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Abstract: Let K be a field, S = K [x1, . . . , xn] be a polynomial ring in n variables over K and I ⊂ S be an ideal. We
give a procedure to compute a prime filtration of S/I. We proceed as in the classical case by constructing an
ascending chain of ideals of S starting from I and ending at S. The procedure of this paper is developed and
has been implemented in the computer algebra system Singular.
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1. Introduction

Prime filtration is a useful tool in commutative algebra. In [6, Theorem 6.4], it shows that there exists a prime filtration
of a finitely generated module over a Noetherian ring. We discuss this in a special case.
Let S = K [x1, . . . , xn] be a polynomial ring in n variables over a field K and I ⊂ S be an ideal of S. Consider the
module S/I, there exist a chain

F : I = I0 ⊂ I1 ⊂ . . . ⊂ Ir = S

of ideals of S such that for each i we have Ii/Ii−1
∼= S/Pi, where Pi ⊂ S is a prime ideal for any i ∈ {1, . . . , r}.

F is called a prime filtration of S/I and the support of F , is the set Supp(F ) = {P1, . . . , Pr}. It is well known that
Ass(S/I) ⊂ Supp(F ). Note that F gives indeed a filtration of S/I

(0) = I/I ⊂ I1/I ⊂ . . . Ir/I = S/I.

We give a procedure to find a prime filtration of the module S/I (see Algorithm 2) and present few examples in which
we compute prime filtrations using our procedure in SINGULAR [2].
A prime filtration gives a Stanley decomposition of the module S/I, where I ⊂ S is a monomial ideal. Let u ∈ S be a
monomial and Z ⊆ {x1, . . . , xn}. We denote by uK [Z ] the K-subspace of S/I generated by all elements uv , where v is
a monomial in K [Z ]. The multigraded K-subspace uK [Z ] ⊂ S/I is called a Stanley space of dimension |Z |, if uK [Z ] is
a free K [Z ]-module. A Stanley decomposition of S/I is a presentation of the K-vector space S/I as a finite direct sum
of Stanley spaces D : S/I =

⊕r
i=1 uiK [Zi]. Stanley decompositions and prime filtrations have been discussed in the

articles [3], [5], [4], [7], [8]. A Stanley decomposition of S/I can be obtained using Algorithm 3.
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2. Computation of prime filtration

The following theorem is a special case of [6, Theorem 6.4] and we give the proof below, since we need it in our procedure.

Theorem 2.1.
Let I ⊂ S be an ideal of the polynomial ring S = K [x1, . . . , xn]. Then S/I has a prime filtration.

Proof. Let M = S/I. We choose any P1 ∈ Ass(M), then there exists a submodule M1 of M, by definition, such that
M1 ' S/P1. Therefore we have a chain (0) = M0 ⊂ M1 ⊂ M. If M1 6= S/I then we may choose any P2 ∈ Ass(M/M1).
Hence there exists a submodule M2 ⊂ M with M2/M1 ' S/P2. So we have a chain M0 ⊂ M1 ⊂ M2 ⊂ M. Continuing in
the same way, this chain must stop at some Mr since M is finitely generated S-module. It implies that Mr = M.

We have a prime filtration of S/I of the following form:

I = I0 ⊂ I1 = (I, z1) ⊂ I2 = (I1, z2) ⊂ · · · ⊂ Ir−1 = (Ir−2, zr−1) ⊂ Ir = (Ir−1, zr) = S

where zi ∈ S, Ii/Ii−1 = (Ii−1, zi)/Ii−1 ' S/Pi and Pi = Ii−1 : zi for all i ∈ {1, . . . , r}. So to determine a prime filtration of
S/I, we have to compute zi for all i ∈ {1, . . . , r}. Let I = Q1 ∩ Q2 ∩ · · · ∩ Qm be a primary decomposition of I where Qi

is a primary component of I and Pi ⊂ S is a prime ideal which is the radical of the ideal Qi. Consider P1 and we want
to find z ∈ S such that I : z = P1. We choose z such that z ∈ P1 \ Q1 using Algorithm 1 and also z ∈

⋂m
i=2 Qi.

Algorithm 1.

Input: Prime Ideal P, Ideal Q such that
√

Q = P
Output: Polynomial p;
• p = 1;
• while (P 6= Q)

for(i ≤ size(P))
if(P[i] 6∈ Q)

Q := Q : P[i];
p := p ∗ P[i];

• return(p);

The corresponding SINGULAR code is the following:
proc findZ (ideal P, ideal Q, list ])
{

int i;
poly p = 1;
if (size (]) > 0)
{

p = ][1];
}
if (size(reduce(P, std(Q)))== 0) // test P = Q
{return(p);}
for (i = 1; i <=size(P); i + +)
{
if (reduce(P[i], std(Q))! = 0) // test P[i] 6∈ Q

{break;}
}
Q=quotient(Q, P[i]);
p = p ∗ P[i];
return(findZ(P, Q, p));

}
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Algorithm 2 (Prime filtration).

Input: Ideal I.
Output: A list (ideal Ii+1, polynomial p, ideal Ii : p =

√
L1), where L1 ∩ . . . ∩ Ls is a primary decomposition of Ii and {Ii}

the filtration.
• while(I 6= (1))
• Find polynomial p by Algorithm 1
• L=primary decomposition of I = L1 ∩ . . . ∩ Ls;
• II :=

⋂s
i=2 Li

• J := p;
• II := II ∩ J
• Choose p ∈ II such that p 6∈ L1

I := I, p;
• return(I);

The corresponding SINGULAR code to find prime filtration is the following:
proc filt(ideal I,list ])
{

list resu;
if(size(]) > 0)
{

resu=];
}
list L=primdecGTZ(I);// primary decomposition
poly p =findZ(L[1][2], L[1][1]);
ideal J = p;
int i;
ideal II = 1;
for (i = 2; i <= size(L); i + +)
{

II=intersect(II, L[i][1]);
}
II=intersect(II, J);
for (i = 1; i <= size(II);i + +)
{

if (reduce(II[i], std(L[1][1]))!=0)
{break;}

}
p = II[i];
I = I, p;
ideal Q=std(I);
list S = list(Q, p, L[1][2]);
resu[size(resu)+1]=S;
if((reduce(1, std(Q)))== 0)

{return(resu);}
return(filt(Q, resu));

}

SINGULAR Example 1.
Let I = (x2, y2) ⊂ S = K [x, y, z] be an ideal.
LIB ”primdec.lib”;
ring r = 0, (x, y, z), dp;
ideal I = x2, y2;
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filt(I);
[1] :
[1] : _[1] = y2 _[2] = xy _[3] = x2
[2] : xy
[3] : _[1] = y _[2] = x
[2] :
[1] : _[1] = y _[2] = x2
[2] : y
[3] : _[1] = y _[2] = x
[3] :
[1] : _[1] = y _[2] = x
[2] : x
[3] : _[1] = x _[2] = y
[4] :
[1] : _[1] = 1 _[2] = x
[2] : x
[3] : _[1] = x _[2] = y

We get the following prime filtration of S/I

I ⊂ (x2, y2, xy) ⊂ (x2, y) ⊂ (x, y) ⊂ S.

SINGULAR Example 2.

LIB ”primdec.lib”;
ring r = 0, (x, y, z), dp;
ideal I = x3y3, z2, xyz;
filt(I);
Hence a prime filtration of S/I is
I ⊂ (z2, xz, x3y3) ⊂ (z2, xz, x3y2) ⊂ (z2, xz, x3y) ⊂ (z2, xz, x3) ⊂ (z, x3) ⊂ (z, x2)
⊂ (x, z) ⊂ S.

SINGULAR Example 3.

LIB ”primdec.lib”;
ring r = 0, (x, y, z, w), dp;
ideal I = x2y − x, yzw + y2, xz + w3;
filt(I);
We get a prime filtration of S/I
I ⊂ (w3 + xz, yzw + y2, xzw + xy, x2z − xw2 − xw − x, x2y − x, xyw2 + xyw + xy − xz, xy2w + xy2 − xyz + xz2, xyz2 −
y2w2, xy3−xy2z−xz3+y2w2, xz5−y4w2−y4w−y4, y5w2+y5w+y5−y4z, y6w+y6−y5z+y4z2, y7−y6z+y5z2−y4z3) ⊂
(xw+x, xy−xz, w3+xz, yzw+y2, x2z−x, xz3−y2w2, y3w2+y3w, y4w+y4, y5−y4z) ⊂ (x, w3, yzw+y2, y2w2, y3w, y4) ⊂
(x, w3, yw2, yzw + y2, y2w, y3) ⊂ (x, w2, yzw + y2, y2w, y3) ⊂ (x, w2, yw, y2) ⊂ (w, x, y2) ⊂ (w, y, x) ⊂ S.

3. An application

Let I ⊂ S = K [x1, . . . , xn] be a monomial ideal. Let

F : I = I0 ⊂ I1 ⊂ · · · ⊂ Ir = S

be a Nn-graded prime filtration of S/I with Ii/Ii−1
∼= S/PFi (−ai) where Fi ⊂ {1, . . . , n}, PFi = (xj : j ∈ Fi) and ai ∈ Nn.

It was proved in [3] that this prime filtration F of S/I induces the Stanley decomposition

S/I =
r⊕

i=1

ziK [ZFc
i ]
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of S/I, where ZFc
i = {xj : j 6∈ Fi} and zi = xai .

Algorithm 3 (Stanley decomposition).

Input: Monomial Ideal I.
Output: A Stanley decomposition S/I.
• m:=(x1, . . . , xn);
• l:=filt(I);
• for (i ≤ size(l))

Q = l[i][3];
Z := {xj ∈ m : xj 6∈ Q};

S = S + l[i][2]K [Z ]
• return(S);

Here is the corresponding SINGULAR code for Stanley decomposition of S/I:
proc decomp(ideal I)
{

ideal m:=maxideal(1);
int n=size(m);
int i;
int j;
list l=filt(I); // filtration of I containing all data of the Stanley decomposition
ideal Q;
string S;
for (i = 1; i <=size(l); i++); // formatting the output
{

Q=l[i][3];
list Z;
for (j = 1; j <= n; j++)
{

if (size(reduce(var(j), std(Q)))!=0)
{

Z[size(Z)+1]=var(j);
}

}
S = S+” + (”+string(l[i][2])+”)K [”+string(Z)+”]”;
kill Z;

}
S = S[3,size(S)];
return(S);

}

SINGULAR Example 4.
Carrying on the SINGULAR Example 1. We compute a Stanley decomposition of the module S/I in SINGULAR.
decomp(I); // Stanley decomposition of S/I
//− > xyK [z] + yK [z] + xK [z] + K [z].

SINGULAR Example 5.
Consider the SINGULAR Example 2. Now we find a Stanley decomposition of S/I induced by the prime filtration.
decomp(I); // Stanley decomposition of S/I
//− > xzK [x] + x3y2K [x] + x3yK [x] + x3K [x] + zK [y] + x2K [y] + xK [y] + K [y].
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