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Abstract: We consider the problem of approximation of eigenvalues of a self-adjoint operator J defined by a Jacobi matrix
in the Hilbert space l2(N) by eigenvalues of principal finite submatrices of an infinite Jacobi matrix that defines
this operator. We assume the operator J is bounded from below with compact resolvent. In our research we
estimate the asymptotics (with n → ∞) of the joint error of approximation for the eigenvalues, numbered from
1 to N, of J by the eigenvalues of the finite submatrix Jn of order n × n, where N = max{k ∈ N : k ≤ rn}
and r ∈ (0, 1) is arbitrary chosen. We apply this result to obtain an asymptotics for the eigenvalues of J. The
method applied in this research is based on Volkmer’s results included in [23].
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1. Introduction

Tridiagonal matrices appear in various problems in mathematics. Infinite symmetric tridiagonal matrices called Jacobi
matrices have essential meaning, consequently spectral properties of linear operators associated with Jacobi matrices
are investigated (see, e.g.,[6]-[17],[21]-[23] and others). It can happen that a linear operator defined by a Jacobi matrix is
compact or has a compact resolvent and its spectrum consists of eigenvalues of finite multiplicity (see, e.g., [7, 11, 14] and
[13]). Sometimes it is possible to calculate exact formulas for eigenvalues of such Jacobi matrices (see, e.g., [9, 17, 20]
and [12]), but it is not possible in general. So, asymptotic and approximate approaches to localize the point spectrum
are applied (see, e.g., [3–6, 14, 16, 18, 20, 23] and [25]). This work continues the research started in [15]. We consider
the problem of approximation for eigenvalues of some self-adjoint bounded from below discrete operator in the Hilbert
space l2 = l2(N) by eigenvalues of properly chosen principal finite submatrices of an infinite Jacobi matrix that defines
the operator. Projective methods, that use finite submatrices to investigate spectral properties of operators given by
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infinite Jacobi matrices, were applied by Arveson ([1, 2]), Ifantis, Kokologiannaki and Petropoulou ([11]), Volkmer ([23])
and others.
The eigenvalues of a self-adjoint, bounded from below operator with compact resolvent may be arranged non-decreasingly.
In [23], Volkmer estimated the error of approximation for the eigenvalue and eigenvector, whose number is fixed. In our
research we estimate the asymptotics (with n → ∞) of the joint error of approximation for the first [rn] = max{k ∈ N :
k ≤ rn} eigenvalues of the infinite Jacobi matrix by the eigenvalues of the principal finite submatrix of order n×n, where
r ∈ (0, 1) is arbitrary chosen. To obtain the result we use some weaker assumptions then in [15] and slightly different
from that in [23]. The method applied is based on Volkmer’s results included in [23]. Finally we use the main result of
this paper to obtain an asymptotic behaviour of the point spectrum of J. This approach to the problem of asymptotics is
different then the methods based on diagonalization (applied, e.g., in [4–6, 14, 16] or [18]) and the methods that use an
analytic model of the spectral equation (see [12] and [17]).
Let us consider an operator J in the space l2 with the canonical basis given by the tridiagonal symmetric Jacobi matrix

J =


d1 c1 0 · · · · · ·

c1 d2 c2 0
. . .

0 c2 d3 c3
. . .

...
. . . . . . . . . . . .

 (1)

and consider the finite submatrices of order n × n

Jn =



d1 c1 0 · · · · · · 0
c1 d2 c2 0 · · ·

0 c2 d3 c3
. . .

...
. . . . . . . . . . . . 0

0 · · · 0 cn−2 dn−1 cn−1

0 · · · · · · 0 cn−1 dn


, n ≥ 1. (2)

We assume that J is an operator in the Hilbert space l2 and acts on the maximum domain

D(J) = {{fn}∞
n=1 ∈ l2 : {cn−1fn−1 + dnfn + cnfn+1}∞

n=1 ∈ l2}

(we here assume c0 = f0 = 0). We assume that the sequences {cn} and {dn} satisfy the following conditions:

(A1) dn, cn ∈ R for all n ≥ 1;
(A2) there exist α > 0, β ∈ R, α > β and δ, S > 0 such that dn = δnα (1 + δn),

where limn→∞ δn = 0, and |cn| ≤ Snβ for n ≥ 1.

If (A1) and (A2) are satisfied then the operator J is self-adjoint, has a compact resolvent and its spectrum is discrete
(see, for instance, Janas and Naboko [13] or Cojuhari and Janas [7]). Moreover, the operator J is bounded from below and

D(J) = {{fn}∞
n=1 ∈ l2 : {nαfn}∞

n=1 ∈ l2}. (3)

The main result of this work is the following theorem about the estimation of the joint error of approximation for a part
of eigenvalues of the operator J by the eigenvalues of the finite submatrix Jn of order n × n (with n → ∞).

Theorem 1.1.
Let J be an operator in the Hilbert space l2 with the canonical basis defined by infinite matrix (1) satisfying (A1) and
(A2). Let the spectrum of J consists of the non-decreasingly ordered eigenvalues: λ1 ≤ λ2 ≤ λ3 ≤ ... . Denote by µi,n,
1 ≤ i ≤ n, the eigenvalues of the matrix Jn and assume that µ1,n ≤ µ2,n ≤ ... ≤ µn,n. Then for every γ > 0 and r ∈ (0, 1)
there exists C > 0 such that

sup
1≤k≤rn

|µk,n − λk | ≤ Cn−γ , where n > 1.
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The complete proof of this theorem is included in section 3.
In section 4 we give some consequences of Theorem 1.1. Under an additional condition, which is formulated at the
beginning of section 4, it is possible to estimate appropriate eigenvalues of the finite matrices (2) and use this result to
obtain an asymptotics for the point spectrum of J.

2. Preliminaries

This section sets the notations and remarks as well as the background for the Rayleigh-Ritz method for approximation
of eigenvalues and Volkmer’s results (see [23]) we are going to apply in our investigations.
Let H be a Hilbert space and J : D(J) ⊂ H → H be a linear self-adjoint operator in H. Assume that J has a compact
resolvent and is bounded from below. Then the spectrum of J consists of the eigenvalues that can be ordered non-
decreasingly: λ1 ≤ λ2 ≤ λ3 ≤ ... . By the minimum-maximum principle, for all k ∈ N, there is

λk = min
Ek

max{(Jx, x) : x ∈ Ek , ‖x‖ = 1}, (4)

where the minimum is taken over all linear subspaces Ek ⊆ D(J) of dimension k ((., .) stands for an inner product in H).
Denote by xk the eigenvector of J associated with the eigenvalue λk . We can assume that the system of chosen eigen-
vectors {x1, x2, x3, ...} is an orthonormal basis in H. So, if k ≥ 1 then

xk = {xk,j}∞
j=1 and ‖xk‖2 =

∞∑
j=1

|xk,j |2 = 1.

Suppose that H = l2 and {e1, e2, e3, ...} is the canonical basis of l2. Now, let J be a Jacobi operator given in the
canonical basis by matrix (1). Let E = Lin{e1, e2, ..., en}, Pn denote the orthogonal projection onto E and Qn = I − Pn.
Then the linear operator PnJ : E → E has the matrix representation in the canonical basis given by the matrix Jn due
to (2).
Denote by µi,n, 1 ≤ i ≤ n, the eigenvalues of the matrix Jn and assume that µ1,n ≤ µ2,n ≤ ... ≤ µn,n. For a fixed
i ∈ {1, 2, ..., n} let yi,n ∈ Rn be an eigenvector of Jn associated with µi,n and assume that {y1,n, y2,n, ..., yn,n} is an
orthonormal basis in Rn such that

(xk , yk,n) ≥ 0 for k = 1, ..., n, (5)

where (., .) stands for the inner product in l2, but here we treat yk,n as an infinite sequence, whose elements are equal
to 0 for the indices greater then n.
Let k ∈ {1, ..., n} and

L(k,n) = (L(n)
i,j )i,j=1...k , where L(n)

i,j = (Qnxi, xj ),

and
M(k,n) = (M(n)

i,j )i,j=1...k , where M(n)
i,j = ((PnJPn − J)xi, xj ),

be k × k-matrices. The notation ‖T‖ stands for the operator norm of an operator T : Ck → Ck given by the matrix T .

Lemma 2.1 (Volkmer, see [23]).
If ‖L(k,n)‖ < 1 then

0 ≤ µk,n − λk ≤ ‖M(k,n) + λkL(k,n)‖
1 − ‖L(k,n)‖ ,

where 1 ≤ k ≤ n.
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Lemma 2.2.
If n ∈ N and k ∈ {1, 2, ..., n} then

‖L(k,n)‖ ≤
k∑

i=1

‖Qnxi‖2;

‖M(k,n) + λkL(k,n)‖ ≤ |cn|(
k∑

i=1

|xi,n+1|2)1/2(
k∑

j=1

|xj,n|2)1/2 + (
k∑

i=1

|λk − λi|2‖Qnxi‖2)1/2(
k∑

j=1

‖Qnxj‖2)1/2.

Proof. The lemma is an easy consequence of the result of Volkmer (see [23]).

Lemma 2.3 (Volkmer, see [23]).
Let

Kk,n = ‖PnJPnxk − PnJxk‖, (6)

and
∆k,n = max{|µi,n − λk |−1 : i ∈ {1, 2, ..., n} \ {k}}. (7)

Then
Kk,n ≤ |cn||xk,n+1|

and
‖Pnxk − yk‖2 ≤ ∆2

k,nK 2
k,n + (‖Qnxk‖2 + ∆2

k,nK 2
k,n)2,

for 1 ≤ k ≤ n.

Define
pn = max{|δk |kα : k ≤ n}, qn = max{Snβ , S}, n ≥ 1. (8)

Lemma 2.4.
Under assumptions (A1) and (A2), the sequence {pn} is non-decreasing and

pn = o(nα ), as n → ∞,

(i.e., limn→∞
pn
nα = 0).

Proof. By definition pn = |δkn |kα
n , for some kn ≤ n. Assume that {pn} is unbounded, then limn→∞ kn = +∞. So,

∣∣∣pn

nα

∣∣∣ = |δkn |kα
n

nα ≤ |δkn | → 0, n → ∞,

because limn→∞ δn = 0.

At the end of this section, observe the following simple estimates for the eigenvalues of J.

Proposition 2.1.
Under assumptions (A1) and (A2)

λn ≤ δ(nα + pn) + 2qn, for n ≥ 1.

Proof. Applying the minimum-maximum principle (4) and using (A1) and (A2), we derive the following estimate

λn ≤ µn,n ≤ ‖Jn‖ ≤ max
1≤k≤n

|dk | + 2 max
1≤k≤n−1

|ck | ≤ δ(nα + pn) + 2qn,

for n ≥ 1, (c0 = 0).
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3. Proof of Theorem 1.1

Let δ, α, β be the parameters of J that appear in (A1) and (A2), {pn} and {qn} be defined by (8). Define

fi,n = |cn−1|
dn − (δiα + δpi + 2qi) − |cn| , 1 ≤ i < n. (9)

Choose r′ such that r < r′ < 1. Let n ≥ 1 and 1 ≤ i ≤ r′n; then, applying Lemma 2.4 and Proposition 2.1, we can write
the following estimates:

dn − (δiα + δpi + 2qi) − |cn| ≥ δnα − δpn − (δiα + δpi + 2qi) − qn

≥ δnα − δ(nr′)α − 2δpn − 3qn ≥ δ(1 − r′α )nα + o(nα ) ≥ C1nα ,

for C1 = 1
2 δ(1 − r′α ) and n large enough. Therefore, we obtain

0 ≤ fi,n ≤ S(n − 1)β

C1nα ≤ a
nα−β ≤ 1

2 < 1, for n ≥ n1, 1 ≤ i ≤ r′n, (10)

where a = S
C1

and n1 is large enough.
We need two lemmata given below to continue the proof. As in the previous sections, xk = {xk,j}∞

j=1 ∈ l2 is the eigenvector
associated with the eigenvalue λk . We still assume {x1, x2, ...} is an orthonormal basis in l2 and ‖xk‖2 =

∑∞
j=1 |xk,j |2 = 1.

Then (9), (10) and the calculations, that are based on Volkmer’s results (see [23]), lead to the following lemma.

Lemma 3.1.
If m ≥ n1 and 1 ≤ i ≤ r′m, then |xi,m| ≤ fi,m|xi,m−1|.

Proof. Let m ≥ n1 and 1 ≤ i ≤ r′m. There exists k ≥ m such that |xi,k+1| ≤ |xi,k |, because xi ∈ l2. Then, under the
spectral equality Jxi = λixi, we have

ck−1xi,k−1 + (dk − λi)xi,k + ckxi,k+1 = 0

and
|ck−1xi,k−1| ≥ |dk − λi||xi,k | − |ck ||xi,k+1|.

From the above inequality and Proposition 2.1 we derive

|ck−1||xi,k−1| ≥ (|dk − λi| − |ck |)|xi,k | ≥ (dk − λi − |ck |)|xi,k | ≥ (dk − (δiα + δpi + 2qi) − |ck |)|xi,k | > 0.

Thus
|xi,k | ≤ |ck−1|

dk − (δiα + δpi + 2qi) − |ck | |xi,k−1| ≤ fi,k |xi,k−1| ≤ |xi,k−1|,

because of (9) and (10). If k − 1 > m we repeat the above procedure as long as we finally obtain |xi,m| ≤ fi,m|xi,m−1|.

Notice that if α − β > 0 then there exists an integer s ≥ 1 such that

2(α − β)s − 1 − 2|β| ≥ γ. (11)

Put
N1 = 1 + max{n1 + s, sr′

r′ − r }. (12)
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Lemma 3.2.

|xi,n| ≤ fi,n · . . . · fi,n−(s−1) ≤ A
(

1
n

)(α−β)s

, (13)

and

‖Qnxi‖ ≤ 2/
√

3fi,n+1 · . . . · fi,n−s+1 ≤ B
(

1
n

)(α−β)(s+1)

, (14)

where A, B > 0 depend on α, β, γ and s, but are independent on i and n satisfing 1 ≤ i ≤ rn, n ≥ N1 and N1 is given
by (12).

Proof. Let 1 ≤ i ≤ rn and n ≥ N1. Because of the choice of N1, if m ∈ {n, ..., n − s} then m ≥ n1 and 1 ≤ i ≤ rn ≤
r′m. So, we apply lemma 3.1 to obtain the following estimates:

|xi,n| ≤ fi,n|xi,n−1| ≤ fi,nfi,n−1|xi,n−2| ≤ · · · ≤ fi,nfi,n−1 · . . . · fi,n−(s−1)|xi,n−s| ≤ fi,nfi,n−1 · . . . · fi,n−(s−1).

Using (10) we finally obtain (13).
To prove (14) notice that

|xi,k | ≤ fi,k fi,k−1 · . . . · fi,n−(s−1),

for k ≥ n, so

‖Qnxi‖2 =
∞∑

k=n+1

|xi,k |2 ≤ (fi,n−s+1fi,n−s+2 · . . . · fi,n+1)2 (1 + f2
i,n+2 + f2

i,n+2f2
i,n+3 + · · ·

)
≤ (fi,n−s+1fi,n−s+2 · . . . · fi,n+1)2

(
1 + 1

4 + (1
4 )2 + · · ·

)
≤ 4

3 (fi,n−s+1 · . . . · fi,n+1)2.

Using (10) again we finish the proof of (14).

Let [a] = max{q ∈ N : q ≤ a} be an integer part of the real number a.
Let n ≥ N1 and k ≤ rn, then

‖L(k,n)‖ ≤
k∑

i=1

‖Qnxi‖2 ≤
[rn]∑
i=1

‖Qnxi‖2 ≤ rnB2
(

1
n

)2(α−β)(s+1)

≤ rB2
(

1
n

)2(α−β)(s+1)−1

≤ B2
(

1
n

)γ

,

where the last inequality holds because of (11).
Lemma 3.2 yields the following estimate:

|cn|(
k∑

i=1

|xi,n+1|2)1/2 ≤ Snβ(
[rn]∑
i=1

|xi,n+1|2)1/2 ≤ Snβ

(
rnA2

(
1
n

)2(α−β)s
)1/2

= Sr1/2A
(

1
n

)(α−β)s−1/2−β

≤ SA
(

1
n

)γ/2

and, similarly, we prove:

(
k∑

j=1

|xj,n|2)1/2 ≤ A
(

1
n

)γ/2

,

if k ≤ rn and n ≥ N1.
Now we are going to estimate

∑k
i=1 |λk − λi|2‖Qnxi‖2. Proposition (2.1) implies that if k > i then

λk − λi ≤ λk − λ1 ≤ δ(kα + pk ) + 2qk − λ1 ≤ C2kα ,
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where C2 > 0 is a constant large enough. Let take n ≥ N1 and 1 ≤ k ≤ rn; we may write the inequalities:

k∑
i=1

|λk − λi|2‖Qnxi‖2 ≤
k∑

i=1

C 2
2 k2α‖Qnxi‖2 ≤ rnC 2

2 (rn)2αB2
(

1
n

)2(α−β)(s+1)

≤ r1+2αC 2
2 B2

(
1
n

)2(α−β)(s+1)−2α−1

≤ C 2
2 B2

(
1
n

)γ

.

The above estimates and Lemma 2.2 enable us to estimate the following matrix norm

‖M(k,n) + λkL(k,n)‖ ≤ SA2
(

1
n

)γ

+ B2C2

(
1
n

)γ

≤ C̃
(

1
n

)γ

,

where n ≥ N1, 1 ≤ k ≤ rn and C̃ is a suitable constant independent of n.
Choose N ≥ N1 large enough for the inequality

‖L(k,n)‖ ≤ B2

nγ ≤ 1/2

to hold for n ≥ N. By Lemma 2.1, we obtain

0 ≤ µk,n − λk ≤ C̃
(

1
n

)γ

· (1 − 1/2)−1 = 2C̃ 1
nγ ,

where n ≥ N and k ∈ {1, ..., [rn]}. Finally, the proof is complete.

4. Applications

In this section we consider some consequences of Theorem 1.1. In Theorem 1.1 we descibe the relation between the point
spectrum of a Jacobi matrix, that acts in l2, and appropriate eigenvalues of finite submatrices. Thus we can focus on the
problem of finding asymptotic formulas for eigenvalues of finite matrices. We still assume (A1) and (A2). Additionaly, we
formulate the following condition

(A3) there exist ω ∈ R, ρ > 0 and n0 ≥ 1 such that dn − dn−1 − |cn| − 2|cn−1| − |cn−2| ≥ ρnω, n ≥ n0.

We need this condition to investigate where eigenvalues of the finite matrices (2) are located.
Denote

Rn = |cn| + |cn−1|, n ≥ 1, (c0 = 0), (15)

Kn = {x ∈ R : |dn − x| ≤ Rn}. (16)

Let
M = max{di + |ci| + |ci−1| : 0 ≤ i ≤ n0}.

Under (A1) and (A2) limn→∞(dn − |cn| − |cn−1|) = +∞; therefore, there exists K ∈ N such that

dn − |cn| − |cn−1| > M for n ≥ K.

Put
N0 = max{K, n0} + 2. (17)

Remark 4.1.
Under (A1) − (A3), if n ≥ N0 then Kn ∩

(⋃
m 6=n Km

)
= ∅.
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4.1. Localization of the point spactrum of J in sense of the Gerschgorin theorem

The Gerschgorin theorem, known for matrices, is generalized by Shivakumar, Williams and Rudraiah in [20] for a wide
class of discrete operators acting in the vector spaces l1 or l∞. The result below needs very strong assumptions but it
can be treated as a consequence of Theorem 1.1 for operators in l2.

Proposition 4.1.
Let J be an operator in l2 given by Jacobi matrix (1) and Rn and Kn be given by (15) and (16), respectively. Under
conditions (A1) and (A2)

σp(J) ⊂
∞⋃

n=1

Kn.

Proof. Let λk ∈ σp(J). We apply Theorem 1.1 for r = 1
2 and γ = 1. There exists C > 0 such that |λk − µk,n| ≤ C

n for
n > 2k.
Let s0 ≥ 1 be such that

δnα − (δpn + Rn) ≥ δ
2 nα , for n ≥ s0.

Using Proposition 2.1, we claim that there exists M > 0 such that

λk + C
n ≤ δkα + (δpk + 2qk ) + 1 ≤ Mδkα , for n ≥ k0 = max{C, 2k}.

The value µk,n is an eigenvalue of the real symmetric matrix Jn, so µk,n ∈ Ksn for some 1 ≤ sn ≤ n, by the Gershgorin
theorem applied to Jn. Then we observe that dsn − Rsn ≤ µk,n ≤ λk + C

n , for n ≥ k0. Thus sn ≤ s0 or

Mδkα ≥ µk,n ≥ dsn − Rsn ≥ δsα
n − (δpsn + Rsn ) ≥ δ

2 sα
n.

It means that sn ≤ max{s0, (2M)1/αk}. So, {sn} is a bounded sequence of integers and it contains a constant subsequence
snl = s, for l ≥ 1. Then

ds − Rs ≤ µk,nl ≤ ds + Rs, l ≥ 1

and sending l to +∞ (nl → +∞), we obtain λk = liml→∞ µk,nl ∈ Ks.

Proposition 4.2.
Assume (A1), (A2) and (A3). Then λn ∈ Kn for n ≥ N0, where N0 is defined by (17).

Proof. Choose an integer p ≥ 2 and n ≥ N0. Consider the finite matrix JN , where N ≥ pn. It is clear σp(JN ) =
{µ1,N , µ2,N , ..., µN,N} ⊂

⋃N
s=1 Ks, because of the Gerschgorin theorem. Let D =

⋃m
i=1 Ksi and we assume D is disjoint

with all other Gerschgorin intervals (discs) Kj , for j 6= si, i = 1, ..., m. Applying Theorem 3.12 from the book of Y.
Saad ([19]), we affirm D contains exactly m eigenvalues of JN . Due to Remark 4.1, if n ≥ N0 then the Gerschgorin
interval Kn is disjoint from all other Gerschgorin intervals, so it contains exactly one eigenvalue. Moreover, we observe
that {µ1,N , µ2,N , ..., µn−1,N} ⊂

∑n−1
s=1 Ks and µn,N ∈ Kn (n ≥ N0, N ≥ pn). Thus, applying Theorem 1.1, we obtain

λn = limN→∞ µn,N ∈ Kn, for n ≥ N0.

Remark 4.2.
Under (A1), (A2) and (A3), if N ≥ n ≥ N0 then µn,N ∈ Kn.

Proof. (Y. Saad [19]).
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4.2. Asymptotic behaviour of eigenvalues of J
As a corollary of Theorem 1.1 we may obtain some results related to the asymptotic behaviour of eigenvalues {λn}, with
n → ∞. The methods, applied for example in [4–6, 12, 14, 16, 18] and [25] use the idea of diagonalization. We are going
to show an alternative approach to the problem of asymptotics.

Proposition 4.3.
Assume that p ≥ 2 is an integer and γ > 0. If J is an operator in l2 given by matrix (1), that satisfies (A1) and (A2), then

|µn,pn − λn| = O
(

1
nγ

)
, n → ∞,

where λn is the n-th eigenvalue of J, µn,pn is the n-th eigenvalue of the finite matrix Jpn of dimension pn × pn and the
constant in “O” depends on J, p, γ but is independent on n.

Proof. Applying Theorem 1.1 for ñ = pn and r = 1
p we have

0 ≤ µn,pn − λn = µ[rñ],ñ − λ[rñ] ≤ C̃
ñγ = C̃

pγ

(
1
n

)γ

.

From Proposition 4.3 we derive

λn = µn,2n + O
(

1
nγ

)
, n → ∞,

where γ > 0 is properly chosen. So, the asymptotic behaviour for the sequence {λn}∞
n=1 of the eigenvalues of J can be

discovered by a suitable estimate for µn,2n, which is an eigenvalue of the finite matrix J2n. We are going to see that this
is possible under assumptions (A1) − (A3). Denote

Jk
l =


dk ck

ck dk+1
. . .
. . . cl−1

. . . cl−1 dl

 , Dk
l (λ) = det(Jk

l − λ), k ≤ l,

Pn(λ) = D1
n−3(λ)

D1
n−2(λ)

, Sn(λ) = Dn+3
2n (λ)

Dn+2
2n (λ)

(18)

and
ρn = |cn+1| + |cn| + |cn−1| + |cn−2| = Rn+1 + Rn−1. (19)

Define
αn = dn − c2

n−1
dn−1 − dn

− c2
n

dn+1 − dn
, n > 1. (20)

Lemma 4.1.
Assume (A1) − (A3). Let µn,2n be the n-th eigenvalue of J2n.
Then

|µn,2n − αn| ≤ c2
n−1

Rn + c2
n−2/(dn − dn−2 − ρn−1)

(dn − dn−1 − Rn − c2
n−2/(dn − dn−2 − ρn−1))(dn − dn−1)

+ c2
n

Rn + c2
n+1/(dn+2 − dn − ρn+1)

(dn+1 − dn − Rn − c2
n+1/(dn+2 − dn − ρn+1))(dn+1 − dn)

,

where n > N0 (N0 is determined by (17)).
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Proof. Let λ = µn,2n, then λ ∈ Kn due to Remark 4.2. J1
n−2 is a real symmetric matrix, so ‖J1

n−2‖ = µn−2,n−2 ∈ Kn−2.
Let x ∈ Rn−2, ‖x‖ = 1 and n > N0, then

‖(J1
n−2 − λ)x‖ ≥ λ − ‖J1

n−2x‖ ≥ λ − ‖J1
n−2‖ ≥ dn − Rn − dn−2 − Rn−2

= dn − dn−2 − ρn−1 = dn − dn−1 + dn−1 − dn−2 − ρn−1 ≥ ρnω + ρ(n − 1)ω + 2Rn−1 > 0,
(21)

because of (17) and (A3). Thus
‖(J1

n−2 − λ)−1‖ ≤ (dn − dn−2 − ρn−1)−1.

Now, notice that if we denote (J1
n−2 − λ)−1 = (bi,j )n−2

i,j=1 then Pn(λ) = bn−2,n−2 and, obviously,

|Pn(λ)| = |bn−2,n−2| ≤ ‖(J1
n−2 − λ)−1‖ ≤ (dn − dn−2 − ρn−1)−1. (22)

Similarly we estimate
‖(J1

n−1 − λ)x‖ ≥ ρnω‖x‖, x ∈ Rn−1.

Thus both of the matrices J1
n−2 − λ and J1

n−1 − λ are invertible and D1
n−1(λ) 6= 0, D1

n−2(λ) 6= 0.
The estimation for Sn(λ) can be similarly derived. Indeed, notice that

µ∗ = min{µ : µ is an eigenvalue of Jn+2
2n } = min{(Jn+2

2n w, w) : w ∈ Rn−1, ‖w‖ = 1} ∈ Kn+2.

Then, for x ∈ Rn−1, ‖x‖ = 1,

‖(Jn+2
2n − λ)x‖ ≥ ‖Jn+2

2n x‖ − λ ≥ µ∗ − λ ≥ dn+2 − dn − ρn+1 > 0

and
‖(Jn+2

2n − λ)−1‖ ≤ (dn+2 − dn − ρn+1)−1.

In this case, if (Jn+2
2n − λ)−1 = (b̃i,j )n−1

i,j=1 then

|Sn(λ)| = |b̃1,1| ≤ ‖(Jn+2
2n − λ)−1‖ ≤ (dn+2 − dn − ρn+1)−1. (23)

The analogous argument we use to obtain

‖(Jn+1
2n − λ)x‖ ≥ (dn+1 − Rn+1 − dn − Rn)‖x‖ ≥ ρ(n + 1)ω‖x‖

for all x ∈ Rn. Then Jn+2
2n − λ and Jn+1

2n − λ are also invertible and Dn+1
2n (λ) 6= 0, Dn+2

2n (λ) 6= 0 for n ≥ N0.
From the Laplace formula, applied to J2n = J1

2n, we derive

D1
2n(λ) = (dn − λ)D1

n−1(λ)Dn+1
2n (λ) − c2

n−1D1
n−2(λ)Dn+1

2n (λ) − c2
nD1

n−1(λ)Dn+2
2n (λ).

Notice that λ = µn,2n is an eigenvalue of J1
2n, so D1

2n(λ) = 0 and, equivalently, λ satisfies

λ = dn − c2
n−1

D1
n−2(λ)

D1
n−1(λ)

− c2
n

Dn+2
2n (λ)

Dn+1
2n (λ)

. (24)

We apply the Laplace formula again to obtain

D1
n−1(λ) = (dn−1 − λ)D1

n−2(λ) − c2
n−2D1

n−3(λ),
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Dn+1
2n (λ) = (dn+1 − λ)Dn+2

2n (λ) − c2
n+1Dn+3

2n (λ).

Using (18), we can rewrite (24) as

λ = dn − c2
n−1

dn−1 − λ − c2
n−2Pn(λ)

− c2
n

dn+1 − λ − c2
n+1Sn(λ)

. (25)

Using (15), (19) and (21) we have

0 ≤ |cn−2|
dn − dn−2 − ρn−1

≤ |cn−2|
ρnω + ρ(n − 1)ω + 2Rn−1

≤ |cn−2|
Rn−1

≤ 1, n > N0.

Next, from (A3) and the estimates above we derive

dn − dn−1 − Rn − c2
n−2(dn − dn−2 − ρn−1)−1 ≥ dn − dn−1 − Rn − |cn−2|

= dn − dn−1 − Rn − Rn−1 + |cn−1| ≥ ρnω + |cn−1| > 0
(26)

for all n > N0. From (21) and (A3) we deduce dn+2 − dn − ρn+1 > 2Rn+1, so

0 ≤ |cn+1|
dn+2 − dn − ρn+1

≤ |cn+1|
2Rn+1

≤ 1.

Then for n > N0 the following estimates can be applied:

dn+1 − dn − Rn − c2
n+1(dn+2 − dn − ρn+1)−1 ≥ dn+1 − dn − Rn − |cn+1|

= dn+1 − dn − Rn − Rn+1 + |cn| ≥ ρ(n + 1)ω + |cn| > 0.
(27)

Let n > N0 and rn = λ − dn = µn,2n − dn ∈ [−Rn, Rn], using by turns (25), (20), (22), (23), (26) and (27) we obtain

|λ − αn| ≤ c2
n−1

∣∣∣∣ −rn − c2
n−2Pn(λ)

(dn−1 − dn − rn − c2
n−2Pn(λ))(dn−1 − dn)

∣∣∣∣+ c2
n

∣∣∣∣ −rn − c2
n+1Sn(λ)

(dn+1 − dn − rn − c2
n+1Sn(λ))(dn+1 − dn)

∣∣∣∣
≤ c2

n−1
|rn| + c2

n−2|Pn(λ)|
(|dn−1 − dn| − |rn| − c2

n−2|Pn(λ)|)|dn−1 − dn|
+ c2

n
|rn| + c2

n+1|Sn(λ)|
(|dn+1 − dn| − |rn| − c2

n+1|Sn(λ)|)(dn+1 − dn)

≤ c2
n−1

Rn + c2
n−2(dn − dn−2 − ρn−1)−1

(dn − dn−1 − Rn − c2
n−2(dn − dn−2 − ρn−1)−1)(dn − dn−1)

+c2
n

Rn + c2
n+1(dn+2 − dn − ρn+1)−1

(dn+1 − dn − Rn − c2
n+1(dn+2 − dn − ρn+1)−1)(dn+1 − dn)

.

This completes the proof.

Example 4.1.
Let J be an operator in l2 such that dn = n, n ≥ 1 and limn→∞ cn = 0. Assume λ1, λ2, λ3, ... are the non-decreasingly
ordered eigenvalues of J. It is clear that (A1) − (A3) are satisfied with α = 1 and, e.g., β = ω = 0. By Proposition 4.2 we
can observe |λn −n| ≤ |cn|+ |cn−1|, n > N0. Now, assume that {cn} converges to 0 not very fast, i.e., lim infn→∞ nγρ3

n > 0
for some γ > 0, where ρn is given by (19). Moreover, |µn,2n − λn| = O

( 1
nγ
)

, due to Proposition 4.3. Then Lemma 4.1
implies that there exists M > 0 such that

|µn,2n − αn| ≤ Mρ3
n, n ≥ 1,

where, according to (20),
αn = n + c2

n−1 − c2
n.

Finally, we obtain the following asymptotics for the point spectrum of J :

λn = n + c2
n−1 − c2

n + O(ρ3
n), n → ∞.
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Example 4.2.
In this example, let J be associated with Jacobi matrix (1), for which dn = δn2(1 + δn), |cn| ≤ Cnβ , n ≥ 1. We assume
β < 2

3 and δn = o(1), δn − δn−1 = o( 1
n ), n → ∞, where the notation “small o” (o(1), o( 1

n )) has an usual asymptotic
meaning. Then from Lemma 4.1, Proposition 4.2 and Proposition 4.3 we derive the asymptotics for the eigenvalues of J

λn = dn − c2
n−1

dn−1 − dn
− c2

n
dn+1 − dn

+ O
(

1
n2−3β

)
, n → ∞.

Also, it can be interesting to observe that if β = 0 then

λn = dn + c2
n−1 − c2

n
2δn + o

(
1
n

)
, n → ∞.

The conditions, supposed in this example, are satisfy by concrete Jacobi matrices, which appear in various applications
(see [4],[5],[14],[23]).

Example 4.3.
Now assume a weaker condition for {cn} then in the previous example. Let

|cn| ≤ Cn 2
3 (ln(n + 1))−1, n ≥ 1.

As before, let dn = δn2(1 + δn), δn → 0, and δn − δn−1 = o( 1
n ), n → ∞. Clearly, (A1), (A2) are satisfied with α = 2 and

β = 2
3 . Condition (A3) is satisfied with ω = 1. So, we apply Proposition 4.3 and Lemma 4.1 and obtain the following

asymptotic formula for the point spectrum of the operator J

λn = dn − c2
n−1

dn−1 − dn
− c2

n
dn+1 − dn

+ O
(

1
(ln(n + 1))3

)
, n → ∞.

Example 4.4.
Let consider a general case of {dn}, dn = δnα (1 + δn), α > 1. We assume (A1), (A2) and, additionally, α > β + 1. The
assumption δn − δn−1 = o( 1

n ), n → ∞, is also needed. Then (A3) is satisfied with ω = α − 1. We apply Proposition 4.3
with p = 2 and γ > 0 large enough. Let λ = µn,2n be the n-th eigenvalue of J2n. From Lemma 4.1 we derive

|λ − αn| ≤ Mn−2(α−1− 3
2 β), n ≥ N0, (28)

where αn is defined by (20) and M is a constant independent on n. Thus we obtain the asymptotic behaviour for the
eigenvalues of J

λn = αn + O(n−2(α−1− 3
2 β)), n → ∞. (29)

Notice that this asymptotic is true without any additional assumption on the sign of the expression α − 1 − 3
2 β.

For n large enough (n > N0 + 2, where N0 is given by (17)) we can write an expanded version of equation (24)

λ = dn − c2
n−1

(
dn−1 − λ − c2

n−2/(dn−2 − λ − c2
n−3P̃n(λ))

)−1
− c2

n

(
dn+1 − λ − c2

n+1/(dn+2 − λ − c2
n+2S̃n(λ))

)−1
, (30)

where P̃n(λ) = D1
n−4(λ)

D1
n−3(λ) and S̃n(λ) = Dn+4

2n (λ)
Dn+3

2n (λ) . Using the method from the proof of Lemma 4.1 we obtain the estimates

|P̃n(λ)| ≤ C
nα−1 , |S̃n(λ)| ≤ C

nα−1 , n > N0 + 2. (31)

Denote
α̃n = dn − c2

n−1
dn−1 − αn − c2

n−2/(dn−2 − αn)
− c2

n
dn+1 − αn − c2

n+1/(dn+2 − αn)
, (32)
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where αn is given by (20). Elementary calculations and (28)-(32) lead to

|λ − α̃n| ≤ M1n−4(α−1− 5
4 β), n > N0 + 2,

where M1 > 0 is a constant independet on n. If we combine this with Proposition 4.3, we obtain the following asymptotics
for the point spectrum of J

λn = α̃n + O(n−4(α−1− 5
4 β)), n → ∞.

The above asymptotics is more exact then that one in (29). This procedure could be repeated to obtain even better
exactness of the asymptotic behaviour of the eigenvalues of the operator J.

To obtain the result concerning an asymptotic behaviour of the point spectrum of the operator J we use p = 2 but if we
choose p > 2 there is no difference in the final result. Notice that in the left-hand site of the inequality in Lemma 4.1
we may put µn,pn instead of µn,2n, but the formula on the right remains without any change. Also the parameter γ, that
appears in Proposition 4.3, is arbitrary chosen and is independent on p. A constant, which can be associated with the
expression O( 1

nγ ), depends on p, but this fact does not change the asymptotics as n → ∞.

4.3. Approximation for eigenvectors of J
Proposition 4.4.
Let J be an operator in l2 associated with (1). Assume (A1), (A2) and (A3) hold. Let r ∈ (0, 1) and γ > 0. Let λk be the
k-th eigenvalue of the operator J and xk ∈ l2 be an eigenvector that corresponds to λk . Let yk,n ∈ Rn, and µk,n be the
k-th eigenvector and eigenvalue of Jn, given by (2),respectively, and assume that (5) holds. Then there exists M > 0
such that

sup
1≤k≤rn

‖Pnxk − yk,n‖ ≤ Mn− 1
2 (γ+1), n ≥ 1.

Proof. This proof is based on lemma 2.3. Without loos of generality, we can assume cn 6= 0, n ≥ 1, and γ >
max{ω′, −1 + 2ω′}, where ω′ = max{0, −ω} and ω is determined in (A3). Then the multiplicities of all eigenvalues of J
and Jn equal one. From Proposition 4.2 and (A3) we derive

λk+1 − λk ≥ dk+1 − dk − |ck+1| − 2|ck | − |ck−1| ≥ ρkω, k ≥ N0

and, obviously,
λk+1 − λk ≥ min{λi+1 − λi : i ∈ {1, ..., N0}} = ρ1 > 0, k ≤ N0.

If 1 ≤ i < k ≤ rn then
|µi,n − λk | ≥ λk − λi − |µi,n − λi| ≥ λk − λk−1 − C

nγ ,

because of Theorem 1.1. If i > k then

µi,n − λk ≥ µk+1,n − λk ≥ λk+1 − λk .

Thus
|µi,n − λk | ≥ min{ρkω, ρ(k + 1)ω, ρ1} − C

nγ ≥ ρ2k−ω′ − C
nγ ,

where i 6= k, 1 ≤ i ≤ n, 1 ≤ k ≤ rn, k ≥ 1, and ρ2 > 0 is a suitable constant. Because γ > ω′, we observe there exist
ρ̃ > 0 and N large enough such that if 1 ≤ k ≤ rn then

∆k,n = max{|µi,n − λk |−1 : 1 ≤ i ≤ n, i 6= k} ≤ ρ̃−1nω′ ,
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where n ≥ N. Let s ∈ N satisfy (11). Additionally, we enlarge s to satisfy the inequality

2(α − β)(s + 1) − 2(|β| + ω′) > γ + 1.

From lemmata 2.3, 3.1 and 3.2 we derive the estimates

∆2
k,nK 2

k,n ≤ ∆2
k,nc2

nf2
k,n+1|xk,n|2 ≤ ρ̃−2n2ω′ S2n2βa2An−2(α−β)(s+1) ≤ C ′n−2(α−β)(s+1)+2β+2ω′ ≤ C ′n−γ−1,

for n > max{N, N1}, where N1 is taken from lemma 3.2. Finally, from lemmata 2.3 and 3.2 we derive

‖Pnxk − yk,n‖2 ≤ C ′n−γ−1 + (B2n−2(α−β)(s+1) + C ′n−γ−1)2 ≤ Mn−γ−1,

where 1 ≤ k ≤ rn.
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