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Abstract: We consider the problem of approximation of eigenvalues of a self-adjoint operator J defined by a Jacobi matrix
in the Hilbert space (?(N) by eigenvalues of principal finite submatrices of an infinite Jacobi matrix that defines
this operator. We assume the operator / is bounded from below with compact resolvent. In our research we
estimate the asymptotics (with n — oo) of the joint error of approximation for the eigenvalues, numbered from
1 to N, of J by the eigenvalues of the finite submatrix J, of order n x n, where N = max{k € N : k < rn}
and r € (0,1) is arbitrary chosen. We apply this result to obtain an asymptotics for the eigenvalues of J. The
method applied in this research is based on Volkmer’s results included in [23].
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1. Introduction

Tridiagonal matrices appear in various problems in mathematics. Infinite symmetric tridiagonal matrices called Jacobi
matrices have essential meaning, consequently spectral properties of linear operators associated with Jacobi matrices
are investigated (see, e.g.[6]-[17]][21]-[23] and others). It can happen that a linear operator defined by a Jacobi matrix is
compact or has a compact resolvent and its spectrum consists of eigenvalues of finite multiplicity (see, e.g., [7, 11, 14] and
[13]). Sometimes it is possible to calculate exact formulas for eigenvalues of such Jacobi matrices (see, e.g., [9, 17, 20]
and [12]), but it is not possible in general. So, asymptotic and approximate approaches to localize the point spectrum
are applied (see, e.g., [3-6, 14, 16, 18, 20, 23] and [25]). This work continues the research started in [15]. We consider
the problem of approximation for eigenvalues of some self-adjoint bounded from below discrete operator in the Hilbert
space [ = [2(N) by eigenvalues of properly chosen principal finite submatrices of an infinite Jacobi matrix that defines
the operator. Projective methods, that use finite submatrices to investigate spectral properties of operators given by
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infinite Jacobi matrices, were applied by Arveson ([1, 2]), Ifantis, Kokologiannaki and Petropoulou ([11]), Volkmer ([23])
and others.

The eigenvalues of a self-adjoint, bounded from below operator with compact resolvent may be arranged non-decreasingly.
In [23], Volkmer estimated the error of approximation for the eigenvalue and eigenvector, whose number is fixed. In our
research we estimate the asymptotics (with n — oo) of the joint error of approximation for the first [rn] = max{k € N :
k < rn} eigenvalues of the infinite Jacobi matrix by the eigenvalues of the principal finite submatrix of order n x n, where
r € (0,1) is arbitrary chosen. To obtain the result we use some weaker assumptions then in [15] and slightly different
from that in [23]. The method applied is based on Volkmer’s results included in [23]. Finally we use the main result of
this paper to obtain an asymptotic behaviour of the point spectrum of J. This approach to the problem of asymptotics is
different then the methods based on diagonalization (applied, e.g., in [4-6, 14, 16] or [18]) and the methods that use an
analytic model of the spectral equation (see [12] and [17]).

Let us consider an operator J in the space [ with the canonical basis given by the tridiagonal symmetric Jacobi matrix

dici 0 -0 .-
(&} dz (55 0
/= ) (1)
0 (%) d3 C3
and consider the finite submatrices of order n x n
dc¢ 0 -+ - 0

(&} dz (5] 0

0 () d3 3

I = ' n>1 ()
0---0 Ch—2 dnf‘l Cn—1
0 oe e 0 coi d,

We assume that J is an operator in the Hilbert space [?> and acts on the maximum domain
DU) = {{fu};2y € ¢ {coafuot + dufy + cafaia }32y € I}
(we here assume ¢y = fo = 0). We assume that the sequences {c,} and {d,} satisfy the following conditions:

(A1) d,,c, €R for all n>1;
(A2) there exist a >0, B € R, a > B and 0,S > 0 such that d, = on*(1 + 8,),
where lim,_, 8, =0, and |c,| < Snf for n > 1.

If (A1) and (A2) are satisfied then the operator J is self-adjoint, has a compact resolvent and its spectrum is discrete
(see, for instance, Janas and Naboko [13] or Cojuhari and Janas [7]). Moreover, the operator J is bounded from below and

D)= {{f}i2 € P {n°f}32, € P}, (3)

The main result of this work is the following theorem about the estimation of the joint error of approximation for a part
of eigenvalues of the operator J by the eigenvalues of the finite submatrix J, of order n x n (with n — o).

Theorem 1.1.

Let J be an operator in the Hilbert space [> with the canonical basis defined by infinite matrix (1) satisfying (A1) and
(A2). Let the spectrum of | consists of the non-decreasingly ordered eigenvalues: A1 < A, < A3 < .... Denote by p; ,
1 < i < n, the eigenvalues of the matrix J, and assume that 1, < ph, < ... < tp,. Then for every y >0 and r € (0,1)
there exists C > 0 such that

sup |k — Al < Cn7Y, where n > 1.
1<k<rn
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The complete proof of this theorem is included in section 3.

In section 4 we give some consequences of Theorem 1.1. Under an additional condition, which is formulated at the
beginning of section 4, it is possible to estimate appropriate eigenvalues of the finite matrices (2) and use this result to
obtain an asymptotics for the point spectrum of J.

2. Preliminaries

This section sets the notations and remarks as well as the background for the Rayleigh-Ritz method for approximation
of eigenvalues and Volkmer's results (see [23]) we are going to apply in our investigations.

Let H be a Hilbert space and J: D(J) C H — H be a linear self-adjoint operator in H. Assume that / has a compact
resolvent and is bounded from below. Then the spectrum of J consists of the eigenvalues that can be ordered non-
decreasingly: A1 < A; < A3 < ... By the minimum-maximum principle, for all k € N, there is

A = nllgln max{(Jx,x) : x € Ex, ||x|| =1}, (4)
k

where the minimum is taken over all linear subspaces E; C D(J) of dimension k ((.,.) stands for an inner product in H).
Denote by x, the eigenvector of J associated with the eigenvalue A¢. We can assume that the system of chosen eigen-
vectors {x1, x2, X3, ...} is an orthonormal basis in H. So, if k > 1 then

oo

o= gl and xdl? =) bagl =1

j=1

Suppose that H = [? and {e1, e, e3,...} is the canonical basis of (2. Now, let / be a Jacobi operator given in the
canonical basis by matrix (1). Let E = Lin{eq, e, ..., e,}, P, denote the orthogonal projection onto E and Q, = [ — P,.
Then the linear operator P,/ : E — E has the matrix representation in the canonical basis given by the matrix J, due
to (2).
Denote by p;,, 1 < i < n, the eigenvalues of the matrix J, and assume that 1y, < o, < ... < f,,. For a fixed
i€ {1,2..n} lety,, € R" be an eigenvector of J, associated with y;, and assume that {y1.,, Y2, ..., Ynna} is an
orthonormal basis in R” such that

(X6, Yxn) =0 for k=1, ..., n, (5)

where (.,.) stands for the inner product in [?, but here we treat y,, as an infinite sequence, whose elements are equal
to O for the indices greater then n.
Let k € {1,...,n} and

L& = (L0)) 1k, where L) = (Quxi, x;),

and

MED = (M) 21, where M) = ((P,JP, = I)xi, x)),

be k x k-matrices. The notation || 7| stands for the operator norm of an operator T : C* — C" given by the matrix T.

Lemma 2.1 (Volkmer, see [23]).
IF L&) < 1 then

IME0 + AL |
0 < — Ak < W.

where 1 < k < n.
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Lemma 2.2.
IfneNand k € {1,2,...,n} then

k
L% <Y 1Quxl

i=1

k k k k
IME 4+ A LED < Jenl (3 st PP Q Pl + Q Ak = AP 1 QuxilP) (3 1 Qux 7).

i=1 j=1 i=1 j=1
Proof. The lemma is an easy consequence of the result of Volkmer (see [23]). O

Lemma 2.3 (Volkmer, see [23]).

Let
Kin = |PadPaxi — Prixill, (6)
and
A = max{|pn — A7 i€ {1,2, ., n} \ {k}}. (7)
Then
Kin < lenllXknin]
and
1Paxic = yill® < AL KE, + (1Quxill” + A7, KL ),
for1 < k < n.
Define
pn = max{|0c|k*: k < n}, q,=max{Sn?, S}, n>1. (8)
Lemma 2.4.

Under assumptions (A1) and (A2), the sequence {p,} is non-decreasing and
pn =0(n%, as n— oo,
(ie, lim, o 22 =0).
Proof. By definition p, = |4, |kS, for some k, < n. Assume that {p,} is unbounded, then lim,_ k, = +00. So,

Pn

nll’

_ 10, k7

e <|0,]| =0, n— oo,

because lim,_, 0, = 0. O

At the end of this section, observe the following simple estimates for the eigenvalues of J.

Proposition 2.1.
Under assumptions (A1) and (A2)
Ay <0(n* 4+ pn) +2q,, for n>1.

Proof. Applying the minimum-maximum principle (4) and using (A1) and (A2), we derive the following estimate
Ao S tinn < all < max [di| +2 max e < 8(n + py) + 240,

forn > 1, (co = 0). O
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3. Proof of Theorem 1.1

Let 8, a, B be the parameters of J that appear in (A1) and (A2), {p,} and {g,} be defined by (8). Define

|cn ]
d, — (6i° + op; + 2q:) — [ca|

fon = J1<i<n. ©)

Choose r’ such that r < r' < 1. Let n > 1 and 1 < i < r'n; then, applying Lemma 2.4 and Proposition 2.1, we can write
the following estimates:

d, — (0 4+ 0p; + 2q;) — |ca| = 0n* — dp, — (0i% + Op; + 2q;) — g,

> on® —0(nr')* —20p, —3q, > 0(1 —r'“)n® + o(n) > Cyn?,

for G = %6(1 — r'®) and n large enough. Therefore, we obtain

S(n—1)% < a

OS f[,n S C1n" n"*B

<1, for n>m, 1<i</rn, (10)

s
[
We need two lemmata given below to continue the proof. As in the previous sections, x;, = {xk_/}l?’; € % is the eigenvector

where a = 2 and n is large enough.

associated with the eigenvalue A,. We still assume {x;, x2, ...} is an orthonormal basis in [? and || x||> = pup x> =1
Then (9), (10) and the calculations, that are based on Volkmer's results (see [23]), lead to the following lemma.

Lemma 3.1.
If m>niand1<i<r'm, then |xim| < fim|Xim-1]-

Proof. let m>nyand 1< i< r'm. There exists k > m such that |x; ;1| < |xix|, because x; € [2. Then, under the
spectral equality Jx; = A;x;, we have

Ch—1Xik—1 + (i — Ai)xik + CuXips1 =0

and

[ck—rxik—1] = |die — AdIxik] = |kl |xiks1]-

From the above inequality and Proposition 2.1 we derive
lekallxieal = (Idic = Al = lel)Ixik] = (die = A = el Ixix] > (dic = (8% + Opi + 2q:) — |ci])xi| > 0.

Thus
| k1]
kK — (6[‘7 + 6p, + 2q,) — |Ck|

[xix] < d [Xik—1] < FirlXik=1] < Xkl

because of (9) and (10). If k —1 > m we repeat the above procedure as long as we finally obtain |x; | < fim|Xim-1]- O

Notice that if @ — B > 0 then there exists an integer s > 1 such that
Aa=B)s—1-2(B[ > . (1)

Put

Ny =1+ max{n +s, r,sr r}. (12)
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Lemma 3.2.

1\ @ PB)s
|Xi,n| S fi,n '-~~'fi,n—(571) SA (E) ’ (13)

and

1 (a—B)(s+1)
) , (14

“QnXi” S 2/\/§fi,n+1 Teet fi,n—5+1 S B (7

n

where A, B > 0 depend on a, B,y and s, but are independent on i and n satisfing 1 < i < rn, n > Ny and N, is given
by (12).

Proof. Let1< i< rnandn >N Because of the choice of Ni, if m € {n,....n—s} thenm >nyand 1 <i<rn <
r'm. So, we apply lemma 3.1 to obtain the following estimates:

|Xi,n| S fi,n|Xi,n7‘|| S fi,n fi,nf‘l |Xi,n72| S e S fi,n f,",,,1 Tt fi,nf(sf‘l)lxi,nfs' S fi,n fi,nf1 Tt fi,n7(571)-

Using (10) we finally obtain (13).
To prove (14) notice that

[Xik| < firfirer - oo fins—1),
for k > n, so
”QnXi”2 = Z |Xi.k|2 < (fi,n—s-H fi,n—s+2 et fi,n+1)2 (,I + fi2,n+2 + fi2,n+2fi2,n+3 +-- )
k=n+1
5 1 1, 4 5
< (fi,nfs+1fi,nfs+2 et fi,n+1) 1+ Z + (Z) + - < §(fi,n75+‘| e fi',,+1) .
Using (10) again we finish the proof of (14). O

Let [a] = max{qg € N: g < a} be an integer part of the real number a.
Let n > N; and k < rn, then

k [rn] 1\ 2@=B)s+1) 1\ 2e=Blls+1)=1 1\
L&) < x| < xill? < rnB? | = <rB’ |- <B (-1,
ILE <D 10uxill? < Y 10uxll® < rn - <r <

n
i=1 i=1

where the last inequality holds because of (11).
Lemma 3.2 yields the following estimate:

[rn]

k
cal Y [xinea ) < SnP(Y Ixina]?)'? < Sn?

i=1 i=1

4\ 2e=B)s\ 12 1\ (e=Bls=1/2-B 1\ 72
rnAz(f) :Sr”ZA(f) <SA(—)
n n

and, similarly, we prove:
k 1\ 2
O I <A (;) ,
j=1

itk<rnandn>N;.
Now we are going to estimate ZL | A — Ai?||Qax;||?. Proposition (2.1) implies that if k > i then

A — A S A — A <Ok + pi) + 29 — 4 < Gk,
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where G, > 0 is a constant large enough. Let take n > N; and 1 < k < rn; we may write the inequalities:

k

k 2(a=B)(s+1)
1
> = APIOXIE < 3 GO < 6 (1 )

i=1 i=1

n

1 2(a—B)(s+1)—2a—1
) ;

14
< 2 CiB? (f < 2B (1) :

The above estimates and Lemma 2.2 enable us to estimate the following matrix norm

Y 14 14
||M(k'”’+)\kL(k'”)||gSA2(1) +BZC2(%) gé(l) :

n n
where n > N;, 1 < k < rn and C is a suitable constant independent of n.

Choose N > N large enough for the inequality

2

joy < 2
nV

<1)2

to hold for n > N. By Lemma 2.1, we obtain
(1) 1 21
O0<ppn—A<C[=) -(1=1/27 =2C—,
n nYy

where n > N and k € {1, ...,[rn]}. Finally, the proof is complete.

4. Applications

In this section we consider some consequences of Theorem 1.1. In Theorem 1.1 we descibe the relation between the point
spectrum of a Jacobi matrix, that acts in [?, and appropriate eigenvalues of finite submatrices. Thus we can focus on the
problem of finding asymptotic formulas for eigenvalues of finite matrices. We still assume (A1) and (A2). Additionaly, we
formulate the following condition

(A3) there exist w € R, p > 0 and ng > 1 such that d,, — d,,—1 — |¢a| — 2|cp| — |€a=2| = pn®, n > ng.

We need this condition to investigate where eigenvalues of the finite matrices (2) are located.
Denote

Ry = lea| + |cazt], n > 1, (co =0), (15)
Ki={xeR:|d,—x| <R,} (16)

Let
M = max{d; + |¢;| + |ciz1| : 0 < i < no}.

Under (A1) and (A2) limy_eo(dn — |cn| — |cn1]) = +o0; therefore, there exists K € N such that
dn - |Cn| - |Cn—1| > M for n 2 K.

Put
No = max{K, no} + 2. (17)

Remark 4.1.
Under (A1) — (A3), if n > Np then K, N (Um#n Km) -9
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.
4.1. Localization of the point spactrum of / in sense of the Gerschgorin theorem

The Gerschgorin theorem, known for matrices, is generalized by Shivakumar, Williams and Rudraiah in [20] for a wide
class of discrete operators acting in the vector spaces [! or [*. The result below needs very strong assumptions but it
can be treated as a consequence of Theorem 1.1 for operators in [°.

Proposition 4.1.
Let J be an operator in > given by Jacobi matrix (1) and R, and K, be given by (15) and (16), respectively. Under
conditions (A1) and (A2)

o]

o) c K

n=1

Proof. Let A € g,(J/). We apply Theorem 1.1 for r = 3 and y = 1. There exists C > 0 such that A, — | < € for
n > 2k.
Let sy > 1 be such that

N>

on® —(0p, + R,) > =n®, for n>s.

Using Proposition 2.1, we claim that there exists M > 0 such that
C a a
Ak+;§6k + (0pk + 2q4) +1 < Mok®, for n > ky = max{C,2k}.

The value py, is an eigenvalue of the real symmetric matrix J,, so p,, € K, for some 1 <'s, < n, by the Gershgorin
theorem applied to J,. Then we observe that d;, — R, < pgn < A + % for n > ky. Thus s, < s or

0
MOok® > ., > ds, — Rs, > 0s% — (0ps, + Rs,) > isg

It means that s, < max{so, (2M)"?k}. So, {s,} is a bounded sequence of integers and it contains a constant subsequence

sp, =5, for [ > 1. Then

ds_ngle,nlgds"'Rs: [21

and sending [ to +o00 (n; — 4+00), we obtain Ay = lim/L p,n, € K. O

Proposition 4.2.
Assume (A1), (A2) and (A3). Then A, € K, for n > Ny, where Ny is defined by (17).

Proof. Choose an integer p > 2 and n > Np. Consider the finite matrix Jy, where N > pn. It is clear g,(Jn) =
{tN N, N} C Uls\/:1 K, because of the Gerschgorin theorem. Let D = [J, K,, and we assume D is disjoint
with all other Gerschgorin intervals (discs) Kj, for j # s;, i = 1,...,m. Applying Theorem 3.12 from the book of Y.
Saad ([19]), we affirm D contains exactly m eigenvalues of Jy. Due to Remark 4.1, if n > Ny then the Gerschgorin
interval K, is disjoint from all other Gerschgorin intervals, so it contains exactly one eigenvalue. Moreover, we observe
that {n, N, -0 imin} C Zg;: Ks and py,n € K, (n > No, N > pn). Thus, applying Theorem 1.1, we obtain
An = limnSoo oy € Ky, for n > Np. O

Remark 4.2.
Under (A1), (A2) and (A3), it N > n > Ny then p, v € K.

Proof. (Y. Saad [19)). O
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4.2. Asymptotic behaviour of eigenvalues of /

As a corollary of Theorem 1.1 we may obtain some results related to the asymptotic behaviour of eigenvalues {A,}, with
n — oo. The methods, applied for example in [4-6, 12, 14, 16, 18] and [25] use the idea of diagonalization. We are going
to show an alternative approach to the problem of asymptotics.

Proposition 4.3.
Assume that p > 2 is an integer and y > 0. If J is an operator in [? given by matrix (1), that satisfies (A1) and (A2), then

1
|Un,pn_/\n|:O(F); n — oo,

where A, is the n-th eigenvalue of J, p, ,, is the n-th eigenvalue of the finite matrix J,, of dimension pn x pn and the
constant in “O” depends on /, p, y but is independent on n.

Proof. Applying Theorem 1.1 for /i = pn and r = :—7 we have

2] o

c (1}

From Proposition 4.3 we derive

1
)\n:lJn,ZnJ’_O(i)rn_)oor
ny

where y > 0 is properly chosen. So, the asymptotic behaviour for the sequence {A4,}52, of the eigenvalues of J can be
discovered by a suitable estimate for p,2,, which is an eigenvalue of the finite matrix J,,. We are going to see that this

is possible under assumptions (A1) — (A3). Denote

di ¢k
. ok dipr . .
= . o Di(A) =det(Jy —4), k<,
I /A
ci- d
D1 ()\) Dn+3()\)
P,(A) = n=—3 . S,(A) = 2n 18
W= W oy 19
and
Pn = |Cn+1| + |Cn| + |Cn71| + |Cn72| = Rn+1 + Rn71- (19)
Define , ;
c C
n = dn - n=t - & ] 1 20
“ dn71 - dn dn+1 - dn n= ( )
Lemma 4.1.
Assume (A1) — (A3). Let p, 2, be the n-th eigenvalue of /.
Then ,
R, 0 —dp2— po_
bt 20 — | < 2, + Cn;Z/(d dy2— pn)
(dn - dn71 - Rn - Cn_z/(dn - dn72 - pn—1))(dn - dnf‘l)
+ 2 R, + C§+1/(d,,+2 —dn, — pos1)

(dn+1 - dn - Rn - C%H /(dn+2 - dn - pn+1))(dn+1 - dn)’
where n > Ny (Ny is determined by (17)).
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Proof. Let A = p,;,, then A € K,, due to Remark 4.2. J!_, is a real symmetric matrix, so |/} || = pih_2.—2 € Ko_2.
Let x € R", |x| =1 and n > Np, then

IUn—2 = Xl = A= g x|l = A=y oll > doy — Ry — dny — Ruca

(21)
= dn - dn72 — Pn— = CIn - CInf‘l + dn71 - dn72 — Pn—1 > P”w + P(” - 1)“) + 2Rn—1 >0,
because of (17) and (A3). Thus
“U;—Z - [ <(dn—dn2— pn1)
Now, notice that if we denote (/;_, — A)~™" = (b;;){;% then P,(A) = b,_5,—2 and, obviously,
1PoA)] = |ba20-2 < IUn—a = A7l S (dn — doz = paa) ™" (22)
Similarly we estimate
1Us=1 = Axll = pn®lIx], x € R,
Thus both of the matrices J! , — A and J!_; — A are invertible and D} _,(A) # 0, D} ,(A) # 0.
The estimation for S,(A) can be similarly derived. Indeed, notice that
p* =min{y: pis an eigenvalue of /22} = min{(/iHw,w): w e R"", |w| =1} € K.
Then, for x e R"™, |Ix] =1,
1032 = x| = 1572x = A = " = A 2 doya = dy = poi1 >0
and
“(jgn+2 - Ar1 ” < (dn+2 —d,— pn+1)71-
In this case, if (/5,2 — A)~" = (by)!, then
[Sa) = [baal < 1057 = A7 < (dosz = do = pos) ™" (23)
The analogous argument we use to obtain
103" = Al = (dnsr = Rowr = do = Ra) X[l = p(n +1)1x]|
for all x € R". Then /5+2 — X and /2" — A are also invertible and D5'(A) # 0, D3+2(A) # 0 for n > Np.
From the Laplace formula, applied to /,, = J;,,, we derive
D3, (A) = (do — D, (D5 (A) = ¢54 Dy 5 (A D5 (A) = €30, (A) D5, ().
Notice that A = p,, is an eigenvalue of /3 , so D}, (A) = 0 and, equivalently, A satisfies
1 A n+2 A
A= dn _ 2 Dn—Z( ) 2D2n ( ) (24)

C —c :
IO D5
We apply the Laplace formula again to obtain

Dy 4(A) = (dn-1 =MD, 5(A) = ¢5_5D, 5(A),

123
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D3 (A) = (dnit = ND5(A) = € D5 (A).

Using (18), we can rewrite (24) as

2, c?
A=d, — 1= — & . 25
doot —A— 2 _5Py(A)  dopt —A—c2,1Sa(A) (29)
Using (15), (19) and (21) we have
|Cn—2| |Cn—2| |Cn—2|

0< <

<1, n> Np.
- d11_dn—2_pnf1 - pnw+p(n—1)w+2R”71 - Rn—1 - " 0

Next, from (A3) and the estimates above we derive

dn - dn—1 - Rn - Cgfz(dn - dn72 - pn71)71 2 dn - dnf1 - Rn - |Cn72|

(26)
= dn - dn—1 - Rn - Rn—1 + |Cn—1| 2 in + |Cn—‘l| >0
for all n > Ny. From (21) and (A3) we deduce d,i2 — d; — ppi1 > 2R,41, SO
|Cn+1| |Cn+1|
0< < <1.
- dn+2 - dn — Pn+1 - 2Rn+1 -
Then for n > Nj the following estimates can be applied:
dn+1 - dn - Rn - Cg+1(dn+2 - dn - pn-H)_1 2 dn+1 - dn - Rn - |Cn+1|
(27)
= dn+1 —d, — R, — Rn+‘| + |Cn| > p(n + 1)w + |Cn| > 0.
Letn > Npand r, =A—d, = pn2n — d, € [—R,, R,], using by turns (25), (20), (22), (23), (26) and (27) we obtain
—r, — 2 P, (A —r, —c2 (A
|)\_C{n| < 6571 In Cg—z n( ) +C5 r Cg+15 ( )
(dn—‘l - dn —Inp — Cn,ZPn(A))(dn—1 - dn) (dn+1 - dn —In — Cn+1 Sn()\))(dn-H - dn)
<2 | |r,,|+6%72|P,,(/\)| + 2 |rn|+cg+1|5n()‘)|
= (| dpor = do| = |ra] = 6572|P”(/\)|)|d,7,1 —d,| "(ldn1 —dn| = |ral = C%+1|SN(/\)|)(dn+1 —d,)
< Cz 1 R, + Cg_z(dn —dp_2— Pn-1 )71
- (dn - dn71 - Rn - C,%_z(dn - dn72 - pnf‘l)71)(dn - dn71)
+62 R" + C5+1(d"+2 - dn - pn+‘|)71 .
! (dn+1 - dn - Rn - Cg+1 (dn+2 - dn - pn+1)71)(dn+1 - d")
This completes the proof. O

Example 4.1.
Let J be an operator in (% such that d, = n, n > 1 and lim,_, ¢, = 0. Assume A1, A3, A3, ... are the non-decreasingly
ordered eigenvalues of J. It is clear that (A1) — (A3) are satisfied with a = 1 and, e.g., B = w = 0. By Proposition 4.2 we
can observe A, —n| < |c,|+|ca_1], n > No. Now, assume that {c,} converges to 0 not very fast, i.e,, liminf,_., n¥p} > 0
for some y > 0, where p, is given by (19). Moreover, |p,2, — Ay| = O (55), due to Proposition 4.3. Then Lemma 4.1
implies that there exists M > 0 such that

|Un,2n - anl < Mpg, n 2> 1,

where, according to (20),
2

aQ =n+ 6,21_1 —C,-
Finally, we obtain the following asymptotics for the point spectrum of J :

2

A=n+c2 —c2+0(p}), n— oo
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Example 4.2.

In this example, let J be associated with Jacobi matrix (1), for which d, = dn%(1+ 6,), |c,| < Cn#, n > 1. We assume
B < % and 0, = o(1), 0, — Op—1 = 0(%), n — oo, where the notation “small 0" (o(1), 0(2—7)) has an usual asymptotic
meaning. Then from Lemma 4.1, Proposition 4.2 and Proposition 4.3 we derive the asymptotics for the eigenvalues of J

c c 1
Ay =d, — ol o O|—=—=z]|.n .
' ' dn—1 - dn dn+1 - dn * ( nZ—BB ) -
Also, it can be interesting to observe that if 8 = 0 then
A —c 1
)‘”:d”+n21T+O(E)' n — oQ.

The conditions, supposed in this example, are satisfy by concrete Jacobi matrices, which appear in various applications
(see [4][5][14][23]).

Example 4.3.

Now assume a weaker condition for {c,} then in the previous example. Let
lea] < Cni(in(n +1))7", n > 1.

As before, let d, = dn*(1+34,), 8, — 0, and 8, — 0,_1 = o(%), n — oo. Clearly, (A1), (A2) are satisfied with a =2 and
B = % Condition (A3) is satisfied with w = 1. So, we apply Proposition 4.3 and Lemma 4.1 and obtain the following
asymptotic formula for the point spectrum of the operator J

c? c2 1
)‘n = dn - n=1 — i (0]
dia—dy dvo—d, " ( (I + 1)

),n—»oo.

Example 4.4.

Let consider a general case of {d,}, d, =0n%(1+93,), a > 1. We assume (A1), (A2) and, additionally, > B+ 1. The
assumption 0, — 0p—1 = 0(111), n — o0, is also needed. Then (A3) is satisfied with w = a — 1. We apply Proposition 4.3
with p =2 and y > 0 large enough. Let A = 1,5, be the n-th eigenvalue of /,,. From Lemma 4.1 we derive

A= a,| < Mn2e1=30, > N, (28)

where a, is defined by (20) and M is a constant independent on n. Thus we obtain the asymptotic behaviour for the
eigenvalues of J

Ay = ay + 002071738 5 co. (29)

Notice that this asymptotic is true without any additional assumption on the sign of the expression a — 1 — 38.
For n large enough (n > Ny + 2, where Nj is given by (17)) we can write an expanded version of equation (24)

. -1 . -1
A=dy =y (s = A= & oldrz = 2= 5PaN)) =€ (dnir = A= illdniz = 2= 25 A)) . (30)

~ 1 - n+4
where P, () = gq*‘g; and S, () = gﬁig;. Using the method from the proof of Lemma 4.1 we obtain the estimates
n—=3 2n
N C - Cc
[P,(N)| < pre g |S,(A)] < peem L > Ny + 2. (31)
Denote , ,
c c
&” _ dn _ n—1 _ n , 32
dn71 — Qp — %_2/(dn—2 - an) dn+1 —a, — 654_1 /(dn+2 - an) ( )
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where a, is given by (20). Elementary calculations and (28)-(32) lead to
A= @,| < Myn=He1=38 n s No+ 2,

where M; > 0 is a constant independet on n. If we combine this with Proposition 4.3, we obtain the following asymptotics
for the point spectrum of J

Ay = @ + O(n~ 38, n S o0

The above asymptotics is more exact then that one in (29). This procedure could be repeated to obtain even better
exactness of the asymptotic behaviour of the eigenvalues of the operator J.

To obtain the result concerning an asymptotic behaviour of the point spectrum of the operator J/ we use p = 2 but if we
choose p > 2 there is no difference in the final result. Notice that in the left-hand site of the inequality in Lemma 4.1
we may put y, ,, instead of p, 5, but the formula on the right remains without any change. Also the parameter y, that
appears in Proposition 4.3, is arbitrary chosen and is independent on p. A constant, which can be associated with the
expression O(”iy), depends on p, but this fact does not change the asymptotics as n — oc.

4.3. Approximation for eigenvectors of J

Proposition 4.4.

Let J be an operator in > associated with (1). Assume (A1), (A2) and (A3) hold. Let r € (0,1) and y > 0. Let A, be the
k-th eigenvalue of the operator | and x; € [?> be an eigenvector that corresponds to A. Let yi, € R", and py, be the
k-th eigenvector and eigenvalue of J,, given by (2),respectively, and assume that (5) holds. Then there exists M > 0
such that

sup |[|Poxk — Yyl < Mn’%“’“), n>1.
1<k<rn

Proof. This proof is based on lemma 2.3. Without loos of generality, we can assume ¢, # 0, n > 1, and y >
max{w’, —1 + 2w'}, where w’ = max{0, —w} and w is determined in (A3). Then the multiplicities of all eigenvalues of J
and J, equal one. From Proposition 4.2 and (A3) we derive

A — A 2 digr — di — || = 2lei| — k| = pk®, k> Ny

and, obviously,
)\k+1 _)\k > mln{)\,-ﬁ —)\,' e {1,..., No}} =p1 > 0, k < No.

If1<i<k<rnthen

C
|lli,n —/\k| > M —Ai— |lli,n _Ai| > M — Ao — —,

ny

because of Theorem 1.1. If i > k then
Hin — Ak 2 Hkan — Ak 2 A — Ar

Thus
o . c ., C
|tiin — Al > min{pk®, p(k 4 1) ,p1}—m2pzk - —

nv'

where i #k,1<i<n, 1< k<rn, k>1,and p, >0 is a suitable constant. Because y > «’, we observe there exist
p >0 and N large enough such that if 1 < k < rn then

7

Aew = max{|p, — A7 21 <i<n, i#k}<p'n?
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where n > N. Let s € N satisfy (11). Additionally, we enlarge s to satisfy the inequality
2a=B)(s+1)=2(B|+ ) >y+1.
From lemmata 2.3, 3.1 and 3.2 we derive the estimates
A2, K2, < A2, F2 xeal? < P20 S22 g2 Ap~Aa=BlsH) < /2B 26420 o 7 p=y-T,
for n > max{N, Ny}, where N, is taken from lemma 3.2. Finally, from lemmata 2.3 and 3.2 we derive

”P”Xk — Ukn ||2 < C/n—y—1 + (B2n72(0178)(5+1) + C/n—yf‘l)z < Mn7y71'

where 1 < k < rn. O
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