

Central European Journal of Chemistry

Copper(I) π-complexes with allyl derivatives of heterocyclic compounds: structural survey of their crystal engineering

Review Article

Yurii Slyvka^{1*}, Evgeny Goreshnik², Oleksii Pavlyuk¹, Marian Mys'kiv¹

¹Department of Inorganic Chemistry, Ivan Franko National University of Lviv, 79005, Ukraine

²Department of Inorganic Chemistry and Technology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia

Received 26 April 2013; Accepted 18 July 2013

Abstract: In this review an exhaustive crystallochemical analysis of copper(I) π -complexes with allyl derivatives of heterocyclic compounds has been performed. Structural genesis of inorganic constituents starting from the simplest units to the most complicated aggregates was considered taking into account the specific role of Cu-(C=C) interaction, the construction of the organic ligands, the basicity and nucleophilic activity of their heteroatoms, as well as olefin Cu(I) π - complex preparation route.

Keywords: π-Complex • Copper(I) • Structure • Heterocyclic Allyl Derivatives • Crystal Engineering © Versita Sp. z o.o.

1. Introduction

More than one century has passed since Berthelot [1], Manchot and Brandt [2] have performed first studies on ethylene absorption with copper(I) chloride solution and which started an intensive development of Cu(I) π-coordination chemistry. Presently, copper alkene complexes are known to play a key role in biochemistry [3,4] and have been found to be important as catalysts in organic syntheses [5-10], as an effective instrument in crystal engineering of metal-organic frameworks [11-13], for their fluorescent activity [14,15], and many other useful properties [16-21]. The elaboration of new copper(I) π-complexes synthetic techniques has allowed to obtain the compounds with unknown (or less-stable) in a free state copper(I) salts: CuClO₄ [22], CuBF₄ [23], CuNO₃ [24], Cu(HCOO) [25], CuOOCCF₃ [26], CuSO₃NH₂ [27], Cu(CF₃COCHCOCF₃) [28], Cu₂SiF₆ [29], CuPF₆ [30], Cu_2SO_4 [31] etc. A formation of copper(I) π -complexes is caused with a specific role of a directed Cu(I)-(C=C) interaction in a presence of σ -donor (such as N, O, S)

atoms as well as CI, Br, O, N, F ones from various anions. To study Cu(I)-(C=C) interaction peculiarities and their efficiency, near 400 copper(I) π -complexes with C=C-containing ligands have been synthesized and X-ray structurally investigated during the last three decades.

In 2005 Xi-Sen Wang et al. published a review on olefin copper(I) complexes [21], where brief characteristics of the main coordination types of copper(I) π -complexes were described without emphasizing the role of ligand donor atoms, their number, nature of an anion and influence of medium in a formation of Cu(I) coordination junction. To fill the gaps mentioned above, Cu(I) π -complexes with allyl derivatives of heterocyclic compounds which unite rigid building moieties - heterocyclic cores as well as conformational-flexible allyl groups (which provide simultaneously ligand chelate and bridged-chelate behavior), are attractive from the viewpoint of crystal structure engineering [32,33] and should be considered. In recent years, specific attention has been paid to the syntheses and investigation of copper(I) π -complexes with allylic derivatives of heterocyclic compounds since a combination of heterocyclic core and C=C bond plays an exclusively important role in the formation of the unique inorganic fragments [34,35]. Contrary, a systematic search of new π -ligands for the synthesis of Cu(I) compounds with outstanding properties requires to be made periodically for a precise analysis of the accumulated structural information on the Cu(I)-(C=C) interaction.

In this review we attempted to analyze widely the coordination behavior of heterocyclic compounds allyl derivatives regarding diverse Cu(I) salts – halides and ionic ones (taking into consideration all hitherto known π -complex structures). An influence of the heterocyclic core, its basicity, structure, number of heteroatoms on a formation of a certain fragment type, as well as a role of hydrogen bonds (only superficially) in a creation of coordination frameworks will also be considered.

2. Aspects of Cu-(C=C) interaction in Cu(I) π -complexes with allyl derivatives of selected organic compounds

According to Pearson's HSAB theory [36] a C=C bond, as a soft base, should readily react with a soft acid Cu(I). However, a presence of the other donor atoms - N, S, O etc. which successfully compete for a coordination place in the metal surrounding makes certain for stereochemical perturbations in a structural organization of the compounds to be discussed. We should apply the Dewar-Chatt-Duncanson concept [37,38] to reveal the influence of the above σ -ligand atoms (in a presence of anions from the Cu(I) salts) on the behavior of allyl derivatives (aromatic or nonaromatic, cyclic or acyclic compounds) regarding copper(I). According to this theory, (Cu-C=C)-bond includes the mutually reversible $(Cu \leftarrow C=C)_{\pi}$ and $Cu \rightarrow (C=C)_{\pi}$ components. In the olefine π -complex, the contribution from the π -dative $(Cu \rightarrow C=C)_{\pi}$ component (meaning $d_{x^2} \rightarrow \pi^*$ donation) of a Cu(I)-olefin bond to the tefrahedral ligand field leads to a splitting of the copper atom d orbitals, which are arranged in a organized series of decreasing energy: d_{z^2} , $d_{x^2-y^2}$, and d_{xy} , d_{xz} , d_{yz} . This brings about a considerable deformation of the initial tetrahedral copper(I) environment (typical for it [39]), which is accompanied by the change of L-Cu-L angles, an elongation of the Cu-Lan link as compared to the Cu-L_{eq} and Cu-(C=C) bonds. The distortion of a tetrahedron towards a trigonal pyramid is caused both by a difference in spatial orientation of the 3d-orbitals and a certain deficiency of electron density in the $d_{v^2-v^2}$ orbital (due to π-dative (Cu \rightarrow C=C)_π

interaction). Therefore, a Cu–L $_{\rm eq}$ bond shortening should be accompanied by an increase in the deformation of the copper(I) tetrahedral environment due to an increase in the π -dative component contribution to the Cu–(C=C) bond. The degree of the polyhedron distortion of a copper coordination environment relates also with other factors, such as the structure of the inorganic moiety, the conformation rigidity of the organic ligand, and the strength of the Cu – anion interaction.

A more objective evaluation parameter is the correlation between the degree of a trigonal-pyramidal distortion of the initial tetrahedral copper environment (defined by a value of the deviation of the copper atom from the polyhedron base plane (Δ)) and the distance from the copper atom to the apical ligand d(Cu-L_{ap}). The values of Δ and $d(Cu-L_{an})$ are inversely proportional: a decrease in Δ is accompanied by an increase in d, i.e., due to Cu-L_{an} bond weakening. From this dependence one can derive the utmost Cu-L_{ap} value (formal limit distance of Cu and Lan interaction, Fig. 1) response to copper(I) position in a hypothetical place at the equatorial ligands plane (Δ=0). So, a limit distance Cu-Cl_{an} is equal to 3.15Å, and Cu-Br_{an} - 3.25 Å (Figs. 1a, 1b), which corresponds to a sum of van-der-Vaals radii of the atoms.

Minimal deviations from the above values might be observed in a range of 3.07-3.15 Å for chlorine atoms and 3.22-3.25 Å for bromine ones. For $SO_4^{\ 2}$, HSO₄, NH₂SO₃, CF₃COO anions maximal Cu-O_{ap} equals 2.45 Å (Fig. 1c), but for NO₃ anion this distance increases to 2.63 Å. Taking into account a marked hardness of the fluorine atom in BF₄ and especially SiF₆² Cu–F contacts rarely occur. Therefore, only six points on Fig. 1d of the appropriate π-compounds represent a similar dependence which specifies 2.82 Å as a limit of the Cu-F_{ap} distance (it declines negligibly from 2.87 Å – sum of copper and fluorine van-der-Vaals radii).

A pyramidal distortion degree of the copper(I) coordination environment relates to other factors as well, such as a structure of an inorganic fragment, a conformation rigidity of an organic ligand, *etc*.

In general, the set of geometrical parameters of π -coordinated copper(I) cores, e.g. the Cu–(C=C) and Cu–L_{ap} distances, the elongation of the coordinated double C=C bond, parameter Δ and angle value of the C=C line deviation from the base plane of a trigonal pyramid (τ) as well as C-Cu-C and C-C=C angles are very useful for the analysis of the efficiency of the Cu–(C=C) interaction in a crystalline π -complex. The corresponding parameters of Cu(I) π -core in the structures of copper(I) π -complexes with allyl derivatives of heterocyclic compounds are listed in Tables 1 and 2.

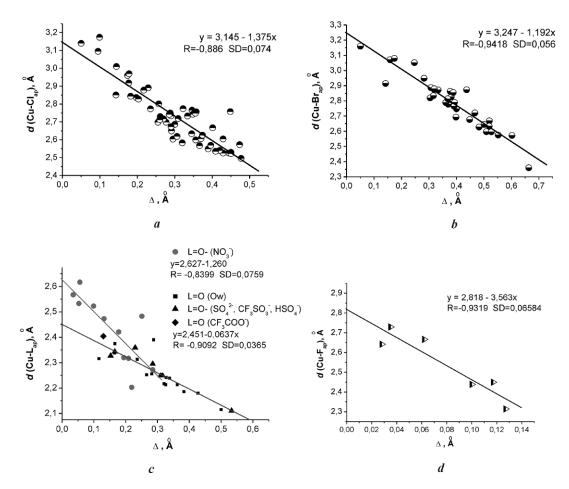


Figure 1. Plot of Δ versus d(Cu-L_{ap}) for Cu(l) π-complexes: a - L_{ap} = Cl (for 56 compounds), b - L_{ap} = Br (for 37 compounds), c - L_{ap} = O (for 32 compounds), d - L_{ap} = F. Some acyclic ligands have been included for comparison.

3. Crystallochemical survey of Cu(I) π-complexes with allylic derivatives of heterocyclic compounds

3.1. Molecular copper(I) halide π -complexes

Because of a high ability of Cu(I) and CI atoms to form a covalent bond, they are readily combined into a polymeric structure (a first example is the structure of CuCl itself) or oligomeric fragments of various nuclearity. A structure of such topological units depends on a composition and a charge of an inorganic fragment $Cu_xCl_y^{-(y-x)}$ (where $y \ge x$), the nature of donor centers (O, N, S atoms *etc.*) attached to the metal, atom donor centers (O, N, S atoms *etc.*), and the ligand coordination (chelating or bridging) mode. Typically, coordination of Cu(I) by a relatively soft olefin C=C bond does not cause a formation of the isolated π -bonded CuCl moiety. So,

among the structures of Cu(I) π -complexes with allyl derivatives of heterocyclic compounds one can depict only two cases where π -coordinated copper(I) is bound to the only chlorine atom (compounds 1 and 2).

In compound 1, the chelate bridging mode of N-allyl-2-iminobenzothiazole (L1, C=C bond and N atom of 2-imino-group) results in a formation of an isolated CuCl unit C1a (Fig. 2) [40]. The inability for ligand to form stable cyclic fragments of a chelate type as demonstrated in N-allyl-3-methylpiperazine L2 does not prevent a stabilization of isolated CuCl units, π -bonded to the allyl group [41]. So, in the crystal structure of complex 2, organic moiety plays only a bridging role (C1b), the closest distance from the metal atom to the chlorine one of an adjacent inorganic fragment being 3.70Å. Obviously, the compliant participation of a strong nucleophylic center, which is a nitrogen atom of a piperazine ring, and a double C=C bond, provides a significant increase of Cu(I) d_{-2} -orbital energy which

Table 1. Geometric parameters of Cu(I) π -core in the structures of copper(I) halide π -complexes.

		Ligand [8]	Composition (preparation method) ^[b]	Fragment	Cu-m ^[c] , Å C=C, Å	C=C-C, deg	∆ ^[d] , Å	τ ^[e] , deg	C-Cu-C, deg φ(C=CCX) ^[r] , deg	Cu- X _{ap} ^[g] , Å	Ref.
1	L1	***	[(L1)CuCl] (e.c.)	C1a	1.920(5) 1.374(7)	123.2	0.04	17.5	39.4(2) 145.2	-	[40]
2	L2	HN A	[(L2)CuCl] _n (<i>d.r.</i>)	C1b	1.891 1.368	123.9	0.01	9.9	39.8 146.8	3.70 ^[h]	[41]
3	L3	* S * *	[(L3)CuCl] (e.c.)	C2a	1.96(2) 1.35(3)	127(2)	0.14	14.9	38.0(8) 150.9	3.031(4)	[42]
4		N _H	[(L3)CuBr] (e.c.)	C2a	1.961(4) 1.354(5)	124.2(4)	0.32	13.4	38.1(2) 150.2	2.875(1)	[42]
					1.97(1) [1] 1.40(1)	125(1)	0.21	17.0	39.1(4) <i>155.6</i>	2.986(1)	
5	L4	Na N	[(L4)CuCl] _n (d.r.)	C2b	1.917(3) 1.364(5)	123.7(4)	0.05	10.1	39.2(1) 105.3	3.136(1)	[43]
6			[(L4)CuBr] _n (d.r.)	C2b	1.933(3) 1.361(4)	123.7(3)	0.08	8.8	38.8(1) 104.4	3.158(1)	[44]
7	L5	* N-N*	[(L5) ₂ Cu ₂ Cl ₂]	C3a	2.031 1.338	122.9	0.44	21.1	36.4 117.0	2.526	[45]
8	L6	si—	[(L6) ₂ Cu ₂ l ₂] (d.r.)	C3a	2.01(2) 1.10 ^[K]	155.5	0.497	28.5	30.5(1) 102.4	2.881(3)	[46]
9	L9	Now	$\left[(\mathbf{L9})_{2}\mathrm{Cu}_{2}\mathrm{Cl}_{2}\right] _{\mathrm{n}}(d.r.)$	C3b	1.949(3) 1.351(4)	121.1(3)	0.42	26.6	38.2(1) 97.7	2.537(1)	[47]
10	L9	N-N N*	$[(\mathbf{L9})_{2}Cu_{2}Br_{2}]_{n}$ (d.r.)	СЗЬ	1.965(4) 1.351(5)	122.0(4)	0.51	33.9	37.9(1) 98.9	2.597(1)	[48]
11	L7_1	* N * *	[(L7_1) ₂ Cu ₂ Cl ₂] _n (e.c.)	C3b	1.965(1) 1.36(1)	124.4(7)	0.29	8.2	38.2(4) 87.9	2.673(3)	[11]
12		\bigcirc	[(L7_1) ₂ Cu ₂ Cl _{1.7} Br _{0.3}] _n (e.c.)	C3b	1.972(7) 1.348(9)	124.1(7)	0.26	4.34	37.7(3) 168.9	2.831(2)	[49]
13	L8	*N=N N-0	$[(\mathbf{L8})_{2}Cu_{2}Cl_{2}]_{n}$ (e.c.)	C3b	1.922(6) 1.331(9)	122.4(5)	0.20	1.36	38.2(2) 98.2	2.754(2)	[50]
14			$[({\bf L8})_2{\rm Cu}_2{\rm Br}_2]_n$ (e.c.)	C3b	1.979(4) 1.359(8) 2.038(4)	123.9(5) 124.6(5)	0.32	0.58	37.9(2) 103.5 36.3(3)	2.834(1) 2.6337(9)	[51]
15			$[(\mathbf{L8})\mathrm{Cu_2Cl_2}]_{\mathrm{n}}(\mathrm{e.c.})$	C4	1.34(1) 1.936(6)	123.5(5)	0.16	5.66	104.1 36.7(3)	2.276(2)	[51]
16	L10	0. /\n/*	[(L10) ₂ Cu ₄ Cl ₄] (e.c.)	C5	1.285(9) 1.946(5) 1.366(7)	122.9(5)	0.09	2.76	105.3 38.7(2) 146.9	3.578(3) ^[h]	[52]
17		*	$[({\bf L10})_2{\rm Cu}_4{\rm Br}_4]$ (e.c.)	C5	1.991(9) 1.35(1)	124.5(9)	0.03	0.99	37.4(3) 149.4	3.346(6) ^[h]	[53]
18	L11		$[({\bf L11})_2{\bf Cu}_4{\bf Cl}_4]_{\rm n}$ (e.c.)	C6	1.977(7) 1.351(8)	125.0(5)	0.05	1.41	37.7(2) 7.9	-	[54]
19	L12	CI NAME AND A STATE OF THE STAT	$[({\bf L12})_2{\bf Cu}_6{\bf Cl}_6]_n$ (e.c.)	C7	1.977(9) 1.34(1)	123.8(9)	0.36	19.23	37.4(3) 149.9	2.552(4)	[55]
20	L13	N/W	[(L13) ₂ Cu ₄ Cl ₄] _n (d.r.)	C8	1.934(4) 1.374(6)	121.5(4)	0.27	8.16	39.11(17) 93.3	2.824(1)	[56]
21		N _*	$[({\bf L13})_2{\rm Cu}_4{\rm Br}_4]_{\rm n}~(d.r.)$	C8	1.956(11) 1.372(13)	122.2(11)	0.31	8.3	93.3 38.6(4) 91.5	2.887(2)	[56]

Continued Table 1. Geometric parameters of Cu(I) π -core in the structures of copper(I) halide π -complexes.

		Ligand ^[a]	Composition (preparation method) ^[b]	Fragment	Cu-m ^[c] , Å C=C, Å	C=C-C, deg	∆ ^[d] , Å	τ ^[e] , deg	C-Cu-C, deg φ(C=CCX) ^[f] , deg	Cu- X _{ap} ^[g] , Å	Ref.
22	L14	· N N	[(L14) ₂ Cu ₄ Br ₄] _n (d.r.)	C9	1.968 1.401	121.0	0.01	2.7	39.2 135.0	3.378 ^[h]	[57]
		*			1.952 1.347	121.9	0.26	12.6	38.2 101.8	2.952	
23			$[({\bf L14})_2{\rm Cu}_6{\rm Br}_6]_{\rm n}$ (d.r.)	C10	2.047 1.336	123.5	0.52	10.3	36.1 110.6	2.669	[57]
24	L15	* *	[(L15) ₂ Cu Cu ₂ Cl ₄] _n (e.c.)	C11	1.926(8) 1.363(9)	122.18(1)	0.17	6.843	39.0(2) 84.93(1)	2.962(7)	[58]
25		*****	[(L15) ₂ Cu Cu ₆ Cl ₈] _n	C12	1.946(3) 1.361(5)	122.1(3)	0.28	8.39	38.6(1) <i>102.2</i> 38.2(1)	2.889(1)	[12]
		٠_*	(e.c.)		1.968(4) 1.363(4)	123.4(3)	0.26	3.83	103.5	2.698(1)	
26			[(L15) ₂ Cu ^{II} Cu ₆ Cl _{1.52} Br _{6.48}] _n (e.c.)	C12	1.99(3) 1.36(4)	126(5)	0.44	9.41	37.7(11) 103.1	2.873(6)	[59]
			ы _{6.48} J _п (е.с. <i>)</i>		2.00(3) 1.331(4)	121(5)	0.36	3.57	36.7(12) 107.9	2.788(6)	
27			$[({\bf L15})_2{\bf Cu}_8{\bf Cl}_8]_n$ (e.c.)	C13	1.968(4) 1.348(6)	121.6(4)	0.40	14.8	37.8(2) 101.8	2.668(1)	[12]
					1.976(5) 1.357(7)	120.8(4)	0.58	37.2	37.9(2) <i>104.7</i> 39.7(2)	2.404(1)[1]	
					1.920(4) 1.387(6)	124.8(4)	0.02	2.7	32.9	-	
28	{L16}⁺	*N+NH ₂	$[(\mathbf{L16})CuCl_2] \; (e.c.)$	C14	1.950(6) 1.343(6)	125.6(4)	0.07	6.1	38.0(2) 24.7	-	[60]
29	{L17}⁺	-N.	[(L17)CuBr ₂] (e.c.)	C14	1.931(1) 1.364(4)	123.2(2)	0.03	2.9	39.11(9) 89.2	-	[61]
30	{L18}⁺	***	$\left[(\textbf{L18}) \text{Cu}_2 \text{Cl}_3 \right]_\text{n} (\text{e.c.})$	C15	1.89(2) 1.32(2)	127(1)	0.10	13.1	38.5(6) 104.1	3.090(9)	[62]
31	{L19}⁺		[(L19) ₂ Cu ₄ Cl ₂ Br ₄] (d.r.)	C16	1.937 1.376	122.9	0.00	7.8	39.1 100.2	3.422 ^[h]	[19]
32	L20 (H+)	0 N+-	[{ L20 (H ⁺)} ₂ Cu ₂ Cl ₄] (e.c.)	C17b	1.97(1) <i>1.30(2)</i> 1.94(1)	124.3(14)	0.29	14.4	36.5(6) 142.7	2.743(3)	[63]
	(,	→ H 📡	(5.5.)		1.36(2)	121.9(12)	0.13	6.7	38.5(8) 97.7	3.072(4)	[00]
33	{L16}⁺	*N+NH ₂	[(L16) ₂ Cu ₂ Br ₄]·2H ₂ O (e.c.)	C17b	2.007(1) 1.332(6)	122.7(3)	0.39	1.4	36.9(2) 110.3	2.790(1)	[60]
34			[(L16) ₂ Cu ₂ Cl _{2.7} Br _{1.3}] · 2H ₂ O (e.c.)	C17b	1.994(6) 1.349(6)	122.9(5)	0.36	3.3	37.4(2) 112.4	2.756(1)	[60]
35	{L21}⁺	NH ₂	[(L21) ₂ Cu ₂ Cl ₄] (e.c.)	C17b	1.968(3) 1.357(5)	123.0(3)	0.43	6.3	38.1(1) 108.8	2.5260(8)	[64]
36			[(L21) ₂ Cu ₂ Cl _{1.8} Br _{2.2}] (e.c.)	C17b	1.981(3) 1.341(6)	123.7(3)	0.46	4.8	37.4(2) 108.7	2.561(4)	[64]
37	{L17}⁺	* N.	[(L17) ₂ Cu ₂ Cl ₂]·2H ₂ O (e.c.)	C17b	1.98(1) 1.35(2)	123(1)	0.35	5.2	37.7(5) 115.4	2.733(3)	[65]
88			[(L17) ₂ Cu ₂ Cl _{2.86} Br _{1.14}] ·2H ₂ O (e.c.)	C17b	1.950(8) 1.35(1)	124.5(7)	0.33	6.3	38.3(3) 114.9	2.743(4)	[65]
39			[(L17) ₂ Cu ₂ Br ₄]·2H ₂ O (e.c.)	C17b	1.985(1) 1.364(4)	123.1(3)	0.39	0.8	37.9(1) 117.1(3)	2.7645(9)	[61]

Continued Table 1. Geometric parameters of Cu(I) π -core in the structures of copper(I) halide π -complexes.

		Ligand [a]	Composition (preparation method) [b]	Fragment	Cu-m ^[c] , Å C=C, Å	C=C-C, deg	∆ ^[d] , Å	τ ^[e] , deg	C-Cu-C, deg φ(C=CCX) ^[r] , deg	Cu- X _{ap} ^[g] , Å	Ref.
40	{L22}⁺	\bigcap	[(L22) ₂ Cu ₂ Cl ₄]·2H ₂ O (e.c.)	C17b	1.94(1) 1.37(1)	121.8(8)	0.36	10.9	38.9(4) 109.8	2.695(2)	[66]
41		\$ N+_*	$[(\mathbf{L22})_2 \mathrm{Cu}_2 \mathrm{Cl}_{2.12} \mathrm{Br}_{1.88}] \\ \cdot 2\mathrm{H}_2 \mathrm{O} \; (\mathrm{e.c.})$	C17b	1.966(7) 1.381(9)	124.0(5)	0.40	7.8	38.6(2) 108.3	2.750(1)	[66]
42	L1 (H ⁺)	*/	[{ L1 (H+)} ₂ Cu ₂ Cl ₄] (e.c.)	C17b	1.983(8) 1.361(10)	123.8	0.40	7.61	37.9(3) 113.4	2.577(2)	[40]
43		N+ S	$[\{\mathbf{L1}(H^+)\}_2 \mathbf{Cu}_2 \mathbf{Br}_4]$ (e.c.)	C17b	2.013(7) 1.34(1)	125.4	0.45	4.84	36.9(3) 115.8	2.677(1)	[40]
44	L24 (2H*)	**************************************	[{ L24 (2H ⁺)}Cu ₂ Cl ₄] _n (e.c.)	C17a	1.936(6) 1.386(8)	121.2(5)	0.24	2.7	39.4(2) 90.0	2.774(3)	[67]
45	{L25} ²⁺	*	[(L25)Cu ₂ Cl ₄] _n (12.2%)	C17a	1.920(5) 1.339(5)	126.7(3)	0.50	57.3	37.1(2) 74.7	2.58(1)	[68]
			[(L25)Cu ₂ Cl ₄] (87.8%) (e.c.)	C14	1.941(5) 1.339(5)	126.7(3)	0.01	19.6	38.0(2) 74.7	3.746(2) ^[h]	
46	L26 (2H ⁺)	* H N+ N+-H	[{(L26 (2H ⁺)} ₂ Cu ₄ Cl ₈] (e.c.)	C18	1.94(1) 1.35(2)	125(1)	0.27	11.6	38.3(5) 108.4	2.717(5)	[67]
47	{L27}⁺		$[(L27)_2Cu_2Br_3]_n (d.r.)$	C19	2.027 1.327	122.6	0.38	3.1	36.2	2.863	[69]
		00			1.989(8) 1.34(1)	122.5	0.28	0.3	37.2 103.7	2.984	
48	{L28}*	N+zN N	[(L28) ₂ Cu ₂ Br ₃] _n (e.c.)	C19	2.001(7) 1.332(9)	125.4(6)	0.28	10.0	36.8(3)	2.949(1)	[70]
					1.98(2) 1.33(2) ^{III}	124(1)	0.49	6.6	37.2(5)	2.683(2)	
49	{L18}⁺		[(L18) ₂ Cu ₄ Cl _{2.8} Br _{3.2}] _n (e.c.)	C20	1.934 1.346	124.4	0.15	4.0	37.4(5) 83.5	3.067	[71]
50			[(L18) ₂ Cu ₄ Cl _{1,34} Br _{4,66}] _n (e.c.)	C20	1.958(7) 1.37(1)	119.4(6)	0.16	6.9	38.6(3) 85.6	3.071(2)	[72]
51			$[(\mathbf{L18})_2\mathbf{Cu_4}\mathbf{Br_6}]_{\mathbf{n}}$ (e.c.)	C20	1.954 1.326	121.8	0.18	7.1	37.4(5) 85.7	3.078	[71]
52	{L29}⁺	* NH ₂	$[(\mathbf{L29})_2 \mathbf{Cu_4} \mathbf{Cl_6}]_n$ (e.c.)	C20	1.943(5) 1.344(7)	122.8(4)	0.07	7.1	38.2(2) 93.4	3.201(1)[]	[73]
53	{L30}*	* N+	$ \begin{aligned} & [(\textbf{L30})_2 \textbf{Cu}_4 \textbf{CI}_6]_{\text{n}} \\ & (\text{e.c.}) \end{aligned} $	C21	1.936(1) 1.376(2)	122.1(1)	0.18	8.1	39.11(5) 102.6	2.9646(3)	[13]
54	{L31}⁺	*N-N*	[(L31) ₂ Cu ₄ Cl ₆] _n (e.c.)	C22	1.964(5) 1.371(6)	124.6(4)	0.40	2.0	38.5(2) 91.1	2.470(5)	[74]
55		N N+	$[({\bf L31})_2{\rm Cu_4Cl_6}]_{\rm n}$ (e.c.)	C23	1.988(7) 1.37(1)	121.3(6)	0.37	7.8	37.7(3) 104.5	2.567(3)	[74]
56	{L32}⁺	25	[(L32) ₂ Cu ₆ Br ₄ Cl ₄] _n (d.r.)	C24	1.962 1.341	123.0	0.48	10.8	37.7 112.4	2.692	[75]
		O	(U.I.)		1.983 1.341	125.0	0.18	1.2	37.4 115.5	2.990	

Continued Table 1. Geometric parameters of Cu(I) π -core in the structures of copper(I) halide π -complexes.

		Ligand ^[0]	Composition (preparation method) ^[b]	Fragment	Cu-m ^[c] , Å C=C, Å	C=C-C, deg	∆ ^[d] , Å	τ ^[e] , deg	C-Cu-C, deg φ(C=CCX) ^[f] , deg	Cu- X _{ap} ^[g] , Å	Ref.
57	L33	* \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	[{(L33)NiCl} ₂	C25	1.969 1.387	123.0	0.43	3.2	38.8(3) 104.7	2.605(2)	[76]
		***	{Cu _g Cl _g }] _n ·2nCH _g CN (d.r.)		1.955 1.373	122.5	0.20	3.0	38.7(3) 100.9	2.837(2)	
58	L34 (2H*)	* ' ' ' ' ' ' ' ' ' ' ' '	[{L34(2H ⁺)} ₂ Cu ₆ Cl ₁₀] (e.c.)	C26	1.967(4) 1.38(7)	125(4)	0.20	5.9	39(1) 134.4	2.831(12)	[77]
59	L35 (H+)	T N	[{ L35 (H+)} ₂ Cu ₆ Cl ₈] _n (e.c.)	C27	1.966(4) 1.335(11)	124.29	0.258	8.3	37.8(2) 119.8	2.801(2)	[78]
60	{L36}⁺	**			1.985(5) 1.341(7)	123.5(4)	0.39	0.5	37.3(2) 105.7	2.677(1)	
		N's	[(L36) ₂ Cu ₈ Cl ₁₀] _n (e.c.)	C28	1.948(6) 1.350(7)	123.4(5)	0.35	8.5	38.2(2) 97.0	2.578(1)	[79]

[a] asterisk indicates "active" as to the Cu(l) coordination ligand site; [b] method of preparation: alternating current electrochemical (e.c.) and direct (d.r.) (dominant solvothermal) techniques; [c] m - a middle point of C=C bond, [d] - a distance value of copper(l) deviation from the base plane of a trigonal pyramid, [e] - angle between C=C line and trigonal pyramid base plane, [f] - torsion angle of allyl C=C-C-X group (X - any element), [g] - a distance from the copper(l) to the apical (L_{ap}) donor atom, [n] - a distance from the copper(l) to the nearest hypothetically apical L_{ap} halogen atom, [f] - data for other crystallographic independent Cu(l), [g] - data for one of two disordered C=C bond positions, [k] - allylic C=C bond probably disordered, [f] - coordination polyhedron of the atom is preferably tetrahedral, [n] - site occupation probability of disordered Cu(l) moieties

excludes other halogen atom coordination. For C2, a display of the steric hindrance due to an appearance of a peculiar zigzag coordination chain in 2 should not be excluded (Fig. 2). The architecture of another molecular complex 3 is caused by the chelate role of S-allyl-benzimidazole-2-thiol (L3), where both the olefinic C=C bond of the allyl group and the N atom of the imidazole ring are combined by a Cu(I) atom into the six-membered organometallic cycles [42]. Moreover, the lower nucleophilic activity of the heterocyclic N atom and a large lability of the S-allyl group in 3, favor a formation of a pseudodimeric centrosymmetric fragment [(L3),Cu,Cl,] (C2a), in which current Cu ... Cl contacts at adistance of 3.03Å between different π-coordinated CuCl units, fit in a hypothetical scope of the Cu(I)-Cl₂₀ interaction (Fig. 1a). The reaction of L3 with CuBr leads to a formation of an acentric [(L3)2Cu2Br2] fragment with Cu-Br $_{ao}$ and distances of 2.88 and 2.99 Å. A decrease of the Cu-X_{an} distance in replacing a chlorine atom by a bromine atom can be explained by a lesser polarizing ability of the Br atom accompanied by a Cu(I) deviation from the base plane of a trigonal pyramid up to $\Delta = 0.32 \text{ Å (Table 1)}.$

N-Allyl-5-(3-pyridyle)-2H-tetrazole **L4**, which contains five potential nucleophilic nitrogen atoms in the crystal structure of **5** and **6**, is coordinated to Cu(I) atoms only through the C=C bond of the allyl group and the most nucleophilic nitrogen atom of the pyridyle ring [43,44]. Thus, a significant space separation of the active donor center and the allylic C=C bond does not affect a d_{z^2} -orbital energy increase and leads to a formation of inorganic pseudodimeric {Cu₂Hal₂} (Hal = CI (**5**), Br (**6**)) **C2b** fragment, in which CuHal moieties are isolated from each other by the Cu-X distance of 3.14 Å (**5**) and 3.16 Å (**6**) respectively.

A cyclic $\operatorname{Cu_2Cl_2}$ fragment appears to be favorable also in the crystal structure of **7-14**, in which organic molecules play a role of bidentate ligands (Fig. 3). Only two ligands **L5** and **L6** are attached to the copper(I) center in a chelate mode (forming five- (7) and six-membered (8) organometallic cycles (C3a) via the allylic C=C group and heterocyclic N atom), whereas the others (**L7-L10**) – are bound to $\operatorname{Cu}(I)$ atoms in a bridged manner.

An increase in the nucleophilic activity of N-allyl-5-(4-pyridyle)-2*H*-tetrazole **L9**, in comparison with

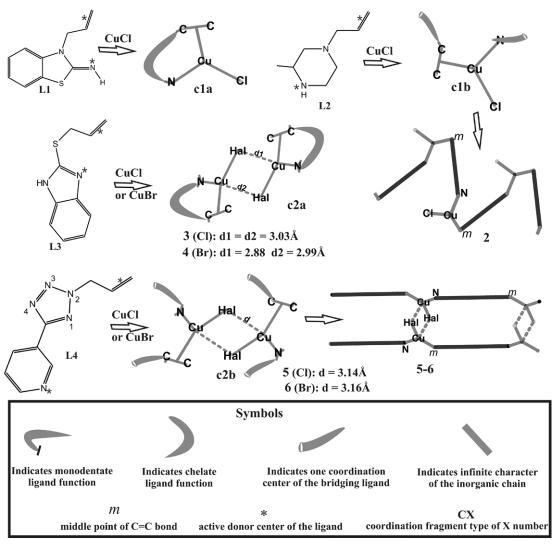


Figure 2. Structural genesis of C1 and C2 fragments in 1-6 compounds.

3-pyridyle analogue **L4**, accompanied by a decrease of d_{z^2} -orbital energy, leads to an effective Cu(I)-Hal_{ap} interaction (Cu-Cl_{ap} 2.54 and Cu-Br_{ap} 2.60Å), resulting in the infinite dimeric {[(**L9**)₂Cu₂Hal₂]}_n chains of **9** [47] and **10** [48]. Taking into account a general structural motif, organometallic chains **5** and **6** can be considered virtually as isomorphic to **9** and **10**.

Some other type of ligand, 1-allyloxybenzotriazole L8, by means of the C=C bond and the most nucleophilic N3 atom of the triazole ring, in the presence of Br atoms links metal centers to the similar infinite {[(L8)₂Cu₂Br₂]}_n chains 14 [51]; a presence of CI leads to a formation of the polymer structure 13 [50]. Both a similar structure of the inorganic fragment C3 and different dimensionality of organometallic chains in 13 and 14 indicate the steric hindrance of the benzotriazole core as a limiting factor formation (Fig. 3). This statement

is confirmed by the fact that 1-allylbenzotriazole L7_1 under similar conditions reacts with CuCl and CuBr and results in the 2D-coordionation polymeric 11 and 12 formations. It should be noted, that a mixture of two isomers 1- (L7_1) and 2-allylbenzotriazole (L7_2) with a molar ratio of 1:1, was used for the preparation of the 13 and 14 compounds; under alternating current (ac-) electrochemical conditions, the CuHal unit selectively coordinates only L7_1 isomer.

At less L8: CuCl ratio more complicated $[(L8)Cu_2Cl_2]$ (15) structure appeared, in which two crystallographically independent metal atoms are characterized by different coordination environments: π -coordinated Cu(I) atom possesses trigonal (formed by the allylic C=C bond and two Cl atoms) and σ -coordinated – tetrahedral (formed by N3 atom of the triazole ring and three chlorine atoms) surroundings [51]. Consequently Cu₂Cl₂

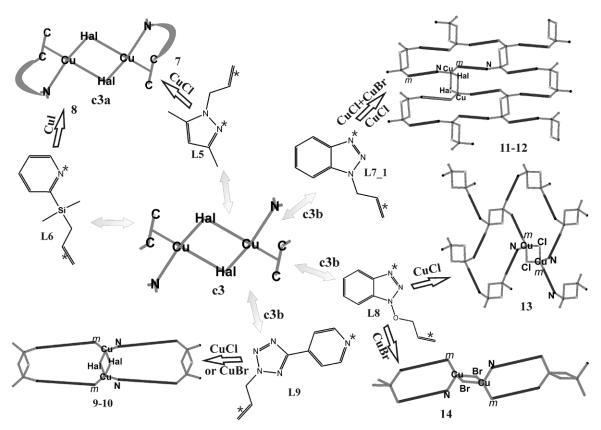


Figure 3. Structural genesis of C3 fragment in 7-14 compounds.

fragments are linked into infinite inorganic chains $\{Cu_2Cl_2\}_n$ (**C4**), which, in turn, are connected by bridged 1-allyloxibenzotriazole molecules in the 3D-framework **15** (Fig. 4). N-allylfurylaldimine **L10** is unable to form cyclic organometallic fragments in a chelate mode with one metal center, therefore two independent Cu(I) atoms and cyclic $\{Cu_4Hal_4\}$ fragments (**C5**) in the twist-configuration appear (Fig. 4).

In 16 and 17 structures, both π - and σ -attached to L10 Cu(I) atoms have a trigonal environment; in **16**, however, the coordination of the σ -bound Cu(I) center may be regarded as trigonal-pyramidal due to a presence of a Cu-O contact with the furyl ring [52,53]. The elongated Cu(2)-O (2.79 A) bond as well as a OCu(2)N (70.8(1)°) angle indicate a presence of a fourth coordination environment participant due to a packing effect. An analog twisted {Cu,Hal,} skeleton was found in the copper(I) π -complex with N-allylbenzaldimine [52], dibenzo[a,e]cyclooctatetraene [80] and allyl alcohol [81]. The reaction of another azomethine type of heterocyclic L11 ligand with CuCl leads to a formation of similar eightmembered {Cu₄Cl₄} cycles (**C6**) which in the structure of 18 are linked into stairs-like coordination polymers [54], due to both significant donor center space separation and specific ligand rigidity (Fig. 4).

The 5-(allylthio)-1-(4-chlorophenyl)-1H-tetrazole (L12) in the structure of 19 almost fully realizes its coordination abilities (C7) by means of two N (N3 and N4) atoms of the tetrazole ring as well as the olefin C=C bond (Fig. 5). Its behavior regarding CuHal moiety considerably differs from that of the 5-pyridyle derivatives of tetrazoles L4 and L9. Thus, the L12 molecule plays a role of tridentate chelate-bridging ligand connecting two Cu(I) atoms into centrosymmetric [(L12),Cu,]2+ dimers (with one six-membered almost planar Cu₂N₄ cycle and two seven-membered CuNC₄S organometallic rings), while the chlorine atom occupies the apical position (Cu-Cl_{an} 2.55Å) of the metal coordination polyhedron. The above conditions lead to an oligomerization of CuCl units into infinite anionic {Cu₂Cl₃-}, chains, which link [(L12)₂Cu₂]²⁺ dimers into 2D polymeric layers 19 (Fig. 5) [55].

An increase in nucleophilic activity of the N-donor center and a decrease in the number of active sites in the ligand as well as heterocyclic core radius, in the presence of Cu(I) $\pi\text{-bonded}$ allyl group, make its specific contributions to the polynuclear inorganic fragment construction. For example, in the structure of **20** and **21** (prepared by solvothermal reaction), bidentate N-allylimidazole **L13** provides a combination

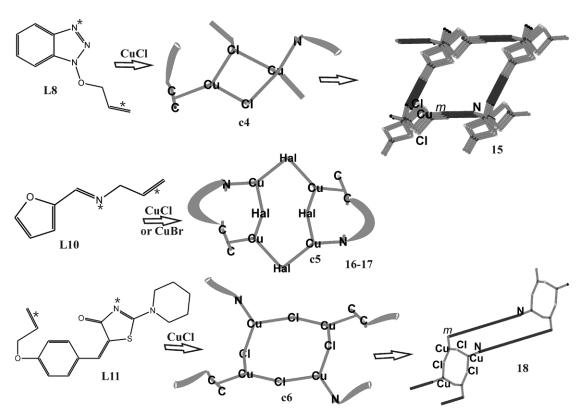


Figure 4. Structural genesis of C5 and C6 fragments in 15-18 compounds.

of CuHal (Hal = Cl(20), Br(21)) moieties into infinite fragments $\{(Cu_2Hal_2)_2\}_n$, within which only one of the two independent metal atom is π-coordinated and adopts a trigolal-pyramidal environment with a Cu-Hal_{ap} distance of 2.82 (20) and 2.89 Å (21). Thus, the C8 architecture may be represented by two C1 fragments, symmetrically united by two bridging CuHal moieties; $\{(Cu_2Hal_2)_2\}_n$ chains are linked by bridging L13 molecules into a 3D-framework. It should be noted, that 20 and 21 are the first 3D copper(I)-olefin coordination polymers synthesized by direct method [56].

As it was stated in [57], triallyl-1,3,5-triazine-2,4,6(1H,3H,5H)-trione **L14** in the reaction with CuBr of a 1:2 and 1:3 molar ratio (under solvothermal condition) affords two types of [(**L14**) $_2$ Cu $_4$ Br $_4$](22) and [(**L14**) $_2$ Cu $_6$ Br $_6$] (23) π -complexes. So, in the structure of 22 the organic molecule uses only two of the three available allyl groups (these two active olefinic bonds have *trans*-location relatively of the triazine plane). Due to such **L14** behaviour the eight-membered Cu $_4$ Br $_4$ fragment (C9) with an open-cubane arrangement appears (only few Cu(I) π -complexes with inorganic particle of cubane (or open cubane) topology [82-85] are known, while cubane Cu $_4$ Cl $_4$ -core was found in a number of Cu(I) σ -complexes with N- and P-donor ligands [86-89]). Two of the independent metal centers are π -bonded to allylic

C=C bonds: they possess different trigonal and trigonal-planar environments respectively ((Cu(2)-Br_{ap} 2.95 Å). The bridged ligand **L14** connects isolated Cu_4Br_4 units into a polymeric chain **22**.

In the **23** crystal structure all three allyl groups of the same organic molecule **L14** participate in copper(I) coordination. The increase in the number of active C=C sites results in an aggregation of CuBr units into the distorted hexagonal-prismatic 12-membered $\{Cu_gBr_g\}$ (**C10**) fragment (Fig. 6) [57]. Each Cu(I) in this cluster has a distorted tetrahedral environment composed of one C=C bond and three bromine atoms; in its turn, Br atom is linked to the three metals center, while each $\{Cu_gBr_g\}$ fragment is bonded to six **L14** molecules. As a result **L14** molecules are coordinated to three different clusters $\{Cu_gBr_g\}$ and form 2D coordination network **23**.

A role of isomeric 2,4,6-triallyloxy-1,3,5-triazine **L15** in regard to CuHal appears to be similar to that of **L14** relating to the inorganic fragment construction, despite a participation of a N atom in the metal coordination. By means of the *ac*-electrochemical technique at a molar ratio of CuCl₂ and **L15** 3:1.6 compound **24** was isolated from the ethanol solution [58]. The latter complex is built up of the cyclic (like twice open-cubane arrangement) tetrameric {Cu₄Cl₄} units (**C11**) of a "bath" conformation. Due to -4, symmetrical Cu-Cl distances are equal to

Figure 5. Structural genesis of C7-C9 fragments in 19-22 compounds

2.256 and 2.260 Å, and each Cu₂Cl₂ unit is linked to four L15 molecules. One more included Cu(II) atom forms its own square coordination {Cu^{II}Cl₂(N-)₂} environment (also found in [(L15), Cu^{II}Cl₂] structure [12]), and is coordinated with the ligand by means of two active N atoms of two different L15 molecules. As a result, the bridging Cu^{II}Cl₂ fragments connect π-coordinated copper atoms (Cu-Cl_{an} 2.96 Å) of adjacent Cu₄Cl₄ clusters into {[Cu^{II}Cu₂Cl₄]}₀ 3D inorganic framework, which are stitched by L15 ligands. It should be noted that L15 molecule in the structure of 24 is coordinated to the metal atoms only by two active sites (allylic C=C bond and opposite N triazine atom), while the π -coordinated allyl group and one adjacent free (not bonded) C=C bond are on the same side of the triazine ring, and the third, also free C₃H₅-group, on the triazine plane.

Under *ac*-electrochemical conditions, starting from a water-ethanol solution of CuCl_2 and L15 a π -complex $[(\text{L15})_2\text{Cu}^{\shortparallel}\text{Cu}_6\text{Cl}_8]$ (25) of 1:1.2 molar stoichiometry was obtained [12]. This compound and the described above 23 complex are very similar in terms of Cu_6Hal_6 construction, but in the latter, Cu_6Cl_6 units were united by means of $\{\text{Cu}^{\shortparallel}\text{Cl}_2(\text{N-})_2\}$ linkers (Cu-Cl 2.30 Å) into endless inorganic $\{[\text{Cu}^{\shortparallel}\text{Cu}_6\text{Cl}_8]\}_n$ chains, combined by three active sites (two C=C and one N atom) of L15 in the 3D coordination framework. In this case each L15 molecule was bonded by two donor centers (N

and C=C) to one inorganic chain, and the third (C=C) – to the neighbouring chains. These π -coordinated allyl groups were situated in trans-coordination mode (located at triazine ring opposite sides), and the free one - in the plane of a heterocyclic core. In general, C12 architecture in 25 can be derived from C11 by incorporating two CuCl units, with an increase in active C=C bonds (two coordinated C=C bonds). Mixhalogen $\{[(L15)2Cu^{||}Cu_{6}Cl_{1.52}Br_{6.48}]\}$ (26) complex is isostructural to 25 [59]. Further ac-electrochemical treatment of mother liquor containing crystals of 25 during 96h, favored a reduction of the remaining Cu(II) (occurred in 25) to Cu(I) and caused an appearance of [(**L15**)₂Cu₂Cl₂] (**27**) π-complex (Fig. 6) [12]. This process was accompanied by a transformation of a bridging {Cu^{II}Cl₂(N-)₂} fragment into a terminal {Cu^ICl(N-) (C=C-) one and finally forming an {[Cu_gCl_g(CuCl)₂]} aggregate. Thus, in 27 the organic ligand L15 fully realizes its π-coordinating abilities and combines the inorganic subunits into a three-dimensional framework (corresponds to C13 fragment, Fig. 6).

3.2. Zwitterionic copper(I) halide π -complexes

The simplest representatives of this class of π -complexes are the halide π -compounds of [(L⁺) CuHal₂] (L⁺ - N-allyl-4-aminopyridinium (L16⁺) (28) [60] or N-allylisoquinolinium L17⁺ (29) [61]) composition with

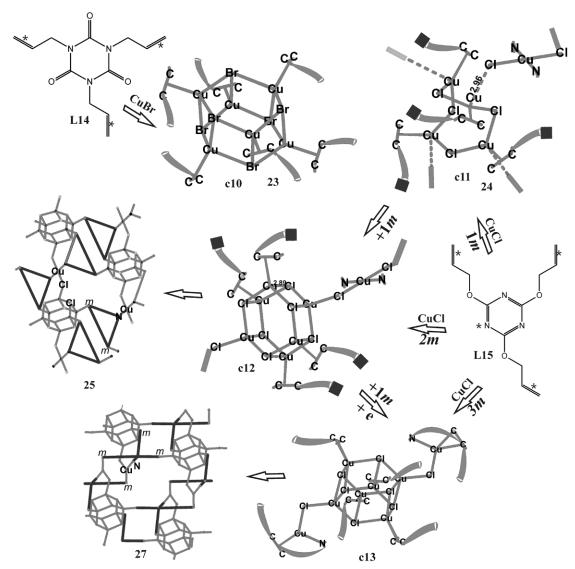


Figure 6. Structural genesis of C10-C13 fragments in 23-27 compounds.

a C14 fragment. It is of importance to note that cation L16⁺ promotes a formation of {CuHal₂}- unit (C14) in a presence of only chloride ions (Fig. 7), while chlorine by bromine substitution leads to the other {Cu₂Hal₂}- fragment (C17). It is obvious that C14 architecture of 28 is caused probably by the participation of an amino group of the ligand L16⁺ in effective N-H...CI hydrogen bonds construction. This effect is less pronounced in the case of Br atoms in 33 and 34. So, N-allylisoquinolinium L17⁺, which is unable to form N-H..X (X=CI or Br) hydrogen bonds, leads to the predominant Cu₂Hal₄²⁻(C17b) construction; but Cu₂Br₄²⁻, when kept [(L17)CuBr]·H₂O (39) in the mother liquor for six months, transformed into [(L17)CuBr₂] (29) with CuBr₂- unit (C14) [61].

Diallylbenzimidazolium (L18+) cation, due to a presence of two coordinated active allyl groups,

governs a formation of a {Cu₂Cl₃}- unit (C15) through the combination of two π-bonded CuCl moieties with one bridging Cl⁻ anion (Fig. 7). In this, the bond length between CuCl units (Cu-Cl $_{\mbox{\tiny ap}}$ 3.09 Å) is found within an acceptable hypothetical scope of copper(I)-chlorine interaction (Fig. 1). As a result, in the structure of 30 bridging L18+ moieties connect Cu₂Cl₃- fragments into an infinite chain [62]. The other cation L19+, 2-(3-pyridil) derivative of benzimidazole, in the structure of 31 acts as a bidentate ligand forming similar {Cu2ClBr2}- unit (C16) with the absence of any interaction between two CuHal moieties (the second nearest halogen atom is located at 3.32 and 3.42 Å from the metal center). Both copper atoms here possess different coordination environments: first Cu(I) is π -bonded and the second one - σ -bonded to N pyridyl atoms, resulting in {(L19)

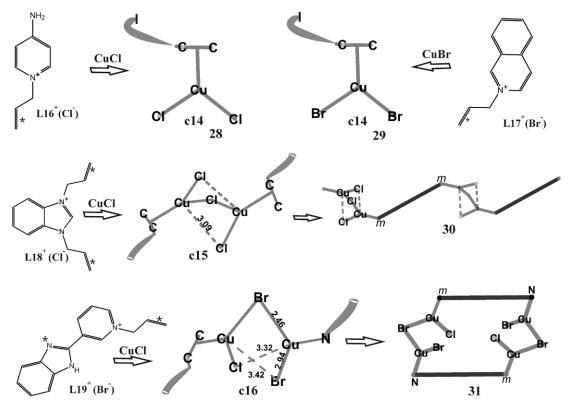


Figure 7. Structural genesis of C14-C16 fragments in 28-31 compounds.

Cu₂ClBr₂}₂ dimer **31** [19]. A similar {Cu₂Hal₃} fragment construction in **30** and **31** may be caused by a specific geometry of the benzimidazole core.

All the ligands shown in Fig. 8 contain an allyl group, directly bound to a quaternary N atom of heterocyclic core. π-Compounds 33-43 possess centrosymmetrical [Cu₂Hal₄]²⁻ (C17b) fragment with two π -attached allylic C=C bonds; the only exception - 32 where acentric [Cu₂Cl₄]²⁻ anion occurred [63]. It should be noted, that similar C17b architecture was found earlier in [(CH₂=CH- CH_2 - NH_3) CuX_2) (X=CI, Br) [91,92] π -compounds. The Cu(I) center in 32-42 structures possesses a trigonalpyramidal coordination environment with the bridging apical halogen atoms. The acentric [Cu2Cl2]2- ion (Cu(1)-Cl_{ap} 2.74 and Cu(2)-Cl_{ap} 3.07 Å) which occurred in a 32 π -complex may arise due to the existence of asymmetrical (N)H...Cl contacts. These appear among protonated nitrogen atoms of two L20(H+) cations and only one Cu(1)Cl₂ moiety, while the other independent Cu(2)Cl₂ unit does not participate in hydrogen bonds formation.

As mentioned above, L16+(Br), L17+(Cl-) and L17+(Br) react with CuBr or CuCl to form a $Cu_2Hal_4^{2-}$ anion (33, 34, 37-39, Fig. 8), which corresponds to the C17b fragment (Fig. 8). In contrast to 1-allyl-4-aminopyridinium chloride in 28, with monomeric

anion $CuCl_2^-$ (fragment **C14**, Fig. 7), isomeric 1-allyl-2-aminopyridinium chloride or bromide (**L21**+(Cl-) or **L21**+Br-) due to (N)-H...X contacts of less efficiency, behaves as **L16**+(Br-) producing π -complexes of [(**L21**) CuX_2] composition with the inorganic fragment **C17b** (Fig. 8) [64].

A difference in the N-allylquinolinium **L35**⁺ behavior. which does not form copper-halide π-compounds¹ [65,93], and N-allylisoquinolinium L17+, which produces zwitterionic copper(I) halide π-complexes, can also be explained by a different pK_a value of origin for quinoline (4.90) and isoquinoline (5.40). The lowest pK_a value of quinoline, among the compounds under consideration, reflects on the allyl group electron density distribution making it inert to π-coordination. Nevertheless, C17 architecture was found in 40 and 41 π-compounds [66], in which origin benzothiazole L22 has a much lower pK_{\circ} value of 2.44. It is interesting to note that **L1(H**⁺) (Br) under ac-electrochemical conditions in an ethanol solution reacts with CuCl and CuBr to give the same Cu₂Hal₄2- fragments (42, 43), while in an acetonitrile solution, L1(H+) (Br-) loses the HBr molecule resulting in [(L1)CuCl] (1) complex with a C1a fragment.

¹Allylquinolinium as well allylisoquinolinium cations form copper(II) salts of the composition (L⁺)_a[Cu^uCl_a1 [93].

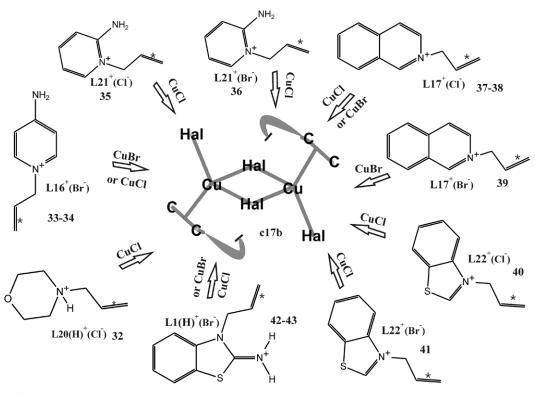


Figure 8. Structural genesis of C17 fragment in 32-43 compounds.

In Fig. 9 one can see that diallylpiperazinium {L24(2H+)}2+ and tetraallylpiperazinium L252+ cations, containing the same piperazine core, react with CuCl and result in centrosymmetrical inorganic {Cu2Cl4}2fragments (C17a, Fig. 9). In this case they are connected by π -bridging cations into coordination polymers **44** [67] and 45 [68]. In the last structures both organic cations act as the bidentate ligand (despite the presence of four allyl group in $L25^{2+}$) and π -bonded allyl groups are related by the center of the symmetry of the piperazine ring (it should be noted, that C17a architecture in 45 is one of two disordered modes of CuCl₂- π-coordination, the second CuCl unit with 87% occupation probability causes a realization of isolated {CuCl₂} fragment with trigonal Cu(I) surrounding). In general, it can be concluded, that {(-CH₂)₂N(R)C₃H₅}⁺ (R=H, C₃H₅) organic linkers (belonging to L20(H)+, {L24(2H+)}2+, L252+) in the crystal structure of 32, 44 and 45 appear to be a guiding building factor in Cu₂Cl₄²⁻ construction.

A tendency of $\{(-CH_2)_2N(R)C_3H_5\}^*$ organic linkers to form a $\{Cu_nCl_{2n}\}^{2-}$ unit is also displayed in a formation of more complicated centrosymmetric $Cu_4Cl_8^{2-}$ fragments (C18) in 46 [67]. The last anion can be considered to be a broken π -bonded $\{Cu_2Cl_4\}^{2-}$ unit (due to a higher (number of active sites)/(ligand charge) ratio). Geometric parameters of piperazine core (chair conformation) in 44, 45 and 46 are basically the same.

Some more examples - diallylisoamarinium L27* and diallylbenzotriazolium L28+, containing similar, but spatially separated by {C-N-X-N+C} (X=C or N) linker active C=C bonds, form infinite anionic {Cu₂Br₃-}₀ chains (C19), in which one can also depict a dimeric {Cu₂Br₄} unit (Fig. 9). Similar C18 architecture was found earlier in the $[(C_3H_5)_2NH_2]Cu_2Br_3$ π -complex with a diallylammonium cation [94]. The bridging bidentate L27 and L28+ moieties bind {Cu₂Br₃-}_n chains into isomorphous twodimensional grids (Fig. 9). Inorganic parts in 47 [69] and 48 [70] contain two crystallographically independent Cu(I) atoms belonging to two neighboring Cu₂Br₂ units. It should be noted, that only isoamarine (in which phenyl rings, in 5 and 6 positions, are in trans-configuration) derivative **L27** $^{+}$ is able to give Cu(I) π -compounds. On the contrary to the above amarine (possessing the cisconfiguration of phenyl rings), due to a steric hindrance, produces (diallylamarinium)[Cu₂Br₄] salt only [69]. Corresponding Cu-Br_{ap} distance within the anion in 48 equals to 2.98 Å for Cu(1) and 2.86 Å for Cu(2).

The reaction of diallylbenzimidazolium (L18*) bromide with CuCl or CuBr under the ac-electrochemical conditions produces two mix-halogen [(L18)Cu₂Hal₃] (49, 50) (with a molar ratio Br:Cl of 1.6:1.4 (1.14)) and one bromine [(L18)Cu₂Br₃] (51) π -compounds with more complicated fragments built in C20 [71,72]. Transformation of C19 into C20 (keeping the same [(L)

Figure 9. Structural genesis of C17-C19 fragments in 44-48 compounds.

Cu₂Br₃] composition) may be caused by a significantly higher pK_a value of original benzimidazole (5.53, basicity) in comparison with benzotriazole (<0, basicity), that reflects an electrostatic interaction between L18+ and the inorganic anion. The inorganic part in 49-51 consists of two independent copper(I) atoms with a different coordination environment: trigonal-pyramidal for π-bonded Cu(I) and tetrahedral with the only halogen atoms for the other copper(I) atom. As a result, the infinite {Cu₂Hal₂-}₂ chains in **C20** possess two different subunits - eight-membered cycle Cu₄Hal₄ of chair conformation and a square Cu₂Hal₂ cycle, which are cross-linked into a 1D polymer by nodal metal atoms (Fig. 10). Within Cu₄Hal₄ cycles, the apical position of an π-coordinated Cu(I) polyhedron is occupied by an opposite halogen atom of the ring at a distance of 3.07 (49) [71], 3.07 (50) [72] and 2.99 Å (51) [71]).

The same **C20** fragment formation in N-allyl-3-aminopyridinium **L29** $^{+}$ also relates to a pK_a value of original 3-aminopyridine (5.98), which is less than the corresponding pK_a value of 2- (6.86) and 4-aminopyridine (9.25) (see above). The Cl_{ap} atoms in Cu_4Hal_4 ring of **52** are remote from Cu(I) up to 3.2Å (due to more covalent character of Cu-Cl_{eq} bonds, accompanied by effective Cu-(C=C) interaction) and therefore eight-member cycles appear to be more distorted.

A lower pK_a value (5.22) of pyridine (compared with those of its amino derivatives) and its inability to form effective hydrogen bonds may explain the very complicated architecture (**C21**) of the inorganic chain which arises due to the interaction of CuCl and N-allylpyridinium **L30**+ chloride [13]. Thus, one may regard the resulting inorganic {Cu₄Cl₆²-} fragment (the simplest composition is {Cu₂Cl₃²-}) in a structure of **53** as Cu(I) tetrahedra, connected by a common edge Cl(3)-Cl(3) in pairs, and simultaneously - by opposite vertices Cl(2)-Cl(2), and combined into endless chains, whereas the π -coordinated Cu(I) plays a bridge role between Cl(3) atoms in **C21** architecture (Fig. 10).

It is worth noting that N-allylhexamethylenete-traminium ${\bf L31}^+$ can play a role of bidentate or tridentate ligand due to its participation in the metal coordination by means of the allylic C=C bond and one (or two) N-atoms from the heterocyclic core. Applying the *ac*-electrochemical technique, the reaction of CuCl with (${\bf L31}^+$)(Cl⁻) in water-ethanol solution results in a **54** structure with a **C22** architecture, while under similar conditions from the corresponding solution, acidified by formic acid to pH 4.5, the π -complex **55** with **C23** fragment was found (Fig. 11) [74].

The structure of **54** is built of original centrosymmetric insular $\{Cu_aCl_a\}^{2-}$ fragments (**C22**) which are composed

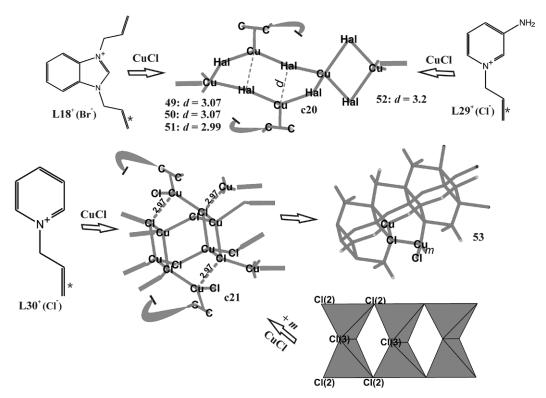


Figure 10. Structural genesis of C20 and C21 fragments in 49-53 compounds.

of two CuCl moieties with **C1b** π -coordination mode and are linked by dimeric bridged Cu₂Cl₄²⁻ anion. All Cu(I) atoms in **C22** are connected with one N atom of the heterocyclic core. Thus, each inorganic anion is bound with six **L31**⁺ cations (by means of C=C bond and two nucleophilic N atoms) into a 2D-layer **54**.

A decrease in donor activity of **L31**⁺ upon acidifying **L31**⁺, leads to the infinite $\{Cu_2Cl_3^-\}_n$ chain (**C23** mode) formation in **55**. The inorganic part can be considered as derived from **C22** by recombination of π -coordinated CuCl moieties (due to passivation of the second ligand's nucleophilic nitrogen atom) in the $\{Cu_2Cl_2\}$ fragment united, in turn, by bridging $Cu_2Cl_4^{2-}$ anions into a 2D coordination polymer $\{(\textbf{L31}^+)_2Cu_4Cl_6^{2-}\}_n$ (**55**). Under similar synthetic conditions from the corresponding solution, acidified by strong hydrochloric acid to pH~3, only the σ -compound $[(\textbf{L31}^+)CuCl_2]$ was also isolated [74].

The N-allyl derivative of 2-styrylbenzimidazol (L32*) (Br) due to solvothermal reaction with CuCl in methanol solution gives π -complex **56** with $\{Cu_6Cl_4Br_4\}^-$ (**C24**) anion [75], built up of two uncompleted (without one metallic vertex) and slightly distorted cubane units, united by bridging Cu-Cl bonds (Fig. 12). Both independent π -bonded copper(I) atoms within the $\{Cu_3Cl_2Br_2\}$ subunit have a trigonal-pyramidal coordination environment with different Cl/Br statistics. For Cu(1) the apical position of

coordination polyhedron is occupied by Cl_{ap} atoms, and equatorial plane possesses two Br_{eq} and C=C bond, while for $\text{Cu}(2) - \text{Br}_{ap}$ and only Cl_{eq} correspondingly. The bidentate L32^+ cations by means of two allylic C=C bonds connect $\{\text{Cu}_{e}\text{Cl}_{4}\text{Br}_{4}\}$ fragments into coordination layers 56. It should be noted that under the same conditions $(\text{L32}^+)(\text{Br})$ reacts with CuBr giving (L32) [Cu₂Br₃] compound with only electrostatic interaction among the particles.

In heterometallic π -compound 57 [76] organic ligand L33 demonstrates a distinguishing coordination behavior relating to Cu(I) and Ni(II) atoms. Four N atoms of L33 are linked to the Ni(II) atom from the isolated NiCl⁺ unit to form a complex cation [L33NiCl]⁺. The latter produces with the π -coordinated CuCl unit and CuCl₂-anion the centrosymmetrical {Cu₆Cl₈-2} fragment C25 with three independent metal atoms (two of them are π -bonded). Thus, each {Cu₆Cl₈}-2 anion is attached to four different L33 molecules, which in 57 have only two active allyl groups, connecting the complex anions in the polymeric bimetallic chain (Fig. 12).

In contrast to the piperazine containing structures 44 and 45 with centrosymmetrical $Cu_2Cl_4^{2-}$ (44 and 45) and $Cu_4Cl_8^{4-}$ (46) anions, in the structure of 58 also centrosymmetrical $Cu_6Cl_{10}^{4-}$ fragment (C26) of higher nuclearity appears (Fig. 13) [77]: it can be considered as two π -bonded CuCl units attached to

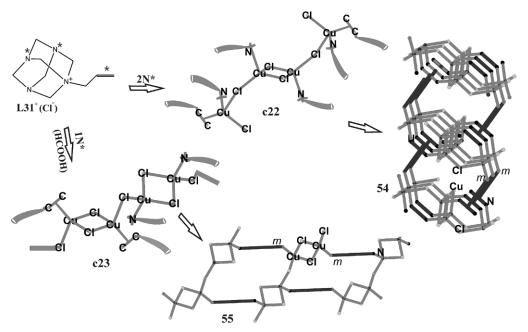


Figure 11. Structural genesis of C22 and C23 fragments in 54 and 55 compounds

 $\{Cu_4Cl_8^4\}$ anion composed, in turn, by two $\{Cu_2Cl_4^2\}$ moieties.

Protonated allylbenzimidazole {L35(H *)} in π -complex **59** forms the infinite {Cu $_3$ Cl $_4$ ·} $_n$ chains (C27). The trigonally surrounded Cu(I) atoms are disordered into two sites with 50% probability.

In contrast to N-allylmorpholinium chloride $L20(H^*)$ (Cl⁻), which react with CuCl forming dimeric $\{Cu_2Cl_4^{-2}\}$ (C17b) inorganic unit (Fig. 8), N,N-diallylmorpholinium chloride (L36⁺)(Cl⁻) under the same conditions causes a formation of a markedly complicated $\{Cu_8Cl_{10}^{-2}\}_n$ (C28) anion (Fig. 13). The last fragments in the structure of 60 are united in rather thick layers, containing fourand six-membered small, as well as twenty-membered large, copper-halide cycles. As a result, bridged L36⁺ cations by means of allylic C=C bonds connect $\{Cu_8Cl_{10}^{-2}\}_n$ chains into a 3D-framework (Fig. 13). Contrary to the above, in the presence of Br anions $\{L20(H^*)\}^+$ gives only two crystalline salts (L36) $[CuCl_{0.59}Br_{1.41}]$ and (L37) $[CuBr_2]$ without any Cu(I)-(C=C) interaction.

3.3. π -Complexes with ionic copper(I) salts

The review of this class of π -complexes should be started from the compounds containing nitrate anion It is known, NO_3^- ion possesses an intermediate position among halide and other anions, and therefore it acts very often as a bridged pseudo-halide particle.

The first representative of $CuNO_3$ π -compounds is complex **61** [95], in which N,N`-diallylpiperazinium cation

{L24(2H+)}²⁺ acts as a bidentate π-ligand, connecting inorganic {Cu(NO₃)₂H₂O-} units in the centrosymmetrical island {Cu(NO₃)₂H₂O-L24(2H+)-Cu(NO₃)₂H₂O} complex. The trigonal-pyramidal Cu(I) environment in **61** includes allylic C=C bond, one O atom of water, and two O atoms from two different NO₃-, one of which is located at the apical position of the metal coordination polyhedron (C29, Fig. 14).

The N heterocyclic atom of N-allylhexamethylenetetraminium cation ($L31^+$) and O-NO₂ as well as C=C bond and H₂O molecule form a Cu(I) coordination sphere in **62** which possesses a structure fragment **C30** (Fig. 14). Thus, in the structure of **62** bidentate $L31^+$ cations combine inorganic {CuNO₃(H₂O)} fragments into infinite metal-organic chains. The CuNO₃ substitution by CuBF₄ does not affect on the bidentate $L31^+$ coordination mode and, due to more hardness of the fluorine atom in BF₄, two other positions of the metal polyhedron in **63** are occupied by H₂O molecules (**C31**) [95].

An absence of any donor atoms, except the C=C bond in N-allylquinolinium L37 $^+$ cation, complicates the inorganic topological moieties and due to bridging function of $O_{ap}(NO_3^-)$ atom in 64, leads to the dimeric centrosymmetric $\{(L37)Cu(NO_3)_2\}_2$ unit (C32) (Fig. 14) [96]. N-allylquinolinium nitrate, contrary to the corresponding halide salts, is more tolerant to form a Cu(I) π -compound. Structural similarity of $\{(L37)Cu(NO_3)_2\}_2$ 64 [96] and halide $\{(L17)_2Cu_2Hal_4\}$ complexes 38, 39 [61, 65] (Fig. 8) displays a pseudohalide behavior of a NO_3^- anion.

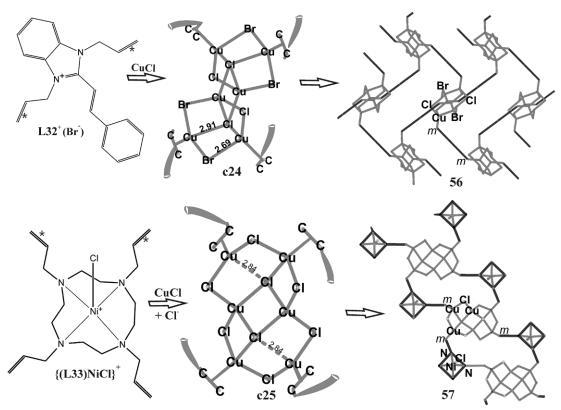


Figure 12. Structural genesis of C24 and C25 fragments in 56 and 57 compounds.

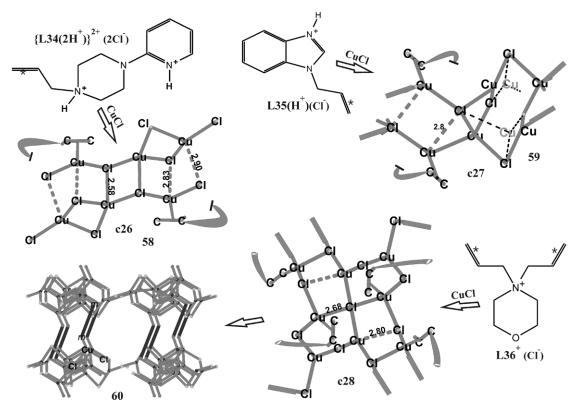


Figure 13. Structural genesis of C26-C28 fragments in 58-60 compounds.

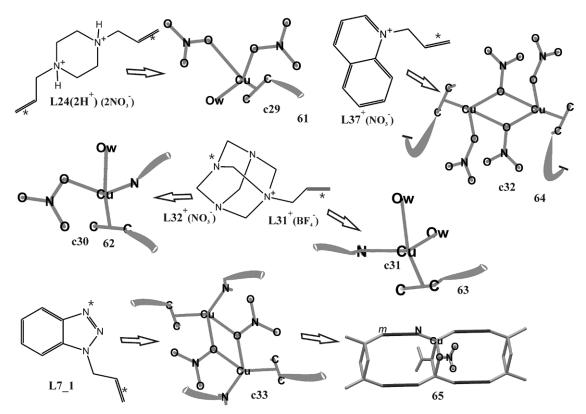


Figure 14. Structural genesis of C29-C33 fragments in 61-65 compounds.

Molecular N-allyl-1H-benzotriazole L7_1 reacts selectively² with CuNO $_3$ to give a dimeric {Cu $_2$ (NO $_3$) $_2$ } moiety (C33) which resembles the halide {Cu $_2$ Hal $_2$ } fragment occurred in 11 and 12 (Fig. 3). But in contrast to the last structures with a 2D-coordination network, in π -complex of 65 [97], ligand L7_1 connects inorganic {Cu $_2$ (NO $_3$) $_2$ } units into the double polymeric chains (Fig. 14).

5-(Allylthio)-1-(4-chlorophenyl)-1H-tetrazole L12 reacts with CuNO₃ [55] as well as 5(allylthio)-1-phenyl-1H-tetrazole L38 with CuBF, to give dimeric cationic $\{(L)_2Cu_2(H_2O)_2\}^{2+}$ moieties (C34) [98], in which the organic molecule plays a role of a N,N,(C=C)-tridentate chelate-bridging ligand (Fig. 15). The apical positions of the metal coordination polyhedra in 66 and 67 are occupied by water molecules, which, in turn, through $(Ow)H...O(NO_3^-)$ or $(Ow)H...O(BF_4^-)$ hydrogen bonds act as a bridge between Cu(I) and the corresponding anions. It should be noted that cationic {(L)₂Cu₂}²⁺ fragment, as is the case of the 5-(allylthio)-1*H*-tetrazole derivative, appears to be a stable building block, which is able to incorporate into 2D polymeric layers in a chloride complex [(L12)₂Cu₃Cl₃] (19) through the bridging of Cl₂

(Fig. 5) or to form island cations $\{(L)_2Cu_2(H_2O)_2\}^{2+}$ with the H₂O apical molecules (**66** and **67**) (Fig. 15).

A mixed-anion π -complex **68** was isolated under *ac*-electrochemical reduction of a Cu(NO₃)₂ ethanol solution in the presence of 1-allyl-4-aminopyridinium chloride (**L16**+)(Cl⁻) (Fig. 15, **C35**) [96]. The last structure is built of the infinite {(**L16**)₂Cu₃Cl₃(NO₃)₂}_n coordination polymers, in which π -bonded Cu(l) possesses a trigonal-pyramidal environment and is surrounded by C=C bond, O nitrate atom and two bridging chlorine atoms: Cl_{eq} (with Cu-Cl-Cu angle 102.4°) and Cl_{ap} (belonging to a linear bridging {CuCl₂} fragment).

Use of an ethanol solution of $Cu(NO_3)_2 \cdot 3H_2O$ and the mixture of N-allyl-2-iminobenzothiazole **L1** and original 2-aminobenzothiazole (ambthia)), ac-electrochemical technique, mixed ligand Cu(I) π -complex **69** with **C36** fragment was isolated [99]. The N atom and C=C bond of the chelate **L1** ligand occupy two equatorial positions of the metal polyhedron, while the N atom of ambthia is on the third corresponding site. Participation of the latter N-atom influences the removal of O_{ap} (NO_3^{-1}) from Cu(I) up to 2.48 Å (it corresponds to a point that lies above the line plot (c) on Fig. 1).

One more example of two ligand molecules coordinating to one Cu(I) center is π -complex **70** [26], in which bidentate N-allyloxybenzotriazole

 $^{^2}$ ln all the cases the mixture of two isomeric 1- and 2-allylbenzotriazole in molar ratio of 1:1 was used as the started reagent for Cu(l) $\pi\text{-complex}$ preparation [35].

 $\begin{tabular}{ll} \textbf{Table 2.} Geometric parameters of $Cu(l)$ π-core in the structures of complexes with ionic copper(l) salts. \end{tabular}$

_		Ligand [a]	Composition (preparation method) [b]	Fragment	Cu-m ^[c] , Å C=C, Å	C=C-C, deg	∆ ^[d] , Å	τ ^[e] , deg	C-Cu-C, deg φ(C=CCX) ^[1] , deg	Cu-X _{ap} ^[g] , Å	Ref.
61	L24(2H*)	H-Z-H	[{ L24 (2H ⁺)}Cu ₂ (H ₂ O) ₂ ···(NO ₃) ₄]·2H ₂ O (e.c.)	C29	1.884(4) 1.379(3)	122.5	0.05	9.8	40.19(8) 95.7	2.241(3)	[95]
62	{L31}⁺	*_\	{[(L31)Cu(NO ₃)(H ₂ O)]} _n (NO ₃) _n ·nH ₂ O (e.c.)	C30	1.917(3) 1.368(5)	122.3(1)	0.33	3.5	39.7(1) 98.8	2.241(3)	[95]
63		N+*	$\begin{aligned} \{[(\textbf{L31})\text{Cu}(\text{H}_{2}\text{O})_{2}]\}_{\text{n}} \cdot (\text{BF}_{4})_{2\text{n}} \cdot \\ \cdot \text{nH}_{2}\text{O (e.c.)} \end{aligned}$	C31	1.921(4) 1.374(5)	121.8	0.25	2.9	39.5(1) 94.0	2.174(3)	[95]
64	{L37}⁺	N+*	$[(L37)_2Cu_2(NO_3)_4]$ (e.c.)	C32	1.890(2) 1.382(3)	122.01	0.06	6.0	40.2(1) 96.7	2.617(2)	[96]
65	L7_1	*__*	$[(L7_1)_2Cu_2(NO_3)_2]_n$ (e.c.)	C33	1.912(5) 1.356(6)	123.2	0.19	1.3	39.1(2) 81.1	2.319(3)	[97]
66	L12	N=N*	$[Cu_{2}(L12)_{2}(H_{2}O)_{2}](NO_{3})_{2} \times C_{5}H_{5}OH (e.c.)$	C34	1.944(9) 1.37(5)	122(4)	0.32	21.6	38.9(4) 150.9	2.217(7)	[55]
		CI NY S	^O ₂ H ₅ OH (e.c.)		1.953(9) 1.33(4)	123.5(9)	0.39	24.4	37.6(4) <i>147.0</i>	2.188(7)	
67	L38	N=N* N* S	[Cu ₂ (L38) ₂ (H ₂ O) ₂](BF ₄) ₂ (e.c.)	C34	1.935(5) 1.368(6)	122.1(4)	0.27	11.3	38.9(2) 156.5	2.252(4)	[98]
68	{L16}⁺	*N+NH ₂	[(L16) ₂ Cu ₃ Cl ₃ (NO ₃) ₂] _n (e.c.)	C35	1.954(4) 1.371(6)	122.1	0.31	9.9	38.7(2) 151.3	2.620(2)	[97]
			()		1.942(4) 1.360(6)	123.6	0.29	12.8	38.6(2) 146.4	2.651(2)	
69	L1(H*)	N, X,	[(L1)(abthia)Cu(NO ₃)] ^[h] (e.c.)	C36	1.932(3) 1.365(5)	122.8	0.25	7.2	38.9(1) 147.2	2.486(3)	[99]
70	L8	*N=N-0	$\begin{aligned} \left\{ \left[\left(\textbf{L8} \right)_2 \text{Cu} (\text{H}_2 \text{O}) \right] \right\}_{\text{n}} (\text{BF}_4)_{\text{n}} \\ \text{(e.c.)} \end{aligned}$	C37	1.953 1.40(1)	122.2	0.50	17.0	39.5(4) 103.8	2.115(9) tetr	[26]
71	L7_2	* N-N	{[(L7_2)Cu(H ₂ O)]} _n (BF ₄) _n (e.c.)	C38	2.007(4) 1.329	123.5	0.43	21.7	37.3(2) 115.3	2.166(3)	[35]
72		N _k	[(L7_2)Cu(ClO ₄)] _n (e.c.)	C38	2.025(6) 1.348	123.5	0.38	17.2	36.8(3) 119.9	2.234(5)	[35]
73			[(L7_2)Cu(HSO ₄)] _n (e.c.)	C39	2.040(8) 1.363(9)	120.9	0.53	13.1	36.9(3) 119.5	2.111(4)	[35]
74	L7_1 L7_2	\$ 5 5 N.	[(L7_1)(L7_2)Cu(ClO ₄)] _n (d.r.)	C40	1.962(7) 1.353(6)	124.7	0.27	18.4	38.1(2) 117.5	2.452(4)	[35]
75	L39	NH ₂	{[(L39)Cu(H ₂ O)]} _n (ClO ₄) _n (d.r.)	C38	1.911(3) 1.368	121.8	0.29	10.0	37.9(2) 139.2	2.394(2)	[100]
76			{[(L39)Cu(CH ₃ CN)]} _n (ClO ₄) _n (d.r.)	C38	1.980(5) 1.360(7)	123.0	0.47	2.7	39.4(1) 143.1	2.111(4)	[100]
77	L24(2H+)	H-**	[{ L24 (2H+)} Cu ₂ (SO ₃ NH ₂) ₄]·2H ₂ O (e.c.)	C41	1.919(4) 1.368(6)	121.3	0.13	5.1	39.2(1) 92.8	2.574(3)	[101]
78		N [†]	{pip(2H+)}[{ L24 (2H+)} Cu ₂ (SO ₃ NH ₂) ₆]×H ₂ O ^[] (e.c.)	C42	1.962(9) 1.29(2)	124.4(9)	0.46	5.2	36.4(4) 91.4	2.295(6)	[101]
79		<i>"</i>	$[\{L24(2H^+)\}Cu_2(H_2O)_6]$ (SiF ₆)·H ₂ O (e.c.)	C43	1.89(1) 1.32(2)	124.6	0.17	4.0	38.5(5) 99.8	2.375(2)	[102]

Continued Table 2. Geometric parameters of Cu(I) π -core in the structures of complexes with ionic copper(I) salts.

		Ligand [a]	Composition (preparation method) ^[b]	Fragment	Cu-m ^[c] , Å C=C, Å	C=C-C, deg	∆ ^[d] , Å	τ ^[e] , deg	C-Cu-C, deg φ(C=CCX) ^[r] , deg	Cu-X _{ap} ^[g] , Å	Ref.
80	L7_2	*N N *	{[(L7_1) ₂ Cu ₂ (CH ₃ OH) ₂ (H ₂ O) ₂]} _n (SiF ₆) _n (e.c.)	C44	1.935(5) 1.366(6)	121.3	0.38	10.8	38.9(2) 160.3	2.186(3)	[34]
81			$\begin{aligned} \{ & [(\textbf{L7_1})_2 \text{Cu}_2(\text{H}_2\text{O})_2 (\text{SiF}_6)] \}_{\text{n}} \cdot \\ & \cdot 2 \text{nH}_2 \text{O (e.c.)} \end{aligned}$	C45	1.920(5) 1.368(6)	122.0	0.11	11.1	39.2(3) 160.3	2.439(2)	[34]
82	L20(H*)	*O*	$\begin{aligned} \{ [\{ \mathbf{L20}(\mathbf{H}^{\scriptscriptstyle{+}}) \} \mathbf{Cu}(\mathbf{H}_{\scriptscriptstyle{2}}\mathbf{O})_{\scriptscriptstyle{2}}] \}_{\scriptscriptstyle{n}} \\ (\mathbf{SiF}_{\scriptscriptstyle{6}})_{\scriptscriptstyle{n}} \cdot \mathbf{nH}_{\scriptscriptstyle{2}}\mathbf{O} \; (e.c.) \end{aligned}$	C46	1.894(8) 1.38(1)	122.8	0.22	5.9	40.1(3) 89.1	2.436(5)	[103]
83	L40	*N" NH *	{[(L40)Cu(NO ₃)]} _n ·0.5nH ₂ O (e.c.)	C47	1.970(4) 1.363(5)	123.8	0.47	9.0	38.2(1) 145.1	2.159(3)	[30]
84		NH ₂	[(L40)Cu(CF ₃ COO)] _n (e.c.)	C47	1.913(5) 1.339(8)	126.3	0.28	6.8	38.6(2) 12.6	2.325(3)	[30]
85	L11		[(L11) ₂ Cu ₂ (CF ₃ COO) ₂] (e.c.)	C48	1.905(7) 1.385(9)	120.1	0.08	6.8	39.9(3) 110.9	-	[104]
86	L8	*N=NN-0	[(L8) ₂ Cu ₂ (CF ₃ COO) ₂] _n (e.c.)	C49	1.90(1) 1.37(2)	123.8	0.13	11.9	39.5(5) 88.5	2.404(8)	[26]

[a] asterisk indicates an active Cu(l) coordination ligand site; [b] method of preparation: alternating current electrochemical (e.c.) and direct (d.r.) techniques; [c] m - a middle point of C=C bond, [d] - a distance value of a deviation of copper(l) atom from the trigonal pyramid base plane, [e] - angle value of the C=C line deviation from the base plane of a trigonal pyramid, [f] - torsion angle of allyl C=C-C-C-C group (X - any element), [g] - a distance from the copper(l) to the apical (L_m) donor atom, [h] abthia - 2-aminobenzothiazole molecule; [i] pip - piperazine.

L8 connects the metal atoms into infinite cationic $\{((L8)Cu(H_2O))^+\}_n$ (**C37**) chains (by means of allylic C=C bond and the most nucleophilic N3 triazole atom). The fourth position of a distorted tetrahedral Cu(I) environment is occupied also by a N3 atom of the other **L8** molecule, acting as a σ-ligand only (Fig. 15).

The reaction of a mixture of isomeric N-allyl-1H- (L7_1) and N-allyl-2H- benzotriazole (L7_2) with CuBF $_4$, CuClO $_4$ and CuHSO $_4$ in an alcohol solution (acidified by corresponding acid to pH \sim 4) under *ac*-electrochemical conditions results in π -compounds 71-73 with the selective L7_2 participation in the metal coordination [35]. In the structure of these compounds, the organic ligand is coordinated to Cu(I) simultaneously in the chelate and bridge fashions by means of all three available active center (N1 and N3 triazole atoms and allylic C=C bond). Thus, C38 and C39 infinite chains differ only by the apical position of the Cu(I) trigonal-pyramidal arrangement: H_2 O molecule in 71 (due to marked hardness of fluorine atom in BF $_4$) and O atoms from the anions in 72 and 73 (Fig. 16).

Under the same (as in **71** and **72**) initial conditions without applying *ac*-tension, , the crystals of complex **74** grew on a copper-wire during one month. It is interesting to note, that **74** represents the unusual mixed ligandisomers coordination compound. The metal coordination

includes a C=C bond, a N1 atom of 2-allylbenzotriazole (L7_2) and a N3 atom of 1-allylbenzotriazole isomer (L7_1) (Fig. 16, C40). The last molecule L7_1 in the structure of 74 plays only a role of σ -ligand (allylic C=C bond does not participate in the metal coordination). In summary, this circumstance causes the significant d_z^2 -orbital energy increase and elongation of Cu(I)-O(ClO₄ distance up to 2.45 Å (Table 2) (driving this extremal point above the line plot (c) on Fig. 1). So, the selective complexation of Cu(I) with two N-allylbenzotriazole isomers causes a formation of discrete [(L7_1)(L7_2) Cu(ClO₄)] moieties (74, Fig. 16) [35].

In **75** and **76** π -complexes 9-allyladenine **L39** is attached to Cu(I) in **C39** manner, and an apical position of the metal trigonal-pyramidal environment is occupied by a neutral molecule - H_2O (**75**) or CH_3CN (**76**) [100]. Chelate function of **L39** is realized by means of the allylic C=C bond and N3 atom of the adenine core, while second bridging N7 atom connects the metal centers into cationic {[(**L39**)CuX]⁺}_n chains (**75**). Also, due to a higher nucleophilic activity of CH_3CN moiety, in **76** the deviation of a copper atom from the base plane of the polyhedron increases to 0.47 Å, compared to the analogous metal deviation in **75** – 0.29 Å (Fig. 16).

A reaction of {L24(2H*)}(SO₃NH₂)₂ with Cu(SO₃NH₂) under the *ac*-electrochemical conditions leads to the

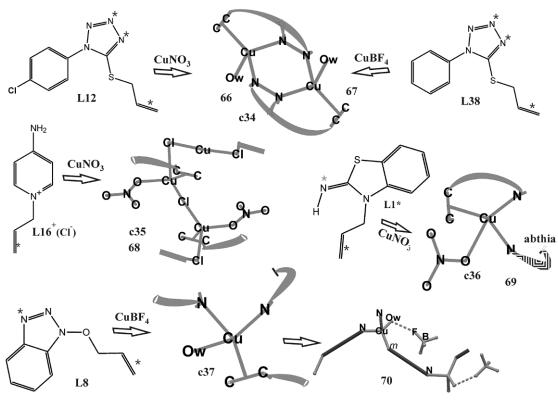


Figure 15. Structural genesis of C34-C37 fragments in 66-70 compounds.

polymeric **77** compound formation (Fig. 17). Due to cationic status, $\{L24(2H^+)\}^{2+}$ acts as a bidentate π -ligand, connecting two inorganic $\{Cu_2(SO_3NH_2)_4\}^{2-}$ fragments into the centrosymmetric $[(L24(2H^+)Cu_2(SO_3NH_2)_4]$ units, while the oxygen atom of the sulfamate anion (occupying an apical position of the metal polyhedron) plays a bridge role between the above units, linking them into 1D-polymer **77** (fragment **C41**) [101].

Under the same synthetic conditions, starting from an ethanol solution of monoallylpiperazinium sulfamate, the latter transforms into N,N'-diallypiperazinium sulfamate $\{\{L24(2H)\}^{2+}\}(NH_2SO_3^{-1})_2$ and piperazinium sulfamate $\{\{pip(2H^+)\}^{2+}\}(NH_2SO_3^{-1})_2$, which react with $Cu(SO_3NH_2)$ giving 78-a a rare anionic Cu(I) π -compound of $(pip(2H^+))$ [($L24(2H^+)Cu_2(SO_3NH_2)_8]^*H_2O$ composition [101]. The centrosymmetric $\{L24(2H)\}^{2+}$ cation in 78 acts only as bidentate π -ligand linking $\{Cu(SO_3NH_2)_3\}^*$ fragments into discrete $\{L24(2H^+))Cu_2(SO_3NH_2)_6\}^{2-}$ anions, within which Cu(I) environment includes, except C=C bond, the three N atoms of three NH_2SO_3^- anions (Fig. 17, C42).

The replacement of $NH_2SO_3^-$ anion by "rigid" SiF_6^{2-} moiety does not change the {**L24**(2H⁺)}²⁺ coordination behavior, but water molecules participation (**C43**) in Cu(I) coordination in the structure **79** [102] modifies the discrete cation to [(**L24**(2H⁺)Cu₂(H₂O)₄]²⁺ unit (Fig. 17).

In a presence of SiF_6^{2-} anion from water-methanol solution of two isomers mixture L7_1 and L7_2 (previously acidified by H_2SiF_6 to pH~3) only the L7_1 isomer selectively participates in the Cu(I) π -coordination, and keeps the same (C=C),N-bidentate function (C44) as in the 65 compound. Thus, in the 80 crystal structure L7_1 forms the infinite {(L7_1) Cu(H_2O)_2}_n chains, in which H_2O molecules (as well as in 79) play a bridged role between Cu(I) and SiF_6^{2-} by means of branched (Ow)H...F hydrogen bonds [34].

Under a similar synthetic condition, starting from a water-methanol mixture of two isomers $L7_1$ and $L7_2$, in a presence of small excess of H_2SiF_6 , one more π -complex **81** was obtained, which appears to be the first known example representing the direct Cu^+ ... $FSiF_5^{2-}$ interaction. Similarly to **80**, in this structure bidentate $L7_1$ molecules connect Cu(I) atoms into infinite $\{(L7_1)Cu(H_2O)\}_n$ chains, in which only one H_2O molecule is coordinated to the metal center, while the apical position of copper(I) polyhedron is occupied by F atom of the bridging SiF_6^{2-} anion (Cu-F 2.439(2) Å). Thus, centrosymmetrical hexafluorosilicate anions link $\{(L7_1)Cu(H_2O)\}_n$ chains in the corrugated layers **81** (Fig. 17, fragment **C45**).

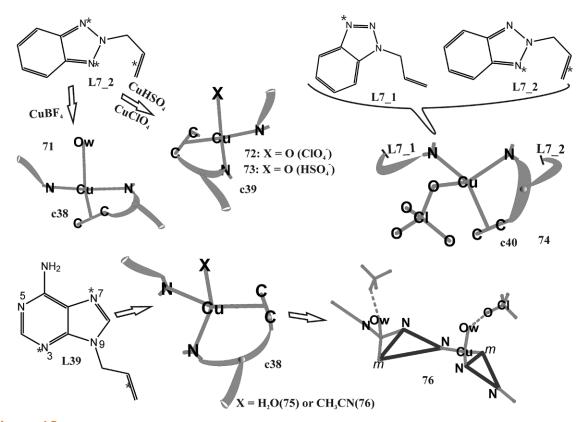


Figure 16. Structural genesis of C38-C40 fragments in 71-76 compounds

N-Allylmorpholinium cation $\{L20(H^+)\}^+$ in a presence of SiF_6^{2-} anions forms the infinite cationic $\{[(L20(H^+))Cu(H_2O)_2]^+\}_n$ chains (82) with equatorial C=C bond and two water molecules [103]. The fourth (apical) position of the metal polyhedron (C46) is occupied by bridging O atom of morpholine core of $\{L20(H^+)\}^+$ (Fig. 18). Contrary to this, in a presence of halide anions, O atom of heterocyclic core is unable to compete with Hal- in the metal coordination (Fig. 8, C17b).

The triazole ring of ligand L40 shows excellent coordination behavior (C47) with the CuNO₃ (83) and CuOOCCF₃ (84) [30]. The organic molecule acts as (C=C), N,O-tridentate chelate-bridging ligand by means of allylic C=C bond, one triazole N atom and O atom of the amide group. It is interesting to note, that two triazole N atoms and O amide are coordinated in 83 and 84 in different modes: participation of N2 triazole atom and O atom of C=O group in the metal coordination allows NO₃ to use its O-atom as the axial ligand; this increases the Δ distance up to 0.47 Å (84), while the participation of an axial O-atom of CF₃COO- and N3 triazole atom in Cu(I) coordination causes the essential lowering of Cu(I) to the basal plane ($\Delta = 0.28 \text{ Å}$) (84). The involvement of the hetero-ring L40 nitrogen atoms with different nucleophility into Cu(I) coordination in 83 and 84 is likely

caused by a formation of asymmetric hydrogen bonds (N)H...O(=C), (N)H...O(NO $_2$) (83) and (N)H...O(OCCF $_3$) (84) with L40 amino group, NO $_3$ and CF $_3$ COO anions, and O atom of the amide group of the ligand. In both 83 and 84 cases, L40 molecules link inorganic fragments into the 1D polymers.

A bulky **L11** molecule plays a role of (C=C), N-bidentate bridging ligand which is coordinated to Cu(I) through an allylic C=C bond and N thiazole atom (**C48**). So, in the **85** crystal structure, two **L11** molecules connect two CuOOCCF₃ units into the insular {(**L11**) Cu(OOCCF₃)}₂ fragment [104], containing 24-membered cycle. As it was mentioned in [104], under the same synthetic conditions, **L11** reacts with CuBF₄ to give only the σ -complex [(**L11**)₂Cu]BF₄ in which the Cu(I) atom is coordinated with two organic molecules (by means of two N thiazole atoms) in a linear manner.

In the structure of **86**, in presence of CF₃COO-anions, organic molecules of allyloxybenzotriazole **L8** (by means of C=C bond and N3 triazole atom) connect Cu(I) atoms in the cationic {(**L8**)Cu)⁺}_n chains [26]. In **86** the CF₃COO⁻ anion plays the same role as NO₃⁻ as is in the case of 1-allylbenzotriazole (**C33**, Fig. 14), connecting {[**L8**)Cu]⁺}_n by bridging carboxylic group into the doubled chains (**C49**, Fig. 18).

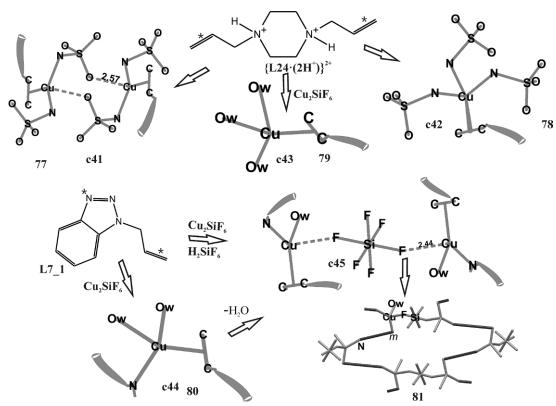


Figure 17. Structural genesis of C41-C45 fragments in 77-81 compounds.

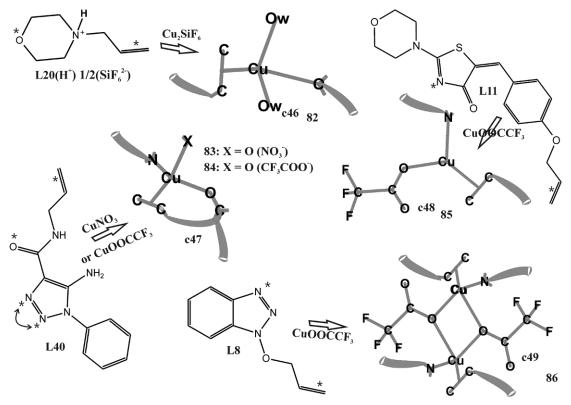


Figure 18. Structural genesis of C46-C49 fragments in 82-86 compounds.

4. Conclusions

An efficiency rise of Cu(I)–(C=C) interaction in the complexes under consideration is accompanied with an elongation of the coordinated C=C bond as well as an increase in Cu(I)-L(apical) distance.

Due to a strongly directed Cu(I)–(C=C) interaction, a variety of structural inorganic fragments of different dimensionality may be derived.

References

- [1] M. Berthelot, Ann. Chim. Phys. 45, 32 (1901)
- [2] W. Manchot, W. Brandt, Ann. 870, 286, (1909)
- [3] F. Rodríguez, J.J. Esch, A.E. Hall, B.M. Binder, G.E. Schaller, A.B. Bleecker Science 283, 996 (1999)
- [4] F.B. Abeles, P.W. Morgan, M.E. Selveit, Ethylene in Plant Biology, 2nd edition (Academic Press, San Diego, 1994)
- [5] P.J. Perez, M.M. Diaz-Requejo, In: R. Crabtree, M. Mingos (Eds.), Comprehensive organometallic chemistry III Vol. 2 (Elsevier, Amsterdam, 2007) 153
- [6] H.V. Rasika Dias, H.-L. Lu, H.-J. Kim, S.A. Polach, T.K. Goh, R.G. Browning, C.J. Lovely, Organometallics 21, 1466 (2002)
- [7] B.F. Straub, F. Eisentrager, P. Hofmann, Chem. Commun. 2507 (1999)
- [8] Z. Li, R.W. Quan, E.N. Jacobsen, J. Am. Chem. Soc. 117, 5889 (1995)
- [9] P. Brandt, M.J. Södergren, P.G. Andersson, P. Norrby, J. Am. Chem. Soc. 122, 8013 (2000)
- [10] K.M. Gillespie, C.J. Sanders, P. O'Shaughnessy, I. Westmoreland, C. P. Thickitt, P. Scott, J. Org. Chem. 67, 3450 (2002)
- [11] E.A. Goreshnik, Pol. J. Chem. 73, 1253 (1999)
- [12] E.A. Goreshnik, L.Z. Ciunik, Yu.K. Gorelenko, M.G. Mys'kiv, Z. Anorg. Allg. Chem. 630, 2743 (2004)
- [13] O.V. Pavlyuk, E.A. Goreshnik, Z. Ciunik, M.G. Mys'kiv, Z.Anorg. Allg. Chem. 631, 793 (2005)
- [14] J. Zhang, R.-G. Xiong, X.-T. Chen, Z. Xue, S.-M. Peng, X.-Z. You, Organometallics 21, 235 (2002)
- [15] J. Zhang, R.-G. Xiong, J.-L. Zuo, X.-Z. You, Chem. Commun. 1495 (2000)
- [16] J. Rickerby, J.H.G. Steinke, Chem. Rev. 102, 1525 (2002)
- [17] K.-H. Park, W. J. Marshall, J. Am. Chem. Soc. 127, 9330 (2005)
- [18] K.-H. Park, A.Z. Bradley, J.S. Thompson, W. Marshall, J. Inorg. Chem. 45, 8480 (2006)
- [19] Q. Ye, H. Zhao, Z.-R. Qu, D.-W. Fu, R.-G. Xiong,

A certain architecture of building blocks depends on a form of organic ligand, numbers of π - and σ -active coordination centers as well as a type of the copper(I) salts anion (Cl-, Br-, NO₃-, NH₂SO₃-, SO₄²⁻, BF₄-, ClO₄-, SiF₆²⁻, CF₃COO- etc.)

The type of a mixed π , σ -coordinating mode (bridged, chelate, chelate-bridged) of an organic ligand depends on the basicity and nucleophilic activity of its heteroatoms as well as the allylic groups flexibility.

- Y.-P. Cui, T. Akutagawa, P.W.H. Chan, T. Nakamura, Angew. Chem. Int. Ed. 46, 6852 (2007)
- [20] J. Brian, S. Bellott, G. Girolami, Organometallics 28, 2046 (2009)
- [21] X.-S. Wang, H. Zhao, Y.-H. Li, R.-G. Xiong, X.-Z. You. Topics in Catalysis 35, 43 (2005)
- [22] L.I. Budarin, E.A. Goreshnik, T.I. Malinovskiy, A.A. Dvorkin, M.G. Mys`kiv, Kristallografia (Russ) 36, 762 (1991) (in Russian)
- [23] E.A. Goreshnik, M.G. Mys`kiv, M.D. Mazus, Yu.A. Simonov, L.I. Budarin, Kristallografia (Russ) 37, 100 (1992) (in Russian)
- [24] M.G. Mys'kiv, E.A. Goreshnik, V.K. Pecharsky, V.V. Olijnyk, J. Struct. Chem. 35, 82 (1994)
- [25] B.M. Mykhalichko, V.V. Olijnyk, M.G. Mys'kiv, V.K. Pecharsky, F. Khalil', Koord. Khim. (Russ.) 20, 208 (1994) (in Russian)
- [26] E.A. Goreshnik, M.G. Mys`kiv, Russ. J. Coord. Chem. 34, 819 (2008)
- [27] Ya.E. Filinchuk, O.P. Mel'nyk, M.G. Mys'kiv, Polish J. Chem. 74, 385 (2000)
- [28] V.V. Krisyuk, A.E. Turgambaeva, S.-W. Rhee, Polyhedron 23, 809 (2004)
- [29] V.V. Olijnyk, E.A. Goreshnik, V.K. Pecharsky, L.I. Budarin, M.G. Mys'kiv, J. Struct. Chem. 34, 4, 615 (1993)
- [30] S. Fraysse, A. Zelewsky, H. Stoeckli-Evans, New J. Chem. 25, 1374 (2001)
- [31] Ya.E. Filinchuk, V.N. Davydov, M.G. Mys`kiv, Russ. J. Coord. Chem. 26, 582 (2000)
- [32] R. Peng, M. Li, D. Li, Coord. Chem. Rev. 254, 1 (2010)
- [33] E. Tiekink, J. Zukerman-Schpector (Eds.), The Importance of Pi-Interactions in Crystal Engineering (Wiley-VCH, Chichester, UK, 2012)
- [34] E.A. Goreshnik , Yu.I. Slyvka , M.G. Mys'kiv, Inorg. Chim. Acta 377, 177 (2011)
- [35] E.A. Goreshnik, A.A. Vakulka, Yu.I. Slyvka, M.G. Myskiv, J. Organomet. Chem. 710, 1 (2012)
- [36] R.G. Pearson, J. Am. Chem. Soc. 85, 3533 (1963)
- [37] M. J. S. Dewar, Bull. Soc. Chim. France 18, 71

- (1951)
- [38] J. Chatt and L. A. Duncanson, J. Chem. Soc. 2939 (1953)
- [39] I. Narai-Sabo, Inorganic Chrystallochemistry (Rus.) (Akad. Kiado, Budapest, 1969)
- [40] E.A. Goreshnik, M.G. Mys'kiv, Z. Anorg. Allg. Chem. 633, 1723 (2007)
- [41] J. Pang, G.-X. Wang, R.-G. Xiong, Chin. J. Inorg. Chem. 23, 1227 (2007)
- [42] E.A. Goreshnik, D. Schollmeyer, M.G. Myskiv, Z. Anorg. Allg. Chem. 628, 2118 (2002)
- [43] W. Wang, Acta Cryst. E. 64, m900 (2008)
- [44] W. Wang, Acta Cryst. E. 64, m759 (2008)
- [45] K. Fukushima, A. Kobayashi, T. Miyamoto, Y. Sasaki, Bull. Chem. Soc. Jpn. 49, 143 (1976)
- [46] T. Kamei, K. Fujita, K. Itami, J. Yoshida, Org. Lett. 7, 4725 (2005)
- [47] W. Wang, Acta Cryst. E. 64, m930 (2008)
- [48] W. Wang, Acta Cryst. E. 64, m902 (2008)
- [49] E.A. Goreshnik, B.M. Mykhalichko, V.N. Davydov, J. Struct. Chem. 46, 172 (2005)
- [50] E.A. Goreshnik, M.G. Mys'kiv, Russ. J. Coord. Chem. 31, 341 (2005)
- [51] E.A. Goreshnik, D. Schollmeyer, M.G. Mys'kiv, J. Chem. Cryst. 35, 565 (2005)
- [52] Ya.E. Filinchuk, M.G. Mys'kiv, Russ. J. Coord. Chem. 24, 337 (1998).
- [53] Ya.E. Filinchuk, M.G. Mys'kiv, V.N. Davydov, J. Struct. Chem. 41, 851 (2000)
- [54] E. Goreshnik, V. Karpyak, M. Mys'kiv, Acta Cryst. C. 61, m390 (2005)
- [55] Yu. Slyvka, N. Pokhodylo, R. Savka, E. Goreshnik, M. Mys'kiv, Chem. Met. Alloys 2, 130 (2009)
- [56] Y.-M. Song, J. Pang, K. Qian, X.-S. Wang, X.-N. Li, R.-G. Xiong, J. Mol. Struct. 796, 210 (2006)
- [57] X. Xue, X.-S. Wang, R.-G. Xiong, X.-Z. You, B.F. Abrahams, C.-M. Che, H.-X. Ju, Angew. Chem., Int. Ed. 41, 2944 (2002)
- [58] E.A. Goreshnik, M.G. Mys'kiv, Russ. J. Coord. Chem. 34, 443 (2008)
- [59] E.A. Goreshnik, D. Schollmeyer, M.G. Mys'kiv, Russ. J. Coord. Chem. 31, 429 (2005)
- [60] E.A. Goreschnik, D. Schollmeyer, M.G. Mys'kiv, Z. Anorg. Allg. Chem. 629, 2040 (2003)
- [61] A.V. Pavlyuk, V.V. Kinzhibalo, T. Lis, M.G. Mys'kiv, Russ. J. Coord. Chem. 33, 501 (2007)
- [62] E.A. Goreshnik, V.N. Davydov, A.V. Pavlyuk, M.G. Mys'kiv, Russ. J. Coord. Chem. 25, 10, 732 (1999)
- [63] E.A. Goreshnik, V.N. Davydov, M.G. Mys'kiv, Russ. J. Coord. Chem. 31, 286 (2005)
- [64] E. Goreshnik, D. Schollmeyer, M. Mys'kiv, Acta Cryst. C. 59, m478 (2003)

- [65] Ya.E. Filinchuk, A.V. Pavlyuk, L.Z. Ciunik, M.G. Mys'kiv, Russ. J. Coord. Chem. 30, 818 (2004)
- [66] E.A. Goreshnik, M.G. Mys'kiv, Polish. J. Chem. 73, 1245 (1999)
- [67] A.A. Shkurenko, V.N. Davydov, M.G. Mys'kiv, Russ. J. Coord. Chem. 29, 445 (2003)
- [68] E.A. Goreshnik, M.G. Mys'kiv, Russ. J. Coord. Chem. 29, 871 (2003)
- [69] X.-F. Huang, Y.-M. Song, X.-S. Wang, J. Pang, J.-L. Zuo, R.-G. Xiong, J. Organomet. Chem. 691, 1065 (2006)
- [70] E.A. Goreshnik, A.V. Pavlyuk, D. Schollmeyer, M.G. Mys'kiv, Russ. J. Coord. Chem. 25, 653 (1999)
- [71] E.A. Goreshnik, M.G. Mys'kiv, J. Struct. Chem. 45, 276 (2004)
- [72] E.A. Goreshnik, D. Schollmeyer, M.G. Mys'kiv, O.V. Pavl'uk, Z. Anorg. Allg. Chem. 626, 1016 (2000)
- [73] E. Goreshnik, D. Schollmeyer, M. Mys'kiv, Acta Cryst. C. 61, m127 (2005)
- [74] V.V. Kinzhibalo, M.G. Mys'kiv, V.N. Davydov, Russ. J. Coord. Chem. 28, 927 (2002)
- [75] W. Wang, L. Zhang, X.-B. Xu, Q. Ye, Inorg. Chem. Com. 14, 626 (2011)
- [76] H. Schumann, K. Kuse, M. Hummert, J. Pickardt, Z. Naturforsch., B. 64, 93 (2009)
- [77] E.A. Goreshnik, M.G. Mys'kiv, Russ. J. Coord. Chem. 32, 25 (2006)
- [78] E.A. Goreshnik, D. Schollmeyer, M.G. Mys'kiv, Russ. J. Coord. Chem. 31, 185 (2005)
- [79] E.A. Goreshnik, M.G. Mys'kiv, Russ. J. Coord. Chem. 29, 505 (2003)
- [80] T.C.W.Mak, H.N.C.Wong, K.H.Sze, L.Book, J.Organomet.Chem. 255, 123 (1983)
- [81] P.Yu.Zavalii, V.S.Fundamenskii, M.G.Mys'kiv, E.I.Gladyshevskii, Kristallografiya (Russ.) (Crystallogr. Rep.) 28, 662 (1983)
- [82] M. Håakansson, S. Jagner, J. Organomet. Chem. 397, 383 (1990)
- [83] Bao Xiaohua, E.M.Holt J., Crystallogr. Spectrosc. Res. 20, 339 (1990)
- [84] M. Håakansson, S. Jagner, E. Clot, O. Eisenstein, Inorg. Chem. 31, 5389 (1992)
- [85] J.M. Kok, K.C. Lim, B.W. Skelton, A.H. White, J.Cluster Sci. 15, 377 (2004)
- [86] J.C. Dyason, P.C. Healy, L.M. Engelhardt, et. al., J. Chem. Soc., Dalton Trans. 831 (1985)
- [87] H.-C. Böttcher, M. Graf, K. Merzweiler, Clemens Bruhn, Polyhedron 16, 3253 (1997)
- [88] J. R. Cole, M.E. Dellinger, T.J. Johnson, J. Chem. Cryst. 33, 341 (2003)
- [89] C. Ganesamoorthy, J.T. Mague, M.S. Balakrishna, Eur. J. Inorg. Chem. 596 (2008)

- [90] P.Yu. Zavalij, V.V. Olijnyk, M.G. Mys`kiv, S.I. Chykhrij, A.Yu. Zavalij, Kristallografia (Russ.) 30, 1081 (1985)
- [91] M.G. Mys'kiv, Kh. Fayad, V.E. Zavodnik, Metallorg. Khim. 4, 415 (1991) (in Russian)
- [92] V.V. Olijnik, M.G. Mys`kiv, Russ. J. Coord. Chem. 22, 876 (1996)
- [93] O.V. Pavlyuk, V.M. Davydov, M.G. Mys'kiv, Russ. J. Coord. Chem. 27, 865 (2001)
- [94] V.V. Olijnik, M.G. Mys'kiv, L.G. Aksel'rud, Koord. Khim. 22, 71 (1996) (in Russian)
- [95] O. Shkurenko, V. Kinzhybalo, T. Lis, Z. Ciunik, M. Mys`kiv, Materials Science-Poland 23, 745 (2005)
- [96] A.V. Pavlyuk, T. Lis, M.G. Mys'kiv, Russ. J. Coord. Chem. 35, 449 (2009)
- [97] E.A. Goreshnik, M.G. Mys'kiv, Acta Chim. Slov. 58, 772 (2011)

- [98] Yu. Slyvka, N. Pokhodylo, R. Savka, Z. Mazej, E. Goreshnic, M.Mys`kiv, Chem. Met. Alloys 3, 201 (2010)
- [99] E.A. Goreshnik, M.G. Mys'kiv, J. Coord. Chem. 65, 2743 (2012)
- [100] A.K. Mishra, C.S. Purohit, J. Kumar, S. Verma, Inorg. Chim. Acta 362, 855 (2009)
- [101] O.P. Mel'nik, M.G. Mys'kiv, V.N. Davydov, Russ. J.Coord. Chem. 29, 339 (2003)
- [102] A.A. Shkurenko, V.N. Davydov, M.G. Mys'kiv, Russ. J. Coord. Chem. 32, 282 (2006)
- [103] E.A. Goreshnik, M.G. Mys'kiv, J. Chem. Cryst. 40, 381 (2010)
- [104] E.A. Goreshnik, Z. Mazej, V.V. Karpyak, M.G. Mys'kiv, Acta Chim. Slov. 55, 775 (2008)