [2] of the étale fundamental group is then defined as
πu,Qp1 (V , b) := Aut⊗(Fu

b ).
In both settings, there are still torsors of paths

πalg,Qp1 (V ;b, x) := Isom(Falg
b , Falg

x )
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and
πu,Qp1 (V ;b, x) := Isom(Fu

b , Fu
x ).

It is natural to regard such definitions with a degree of suspicion, since not having loops to visualize may make themseem entirely intractable. The situation is somewhat ameliorated through the intermediary of a universal object, whichwe describe in detail only for the full pro-finite étale fundamental group. Because Covet consists of finite coveringspaces, it may not be possible to find a single universal object inside the category. However, it is possible to constructa pro-object that performs the same role. This is a compatible system
Ṽ = {Vi}i∈I

of finite étale coverings
Vi→V

indexed by some filtered set I, having the following universal property: If we choose b̃ = (bi) ∈ Ṽb, the pair (Ṽ , b̃) isuniversal among pointed pro-covering spaces, in that any finite étale pointed covering (Y , y)→(V , b) fits into a uniquecommutative diagram

The Qp-pro-unipotent completion [2] of the étale fundamental group is then defined as

π
u,Qp

1 (V, b) := Aut⊗(Fu
b )

In both settings, there are still torsors of paths

π
alg,Qp

1 (V ; b, x) := Isom(F alg
b , F alg

x )

and
π
u,Qp

1 (V ; b, x) := Isom(Fu
b , F

u
x )

It is natural to regard such definitions with a degree of suspicion, since not having loops to vi-
sualize may make them seem entirely intractable. The situation is somewhat ameliorated through
the intermediary of a universal object, which we describe in detail only for the full pro-finite étale
fundamental group. Because Covet consists of finite covering spaces, it may not be possible to find
a single universal object inside the category. However, it is possible to construct a pro-object that
performs the same role. This is a compatible system

Ṽ = {Vi}i∈I

of finite étale coverings
Vi→V

indexed by some filtered set I, having the following universal property: If we choose b̃ = (bi) ∈ Ṽb, the
pair (Ṽ , b̃) is universal among pointed pro-covering spaces, in that any finite étale pointed covering
(Y, y)→(V, b) fits into a unique commutative diagram

(Ṽ , b̃) - (Y, y)

(V, b)
?

-

This means that there is some index i and a commutative diagram

(Vi, bi) - (Y, y)

(V, b)
?

-

In this situation, once again we have essentially tautological isomorphisms

πet
1 (V, b) ≃ Ṽb

and
πet
1 (V ; b, x) ≃ Ṽx,

where the fibers are also projective systems of points.
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7

In this situation, once again we have essentially tautological isomorphisms
πet1 (V , b) ' Ṽb

and
πet1 (V ;b, x) ' Ṽx ,

where the fibers are also projective systems of points.When V = X̄ for a variety X defined over Q and the base-point b is in X (Q), then the entire pro-system
˜̄X→X̄

comes from a system
X̃→X
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defined over Q and we can choose b̃ ∈ ˜̄X as well to come from a rational point b̃ ∈ X̃ (Q). The isomorphisms
πet1 ( ˜̄X ;b, x) ' ˜̄Xx

then are compatible with the action of Γ. The sheaves on Spec(Q) obtained thereby have also a harmonious descriptionin terms of the map corresponding to a rational point. The point is that the map
X̃→X

is a pro-sheaf of sets in the étale topology of X . Then given any point
x : Spec(Q)→X,

we get the sheaf
x∗(X̃ )

on Spec(Q), which is nothing but πet1 ( ˜̄X ;b, x).We illustrate this construction with the example of (Ē, 0), an elliptic curve with origin over Q. Let
En→E

be the covering space given by E itself with the multiplication map
[n] : E→E.

Then the system ( ˜̄E, 0̃) := {(Ēn, 0)}n −→ (Ē, 0)
is a universal pointed covering space. Thus, for (Ē, 0),

πet1 (Ē, 0) ' T̂ (E)
and an element of the fundamental group is just a compatible collection of torsion points of E . That is to say, the Galoisaction on πet1 (Ē, 0) is the well-known action on the Tate module of E . Similarly,

πet1 (Ē; 0, x) ' ˜̄Ex
consists of compatible systems of division points of x.A notable fact that emerges from this description is that if we take into account the Galois action, it is no longer possibleto trivialize the torsor in general, even point-wise. That is, there will often be no isomorphism between πet1 (X̄ , b) and
πet1 (X̄ ;b, x), reflecting the fact that the étale topology has a very rich structure even on a point. In the case of (E, 0), ifthere were an isomorphism

πet1 (Ē, 0) ' πet1 (Ē; 0, x)
then there would be a Galois invariant element of

πet1 (Ē; 0, x) ' ˜̄Ex .
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In particular, for any n, there would be a rational point xn such that nxn = x, which is not possible for x 6= 0 by atheorem of Mordell.To summarize, given a variety X/Q with a fixed rational point b ∈ X (Q), we are associating to each other point x ∈ X (Q)a principal bundle πet1 (X̄ ;b, x) for πet1 (X̄ , b) on the étale topology of Spec(Q). This information can be organized usinga standard classifying space of sorts for principal bundles. That is, given a principal bundle T , one can choose a point
t ∈ T

and examine the action of Γ on that point. For each g ∈ Γ, g(t) will be related to t by an element lg ∈ πet1 (X̄ , b), thatis,
g(t) = tlg.The map
g 7→ lgobtained thereby is a 1-cocycle

ct : Γ→πet1 (X̄ , b),
that is, a continuous map that satisfies

ct(g1g2) = c(g1)g1(c(g2)).If we denote the set of such cocycles by
Z 1(Γ, πet1 (X̄ , b)),

then πet1 (X̄ , b) acts on it according to
lc(g) := g(l−1)c(g)l

and a different choice of s ∈ T will lead to a cocycle cs lying in the same orbit as ct . Denote by
H1(Γ, πet1 (X̄ , b)) := πet1 (X̄ , b)\Z 1(Γ, πet1 (X̄ , b))

the orbit set, so that the torsor T determines a class
[T ] = [ct ] ∈ H1(Γ, πet1 (X̄ , b)).

This cohomology set in fact classifies such torsors so that we have defined a map

To summarize, given a variety X/Q with a fixed rational point b ∈ X(Q), we are associating
to each other point x ∈ X(Q) a principal bundle πet

1 (X̄; b, x) for πet
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Spec(Q). This information can be organized using a standard classifying space of sorts for principal
bundles. That is, given a principal bundle T , one can choose a point

t ∈ T

and examine the action of Γ on that point. For each g ∈ Γ, g(t) will be related to t by an element
lg ∈ πet

1 (X̄, b), that is,
g(t) = tlg.

The map
g 7→ lg

obtained thereby is a 1-cocycle
ct : Γ→πet

1 (X̄, b),

that is, a continuous map that satisfies

ct(g1g2) = c(g1)g1(c(g2)).

If we denote the set of such cocycles by

Z1(Γ, πet
1 (X̄, b)),

then πet
1 (X̄, b) acts on it according to
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and a different choice of s ∈ T will lead to a cocycle cs lying in the same orbit as ct. Denote by
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the orbit set, so that the torsor T determines a class

[T ] = [ct] ∈ H1(Γ, πet
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This cohomology set in fact classifies such torsors so that we have defined a map

X(Q) - H1(Γ, πet
1 (X̄, b))

x - [πet
1 (X̄ ; b, x)]

to a classifying space that can be thought of as an étale period map. In his famous letter to Faltings,
Grothendieck formulated the hope of studying Diophantine problems using this map. (He did not
express matters using torsors, but rather, splittings of a certain canonical sequence of fundamental
groups, in order to better harmonize the discussion with his general program of anabelian geometry.)

Unfortunately, it seems at present that the set H1(Γ, πet
1 (X̄, b)) has too little structure to study in

a comprehensible manner. It should be obvious, meanwhile, that an entirely analogous construction

can be carried out with π
alg,Qp

1 (X̄, b) or with π
u,Qp

1 (X̄, b). For reasons that are somewhat technical

to discuss in a short survey, π
alg,Qp

1 (X̄, b) does not afford much advantage at present over πet
1 (X̄, b).
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or rather, a slight improvement of this set. Let S be the set of primes of bad reduction for X , and denote by X (ZS) theset of points in the ring ZS of S-integers, where the integrality is defined in terms of a suitably good model. (Note thatif X is compact, then the integral points are the same as rational points.) Choose a prime p /∈ S. The first point of noteis that the map
X (Q)→H1(Γ, πu,Qp1 (X̄ , b)), x 7→ [πu,Qp1 (X̄ ;b, x)],

when restricted to the integral points, factors through a natural subspace corresponding to local conditions satisfiedby the torsors [πu,Qp1 (X̄ ;b, x)], such as being unramified away from the primes of bad reduction and p, and having a’crystalline’ nature at p. This last condition arises from the p-adic Hodge theory of the non-Archimedean variety
X ×Spec(Q) Spec(Qp)

that exerts a useful influence on πu,Qp1 (X̄ , b). In fact, these conditions are meaningless for H1(Γ, πet1 (X̄ , b)) and quitedifficult to analyze for H1(Γ, πalg,Qp1 (X̄ , b)). The advantage of considering them in the unipotent setting is that thesubspace H1
f (Γ, πu,Qp1 (X̄ , b)) becomes canonically equipped with the structure of a pro-algebraic variety. In fact, forvarious quotients [πu,Qp1 (X̄ , b)]n of πu,Qp1 (X̄ , b) modulo its descending central series, the sets

H1
f (Γ, [πu,Qp1 (X̄ , b)]n)

have natural structures of affine algebraic varieties over Qp that fit into a tower:
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sion can be repeated verbatim for the sets

H1
f (Γp, [π

u,Qp

1 (X̄, b)]n)
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provided by p-adic Hodge theory and the De Rham fundamental group πDR1 (XQp , b) together with its Hodge filtration
F •. Thus, eventually, our diagram becomesprovided by p-adic Hodge theory and the De Rham fundamental group πDR

1 (XQp , b) together with its
Hodge filtration F ·. Thus, eventually, our diagram becomes

X(ZS) - X(Zp)

H1
f (Γ, [π

u,Qp

1 (X̄, b)]n)

?
- [πDR

1 (XQp , b)]n/F
0

?

the effect of which is that we have replaced the difficult inclusion

X(ZS)→֒X(Zp)

with
H1

f (Γ, [π
u,Qp

1 (X̄, b)]n)→[πDR
1 (XQp , b)]n/F

0,

an algebraic map between Qp-varieties, whose image is therefore computable in principle.
It is reasonable to state a theorem [5]:

Theorem 0.1 Let X be a curve and suppose

dimH1
f (Γ, [π

u,Qp

1 (X̄, b)]n) < dimπDR
1 (XQp , b)n/F

0

for some n. Then X(ZS) is finite.

The proof of the theorem is contained in the following diagram:

X(ZS) - X(Zp)

H1
f (Γ, [π

u,Qp

1 (X̄, b)]n)

?
- [πDR

1 (XQp , b)]n/F
0

?

Qp

α6=0

?

The assumption on dimensions implies that the image ofH1
f (Γ, [π

u,Qp

1 (X̄, b)]n) inside π
DR
1 (XQp , b)n/F

0

is not Zariski dense, and hence, is killed by some non-zero function α. However, when the function is
pulled back to X(Zp) it turns out to be a non-zero linear combination of p-adic iterated integrals [3]

∫ x

b

β1β2 · · ·βm

of differential forms βi on X . This description is the really useful technical input from p-adic Hodge
theory. The point is that such a function can be expanded as a non-vanishing convergent power series
on each p-adic disk in X(Zp), and hence, has only finitely many zeros. The commutativity of the
diagram is then enough to imply that the function vanishes on X(ZS), yielding for us its finiteness.

Some amount of progress has accrued to the program of non-abelian Diophantine geometry by way
of this theorem, such as new proofs of Diophantine finiteness for hyperbolic curves whose homology
admit Galois action that are essentially abelian, that is, curves of genus zero, or curves of positive
genus with CM Jacobians [4, 6, 1]. Furthermore, standard conjectures from the theory of mixed
motives imply [5] that the inequality in the hypothesis should always hold on hyperbolic curves,
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hence, has only finitely many zeros. The commutativity of the diagram is then enough to imply that the function vanisheson X (ZS), yielding for us its finiteness.Some amount of progress has accrued to the program of non-abelian Diophantine geometry by way of this theorem, suchas new proofs of Diophantine finiteness for hyperbolic curves whose homology admit Galois action that are essentiallyabelian, that is, curves of genus zero, or curves of positive genus with CM Jacobians [1, 4, 6]. Furthermore, standardconjectures from the theory of mixed motives imply [5] that the inequality in the hypothesis should always hold onhyperbolic curves, insofar one climbs sufficiently high up on the tower (n >> 0). One hopes (perhaps in vain) thatthe milieu of investigation is rich enough to include eventually a broader range of applications, such as a structuralunderstanding of the relationship between Diophantine finiteness and hyperbolicity, and a ’non-abelian extension’ ofthe main ideas surrounding the conjecture of Birch and Swinnerton-Dyer [7].In the meanwhile, it is rather interesting to note the key role played by moduli spaces of principal bundles on Spec(Q)such as
H1
f (Γ, [πu,Qp1 (X̄ , b)]n).

The situation is an appropriate non-abelian complement to the classical use of the Jacobian of a curve, and the occurrenceof related moduli spaces in the Langlands’ program. It appears to have been André Weil who first foresaw suchpossibilities in a remarkable paper of the 1930’s [8], even with no knowledge of the étale topology. This is a point ofconsiderable historical interest that will be elaborated upon in a separate lecture.
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