/
Cent. Eur. J. Math. + 8(4) + 2010 « 662-682 VERSITA
DOI: 10.2478/511533-010-0046-2

Central European Journal of Mathematics

Choice functions and well-orderings
over the infinite binary tree

Research Article

Arnaud Carayol'*, Christof Léding?”, Damian Niwiriski®#, Igor Walukiewicz*$

1 Laboratoire d’Informatique Gaspard Monge, Université Paris-Est, Paris, France
2 Lehrstuhl Informatik 7, RWTH Aachen, Aachen, Germany
3 |Institute of Informatics, University of Warsaw, Warsaw, Poland

4 LaBRl, Bordeaux University & CNRS, Bordeaux, France

Received 30 September 2009; accepted 17 May 2010

Abstract: We give a new proof showing that it is not possible to define in monadic second-order logic (MSO) a choice
function on the infinite binary tree. This result was first obtained by Gurevich and Shelah using set theoretical
arguments. Our proof is much simpler and only uses basic tools from automata theory. We show how the result
can be used to prove the inherent ambiguity of languages of infinite trees. In a second part we strengthen the
result of the non-existence of an MSO-definable well-founded order on the infinite binary tree by showing that
every infinite binary tree with a well-founded order has an undecidable MSO-theory.

MSC: 03B70

Keywords: Monadic second-order logic « Definability « Choice function
© Versita Sp. z o.o.

1. Introduction

The main goal of this paper is to present a simple proof of the fact (first shown by Gurevich and Shelah in [11]) that
there is no MSO-definable choice function on the infinite binary tree t,. A choice function on t, is a mapping assigning
to each nonempty set of nodes of t, one element from this set, i.e., the function chooses for each set one of its elements.
Such a function is MSO-definable if there is an MSO-formula with one free set variable X and one free element variable
x such that when X is interpreted as a nonempty set U then there is exactly one possible interpretation u € U for x
making the formula satisfied.

* E-mail: carayol@univ-mlv.fr

T E-mail: loeding@cs.rwth-aachen.de
* E-mail: niwinski@mimuw.edu.pl

5 E-mail: igw@labri.fr

S{ST=]

A. Carayol etal

The question of the existence of an MSO-definable choice function over the infinite binary tree can be seen as a special
instance of the more general uniformization problem, which asks, given a relation that is defined by a formula with free
variables, whether it is possible to define by another formula a function that is compatible with this relation. More
precisely, given a formula ¢(X, Y) with vectors X, Y of free variables, such that the formula VX3Y (X, Y) is true over
the infinite binary tree, uniformization asks for a formula ¢*(X, Y) such that

1. ¢* implies ¢ (each interpretation of X, Y making ¢* true also makes ¢ true),

2. ¢* defines a function in the sense that for each interpretation of X there is exactly one interpretation of ¥ making
¢* true.

The question of the existence of a choice function is the uniformization problem for the formula ¢(X,Y) := X # @ —
(Y is a singleton A Y C X).

The infinite line, i.e., the structure consisting of natural numbers equipped with the successor relation, is known to have
the uniformization property for MSO [25], even when adding unary predicates [21]. On the infinite binary tree MSO is
known to be decidable [2] but it does not have the uniformization property. This was conjectured in [25] and proved in
[11] where it is shown that there is no MSO-definable choice function on the infinite binary tree. The proof in [11] uses
complex set theoretical arguments, whereas it appears that the result can be obtained by much more basic techniques.
We show that this is indeed true and present a proof that only relies on the equivalence of MSO and automata over
infinite trees and otherwise only uses basic techniques from automata theory. Besides its simplicity, another advantage
of the proof is that we provide a concrete family of sets (parametrized by natural numbers) such that each formula fails to
make a choice for those sets with the parameters chosen big enough. We use this fact when we discuss two applications
of the result.

At first, we show an example of a tree game with an MSO-definable winning condition, where the winner has no MSO-
definable winning strategy. The second application concerns the existence of inherently ambiguous tree languages. An
unambiguous automaton is an automaton which has exactly one accepting run on every tree it accepts. On finite words
and trees it is clear that every regular language can be accepted by an unambiguous automaton because deterministic
automata are unambiguous. The regular languages of infinite words are accepted by unambiguous Biichi automata [1].
For regular languages of infinite trees, we show that the language of infinite trees labeled by {0, 1} having at least
one node labeled by 1 is not accepted by any unambiguous parity tree automaton. Using the counter-example sets
introduced previously, we strengthen this result by giving a regular tree language and a tree in this language such that
any automaton accepting the language has at least two accepting runs on the tree.

The subject of MSO-definability of choice functions on trees has been studied in more depth in [13], where the authors
consider more general trees and not only the infinite binary tree. They show the following dichotomy: for a tree it is
either not possible to define a choice function in MSO even with additional predicates, or it is possible to define a
well-ordering on the domain of the tree with additional predicates.

Note that it is very easy to define a choice function if one has access to a well-ordering of the domain: for each set
one chooses the minimal element according to the well-ordering. The same result remains true if we only have access
to a partial well-ordering: we pick the left-most element of the finite set of minimal elements instead of the minimal
element. The non-existence of an MSO-definable choice function on the infinite binary tree implies that there is no
MSO-definable partial well-ordering on the infinite binary tree. We strengthen this result by showing that extending the
infinite binary tree by any partial well-ordering leads to a structure with an undecidable MSO-theory. As a consequence
we obtain that each structure in which we can MSO-define a partial well-ordering and MSO-interpret the infinite binary
tree must have an undecidable MSO-theory.

The paper is structured as follows. In Section 2 we introduce notations and basic results for automata on infinite trees
and monadic second-order logic. The proof of the undefinability of choice functions over the infinite binary tree is
presented in Section 3, where we also discuss the first application concerning the definability of winning strategies in
infinite games. In Section 4 we prove that there are reqular languages of infinite trees that are inherently unambiguous.
Section 5 is on the undecidability of the monadic second-order theory of the infinite binary tree extended with a partial
well-ordering. We conclude in Section 6 and give some possible directions of future research.

This paper is a full version of the conference publication [5].

663

Choice functions and well-orderings over the infinite binary tree

S{SE

2. Preliminaries

In this section we first introduce some general notations and then give some background on automata and logic.

The set of natural numbers (non-negative integers) is denoted by N. A finite interval {i,...,j} of natural numbers is
written as [i, j].

An alphabet is a finite set of symbols, called letters. Usually, alphabets are denoted by . The set of finite words over
L is written as L* and the set of infinite words as Z“. The length of a finite word w € L* is denoted by |w| and € is
the empty word.

For all words wy, wy € I¥, wy is a prefix of w, (written wy C wy) if there exists w € ©* such that w, = wyw. If w € &*
then w; is a strict prefix of wy (written wy C wy). The greatest common prefix of two words wy and w, (written wy A wy)
is the longest word which is a prefix of wy and ws.

2.1. Automata on infinite trees

We view the set {0, 1}* of finite words over {0, 1} as the domain of an infinite binary tree. The root is the empty word
€, and for a node v € {0,1}* we call u0 its left successor (or O-successor), and u1 its right successor (or 1-successor).
A branch 7 is an infinite sequence ug, uy, uy ... of successive nodes starting with the root, i.e, up = € and u;y1 = u,0
orug 1 =u;lforalli >0.

An (infinite binary) tree labeled by a finite alphabet ¥ is a mapping t : {0,1}* — L. We denote by 7 the set of all
trees labeled by . In a tree t, a branch st induces an infinite sequence of labels in £“. We sometimes identify a branch
with this infinite word. It should always be clear from the context to which meaning of a branch we are referring.

In connection with logic, the labels of the infinite tree are used to represent interpretations of set variables. This
motivates the following definitions. For a set U C {0,1}", we write {{U] € T, for the characteristic tree of U, Le., the
tree which labels all nodes in U with 1 and all the other nodes with 0. This notation is extended to the case of several
sets. The characteristic tree of Uy, ..., U, C {0,1}* is the tree labeled by {0,1}" written t{U, ..., U,] and defined for
all u € {0,1}* by t{Us, ..., Uy)(u) := (b1, ..., b,) where for all i € [1,n], b, =1 if u € U; and b; = 0 otherwise. For a
singleton set U = {u} we simplify notation and write t[u] instead of t[{u}]

We now turn to the definition of automata for infinite trees. A parity tree automaton (PTA) on I-labeled trees is a tuple
A= (Q,LZ, q', A, c) with a finite set Q of states, an initial state g' € Q, a transition relation AC Q xZ x Q x Q, and a
priority function ¢ : Q — N. A run of A on a tree t € 7 from a state g € Q is a tree p € 7§ such that p(e) = g, and
for each u € {0,1}* we have (p(u), t(u), p(u0), p(u1)) € A. We say that p is accepting if the parity condition is satisfied
on each branch of the run, i.e., on each branch the minimal priority appearing infinitely often is even. If we only speak
of a run of A without specifying the state at the root, we implicitly refer to a run from g¢".

A tree t is accepted by A if there is an accepting run of A on t. The language recognized by A is the set of all
accepted trees:

T(A) = {t € T | t accepted by A}.

A tree language is called regular if it is recognized by some PTA.

For two trees t and t’ we say that they are A-equivalent, written as t =4 t', if for each state g of A there is an accepting
run from g on t if and only if there is an accepting run from g on t’. Intuitively, this means that A cannot distinguish
the two trees.

2.2. Monadic second-order logic

A signature is a ranked set T of symbols, where for all R € 1, |R| denotes the arity (which is > 1) of the symbol R. A
relational structure S over T is given by a tuple (D, (R)re.) where D is the domain (or the universe) of S and where for
all R € 1, RS (which is also called the interpretation of R in S) is a subset of DIRl. When S is clear from the context,
we simply write R instead of RS.

We use = to denote that two structures are isomorphic. Usually, we do not distinguish isomorphic structures but
sometimes we refer to different representations of structures over specific domains, and in these cases we use = instead
of =.

A. Carayol etal

To every tree t labeled by X = {a1, ..., a,}, we associate a canonical structure over the signature {Eg, E1, Py, ..., Pa,}
where Eq and E; are binary symbols and the P,, are predicates, i.e., unary symbols. The universe of this structure is
{0,1}*. The symbols Ey and E; are respectively interpreted as {(w,w0) | w € {0,1}*} and {(w,w1) | w € {0,1}*}.
Finally for all i € [1, n], Py, is interpreted as {u € I* | t(u) = a;}. In the following, we do not distinguish between a
tree and its canonical relational structure.

The unlabeled binary tree, i.e., the structure ({0, 1}*, {Eo, E1}) with the above interpretation of £y and E; is denoted
by t,. The structure with N as domain and the successor relation on N can be viewed as a tree with unary branching.
Hence we denote it by t;.

We are mainly interested in monadic second-order logic (MSQ) over relational structures with the standard syntax and
semantics (see e.g. [9] for a detailed presentation). MSO-formulas use first-order variables, which are interpreted by
elements of the structure, and monadic second-order variables, which are interpreted as sets of elements. First-order
variables are usually denoted by lower case letters (e.g. x, y), and monadic second-order variables are denoted by capital
letters (e.g. X, Y). First-order logic (FO) is the fragment of MSO that does not use quantifications over set variables.

Atomic MSO-formulas are of the form
® R(x1,...,xp) for a relation symbol R from the signature and first-order variables xy, ..., x|, or
e x =y, X =Y, or x € X for first-order variables x, y, and monadic second-order variables X, Y

with the obvious semantics. Complex formulas are built as usual from atomic ones by the use of boolean connectives,
and quantification.

We write ¢(Xi,..., Xy, Y1,...,ym) to indicate that the free variables of the formula ¢ are among Xj, ..., X, (monadic
second-order) and y1, ..., Yy, (first-order) respectively. A formula without free variables is called a sentence.

For a relational structure S and a sentence ¢, we write S |= ¢ if S satisfies the formula ¢. The MSO-theory of S is
the set of sentences satisfied by S. For every formula ¢(Xi,..., Xs, y1, ..., yn), all subsets Uy, ..., U, of the universe
of S and all elements vy, ..., v, of the universe of S, we write S |E= ¢[U;, ..., U,, v, ..., vy] to express that ¢ holds in S
when X; is interpreted as U; for all i €[1,n] and y; is interpreted as v; for all j € [1, m].

Given a structure S, we call a relation R C D", for some n > 1, MSO-definable in S if there is an MSO-formula
d(x1,...,x,) with n free first-order variables such that (uq,...,u,) € R S | @luy, ..., u,l

A single element u of a structure is MSO-definable if the unary relation {u} is MSO-definable, i.e., if there is a formula
¢(x) such that u is the only element with S |= ¢[u].

We are particularly interested in MSO logic over the infinite binary tree t,, which we refer to as MSO[t,]. The
MSO-theory of the infinite binary tree t, is also referred to as S2S, the second-order theory of two successors [19].
Correspondingly, we refer to the MSO-theory of t;, the natural numbers with successor, as S1S [2].

An MSOJ[t;]-formula ¢(Xi, ..., X,) with n free variables defines a tree language T(¢) C 7'{5’,1}” as follows:

T(¢) = {{Ur ..., Ul | & = $lUs, ..., Up)}.

It is often convenient to consider the binary tree t; along with a sequence of sets U, ..., U, C {0,1}*, as a new logical
structure over the signature extended by n fresh predicate symbols interpreted by U;, ..., U,. We denote this structure
by (U, ..., U,]. Given a formula ¢(Xi, ..., X,), we clearly have

LU, ..., U] iff GU,...,U]E ¢

where in the latter case ¢ is considered as a sentence with the predicate symbols Xj, ..., X, interpreted by Uj, ..., U,,
respectively. This correspondence extends to formulas with additional free variables, say ¢(Xi,..., Xy, 41, ..., Z,
Yi,-o o Ym) Thatis, b |E U, ..., Up, Wi, ..., Wi,owr, .o vy] fand only if G[Uy, ..., Uyl |E oW, .o, Wiove, oo v,
for any Wy, ..., Wi C {0,1}*, and vy,...,v, € {0,1}*. We will often use this correspondence implicitly in the sequel.
Note that in general there may be more relations definable in t;[U;, ..., U,] than in t,.

A theorem of Rabin states that the tree languages definable by MSO[t;]-formulas are precisely those that can be accepted
by tree automata [19]. An analogous fact for MSOJ[t]-definable languages of infinite words (also called w-reqular) was

665

Choice functions and well-orderings over the infinite binary tree

proved previously by Biichi [2]. The acceptance condition used by Rabin in [19] differs from the parity condition but it
can be transformed into a parity condition (see e.g. [10, 29]). Parity tree automata have first been used in [18] where
they are shown to be equivalent to the automata used in [19].

We state here the difficult direction of the theorem, the proof of which is based on the closure properties of PTAs.

Theorem 2.1 ([18, 19]).
For every MSO[t;]-formula ¢(Xi, ..., X,) there is a parity tree automaton Ay such that T(Ag) = T(¢).

This result can be used to show the decidability of the satisfiability problem for MSO[t,], i.e., the question whether for a
given MSO[t;] formula there is an interpretation of the free variables such that the formula is satisfied in t,. Furthermore,
one can even construct a satisfying assignment:

Theorem 2.2 ([20]).
Let ¢(Xi, ..., X,) be a satisfiable MSO[t,]-formula. There are regular sets Uy, ..., U, such that t;[Us, ..., U, E ¢.

Above we have introduced the notion of MSO-definability. We conclude from Theorem 2.2 that on t, each MSO-definable
set is reqular: Starting from a formula ¢(x) defining a set, we construct the formula ¢'(X) = Vx.x € X < ¢(x). Then
there is exactly one set satisfying ¢’ and this set is reqular according to Theorem 2.2. Conversely, each reqular set can
be defined in MSO by describing an accepting run of the DFA defining the set.

Proposition 2.1.
A set U C {0,1}* is definable in MSO[t,] iff it is regular.

As a consequence we can add regular predicates to t, without affecting the decidability result for MSO. An MSO-formula
having access to regular predicates Py, ..., P, can be turned into a standard MSO-formula over t, by using formulas
®p,, ..., ¢p, defining these predicates.

The notion of interpretation that is introduced in the following generalizes this idea.
Let T and T be two signatures. An MSO-interpretation from t-structures to %-structures is given as a list T =

(Ddom: (D) per) of MSO-formulas over the signature 7. The formula ¢gom has one free first-order variable and is called
the domain formula. For each R € # the formula ¢p has |R| many free first-order variables.

Applied to a t-structure S = (D, (RS)ge.), the interpretation defines a #-structure Z(S) = (D, (RT®)p_,), where the
domain formula defines the domain of the new structure (all elements of S satisfying ¢g,m), and the formulas ¢ define
the relations of Z(S):

e D={ueD|SkE dunlul}
o RIS = {(u1, .. .,ulf\,l) € DIRI |S = qbf\’[uh T

Now assume that we are given an MSO-formula over Z(S) and we want to know whether it is satisfiable in Z(S). We can
replace each atomic formula ,‘A?()q, -1 X|p) by its definition ¢p(x, ..., x,), and restrict the range of all variables to the
set D defined by ¢gon. In this way we obtain an MSO-formula over S that is satisfiable in S iff the original formula is
satisfiable in Z(S). Applying this technique to MSO-sentences (without free variables), we can transfer the decidability
of the MSO-theory as stated in the following proposition.

Proposition 2.2.
If T is an MSO-interpretation and if the MSO-theory of S is decidable, then the MSO-theory of Z(S) is decidable.

A. Carayol etal

3. MSO-definable choice functions

As already described in the introduction, an MSO-definable choice function is given by an MSO-formula ¢(X, x) such
that:

for every nonempty set U, there is precisely one u € U such that t, = ¢[U, u].

This section is devoted to the proof of the following theorem of Gurevich and Shelah.

Theorem 3.1 ([11]).

There is no MSO-definable choice function on the infinite binary tree.

The technical formulation of the result we prove is given in Theorem 3.3 (on page 670), where we concretely provide
counter examples for which a given formula cannot choose a unique element. As machinery for the proof we use tree
automata, that are easier to manipulate (at least for our purpose) than formulas. In the following we present a slight
modification of the standard automaton model that we use in the proof.

An MSO[t;]-formula with free variables defines a relation between subsets of {0, 1}*. In this section we consider formulas
with two free variables, and a natural viewpoint in the context of choice functions is that the first variable represents
the input, and the second variable represents the output. A choice function is the special case that the second variable
is an element and not a set, and that for each nonempty input set there is a unique output which is inside the input set.
To adapt this general view of inputs and outputs on the automata theoretic level we introduce automata with output,
called transducers. These transducers are very simple: An output symbol is associated to each transition, which gives
a natural correspondence between runs and output trees.

A parity tree automaton with output is a tuple A = (Q,Z,q", A, c, A), where (Q,Z,g',A, c) is a standard PTA, and
A:A — T is an output function assigning to each transition a symbol from the output alphabet . When ignoring the
output function we can use the terminology of standard PTAs, in particular the notion of accepting run and the notion
of A-equivalence (see page 664).

In general, a PTA with output defines for each input tree t € 75 a set of output trees A(t) C 7;“ defined by
A(t) = {A(p) | p is an accepting run of A on t},

where A(p) denotes the tree in 7/ that is obtained by taking at each node u the output produced by A applied to the
transition used at v in p.

As already indicated above we are interested in such transducers for representing formulas with two free variables, i.e.,
the input and the output alphabets are both equal to {0,1}. The following theorem can easily be shown by a simple
argument based on Theorem 2.1.

Theorem 3.2.
For each MSO[t;]-formula ¢(X, Y) there is a PTA with output A, such that L,[U, U] |= ¢ iff L[U'] € A(t[U)).

We are interested in PTAs with output that represent possible candidates for choice formulas, i.e., the case where the
second free variable of the formula represents a single element. This motivates the following definition.

A weak choice automaton is a PTA with output such that the input and the output alphabet are equal to {0, 1}, and for
each U C {0, 1}* there is at most one output tree in A(t;[U]), and this output tree is of the form t[u] for some v € U.
We say that A chooses u in U. A weak choice automaton chooses for each set U at most one element from this set. It
is called weak because it does not have to choose an element. A weak choice automaton that chooses one element from
each nonempty set represents a choice formula. Our goal is to show that such an automaton cannot exist. Note that
there are weak choice automata: for example the automaton that rejects all inputs is a weak choice automaton because
it does not choose an element for any set.

We show in Lemma 3.2 that for each weak choice automaton A we can find a set that is complex enough such that A
cannot choose an element of U. If A had a run choosing an element of U, we could construct another run choosing a

667

Choice functions and well-orderings over the infinite binary tree

668

different element, contradicting the property of a weak choice automaton. More precisely, we define a family (Uu n)m nen
of sets such that for each weak choice automaton A we can find M and N such that A cannot choose an element of
Umn. To achieve this, we “hide” the elements of the set very deep in the tree so that weak choice automata up to a
certain size are not able to uniquely choose an element.

For M, N € N the set Uyn C {0,1}* is defined by the following reqular expression
Uun = {0,1}*(0N0*1)™{0, 1}*.

In Figure 1 a deterministic finite automaton for the set Uy n is shown, where the dashed edges represent transitions for
input 1 that lead back to the initial state xus. The chains of 0-edges between x;;1 and x; have length N. The final state
is xo. It is easy to verify that xo is reachable from xys by exactly those paths whose sequence of edge labels is in the
set Uyn. Let tyn = t{lUun] and let typn = (U mn] where Ug ao is the set that we obtain by making x, the initial
state.

We now fix a weak choice automaton A = (Q,{0,1},qo,A, ¢, A) on {0,1}-labeled trees and take M = 2!9 + 1 and
N =|Q|+1. For these fixed parameters we simplify the notation by letting t, = t, mn- In particular, ty = tumn = tvn-
We say that a subtree (of some tree t) that is isomorphic to t; for some k is of type .

Our aim is to trick the automaton A to show that it cannot choose a unique element from the set Uy n. This is done by
modifying a run that outputs an element u of Uy n such that we obtain another run outputting a different element from
the same set.

To understand the general idea, consider the path between xi;1 and x, for some k. If we take a 1-edge before having
reached the end of the O-chain, i.e., one of the dashed edges leading back to the initial state xys, then we reach a subtree
of type ty. But if we walk to the end of the 0-chain and then move to the right using a 1-edge, then we arrive at a
subtree of type t. If we show that there is an ¢ < M such that tys and t, are A-equivalent, then this means that A has
no means to identify when it enters the part where taking a 1-edge leads to a subtree of type t,. We then exploit this
fact by pumping the run on this part of the tree such that we obtain another run with a different output.

Lemma 3.1.
There exists an ¢ < M such that ty; =4 t,.

Proof. We consider for each tree t € 7{31} the function f; : Q — {a, r} with f;(q) = a if there is an accepting run of
A from g on t, and f,(q) = r otherwise. By definition, two trees t, t' are A-equivalent if f, = fy. There are at most 2/¢l
different such functions. By the choice of M there are 1 < ky < k; < M such that t, =4 t;,.

We now show that t, =4 t, implies ty, 1 =4 ty,41 (in case k; < M, otherwise we choose £ = k;). This allows us to lift
the equivalence step by step to t, and ty for £ = ky + (M — k).

If we only look at the left-most branches and the types of the trees going off to the right, then t, .1 and f,, 4 look as
shown in Figure 3.

From this picture it should be clear that t; .1 =4 t,+1 because an accepting run on t, 4 can easily be turned into an
accepting run on t;,, and vice versa, using the equivalence of t;, and t,,. O

The following lemma states that it is impossible for A to choose an element of Uy n (and hence the set of outputs
computed by A on fyn is empty).

Lemma 3.2.
The weak choice automaton A cannot choose an element from Uy n, i.e., A([tyun]) = 0.

Proof. Assume that there is an accepting run p of A on ty = tyn. Since A is a weak choice automaton this means
that the output of this run must be an element of Uy n, L.e., A(p) = t{u] for some u € Uy n-

From p we construct another accepting run with a different output tree, contradicting the definition of weak choice
automaton.

A. Carayol etal

—<N)1
o4
L l
I
e
I
! |
L4 \
I
\ \ |
\ \)
N \
N N
~ N
RSN
) ///1%‘
)
0 ~o_ =T
///’,lll
iz
0 1 PN
PR N
- ;7 N
TM—t ~ P s
) l
/ RN
- I
0 //// 1
o —__-—-"" 1
I ed /llr
s/ 1
-7 /’I/
., L
Phd o
Phe 4 sy
~ ’ /
_ - ’ //I/
o -~ , sy
7 sy

ool
TN —2 //////
AR
AR
/////
0"
, 07
A
v
‘%
/7
s
i
4
7,
et
a2
4

Figure 1. A DFA accepting Uy . Dashed edges are labeled by 1. The tree v is obtained by unraveling this DFA.

Since u is in Uy n, we know that the path from the root to v must end with the pattern as defined by the automaton in
Figure 1. Hence we can make the following definitions. For 0 < k < M let uy denote the maximal prefix of u such that
the subtree at uy is of type t;. Let £ be as in Lemma 3.1. For i > 0 let v; = up10" and v/ = v;1. Note that vp = g4
and that for 0 < i < N the subtree at v/ is of type ty, and for i > N the subtree at v/ is of type t,.

From Lemma 3.1 we know that t, =4 ty. Hence, for each accepting run p, of A from g on ty, we can pick an accepting
run p; of A from q on t,.

By the choice of N (recall that N = |Q| + 1) there are 0 < j < j* < N such that p(v;) = p(vy). For the moment, consider

only the transitions taken in p on the sequence vy, v4, ..., i.e., on the infinite branch to the left starting from vo. We now

Choice functions and well-orderings over the infinite binary tree

670

thy 41t 0 thot1t 0
/ N\ / N\
0 3% 0 ty
/ N\ / N\
ta ta
/ /
0 0
/ N\ / N\
0 ty 0 tp
/ N\ / N\
0 tk, 0 tr,
/ N\ / N\
thy tis

Figure 2. The shape of the trees t, 1 and t;,+1 in the proof of Lemma 3.1

simply repeat the part of the run between v; and v; once. The effect is that some of the states that were at a node V|
for i < N are pushed to nodes v/ for i > N, ie., the states are moved from subtrees of type tys to subtrees of type t,.
But for those states g we can simply plug the runs p| that we have chosen above.

More formally, we define the new run p’ of A on tys as follows. On the part that is not in the subtree below v the run
p’ corresponds to p. In the subtree at vy we make the following definitions, where h = j' — j.

e Fori < j let p'(v;) = p(v;) and p'(v{) = p(V]).

o Fori > [/ let p/(v) = p(vi_s) and p/(v)) = plv__,)

o For the subtrees at v/ for i < j' we take the subrun of p at v/.

e For the subtrees at v/ for j/ < i < N or i > N+ h we take the subrun of p at v/_,. This is justified because in
these cases p’(v;) = p(vi_,) and the subtrees at v/ and v;_, are of the same type (both of type ty; or both of type
to).

e For the subtrees at v/ for N < i < N + h we take the runs pj for q; = p'(v{). This is justified as follows. From
g: = p'(v{) and the definition of p’ we know that p(v/_,) = q;. Hence, there is an accepting run of A from g; on
tm. Thus, p. as chosen above is an accepting run of A from g; on t,.

This run p’ is accepting. Furthermore, the transition producing output 1 in p has been moved to another subtree: There
are n > N and w € {0,1}* such that u = up10"w. In p’ the transition that is used at u in p is used at v’ = o0 w,
Hence, we have constructed an accepting run whose output tree is different from t[u], a contradiction. O

Of course, the statement is also true if we increase the value of M or N, e.g., if we take N =M = 210141 Thys, combining
Theorem 3.2 and Lemma 3.2 we obtain the following.

Theorem 3.3.
Let ¢(X, x) be an MSO-formula. There exists m € N such that for all n > m and for each u € U,,, with t; |= ¢[U, , u]
there is u’ #+ u with t, |E ¢[U,,, u'].

Proof. Consider the formula
O (X, x) = d X, x)Ax € XA-Tyly # x Ny € X A ¢(X, y)).

Applying Theorem 3.2 to this formula yields a weak choice automaton A. Choose n = 219+ and assume that there
is u € U,, such that t, = @[U,,, u] According to Lemma 3.2 we have A(t,,) = @. Hence, because A and ¢* are
equivalent, t, = ¢*[U,.», u]. By definition of ¢* this means that there must be u” # u such that t; = §[U,.,, U']. O

A. Carayol etal

. __
A direct consequence is the theorem of Gurevich and Shelah (Theorem 3.1). The advantage of our proof is that we obtain
a rather simple family of counter examples (the sets Uy n).

An easy reduction allows us to extend the non-existence of an MSO-definable choice function to the case where we
allow a finite number of fixed predicates as parameters. This result has already been shown in [14] in an even more
general context, but again relying on the methods employed in [11].

Corollary 3.1.
Let Py,..., P, C{0,1}* be arbitrary predicates. There is no MSO-formula ¢(X, x) such that for each nonempty set U
there is exactly one u € U with [P, ..., P,] |E U, u].

Proof. Suppose that there are Py,..., P, C {0,1}* and an MSO[ty]-formula @(Xi, ..., X,, X, x) such that for each
nonempty set U there is exactly one u € U with {,[Py, ..., P,] E ¢[U, u], where the symbols X, ..., X, are interpreted
by Py, ..., P,, respectively. Then the formula

Xy, L X YX F B I e X p(X, L X XOX)AYY o(X, . X Xy) o x =y
holds in t,. Hence, there are regular predicates P, ..., P; (see Theorem 2.2 on page 666) such that
QP ... PIEYX#03Ixe X: d(Xi,.... X0, X, x) AVy d(X1,.... X0, X, y) > x = y.

Regular predicates are MSO-definable (see Proposition 2.1), and therefore we can find formulas ¢ (2), . . ., ¢,(z) defining

P, ..., P, respectively. Then the formula ¢'(X, x) defined as
X, X S X Xox) A\ (V222 € X o gi(2))
i=1
describes a choice function, contradicting Theorem 3.3. O

We point out here that this method only relies on the fact that the property of being a choice function is MSO-definable.
This way of reducing the case with parameters to the parameter free case can be applied whenever the properties of the
object under consideration are MSO-definable (in Proposition 5.2 on page 680 we also use this technique).

MSO-definable winning strategies

In this section we use Theorem 3.1 to study the definability of winning strategies in infinite games. For a general
introduction to games of infinite duration we refer the reader to [10]. The logical definability of winning regions in parity
games has been studied in [8]. To express that a vertex of a game graph belongs to the winning region of one player it
is sufficient to express that there exists a winning strategy from this vertex. Here we study the question whether it is
possible to define a single winning strategy. In the following we show that there exist tree games (games with a tree
as underlying game graph) that do not admit MSO-definable winning strategies.

A game tree is a tuple I = (Uy, Us, Q) where Us, U, C {0,1}* form a partition of {0,1}*, and Q : {0,1}* — {0,...,n}
maps each node to a number in a finite initial segment of N. A tree game (I, W) is given by a game tree [and a winning
condition W C {0,...,n}*. A play in this game starts in €. If the play is currently in u € {0,1}*, then Player 1 or
Player 2, depending on whether u € U, or u € U,, chooses b € {0,1}, and the next game position is ub. In the limit,
such a play forms an infinite word in {0,1}%; we identify the play with this word. This infinite word corresponds to
an infinite sequence over {0,...,n} by applying Q to each prefix. If this sequence is in W then Player 1 wins, and
otherwise Player 2 wins.

A strategy for Player i is a function f; : U; — {0,1}. A play y is played according to f; if, for each prefix u € U; of
y, Player i uses the strategy to determine the next move, i.e,, uf;(u) is again a prefix of y. A strategy f; is winning for
Player i if each play y played according to f; is won by Player i.

If WC{0,...,n}" is a reqular w-language, then for each tree game (I, W) one of the players has a winning strategy
(3}

671

Choice functions and well-orderings over the infinite binary tree

672

A strategy f; for Player i can be represented by two sets of nodes Sy and S; of the game tree: the set of nodes where the
value of f; is 0 and 1, respectively. We are interested in MSO-definability of strategies in the game tree. To this end, we
represent a game tree [= (U, U;, Q) as the binary tree t, extended by monadic predicates Uy, U, Qq, ..., Q,, where
each Q; C {0,1}* corresponds to the set of nodes mapped to i by Q. Let us abbreviate t;[U;, Uz, Qq, ..., Q,] = [[].

We say that a strategy represented by So and Sy is MSO-definable in the game tree I if these sets are definable in
[, Le., if there exists two MSO-formulas ¢g(x) and ¢4(x) determining the sets Sy and S;:

So={u:t[lTE ¢olul}, Si={u:t[lE ¢:u]}.

Finite-state strategies (i.e. strategies implementable by a finite-state automaton) are a particular case of MSO-definable
strategies.

Note that the above formulas ¢o(x) and ¢1(x) may depend on the game tree . The question whether such formulas exist
for a particular game tree [and a player i should not be confused with the fact that the family of all winning strategies
for player i is definable in MSO in a uniform way. More precisely, whenever the condition W is w-reqular then it is
not difficult to write an MSO-formula ¢ (X1, X2, Yo, ..., Yo, 20, Z4), such that, for any game tree [= (Uy, Us, Q) with
Q:{0,1}* = {0,...,n}, and any Sp, S; C {0,1}*,

1) |= L,Uw[Uh Uz,Q(), ey Qn,S(),Sd

iff So and Sy represent a winning strateqy for Player i in (I, W). Thus, we can express the existence of a winning
strategy for Player i in the game (I, W) by an MSO-formula interpreted in t[I']. If t;[['] has decidable MSO-theory, we
can therefore decide who wins the game (I", W) for any w-reqular winning condition W. This however does not imply
the existence of an MSO-definable winning strategy. In fact, we show in the following that there is a fixed tree game
(with a decidable MSO-theory) for which there are no MSO-definable winning strategies.

It is well-known that there exists a recursive tree game where Player 1 has a winning strategy but no recursive one. In
[28], an example of such a tree game is given that has moreover an MSO-definable winning condition. Nevertheless this
example cannot be used to prove the following theorem as both players admit MSO-definable strategies.

Theorem 3.4.

There is a game tree ' = (U;, U>, Q) with decidable MSO-theory, and an MSO-definable winning condition W, such
that Player 1 has a winning strategy in the game (I, W), but no winning strategy for Player 1 is MSO-definable in
]

Proof. Consider the following {0, 1,2}-labeled tree t such that for each n € N the subtree at the node 10 is
isomorphic to t,,, and all nodes of the form 17 are labeled by 2. The labeling of t defines the mapping Q, ie.,
Q(u) = t(u). We let U, = {1" | n € N} and U; = {0,1}*\ U,.

Consider I' = (Uy, Us, Q) and let the winning condition W (for Player 1) contain all infinite words over {0, 1, 2} that do
not contain O or that contain a 1.

Intuitively, Player 2 can move along the right branch of the game tree. If he continues like this forever then he loses
because only nodes labeled 2 are visited during the play. Otherwise, he moves to the left at some position, that is,
to the root of a subtree t,,. Now Player 1 chooses all the following moves and wins if a node labeled 1 is reached
eventually. As each subtree t,, contains a node labeled 1 it is obvious that Player 1 has a winning strategy.

Assume that there is a winning strateqy f; for Player 1 that is MSO-definable in t[['] by formulas ¢o(x) and ¢1(x). Let
Sy, be the set of all nodes that occur in a play that is played according to f;. (This set can be seen as an alternative
way of coding the strateqy f1.) From ¢y and ¢ we can easily derive an MSO[t;]-formula ¢(X1, Xz, Yo, Y, Y2, X), such
that

t = ¢[U1, Uz, Qo, 0, 0, S]

holds precisely when S = S,

A. Carayol etal

The formula ¢ is equivalent to a parity automaton over the alphabet {0, 1}%, but using the definition of our I (constructed
from the tree t), we can simplify it to an automaton A over the alphabet {0, 1,2} x {0,1}, where the 1 on the second
component should be read as “marked”. This automaton reads trees over {0, 1,2}, where some nodes are marked, and
whenever it reads our tree t, it accepts it only in the case when the marking coincides with Sy,.

Using A we can construct a formula ¢* (X, x) that chooses exactly one u € U, , for each n € N, contradicting Theorem 3.3.
For this we fix an arbitrary order on the states of A. For each n there is at least one state g of A such that A accepts
from g exactly one winning strategy on the subtree t,, of t (namely the state assumed at the root of the subtree ¢, ,
in an accepting run for the unique winning strategy on I' that is accepted by A). The formula ¢* is designed to select
the smallest state g with this property and then chooses the element of U, , that is described by the unique winning
strategy accepted by A from g on t,,. It is not difficult to verify that the formalization is indeed possible in MSO. [

One should note here that the tree constructed in the proof of Theorem 3.4 (and also the one from Theorem 4.2) is not
too complicated: it belongs to the Caucal hierarchy' [6]. This means that it can be obtained from a reqular tree by
a finite number of applications of MSO-interpretations and unfoldings, or equivalently, it is the transition graph of a
higher-order pushdown automaton [4]. In [15] it is shown that the tree belongs to the fourth level of the hierarchy. The
possibility of constructing such rather simple examples is one of the advantages of our new proof of Theorem 3.1.

In the tree games that we consider we do not require that there is a strict alternation between the moves of the two
players. However, by inserting additional nodes in the tree games, it is always possible to obtain a game with strict
alternation.

4. Unambiguous automata

In this section, we show that unambiguous parity tree automata do not accept all reqular tree lanquages. For the proof
we use the non-existence of an MSO-definable choice function.

Unambiguous automata have been introduced on finite words because they allow more efficient algorithms for equivalence
and inclusion testing [26]. This has been generalized to automata on finite trees in [23]. On finite words and trees it is
clear that every reqular language can be accepted by an unambiguous automaton because deterministic automata are
unambiguous.

For Biichi automata on infinite words the situation is more difficult. Although determinization is possible ([16, 22)), it
requires the model of deterministic parity (or Muller) automata with acceptance conditions that are more powerful than
Biichi conditions. However, from the determinization result one can infer that all regular languages of infinite words can
be accepted by an unambiguous Biicht automaton [1]. In [12] a construction for unambiguous automata is presented that
does not rely on deterministic automata.

In this section we show that the situation is different for infinite trees: There are regular languages that cannot
be accepted by an unambiguous automaton. The proof is based on the main result from the previous section: the
undefinability of a choice function in MSO. The underlying idea is rather simple. We consider the language

T31 :{tET{‘(‘)’ﬂﬁlu S {0,1}* . t(u):1}

of trees with at least one node labeled 1. Each tree in T3; can be viewed as the set of nodes labeled 1. Intuitively,
an automaton accepting T3, has to verify that the input tree contains a 1, i.e,, an accepting run has to identify some
position labeled by 1. If the automaton is unambiguous, then there is exactly one run for each tree in T3, and hence
the automaton identifies exactly one position from the set coded by the 1-positions. This can be turned into a formula
defining a choice function.

We show the following more technical result because it can be used to prove different statements on the ambiguity of
automata.

" In particular, as all graphs in the Caucal hierarchy have a decidable MSO-theory, the tree constructed in the proof
of Theorem 3.4 also has a decidable MSO-theory.

673

Choice functions and well-orderings over the infinite binary tree

674

Lemma 4.1.

Let A be a parity tree automaton over the alphabet {0, 1} not accepting the tree that is completely labeled by 0. Then
there is a formula 4 (X, x) such that for each U C {0,1}* for which there is a unique accepting run of A on t,[U], there
is a unique element u € U such that &, = Y[U, u].

Proof. We consider the following game which can be seen as the emptiness game? for the automaton A intersected
with the trivial automaton that accepts only the tree t[@] (i.e., the tree labeled 0 everywhere). This intersection corresponds
to removing all transitions that use a letter different from O from the standard emptiness game for A.

Formally, the game is played between two players Eva and Adam who move in alternation. The positions of Eva are
the states of A, and the positions of Adam are the transitions of A that use input letter 0. The initial position is the
initial state of A. Then the players move in alternation as follows:

e From a position g Eva chooses a transition (g, 0, go, g1) of A.
e From position (g, 0, go, g1) Adam chooses a state go or g.

Eva wins a play if she can always choose a transition and if the resulting sequence of states chosen in the play satisfies
the acceptance condition of A. Since the acceptance condition of A is a parity condition, we obtain a parity game (for
basic facts on parity games see [29)).

We have already mentioned that the presented game is an emptiness game for the subautomaton of A in which all
transitions with label 1 have been removed. A winning strategy for Eva in this game would yield an accepting run of
A on the tree t{f], contradicting the assumption #[f] ¢ T(A). We can conclude that Adam has a winning strategy, and
since we are working with a parity game, Adam even has a positional® winning strategy f that picks for each transition
of the form (g, 0, o, g1) one of the states qo, g1 (see [29] for a proof of the positional determinacy of parity games).

We now construct the formula ¢14(X, x) based on this strategy f. Evaluated on t{U, u] the formula states that there exists
an accepting run of A on t{U] such that the path leading to node u corresponds to the choices of Adam according to the
strategy f. Note that if we apply the strategy of Adam to the transitions in an accepting run, then this results in a path
ending in a node labeled 1 because otherwise the resulting infinite play would be winning for Eva.

Assuming that the states of A are {1,...,n}, the formula ¢4(X, x) looks as follows:
3IXi, .. X o AccRun(Xq, .. X, X) A X(X) AVy T x zstrat (X, x, Xq, ..., Xa, y),

where

e the formula AccRun expresses that Xj, ..., X, describe an accepting run of A on the characteristic tree of X (the
construction of such a formula is standard, see e.g. [29]), and

e straty states that the strategy f applied at node y in the run coded by Xj, ..., X,, moves into the direction of x.
In case the strategy allows movement in both directions (when the states gy and g, are the same), the formula
picks the left move:

XA N\ Xely) A X (y0) A X, (y1) = [£(4.0, 90, 1) = go < (yO T X)].

9.90.g1€{1....n}

If we fix the interpretations for X and Xj,..., X,, then there is exactly one interpretation of x such that Yy C
x.stratg(X,x, X1,..., Xy, y) is satisfied (if there are two positions, then we obtain a contradiction when interpreting
y as the greatest common ancestor of these two positions).

Now assume that there is exactly one accepting run of A on t{U]. Then the interpretations of X, ..., X, are fixed by U
and hence the formula (i4(X, x) has the claimed property. O

2 For a description of the emptiness game for parity tree automata see [29]
3 The moves of a positional strateqy only depend on the current vertex and not on the entire history of the play.

A. Carayol etal

Using this lemma it is easy to obtain the following theorem.

Theorem 4.1.
There is no unambiguous parity tree automaton accepting the language Ts; consisting of exactly those {0,1}-labeled
trees in which at least one node is labeled 1.

Proof. Assume A is an unambiguous automaton for T3, and consider the formula 4(X, x) from Lemma 4.1. As there
is a unique accepting run of A on t{U] for each nonempty set U, i4(X, x) defines a choice function. This contradicts
Theorem 3.1. O

Using Lemma 4.1 we can also show that there are regular languages whose ambiquity is witnessed by a single tree.

Theorem 4.2.
There is a reqular language T C T{’g,” and a tree t € T such that there is no parity automaton accepting T that has a
unique accepting run for t.

Proof. Consider the language T of trees with the property that each subtree rooted at a node of the form 1*0 contains
a node labeled 1. Obviously this is a regular language.

The tree t is defined to have all nodes of the form 1* labeled 0, and for each n we plug in the tree t,, as the subtree
rooted at the node 170 (as in the proof of Theorem 3.4.) As each t,, contains a node labeled 1, we have t € T.

Assume that there is parity automaton A accepting T that has a unique run on t. Let g be a state of A that occurs
at infinitely many nodes of the form 1*0 in this run. Let A’ be the automaton A with initial state g. As A accepts
T it is clear that A’ does not accept the tree t{@]. Furthermore, as the run of A on t is unique, there are infinitely
many n such that A’ has a unique run on t,,. For the formula ¢4 (X, x) from Lemma 4.1 this yields a contradiction to
Theorem 3.3. O

5. Well-orderings

A well-ordering is a total order relation with the property that there are no infinite descending chains or, equivalently,
every nonempty subset of the domain of the relation has a smallest element. A simple example is the natural ordering
on the set of natural numbers N. The natural ordering on the set of integers Z is not a well-ordering because, e.g., the
whole set Z does not have a minimal element w.r.t. to this ordering. If we define an ordering < on Z by first comparing

the absolute values of the numbers and in case of equality letting the negative one be smaller, t.e., n < m iff |n| < |m

’

or |[n| = |m| and n < m, then we obtain a well-ordering.

A partial well-ordering is a partial order relation with no infinite descending chains and with no infinite sets of pairwise
incomparable elements. Equivalently a partial well-ordering is a partial order in which any nonempty set admits a
nonempty finite set of minimal elements. Another useful equivalent property is that for every infinite sequence (a;)ien
there are two indices k < [such that a, < a;. For two elements u and v of the partial well-ordering, we write u | v if
u and v are incomparable for the order.

A well-ordering is a particular case of partial well-ordering. If we partially order the integers in Z by comparing their
absolute values if they have the same sign, we obtain a partial well-ordering on Z.

In this section we are interested in well-orderings and partial well-orderings on the tree domain {0,1}*. A typical
ordering of {0,1}* is the lexicographic ordering < defined by uy < uz f uy is a prefix of uy, or uy = uOuj and
uy = uluy for some u, u), vy, € {0,1}*. From the definition of < one can easily see that it is MSO-definable in t,.
But it is not a well-ordering because, e.g., the set of nodes of the form 0*1 does not have a minimal element.

In a similar way as we changed the standard ordering on Z into a well-ordering, we can obtain a well-ordering on
{0,1}* by first comparing the length of the elements and in case of equality take the lexicographic ordering. We obtain
the length-lexicographic ordering <iex formally defined by vy <yex Uz Uf |uq| < |uz|, or |ug] = |uz| and vy <iex Ua.
This defines a well-ordering but its definition requires comparing the length of the elements. From the fact that the

(Sgs]

Choice functions and well-orderings over the infinite binary tree

676

MSO-theory of t, extended with the equal length predicate is undecidable (see [27]) one can easily derive that <y is
not MSO-definable in t,.

A partial well-ordering <, on {0,1}* is obtained by only comparing the length of the words (ie. u <jen vifu =v
or |u] < |v]). In fact, as there are only finitely many words of a given length, any nonempty subset of {0, 1}* has a
nonempty set of minimal elements for <ie,. Again <ie, is not MSO-definable in t,.

More generally, as a direct consequence of Theorem 3.1 we obtain that there exists no MSO-definable partial well-
ordering on the nodes of the infinite binary tree. In fact, from an MSO-formula ¢<(x, y) defining a partial well-ordering
in t,, a choice function choosing x in X is easily defined by taking the smallest element for <i of the finite set of
minimal elements of X (for the partial well-ordering):

Yehoice X, X) =AY CX. xEYANVYy EY. x<ix YYANVZEX. zE Y & =(3Z € X ¢ (7, 2)).

This naturally raises the question whether there is a partial well-ordering that we can add to t, while preserving the
decidability of MSO. In this section, we prove the following negative result.

Theorem 5.1.
The MSO-theory of the full-binary tree together with an arbitrary partial well-ordering is undecidable.

In the particular case of tj, the infinite binary tree with length-lexicographic order, i.e, the structure te =
({0,1}*, Eo, Ey, <uex), this result is well-known. It easily follows from the undecidability of t, extended with the equal
length predicate (see [27]).

We show that tjx can be MSO-interpreted in the infinite binary tree with any partial well-ordering.

Theorem 5.2.
There exists an MSO-interpretation T such that for every partially well-ordered infinite binary tree t, Z(t) is isomorphic
to tiex-

As MSO-interpretations preserve the decidability of MSO (see Proposition 2.2), Theorem 5.1 follows from the undecid-
ability of the MSO-theory of t... The rest of this section is dedicated to the proof of Theorem 5.2.

Partially well-ordered trees

We consider structures over the binary signature T = {Ey, E1, <}. A canonical well-ordered tree has the universe {0, 1}*
where Ey and E; are respectively interpreted as {(uv, u0) | v € {0,1}*} and {(u, u1) | u € {0,1}*}, and < is interpreted
as a well-ordering on {0, 1}*. We say that a t-structure t is a well-ordered (infinite binary) tree if it is isomorphic to a
canonical well-ordered tree. Similarly, if < is a partial well-order we talk about partially well-ordered trees.

Up to isomorphism, a well-ordered tree is entirely characterized by the well-ordering on the set of words over {0,1}.
Above, we have already defined ., to be the well-ordered tree with < as ordering relation.

The key property of tye, is that it is MSO-definable (up to isomorphism) in the class of partially well-ordered trees*.

Proposition 5.1.
There exists an MSO-sentence ¢yex such that a partially well-ordered tree t is isomorphic to tyex iff t = Quex.

4 The class of well-ordered trees and the class of partially well-ordered trees are themselves MSO-definable in the
class of t-structures.

A. Carayol etal

Proof. We describe the properties that we need to express by ¢y to ensure that a partially well-ordered ¢ is
isomorphic to fye. In the description, for a node v1 € 1" we denote by Bubble(v1) the set {v : v < u < v1}. Note that
if < equals <jex, then Bubble(v1) consists of all nodes that are on the same level as v1. The formula ¢« expresses the
following properties:

1. Bubble(1) = {0, 1}, and for all v € 1%, Bubble(v1) is the set of all the children of nodes in Bubble(v).

2. The root of the tree is the least element for the order <, and on Bubble(v) the relation < agrees with the
lexicographic order for all v & 17.

These properties can be defined in MSO. It is easy to see that fjx satisfies the formula ¢ye.. It remains to show that
every well-ordered tree t satisfying ¢yex is isomorphic to fijey.

Let t be a partially well-ordered tree satisfying ¢uex. First observe that for v € 1% the first condition assures that
Bubble(v) = {u : |u| = |v|}. t.e. the set of all the nodes that are on the same level as v.

We write Succex(u) for the successor of u for the order <j. To prove the proposition it is enough to show that every
node u has exactly one successor in <-ordering, and it is Succye(t); in other terms, the set of minimal elements of
{v:u < v} is exactly {Succye(v)}.

Assume by contradiction that this property is not satisfied. Let & be the smallest in the <y ordering node violating
this property. By the first condition, @ is not the root. If & € 11 then the minimal elements of {v : & < v} are contained
in Bubble(a1). By the second condition the only minimal element is 0I?*" = Succye,(@1). If @ & 17 then all its potential
successors are in Bubble(v) where v € 1* has the same length as &. Once again the second condition allows us to
conclude. O

Interpreting .,

We now define the notion of induced partially well-ordered tree. Consider a canonical partially well-ordered tree t with
partial well-ordering <" and a set U C {0,1}* of nodes that

e is closed under greatest common prefix (u € UAve U - uAv e l),

e has the property that for all v € U, u0{0,1}* N U #+ @ and u1{0,1}* n U + @, i.e., from every node we can go to
the left and to the right and find another element of U below.

The partially well-ordered tree t|y induced by U in t has universe U.

To interpret its relations we use a formula (Jgreatest(X, X) stating that x is the greatest common prefix of the set X:

E(;‘U {(U, V) S UxU | t |: ¢greatest[uo{0r1}* n U' V]}'
EV = {(u,v) EUx Ut Yyeaealu1{0,1} N U, v},
<flv = {lu,vyeUx U|u<' v}

The plan is to show that in each partially well-ordered tree we can find a subset U inducing a well-ordered tree that
is isomorphic to fie. As a first step we show that we can express each MSO-property ¢ of t|y by an MSO-formula ¢*
on t that takes U as a parameter.

Lemma 5.1.
For every MSO-formula ¢ over T there exists a formula ¢*(X) such that for every canonical partially well-ordered tree
t and set U, t |= ¢*[U] iff the set U induces a partially well-ordered tree t|y on t, and t|y |= ¢.

Proof. Consider an MSO-formula ¢ over 7. Let ¢,q(X) be an 7-formula expressing that X satisfies the conditions to
induce a full binary tree and let ¢'(X) be the formula obtained from ¢ by relativizing the quantifications to X and by
replacing E;(x, y) with ¢enoice (xi{0, 1}*N X, y), for i € {0, 1}. It is easy to check that the formula ¢*(X) := ¢ina(X) A @' (X)
satisfies the property stated in the lemma. O

877

Choice functions and well-orderings over the infinite binary tree

678

Applying this lemma to the formula ¢y from Proposition 5.1 yields that t = ¢, [U] iff U induces a well-ordered tree
isomorphic to fyjey.

We now show that for every canonical partially well-ordered tree t there exists a subset U C {0,1}* such that ¢|y is
isomorphic to fje. We even show a stronger result: there is in fact an MSO-definable such set (Lemma 5.3).

To construct such a set U we built up a sequence of nodes indexed by the elements from {0, 1}*. We start with a node
u, representing the root of t|y. Then we define ug to be a node in the left subtree of u, such that u, < ug. We continue
by finding a node uy in the right subtree of u. such that ug < uy. Then we take a node ugy in the left subtree of ug
such that uy < ugo, and so on. This construction is illustrated in Figure 3, where the dashed arrows represent the order

relation < on the sequence u,, ug, us, Ugo, - . . by always pointing to the next bigger element from this sequence.
Ug
[] : []
Uug > U1
) e
%00

Figure 3. Construction of a set inducing tiie

For this construction to work we need to ensure that we can always find nodes as required, e.g., that there is a node ug
in the left subtree of ug such that vy < uge. For this purpose we make the definition of a mixed node and later choose
u. to be a node with this property. We call a node u € {0,1}* of a canonical partially well-ordered tree t mixed if
the ordering relation “jumps” between all different subtrees below u in the following sense: for all v, v’ O u there exists
w € {0, 1}* such that v < v'w. We show that we can indeed find a node with this property.

Lemma 5.2.
Every canonical partially well-ordered tree t contains a mixed node.

Proof. Let t be a canonical partially well-ordered tree. Assume by contradiction that t does not have any mixed
nodes. We are going to construct a sequence (u,),en of nodes such that for no i < j, u; < u;. This is in contradiction
with the fact that < is a well partial ordering.

We construct the sequence (u,),en by induction on n together with another sequence of nodes (v,),en such that for all
n>0:
o v, C Upi and vh £ Vi1,

e there is no v > u, in the subtree rooted in v,.

Note that these conditions imply that for no i < j, u; < u; because u; is in the subtree rooted in v;.

As € is not mixed there exist two nodes u and v such that there is no node in the subtree of v that is greater (with
respect to <) than u. We take ug = u and vy = v. If vy is not mixed then we can apply the same argument to the subtree
rooted in vy obtaining uq and v;. We get the desired sequence by induction. O

Now we can formalize the construction of the set U inducing #ex as indicated above and in Figure 3.

Lemma 5.3.

For every canonical partially well-ordered tree t, there exists a set of nodes U inducing a well-ordered tree t|, isomorphic
to tyex. Moreover there exists an MSO-formula J(X) which uniquely defines one such set (i.e. there exists a unique set
Uy sit. t{Uo] = ¢ and t|y, is isomorphic to ty).

A. Carayol etal

Proof., Let t be a canonical partially well-ordered tree. We construct a sequence of nodes (uy)wefo1}+ indexed by
the set of words over {0, 1}* such that:

e for all w,w’ € {0,1}*, w <yex W' implies v, < uy,
e and for all w € {0,1}* and i € {0,1}, uw: € u,i{0,1}*.

If we assume that this sequence has been constructed and we take U := {u,, | w € {0, 1}*}, it is easy to check that U
is closed by greatest common prefix and hence U induces a full binary tree on t. Furthermore the mapping from {0, 1}*
to U associating w to u,, is an isomorphism from te, to t|y.

We now construct the sequence (uy)wefo13+ by induction on the length-lexicographic order <jex. By Lemma 5.2, the tree
t has a mixed node. We take u, to be a mixed node of t.

Assume that the sequence has been constructed up to w € {0,1}*. Let w’ be the successor of w in the length-
lexicographic order. Note that as w’ is not empty, it can uniquely be written as w’ = w”i for some w” <jx w and
i €0,1. To construct u,/, we need to find an element of u,~i{0,1}* greater than u,. As u. is mixed and u,, and u,»i
are below u. (below according to the prefix relation), there exists z € {0,1}* such that u,»iz > u,. We take u, equal
to uyriz.

This establishes the first part of the lemma.

The construction of the set U presented above leaves several choices: namely the mixed node we take for u. and the
element of {u,»iz|z € {0,1}* Auyriz > u,} we take for u, for each w' € {0,1}*. We have already remarked (on page
676) that we can define a choice function on t by means of an MSO-formula ¢(x, X). The formula states that x is the
left-most minimal element of X (minimal with respect to <).

We will show that if for each of the choices in the construction of U we use the choice function defined by ¢ we obtain
a set Up which is MSO-definable in t.

Consider a set Uj satisfying the following properties:
(1) Up induces a well-ordered tree which is isomorphic to iy,
(2) the smallest element xo of U is chosen by ¢ in the set of mixed nodes of t,

(3) for all x" # xo € Up with predecessor x in Uy (according to <), father x” in Uy (according to the binary tree structure
induced by Up), and i € {0, 1} such that x”i C x’, we have that x’ is the element chosen by ¢ in the set of elements
of Uy which are below x”i and greater than x (below according to the prefix relation, and greater according to <).

It follows from the first part of the proof that such a set exists. Moreover there exists at most one set satisfying properties
(1), (2) and (3). It remains to verify that the above properties can be expressed in MSO-logic. For property (1), it is
enough to take the formula ¢}, (X) obtained by applying Lemma 5.1 to the formula ¢y of Proposition 5.1. For property
(2), we simply need to remark that the property of being a mixed node can be expressed in MSO. For property (3) the
translation is immediate. O

Note that we can now already derive Theorem 5.1: For every formula ¢ over t, consider the formula ¢*(X) obtained
from ¢ by Lemma 5.1 and ¢, (X) obtained from the formula ¢ye. of Proposition 5.1. By Lemma 5.3, for every partially
well-ordered tree t:

fex ¢ U £]=3X 1 Gl (X) A ¢7(X).
As the formula ¢*(X) can be effectively constructed from the formula ¢, it follows that the MSO-theory of e is recursive
in the MSO-theory of any partially well-ordered tree t.
Using the previous results it is easy to prove Theorem 5.2.
Proof of Theorem 5.2. The interpretation Z = (Qdom, Py, Pk, P<) such that Z(t) = tye, for each well-ordered tree
t is defined as follows. As domain formula ¢¢om we take the formula ¢y defining the set Uy from Lemma 5.3. The formulas

®E, $e,, and ¢< just define the induced successor relations and the induced ordering from the definition of induced
well-ordered tree. O

679

Choice functions and well-orderings over the infinite binary tree

680

An immediate consequence of this result is that the infinite binary tree cannot be MSO-interpreted in t; (the natural
numbers with successor). Based on this we can use the same technique as in Corollary 3.1 to obtain the same result for
t extended with unary predicates.

Proposition 5.2.
Let Py,..., P, be unary predicates for t;. There is no interpretation T such that Z(4[P, ..., P,)) = t,.

Proof. As already mentioned there is no interpretation Z such that Z(t;) = t,. Otherwise we could extend this
interpretation by a formula transferring the ordering on ¢ to t;, thus obtaining a well-ordered tree with decidable
MSO-theory (contradicting Theorem 5.1). Now assume that there is an interpretation Z such that Z(4[P1, ..., P,]) £ t.
We first construct a formula ¢yee(Xi, ..., X,) such that

t1 |: ¢tree[U1r D] Un] l-ﬂ I(t1[U1, PR Un]) ; tz.

Such a formula only needs to express that the formulas from the interpretation describe a structure in which all nodes
have exactly one Ej successor, exactly one E; successor, and exactly one predecessor except for one node which is the
root. This can easily be done by an MSO-formula.

The formula 3X4, ..., X, @ Puee(X1, ..., Xy) is true in t; (interpreting Xy,..., X, by Py,..., P,). Hence, there are reqular
interpretations Uy, ..., U, of Xi,..., X, such that &= @uee[Ui, ..., U,] (see Theorem 2.2). By construction of ¢ this
means that Z(4[Uy, ..., U,]) = to. Since regular sets can be defined in MSO we can directly refer to U, ..., U, in the
interpretation and obtain in interpretation Z’ such that Z'(t;) = t,, which is not possible. O

Note that Proposition 5.2 does not make any assumption on the predicates Py, ..., P,.

Another consequence of Theorem 5.1 is that t, is not MSO-interpretable in any structure that has a decidable MSO-
theory and admits an MSO-definable well-ordering because otherwise one could also MSO-interpret t, extended with
a well-ordering in a structure with decidable MSO-theory.

0¥ 1 o3 Ny g7 smmgg\mk‘m 16

Figure 4. Graph of the flip function

Consider, for example, the function flip on the natural numbers. It maps a natural number n to the number that is
obtained by changing the least significant bit that is 1 in the binary representation of n to 0. The graph of the flip
function is shown in Figure 4. The structure (t;, flip) of the natural numbers with successor extended by the flip function
has a decidable MSO-theory [17]. We conclude that t, cannot be MSO-interpretable in this structure because otherwise
we could also interpret a well-ordered tree in it.

Proposition 5.3.
There is no MSO-interpretation T with Z(t, flip) = t,.

6. Conclusion

In this paper we have studied questions on MSO-definability in the binary tree and on decidability of MSO in extensions
of the binary tree by well-orderings. As a result we obtain a rather simple and elementary proof of the theorem of Gurevich
and Shelah stating that there is no MSO-definable choice function on the infinite binary tree. A simple consequence is

A. Carayol etal

that there is also no MSO-definable well-ordering on the domain of the infinite binary tree. We obtain the even stronger
result that adding any partial well-ordering to the infinite binary tree yields a structure with undecidable MSO-theory.
These two results can be used to derive non-definability results for MSO, as we have illustrated with some examples.

One natural question that remains open is whether there exists a choice function that can be added to the infinite binary
tree such that the resulting structure has a decidable MSO-theory.

As mentioned in the introduction, MSO-definability of a choice function is a very special instance of the uniformization
problem, namely for the formula ¢(X, y) = y € X. The result from Section 3 shows that uniformization is not possible
in general on the infinite binary tree. This leaves the question whether there are other types of formulas that allow
uniformization. In [24] it is mentioned that uniformization is possible for formulas of the form ¢(x, Y). Here, uniformization
means that the relation between elements and sets defined by ¢(x, Y) can be turned into an MSO-definable function
associating to each element exactly one set from the relation.’

Another type of question related to this is the one of decidability, as for example in Church’s synthesis problem [7] (see
also [30]). An instance of this problem is given by an MSO-formula ¢(X, Y) over the infinite line t; such that for each
input sequence X there is at least one output sequence Y. A solution is a very specific function compatible with this
relation: It should be implementable by a finite state automaton that reads the input sequence and produces in each
step one element of the output sequence. The task is now to decide if such an automaton exists (and to construct one
if possible). Similarly, one can study the decision variant of uniformization on the binary tree: Given an MSO-formula
¢(X,Y) over t,, does there exist an MSO-formula ¢*(X, Y) that defines a function compatible with ¢(X,Y). In its full
generality this question seems to be too difficult but one could study specific instances of it for simple classes of formulas.

Acknowledgements

We would like to thank the anonymous referees for their helpful comments.
The third author is supported by the Polish government Grant N206 008 32/0810.

References

[1] Arnold A., Rational w-languages are nonambiguous, Theoret. Comput. Sci., 1983, 26(1-2), 221-223

[2] Biichi J.R,, On a decision method in restricted second order arithmetic, In: Proceedings of International Congress
on Logic, Methodology and Philosophy of Science, Stanford University Press, Stanford, 1962, 1-11

[3] Biichi J.R.,, Landweber L.H., Solving sequential conditions by finite-state strategies, Trans. Amer. Math. Soc., 1969,
138, 295-311

[4] Carayol A, Wéhrle S., The Caucal hierarchy of infinite graphs in terms of logic and higher-order pushdown automata,
In: Proceedings of the 23rd Conference on Foundations of Software Technology and Theoretical Computer Science,
FST TCS 2003, Lecture Notes in Computer Science, 2914, Springer, Berlin, 2003, 112-123

[5] Carayol A, Loding C., MSO on the infinite binary tree: choice and order, In: Proceedings of the 16th Annual
Conference of the European Association for Computer Science Logic, CSL 2007, Lecture Notes in Computer Science,
4646, Springer, Berlin, 2007, 161-176

[6] Caucal D., On infinite terms having a decidable monadic theory, In: Proceedings of the 27th International Symposium
on Mathematical Foundations of Computer Science, MFCS 2002, Lecture Notes in Computer Science, 2420, Springer,
Berlin, 2002, 165-176

5 Such a result can be shown by transforming the formula into an equivalent automaton and then constructing a formula
that selects for each x a unique run that accepts the tree annotated with x and some set Y. For this purpose it is enough
to select a (say lexicographically) smallest run on the path to the element x that can be completed to an accepting run.
In this finite part of the run we can plug in for each ‘dangling’ state a fixed MSO-definable run. The details of this
construction are left to the reader.

681

Choice functions and well-orderings over the infinite binary tree

SiST=]

[7] Church A, Logic, Arithmetic and Automata, In: Proceedings of the International Congress of Mathematicians (Stock-
holm 1962), Inst. Mittag-Leffler, Djursholm, 1963, 23-35
[8] Dawar A., Gradel E., The descriptive complexity of parity games, In: Proceedings of the 17th Annual Conference on
Computer Science Logic, CSL 2008, Lecture Notes in Computer Science, 5213, Springer, Berlin, 2008, 354-368
[9] Ebbinghaus H.-D., Flum J., Finite Model Theory, Perspectives in Mathematical Logic, Springer, Berlin, 1995
[10] Grédel E., Thomas W., Wilke T., Automata, Logics, and Infinite Games, Lecture Notes in Computer Science, 2500,
Springer, Berlin, 2002
[11] Gurevich Y., Shelah S., Rabin’s uniformization problem, J. Symbolic Logic, 1983, 48(4), 1105-1119
[12] Kahler D., Wilke T., Complementation, disambiguation, and determinization of Biichi automata unified, In: Proceed-
ings of the 35th International Colloquium on Automata, Languages and Programming, ICALP 2008, Part I, Lecture
Notes in Computer Science, 5125, Springer, Berlin, 2008, 724-735
[13] Lifsches S., Shelah S., Uniformization, choice functions and well orders in the class of trees, J. Symbolic Logic, 1996,
61(4), 1206-1227
[14] Lifsches S., Shelah S., Uniformization and Skolem functions in the class of trees, J. Symbolic Logic, 1998, 63(1),
103-127
[15] Léding C., Automata and Logics over Infinite Trees, Habilitationsschrift, RWTH Aachen, 2009
[16] McNaughton R,, Testing and generating infinite sequences by a finite automaton, Information and Control, 1966,
9(5), 521-530
[17] Monti A, Peron A., Systolic tree w-languages: the operational and the logical view, Theoret. Comput. Sci.,, 2000,
233(1-2), 1-18
[18] Mostowski AW., Regular expressions for infinite trees and a standard form of automata, In: Computation Theory,
Lecture Notes in Computer Science, 208, Springer, Berlin, 1984, 157-168
[19] Rabin M.O., Decidability of second-order theories and automata on infinite trees, Trans. Amer. Math. Soc., 1969,
141, 1-35
[20] Rabin M.O., Automata on Infinite Objects and Church’s Problem, American Mathematical Society, Boston, 1972
[21] Rabinovich A., On decidability of monadic logic of order over the naturals extended by monadic predicates, Inform.
and Comput., 2007, 205(6), 870-889
[22] Safra S., On the complexity of w-automata, In: Proceedings of the 29th Annual Symposium on Foundations of
Computer Science, FoCS 1988, IEEE Computer Society Press, Los Alamitos, 1988, 319-327
[23] Seidl H., Deciding equivalence of Finite tree automata, SIAM J. Comput., 1990, 19(3), 424-437
[24] Semenov A.L., Decidability of monadic theories, In: Proceedings of the 11th International Symposium on Mathe-
matical Foundations of Computer Science, MFCS 1984, Lecture Notes in Computer Science, 176, Springer, Berlin,
1984, 162-175
[25] Siefkes D., The recursive sets in certain monadic second order fragments of arithmetic, Arch. Math. Logik Grundla-
genforsch., 1975, 17(1-2), 71-80
[26] Stearns R.E., Hunt H.B., On the equivalence and containment problems for unambiguous regular expressions, regular
grammars and finite automata, SIAM J. Comput., 1985, 14(3), 598-611
[27] Thomas W., Automata on infinite objects, In: Handbook of Theoretical Computer Science, B: Formal Models and
Semantics, Elsevier, Amsterdam, 1990, 133-191
[28] Thomas W., On the synthesis of strategies in infinite games, In: Proceedings of the 12th Annual Symposium on
Theoretical Aspects of Computer Science, STACS '95, Lecture Notes in Computer Science, 900, Springer, Berlin,
1995, 1-13
[29] Thomas W., Languages, automata, and logic, In: Handbook of Formal Language Theory, 3, Springer, Berlin, 1997,
389-455
[30] Thomas W., Church’s problem and a tour through automata theory, In: Pillars of Computer Science, Essays Dedicated
to Boris (Boaz) Trakhtenbrot on the Occasion of His 85th Birthday, Lecture Notes in Computer Science, 4800,
Springer, Berlin, 2008, 635-655

	Introduction
	Preliminaries
	MSO-definable choice functions
	Unambiguous automata
	Well-orderings
	Conclusion
	Acknowledgements
	References

