5

Cent. Eur. J. Math. « 8(4) » 2010 + 633-645 VERSITA
DOI: 10.2478/s11533-010-0047-y

Central European Journal of Mathematics

Fundamental groups and Diophantine geometry

Review Article

Minhyong Kim'*

1 University College London, London, UK

Received 23 March 2010; accepted 16 June 2010

Abstract: Thisis a brief exposition on the uses of non-commutative fundamental groups in the study of Diophantine prob-
lems.

MSC: 14G25

Keywords: Fundamental group « Diophantine geometry
© Versita Sp. z o.o.

Colloquium lecture, Leeds, January 2008

To work our way towards the very canonical but rather difficult relationship between the notions appearing in the title, it
is appropriate to review briefly the classical problems that make up the background of our study, and whose importance
will be initially regarded as self-evident. Thus, we are given a polynomial

f(x1, X2, ..., Xn)
whose coefficients will be assumed to be in Z for the sake of simplicity. The set of solutions to the equation
f(x) = 0

can be considered in any number of different environments such as

Z, Z[1/62), Q, Zli}, Qlil,..., Qli,n),..., R, C, Q,, C,,...

* E-mail: minhyong.kim@ucl.ac.uk
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In recent decades, the designation of the equation as Diophantine has not been a reference to any particular property of
the equation itself, but rather calls attention to our primary focus on contexts closer to the beginning of the list, although
how far we might extend the scope is better left undetermined. In any case, there are famous results corresponding to
different lines of demarcation, such as the one that says

has only the obvious solutions in Z as long as n > 3, or where
fix.y)=0

for a generic f of degree at least 4 has only finitely many solutions in Q(i, 7, e).

Elementary coordinate geometry can be brought to bear on some such questions as a potent tool for describing solution
sets, or least for generating solutions. A simple but already interesting case is a quadratic equation in two variables,
say

X +y?=1.

By visualizing the real solution set as a circle, we might come upon the idea of considering the intersections with lines
that pass through the specific point (—1,0), where the set-up has already encouraged us casually to refer to a solution
using geometric terminology. The lines are described using equations y = m(x + 1) for various m whereby algebraic
substitution leads to the constraint

X2+ (m(x +1))> =1

or
(1 + m?)x> +2m*x +m> —1=0.

A deeper connection to algebra comes from the observation that one solution x = —1 is already rational, so that whenever
the slope m is rational, the other solution is also bound to be rational. As we vary m, we can generate thereby all
the other rational solutions to the equation, for example, (—99/101,20/101) corresponding to m = 10. It seems that the
visually compelling nature of the solution set in a sufficiently big field provides valuable insight into finding solutions
in much smaller fields. Incidentally, | am sure you are aware also that this procedure leads to the famous Pythagorean
triples involved in equations like

99 +20% = 101°.

The elementary elegance of the method described becomes progressively harder to retain with the increasing complexity
of the problem, measured, for example, by the degree of the equation. Nevertheless, it is instructive to consider one
example of degree 3:

X +y® =1729.

One verifies with the help of Ramanujan that (9, 10) is a solution, so the case of the circle might motivate us to consider
lines through it. Unfortunately, the previous argument for the rationality of intersection points fails as the associated
constraint becomes cubic. But if we want to start out generating just one other solution, a more subtle idea is to consider
the tangent line to the real curve at the point (9, 10), because then, the corresponding cubic equation will have 9 as a
double root. To spell this out, calculate the equation of the tangent line,

81(x — 9) + 100(y — 10) = 0

or
y = (—81/100)x + 1729/100,

and substitute to obtain the equation

x> + ((—81/100)x + 1729/100)* = 1729.



M. Kim

We have arranged for x = 9 to be a double root, and hence, the remaining root is forced to be rational. Even by hand,
you can (tediously) work out the resulting rational point to be

(—24561/271,24580/271).

Repeating the procedure with the points that are successively obtained thus actually provides us with infinitely many
rational solutions. Here, you must pause to consider the possibility that repetition will just move us (quasi-)periodically
around finitely many points, but there is a well-known theorem of Nagell and Lutz that tells us this cannot happen given
the denominator of the solution at hand.

Geometric techniques of the same general flavor can be made considerably more sophisticated, with nice applications
to varieties of simple type as might be defined by equations of low degree in a greater number of variables. But in
the present lecture we wish to explain the important conceptual shift that occurred in the 1960’s, whereby Diophantine
problems acquired an intrinsically geometric nature by way of two foundational ideas of Grothendieck.

The first one, elementary in comparison to the second, associates to the polynomial f(x) the ring

A = Zx]/(f(x))-

This leads to a natural correspondence between solutions (by, ..., b,) of f(x) =0 in a ring B, and ring homomorphisms
A—B
That is, an arbitrary n-tuple b = (b4, ..., b,) determines a ring homomorphism Z[x]— B that sends x; to b;, which factors

through the quotient ring A exactly when b is a zero of f(x). The spatial intuition is supposed to arise from the idea
that a commutative ring R with 1 can be viewed as the ring of functions on a space, its spectrum

Spec(R),

whose underlying set consists of the prime ideals of R. This correspondence reverses arrows reflecting the intuition that
a map of spaces should pull functions backwards by composition. Thus, the solutions in B of f(x) = 0 come into bijection
with the set of maps

Spec(B)— X := Spec(A),

conventionally denoted by
X(B).

Even before considering such difficult maps, it is pleasant to note that an obvious map

X

l
Spec(Z)

corresponds to the inclusion
Z—A = ZIX]/(f(x))

using which we think of X as a fibration over Spec(Z). Then the solutions in Z, the elements of X(Z), are precisely the
sections

Spec(Z)
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of the fibration. The remarkable upshot of this formulation is that the study of solutions to equations is subsumed into the
study of maps whose very nature compels us to consider as the most basic in all of mathematics. This perspective is of
late provenance in the theory of Diophantine equations, but still provides at this point its most fundamental justification.

The second idea involves a sophisticated construction whereby spaces like Spec(Q) or Spec(Z) are endowed with very
non-trivial topologies that go beyond scheme theory (by which we mean the global theory of such spectra). We will not
review the precise definitions in this summary, since it appears by now well-known that a Grothendieck topology on an
object T allows open sets to be certain maps with range T from domains that are not necessarily subsets of 7. On a
‘usual’ topological space, one could make the topology finer by allowing as open sets maps

U—T

that are local homeomorphisms. This would allow covering spaces of T, for example, to be regarded as an ‘open set” An
open covering then is a collection {U;— T };¢; of such maps with the property that the union of the images is T. But this
does not give anything essentially new. By definition each such U—T is a local homeomorphism, so that coverings by
families of usual open subsets is co-final among all such exotic open coverings. That is to say, any covering {U;— T}/
in the generalized sense has a refinement

{Vy—T}

where each Vj;—T is an open embedding that factors through one of the U;:

This fact induces an equivalence of categories between the category of usual sheaves and sheaves in this refined
topology.

However, in algebraic geometry, there are many maps that behave formally like local homeomorphisms without actually
being so. These are the so-called étale maps between schemes. A nice and fairly general class of examples arise from
maps

Spec(B)—Spec(A)

corresponding to maps of rings A—B where B has the form
AlX]/(F(x))

for a monic polynomial f(x). The constraint we wish to impose is that the fibers of Spec(B) over Spec(A), which have
the form

Spec(klx]/(f(x))

for residue fields k of A, should have the same number of elements, indicating an absence of ramification. For this, we
need to prevent f(x) from having multiple roots in any such residue field. This amounts to the condition that f(x) and
f'(x) should not have common roots point-wise, or that the discriminant of f should be a unit in A. The obvious map

Spec(C[t]x]/(x* — t))—Spec(C[t),
is not étale, the discriminant of x> — t being the non-unit 4t, while
Spec(C[t, t][x]/(x* — t))—Spec(C[t, t")),

is étale.
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Allowing étale maps as open subsets gives a genuinely richer topology to a scheme than the Zariski topology. The
connected étale coverings of Spec(Q), for example, are maps

Spec(F)—Spec(Q),
where F is a finite field extension of Q. For Spec(Z), one can construct an open covering using the two maps
Spec(Z]i][1/2])—Spec(Z)

and

Spec(Z|(1 + V=7)/2][1/7))—Spec(Z).

The (co-)homology theory associated to sheaves in the étale topology has been spectacularly applied to the arithmetic
geometry of schemes in the past many decades, with results well-enough known not to require a separate survey. Less
known perhaps, is that Grothendieck’s exotic topologies can also lead to interesting homotopy groups, whose structures
are only recently being probed at any depth. One such direction is the motivic homotopy theory of Voevodsky, about
which we will say nothing. The emphasis here instead is on rather recent developments in a somewhat older homotopy
theory belonging to the étale fundamental group and its variations. In particular, we will focus exclusively on the
application of the theory to Diophantine problems.

The beginning point is surprisingly elementary, wherefrom the theory obtains a substantial portion of its charm. Let
therefore X be a variety defined over Q and G = m(X(C), b) the usual topological fundamental group of the space
obtained from the complex points of X. For any point x € X(C), we can also consider the homotopy classes of paths

1 (X(C); b, x)

from b to x. Then m1(X(C); b, x) has the natural structure of a principal G-bundle, or a G-torsor, in that G naturally
acts on 711(X(C); b, x) via composition of paths, and the choice of any p € m(X(C); b, x) induces a bijection

G ~ m(X(C); b, x)

g—pg
via the action. Since this principal bundle lives on a topological point, of course it is trivial. However, we see even here
that the variation of 71(X(C); b, x) in x is not at all trivial in general. That is to say, the triviality of the individual P,
is not different from the triviality of the fibers of even a complicated vector bundle. To be more precise on this point,

choose a pointed universal covering space
f: (X(C), b)—(X(C), b).

Then lifting of paths determines natural bijections

1 (X(C); b, x) ~ X(C)

X

—

between homotopy classes of paths and the fibers of the universal covering space. In fact, it is natural to construct X(C)
as

U, 11 (X(C); b, x)

topologized so that the obvious projection that takes 71 (X(C); b, x) to x is a local homeomorphism. In any case, we see
thereby that the principal bundles in question form the fibers of a map

f - (X(C), b)—=(X(C), b)
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that can be highly non-trivial. In fact, we will see that the lack of a canonical isomorphism G ~ m1(X(C); b, x) is the
essential ingredient underlying our ability to endow 7;(X(C); b, x) with a genuinely non-trivial structure of a principal
G-bundle within suitably enriched contexts.

As far as Diophantine problems are concerned, we will of course be interested in the situation where b and x are both
rational points in X(Q). As it stands, the principal bundles s1(X(C); b, x) cannot pick out such special points as being
different in any way from generic points. There are several ways to remedy this, of which the (ostensibly) easiest one
to explain is the passage to the pro-finite completion. That is, define

G" = lim  G/N
—
N<G[G:N]<oo

and
P = lim P x¢c GIN
—
N<G[G:N]<oo

for any principal G-bundle P. Here, P x¢ G/N is the pushout torsor, obtained by taking the quotient of the product
P x G/N by the diagonal G-action, g(p,x) = (pg, g~ x).

Then the basic and remarkable fact is that G" is a sheaf of groups on the étale topology of Spec(Q) while 71 (X(C); b, x)"
is a principal bundle for G" in this topology. This statement is demystified just a little bit by recalling that a sheaf on
Spec(Q) is simply a set equipped with a continuous action of ' = Gal(Q/Q). Nevertheless, it remains to see that the
Galois group will indeed act on an object that arose thus out of ordinary topology.

Accounting for the action is an isomorphism
m(X(C), b)" =~ nf'(X, b)

where
X=X XSpec(y) Spec(Q)

is X regarded as a variety over Q, while 7! refers to the pro-finite étale fundamental group. It is the latter object on
which I" will act naturally.

The definition will be reviewed after a brief return to usual topology. For a manifold M and an element b € M,
the fundamental group s1(M, b) of M with base-point b can be defined in at least two different ways avoiding direct
reference to topological loops. One way is to note first that a loop [ acts naturally on the fiber over b of any covering
space N—M of M using the monodromy of a lifting I of [ to N:

l/\/l/\/b':/\/b.

This bijection is compatible with composition of loops on the one hand, and with maps between covering spaces, on the
other. That is, ({l')ny = [y o l}y, and if f : N—P is a map of covering spaces, then

fO[NZIPOf

as maps from N, to P,. It is something of a surprise that the only way to give such a compatible collection of
automorphisms is in fact using an element of the fundamental group. The concise way to state this is via the functor

Fp : Cov(M)—Sets
that associates to each covering N its fiber Nj, over b. Then the fact in question is that

71 (M, b) ~ Aut(Fy)
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with the Aut understood in the sense of invertible natural transformations of a functor.

Now given a variety V, we can use this approach to define the étale fundamental group simply by changing the category
of coverings. So we let

Cov®'(V)

be the finite étale covers of V and, for any point b € V, consider the functor F¢' that takes W—V to the fiber W. Then
A (V, b) := Aut(F£h).
Similarly,
' (V; b, x) := Isom(Ff', FeY).

These superb definitions have been around at least since the 1960's, but it is rather striking that variation of the base-
point has not been really attended to until fairly recently. The primary impetus for a serious reassessment appears to
have come from the interaction with the Hodge theory of the fundamental group.

Nevertheless, constructions of the same general nature have now become commonplace in mathematics, the best known
being associated to the notion of a Tannakian category, whereby the automorphisms of suitable functors defined on
agreeable categories give rise to group schemes. Here we will content ourselves with mentioning two more examples.
Fix a non-Archimedean completion Q, of Q and consider the category

Loc®(V, Qp)
of locally constant sheaves of finite-dimensional Q,-vector spaces on V' considered in the étale topology. There is still

a fiber functor
F3'9 : Loc®(V, Q,)—Vectg,,

now taking values in Q,-vector spaces, that associates to each sheaf its stalk at b. (In comparing with the previous
situation, it would be useful for the audience to have some intuition for the notion that a locally constant Q,-sheaf is a
'linearized’ version of a covering space.) Now define

7% (v, b) == Aut®(FLY),

the Q,-pro-algebraic completion of 7{'(V,b). The ® in the superscript refers to the fact that the automorphisms are
required to be compatible not just with the morphisms in the category, but also the tensor product structure. As the
name suggests, it is a pro-algebraic group over Q,.

When we replace all local systems by unipotent ones, i.e., those that admit a filtration

L=L>">...[">["" =0

such that each quotient L'/L'*" is isomorphic to a direct sum of the constant sheaf Q,, one again gets a category
Un®(V,Q,) of the right sort to which one can restrict the previous fiber functor

Fi - Un®'(V, Qp)—Vecty, .

The Q,-pro-unipotent completion [2] of the étale fundamental group is then defined as
7%V, b) = Aut®(FY).

In both settings, there are still torsors of paths

7% (Vi b, x) = Isom(F'9, F2'9)
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and

7% (V; b, x) := lsom(FY, FY).
It is natural to regard such definitions with a degree of suspicion, since not having loops to visualize may make them
seem entirely intractable. The situation is somewhat ameliorated through the intermediary of a universal object, which
we describe in detail only for the full pro-finite étale fundamental group. Because Cov®’ consists of finite covering

spaces, it may not be possible to find a single universal object inside the category. However, it is possible to construct
a pro-object that performs the same role. This is a compatible system

\7 = {Vi}iel

of finite étale coverings
Vi—»V

indexed by some filtered set /, having the following universal property: If we choose b = (b;) € Vj, the pair (V, b) is
universal among pointed pro-covering spaces, in that any finite étale pointed covering (Y, y)—(V, b) fits into a unique
commutative diagram

(V,b) - (Yoy)

(V;)

This means that there is some index i and a commutative diagram

(Vi, bs) - (Y,y)

(V;0)

In this situation, once again we have essentially tautological isomorphisms
s (V, b) =~ V,

and
nf’(\/;b,x) ~ VX,

where the fibers are also projective systems of points.

When V = X for a variety X defined over Q and the base-point b is in X(Q), then the entire pro-system

—X

S

comes from a system
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[
defined over Q@ and we can choose b € )Z( as well to come from a rational point b € X(Q). The isomorphisms

ﬂft():(;b,x) ~ X,

then are compatible with the action of . The sheaves on Spec(Q) obtained thereby have also a harmonious description
in terms of the map corresponding to a rational point. The point is that the map

X—X
is a pro-sheaf of sets in the étale topology of X. Then given any point
x : Spec(Q)—X,

we get the sheaf
x(X)

on Spec(Q), which is nothing but ﬂf’():(; b, x).

We illustrate this construction with the example of (£, 0), an elliptic curve with origin over Q. Let
E,—E

be the covering space given by E itself with the multiplication map

[n]: E-E.

Then the system

(E,0) := {(E,,0)}, — (E,0)

is a universal pointed covering space. Thus, for (E,0),
at(E,0) ~ T(E)

and an element of the fundamental group is just a compatible collection of torsion points of E. That is to say, the Galois
action on 7f'(E, 0) is the well-known action on the Tate module of £E. Similarly,

a(E;0,x) ~ E,

consists of compatible systems of division points of x.

A notable fact that emerges from this description is that if we take into account the Galois action, it is no longer possible
to trivialize the torsor in general, even point-wise. That is, there will often be no isomorphism between 7{'(X, b) and
e (X; b, x), reflecting the fact that the étale topology has a very rich structure even on a point. In the case of (E,0), if
there were an isomorphism

s (E,0) =~ nf"(E; 0, x)

then there would be a Galois invariant element of

m(E; 0, x) ~ E,.
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In particular, for any n, there would be a rational point x, such that nx, = x, which is not possible for x # 0 by a
theorem of Mordell.

To summarize, given a variety X/Q with a fixed rational point b € X(Q), we are associating to each other point x € X(Q)
a principal bundle w§'(X; b, x) for n£!(X, b) on the étale topology of Spec(Q). This information can be organized using
a standard classifying space of sorts for principal bundles. That is, given a principal bundle T, one can choose a point

teT

and examine the action of " on that point. For each g € I, g(t) will be related to t by an element [, € 7f'(X, b), that
is,

The map
gl

obtained thereby is a 1-cocycle
¢ : T—m(X, b),
that is, a continuous map that satisfies
ct(9192) = ¢(g1)g1(c(g2))-

If we denote the set of such cocycles by
Z\T, ' (X, b)),

then 7$'(X, b) acts on it according to
le(g) := g(I™")e(g)!l

and a different choice of s € T will lead to a cocycle ¢, lying in the same orbit as ¢;. Denote by
HY(T, 7" (X, b)) := 7" (X, D\Z'(T, 7" (X, b))
the orbit set, so that the torsor T determines a class
[T] =[ci] € H'(T, 7$(X, b)).
This cohomology set in fact classifies such torsors so that we have defined a map

X(Q) > Hl(Fvﬂ-ft(va))

x - [ (X3 b, 2)]

to a classifying space that can be thought of as an étale period map. In his famous letter to Faltings, Grothendieck
formulated the hope of studying Diophantine problems using this map. (He did not express matters using torsors, but
rather, splittings of a certain canonical sequence of fundamental groups, in order to better harmonize the discussion with
his general program of anabelian geometry.)

Unfortunately, it seems at present that the set H'(I', 7£!(X, b)) has too little structure to study in a comprehensible
manner. It should be obvious, meanwhile, that an entirely analogous construction can be carried out with Jrf[g'Q”(X, b)
or with Jrf'Q”()_(, b). For reasons that are somewhat technical to discuss in a short survey, Jrflg'Q" (X, b) does not afford
much advantage at present over m¢!(X, b). The unipotent completion, on the other hand, has been exploited to a certain
extent in the study of Diophantine sets. The key difference from the other cases has to do with the relative ease of
accessing information about

H'(T, 7" (X, b)),
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or rather, a slight improvement of this set. Let S be the set of primes of bad reduction for X, and denote by X(Zs) the
set of points in the ring Zs of S-integers, where the integrality is defined in terms of a suitably good model. (Note that
if X is compact, then the integral points are the same as rational points.) Choose a prime p ¢ S. The first point of note
is that the map

X(Q-H'T m (X, b)), x> [ % (X b,x),

when restricted to the integral points, factors through a natural subspace corresponding to local conditions satisfied
by the torsors [JT;"Q”()_(;b,X)}, such as being unramified away from the primes of bad reduction and p, and having a
‘crystalline’ nature at p. This last condition arises from the p-adic Hodge theory of the non-Archimedean variety

X XSpec(o) Spec(Q,)

that exerts a useful influence on Hf'Q”(X,b). In fact, these conditions are meaningless for H'(I", 7¢(X, b)) and quite
difficult to analyze for H1(F,7rf[g@”()_(,b)). The advantage of considering them in the unipotent setting is that the
subspace H}(r,ﬂf'Qp()_(,b)) becomes canonically equipped with the structure of a pro-algebraic variety. In fact, for
various quotients [JT?'Q" (X, b)), of J'r;"Qp (X, b) modulo its descending central series, the sets

HIT, [ (X, b))

have natural structures of affine algebraic varieties over Q, that fit into a tower:

X(Zs) - HYT, [719 (X, b))

refining the map at the bottom (which has a classical interpretation in Kummer theory). The discussion can be repeated
verbatim for the sets
u,Qp ¢
H Ty, [ (X, D))

of local Galois cohomology for the group I, := Gal(Q,, Q,). This local space also admits a map from X(Z,) that fits
into a commutative diagram

X(Zs) - X(Zyp)

A\l A\

HHT, [r % (X,0)]0) = HHTp, [m % (X, 0)]5)

It comes furthermore with an analytic description
u,Qp ¢
HH (T, [ (X, D)) = [7% (Xq, D))o/ F°
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provided by p-adic Hodge theory and the De Rham fundamental group JT»IDR(XQP, b) together with its Hodge filtration
F*. Thus, eventually, our diagram becomes

X(Zs) - X(Zy)

v v

HAL, (a7 (X,0)]0) = [7PR(Xq, . b))n/F°

the effect of which is that we have replaced the difficult inclusion
X(Zs)—X(Zp)

with
HH(T [ (X, b)],) = [PR (X, b))/ F?,

an algebraic map between Q,-varieties, whose image is therefore computable in principle.

It is reasonable to state a theorem [5]:

Theorem 1.
Let X be a curve and suppose

dim H} (T, "% (X, b)],) < dim 7% (Xg,, b)alF°

for some n. Then X(Zs) is finite.

The proof of the theorem is contained in the following diagram:

X(Zs) - X(Zp)

v v

HAT, [a @ (X,0)]0) = [7PR(Xq, . b))n/F°

The assumption on dimensions implies that the image of H}(I", [JT#’QP (X, b)],) inside ﬂPR(X@p, b),/F% is not Zariski dense,
and hence, is killed by some non-zero function a. However, when the function is pulled back to X(Z,) it turns out to be
a non-zero linear combination of p-adic iterated integrals [3]

/bXB1Bz~~-B,"

of differential forms B; on X. This description is the really useful technical input from p-adic Hodge theory. The point
is that such a function can be expanded as a non-vanishing convergent power series on each p-adic disk in X(Z,), and
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hence, has only finitely many zeros. The commutativity of the diagram is then enough to imply that the function vanishes
on X(Zs), yielding for us its finiteness.

Some amount of progress has accrued to the program of non-abelian Diophantine geometry by way of this theorem, such
as new proofs of Diophantine finiteness for hyperbolic curves whose homology admit Galois action that are essentially
abelian, that is, curves of genus zero, or curves of positive genus with CM Jacobians [1, 4, 6] Furthermore, standard
conjectures from the theory of mixed motives imply [5] that the inequality in the hypothesis should always hold on
hyperbolic curves, insofar one climbs sufficiently high up on the tower (n >> 0). One hopes (perhaps in vain) that
the milieu of investigation is rich enough to include eventually a broader range of applications, such as a structural
understanding of the relationship between Diophantine finiteness and hyperbolicity, and a 'non-abelian extension’ of
the main ideas surrounding the conjecture of Birch and Swinnerton-Dyer [7].

In the meanwhile, it is rather interesting to note the key role played by moduli spaces of principal bundles on Spec(Q)
such as
uQp ¢
H (T [ (X, b))

The situation is an appropriate non-abelian complement to the classical use of the Jacobian of a curve, and the occurrence
of related moduli spaces in the Langlands' program. It appears to have been André Weil who first foresaw such
possibilities in a remarkable paper of the 1930’s [8], even with no knowledge of the étale topology. This is a point of
considerable historical interest that will be elaborated upon in a separate lecture.
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