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Abstract: Let K be a field, S = K[x, ..., xn] be a polynomial ring in n variables over K and / C S be an ideal. We
give a procedure to compute a prime filtration of S//. We proceed as in the classical case by constructing an
ascending chain of ideals of S starting from / and ending at S. The procedure of this paper is developed and
has been implemented in the computer algebra system Singular.
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1. Introduction

Prime filtration is a useful tool in commutative algebra. In [6, Theorem 6.4], it shows that there exists a prime filtration
of a finitely generated module over a Noetherian ring. We discuss this in a special case.
Let S = K[x1,...,x,] be a polynomial ring in n variables over a field K and / C S be an ideal of S. Consider the
module S/, there exist a chain

F:l=hchc...cl,=5

of ideals of S such that for each i we have /I,y = S/P;, where P; C S is a prime ideal for any i € {1,...,r}.
F is called a prime filtration of S/I and the support of F, is the set Supp(F) = {P1,..., P;}. It is well known that
Ass(S/I) C Supp(F). Note that F gives indeed a filtration of S//

©)=1lchllc...0 =5/l

We give a procedure to find a prime filtration of the module S// (see Algorithm 2) and present few examples in which
we compute prime filtrations using our procedure in SINGULAR [2].

A prime filtration gives a Stanley decomposition of the module S//, where /| C S is a monomial ideal. Let v € S be a
monomial and Z C {xq,...,x,}. We denote by uK[Z] the K-subspace of S/I generated by all elements uv, where v is
, i uK[Z] is
a free K[Z]-module. A Stanley decomposition of S/l is a presentation of the K-vector space S// as a finite direct sum
of Stanley spaces D : S/l = @_, u;K[Z]. Stanley decompositions and prime filtrations have been discussed in the
articles [3], [5], [4], [7]. [8] A Stanley decomposition of S// can be obtained using Algorithm 3.

a monomial in K[Z]. The multigraded K-subspace uK[Z] C S/ is called a Stanley space of dimension |Z
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2. Computation of prime filtration

The following theorem is a special case of [6, Theorem 6.4] and we give the proof below, since we need it in our procedure.

Theorem 2.1.
Let | C S be an ideal of the polynomial ring S = K[xq, ..., x,]. Then S/l has a prime filtration.

Proof. Let M = S/I. We choose any P; € Ass(M), then there exists a submodule M; of M, by definition, such that
My ~ S/Py. Therefore we have a chain (0) = My € My C M. If My # S/l then we may choose any P, € Ass(M/M).
Hence there exists a submodule M, C M with M,/M; ~ S/P,. So we have a chain My C M; C M, C M. Continuing in
the same way, this chain must stop at some M, since M is finitely generated S-module. It implies that M, = M. O

We have a prime filtration of S/I of the following form:
I=hhch= (/,21) ch= (/1,22) c---Cl_= (/,_Q,Z,_1) cl = (/,_1,2,) =S

where z; € S, I;/li—1 = (li-1, z)/li-y =~ SIP; and P; = I,y : z; for all i € {1,...,r}. So to determine a prime filtration of
S/I, we have to compute z; forallie {1,...,r}. Let = QN Q,N---N Q, be a primary decomposition of / where Q;
is a primary component of / and P; C S is a prime ideal which is the radical of the ideal Q;. Consider P; and we want
to find z € S such that / : z = P;. We choose z such that z € Py \ Q4 using Algorithm 1 and also z € ﬂf;z 0.

Algorithm 1.

Input: Prime ldeal P, Ideal Q such that \@ =P
Output: Polynomial p;
ep=1;
e while (P # Q)

for(i < size(P))

if(Pli] ¢ Q)

Q:=0Q: Pl

p = p* P[i];
e return(p);

The corresponding SINGULAR code is the following:
proc findZ (ideal P, ideal Q, list )
{

int i;

poly p =1;

if (size () > 0)

{

}

if (size(reduce(P, std(Q)))==0) // test P = Q

{return(p);}

for (i =1; i <=size(P); i+ +)

{

if (reduce(P[i], std(Q))! = 0) // test P[i] ¢ Q
{break;}

}

Q=quotient(Q, P[i]);

p = p = Pli}

return(findZ(P, Q, p));

p =0}
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|
Algorithm 2 (Prime filtration).

Input: Ideal /.

Output: A list (ideal /11, polynomial p, ideal /; : p = v/L[1), where Ly N ... N L is a primary decomposition of /; and {/;}
the filtration.

o while(/ # (1))

e Find polynomial p by Algorithm 1

e [=primary decomposition of / = L1 N...NLg;

o ll:=N_L

o/ :=p;

ell:=1InJ

e Choose p € /I such that p & L,
I:=1,p;

e return(/);

The corresponding SINGULAR code to find prime filtration is the following:
proc filt(ideal /list #)
{

list resu;

if(size(#f) > 0)

{

resu=4;

}

list L=primdecGTZ(/);// primary decomposition

poly p =findZ(L[1]2], L1]1));

ideal / = p;
int i;
ideal /I =1,
for (i =2; i <=size(l); i + +)
{
II=intersect(/l, L[{]1]);
}

II=intersect(//, J);

for (i =1, i <=size(ll);i + +)

{
if (reduce(/[i], std(L[1][1]))!=0)
{break;}

}

p =i}

I=1p;

ideal Q=std(/);

list S = list(Q, p, L[1]2]);

resusize(resu)+1]=S;

if((reduce(1, std(Q)))== 0)
{return(resu);}

return(filt(Q, resu));

SINGULAR Example 1.

Let I = (x?,y?) C S = K|[x, y, Z] be an ideal.
LIB "primdec.lib”;

ring r =0, (x,y,2z),dp;

ideal I =x2,y2;
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filt(/);

[1]:

(]: [1]=y2 [2]=xy [3]=x2
(2] xy

Bl: [M]=y [2]=x
2] :

(]: []=y _[2]=x2
2]y

B]: []=y [2]=x
(3]

(]: []=y 2] =x
[2]: x

Bl: [M]=x_12]=y
(4] :

(]: [1]=1_12]=x
[2]: x

Bl: M=x_2]=y
We get the following prime filtration of S//

I (x*y? xy) C (x%y) C (x,y) C S.

SINGULAR Example 2.

LIB "primdec.lib”;

ring r =0, (x,y, 2),dp;

ideal | = x3y3, 22, xyz;

filt(/);

Hence a prime filtration of S// is

I C (22, x2,x*y?) C (2%, xz, x3y?) C (2%, xz,X°y) C (7%, xz,x3) C (2,x°) C (z,X?)
Cc(x,z)CS.

SINGULAR Example 3.

LIB "primdec.lib”;

ring r =0, (x,y,z,w), dp;

ideal | = x2y — x, yzw + y2, xz + w3;

filt(/);

We get a prime filtration of S/I

I C (W3 +xz,yzw + yz,xzw -l—xg,xzz — XW2 —xw —x,xzy —x,xgw2 +xyw + xy —xz,xyzw-f—xy2 —Xyz -i-xzz,xyz2 -
YW, Xy —xy2z—x2 +y?wh x2D— gt W —ytw—yt, PP+ w g — gz, yPw g — Pz y 2y — P+ i —y )
(xwx, xy—xz, wixz, yzw+y?, x2z—x, x22—y?w?, P>w? +gPw, y*wryt, g —ytz) C (x, w3, yzw+y?, y?w?, giw, yt) C
(x, w3, yw?, yzw + y%, y?w, y3) C (x, w?, yzw + y2, y*w, y3) C (x, w?, yw, y?) C (w, x,y?) C (w,y,x) C S.

3. An application

Let / ¢ S=K][xi,...,X,] be a monomial ideal. Let
F: I=hchc---cl, =S
be a N"-graded prime filtration of S/I with /;/li_y = S/Pr,(—a;) where F; C {1,...,n}, Pr, = (x;: j € F;) and a; € N".

It was proved in [3] that this prime filtration F of S/I induces the Stanley decomposition

Sil = P ziK(Z]

i=1
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of S/I, where Zgc = {xj:j ¢ F:} and z; = x"i.

Algorithm 3 (Stanley decomposition).

Input: Monomial Ideal /.
Output: A Stanley decomposition S//.
o m=(xq,..., Xn);
o [:=filt(/);
e for (i < size(l))

0 = (i3}

Z:={x;em:x; ¢ Q};

S =S+ [i]2)K[Z]

e return(S);

Here is the corresponding SINGULAR code for Stanley decomposition of S//:

proc decomp(ideal /)
{
ideal m:=maxideal(1);
int n=size(m);
int i;
int J;

list [=filt(/); // filtration of / containing all data of the Stanley decomposition

ideal Q;
string S;
for (i =1; i <=size(l); i++); // formatting the output
{
O=L[i]3];
list Z;
for (j =1;j <=n; j++)
{
if (size(reduce(var(j), std(Q)))!=0)
{
Z[size(Z)+1]=var(j);
}
}
S = S+" + ("+string({[i[2)+")K["+string(Z)+"]";
kill Z;

}
S = S[3,size(S)];
return(S);

}

SINGULAR Example 4.

Carrying on the SINGULAR Example 1. We compute a Stanley decomposition of the module S// in SINGULAR.

decomp(/); // Stanley decomposition of S//
[I— > xyK[z] + yK[z] + xK[z] + K[z].

SINGULAR Example 5.

Consider the SINGULAR Example 2. Now we find a Stanley decomposition of S// induced by the prime filtration.

decomp(/); // Stanley decomposition of S//

[I—> xzK[x]+ x3y2K[x] + x3yK[x] + x3K[x] + zK[y] + x2K[y] + xK[y] + K[y].
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