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Abstract: The aim of this work was to implement a chemometric analysis to detect the relationships between the analysed variables in samples
of solid fuels. Efforts are being made to apply chemometrics methods in environmental issues by developing methods for the rapid
assessment of solid fuels and their compliance with the required emission characteristics regulations. In the present investigation,
two clustering techniques—hierarchical clustering analysis (HCA) and principal components analysis (PCA)—are used to obtain the
linkage between solid fuel properties and the type of sample. These analyses allowed us to detect the relationships between the studied
parameters of the investigated solid fuels. Furthermore, the usefulness of chemometrics methods for identification of the origin of
biofuels is shown. These methods will enable control of the degree of contamination.
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1. Introduction

Chemometric analysis is a powerful tool for data
analysis that increases the amount of information that
can be obtained in the same amount of research time.
This technique makes it possible to resolve problems
and answer questions about the nature of tested
objects and the relationships between them.
Chemometrics is a branch of chemistry that uses
mathematics, probability, statistics and informatics
in research experiments to obtain the maximum amount
of useful information based on an analysis of the
data. Chemometrics also makes it possible to find
mutual correlations between fuel properties and within
a group of tested objects. The following are additional
benefits of implementing a chemometric analysis:

- presentation of measurement data in a form allowing
their effective use,

- cost optimisation using a smaller amount of
expensive reagents,

- reduction in the time needed to obtain the necessary
data,

- environmental protection (reduction in the amount
of reagents released into the environment) [1].

* E-mail: msajdak@ichpw.zabrze.pl

Due to the many advantages of this method, it is
frequently used in other branches of science, for
example, to assess the quality of the various fuels used
in industry. This problem is particularly important for
environmental protection because the characteristics
and quality of fuels significantly affect the emission of
pollutants into the environment. The aim of the present
research was to identify and describe variables that
might be used as markers of solid fuels origin. At this
step it can be helpful to implement a chemometric
analysis to detect relationships between the contents
of the analysed parameters (elements) present in
the tested materials. Other project targets included
applying these techniques to evaluate the degree of
biofuel contamination by undesirable substances and
reducing the number of necessary laboratory tests and
the time of analysis, thus leading to a decrease in the
costs.

1.1. Clustering method
The clustering method is a tool of exploration and data

mining, and thus, is an excellent method of acquiring
new knowledge and information about the examined
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object. The results of two methods are presented in
the investigation: hierarchical clustering analysis (HCA)
and principal components analysis (PCA) of solid
fuels, including biomass and recyclable solid fuels.
Particular emphasis was placed on those aspects of the
analysis that affect the usefulness of these methods in
the process of data mining. Attention was also drawn
to the data preparation techniques used for different
chemometric methods.

2. Experimental procedure
2.1. Collected data

The data used for the chemometric analysis, the results
of which are presented in this article, were collected
from the generally available PHYLLIS database. For
the analysis, the values of oxides (Al — aluminium, Ca
- calcium, Fe - iron, K - potassium, Mg - magnesium,
Na - sodium, P - phosphorus, Si - silicon, Ti - titanium)
were calculated based on the content of elements in the
dry weight material.

The chemometric analysis was performed on the
data matrix containing 17 variables (the analysed
parameters) for each of the 104 solid fuels.

In the present research, data was used describing
104 solid fuels belonging to 6 groups: grass and plant
biomass, untreated and treated wood, biochar (char),
peatand coal. The choice of these materials was required
to properly perform research, further analysis and
interpretation of results. Above mentioned groups are
characterized by different energy content, mineralogical
composition and the degree of coalification. Degree of
coalification rises, starting from biomass to coal. These
sources of energy, with the exception of biochar, belong
to previously described groups, and are commonly used
as fossil and renewable fuels. Biochar has been placed
among them because of its potential use as a energy
source.

Before examining the results of the tests, all
results have been standardised according to Eq. 1.
Standardisation of data was necessary to conduct each
phase of the chemometric analysis properly, and to
interpret the results correctly [2].

Standardisation is designed to ensure equal
influence (validity) of each variable, regardless of its size
range and type of used units. With the standardisation of
the variables, obtained values are characterised by an
average equal to 0 and a variance equal to 1.

x = b, (1)

ij
S
J

where: X standardised parameter value; a;- initial value
of the parameter; bj-average value of the parameter; S -
standard deviation of the j-th parameter.

3. Results and discussions

3.1. Cluster analysis

Cluster analysis is an exploratory multivariate method
that can be used to describe the relationships among
variables. Some mathematical rules can be used to
examine the similarity between variables cases. For the
hierarchical clustering analysis (HCA), Single linkages
(nearest neighbor) method was used to obtain a cleaner
plot of clusters. This method is believed to be as a very
efficient one. The joining of the tree clustering method
uses the dissimilarity distance between objects when
using the clusters. Similarities are collection of rules
that serves as criterion for grouping or separating items.
The Euclidean distance was chosen to carry analysis
[3].

The purpose of cluster analysis is to determine the
mutual similarities between the analysed objects and
attributes that describe them. In this analysis, there is no
information about the homogeneity of the analysed data
set. The first step in clustering objects is evaluating their
similarity (or dissimilarity): the distance or correlation
coefficient can be used as a measure of (dis)similarity.
One way of measuring the distance between two objects
iand jin HCA is to use the Euclidean distance [4,5].

dfj =] g(xﬁz _x‘:fz) @

where: m — the number of variables; dij-EucIidean
distance between objects i and j; x -value of the variable
l; xjk-value of the variable j.

Using vector notation, Eq. 2 becomes:

d41'2 = (xf -X; )J '(xf ij) (3)

where X and x; are the column vectors of the two objects
and T stands for “transpose”.

The smallest value is the Euclidean distance, and
the largest is the similarity between the objects. The
Euclidean distance can be graphically interpreted as the
length of the vector starting at i and ending at j.

This method does not directly apply the values
of the variables. Rather, the variables are subjected
to a previous standardisation. An analysis of the
agglomeration of the distance matrix indicating the
degree of similarity between the studied variables was
performed. The results are presented in Table 1.
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Table 1. Euclidean distance matrix for study variables.

Ash HHV C H o N S Cl

Mg Na P Si Ti

Ash 0.0
HHV | 150 0.0

C 149 16 0.0

H 175 16.0 165 0.0

o 170 188 189 6.3 0.0

N 1.9 1238 124 144 157 00

S 132 93 9.6 156 177 122 00

Cl 9.5 155 163 156 148 129 142 00
Al 8.8 1.2 112 171 182 117 118 134

Ca 8.0 15.5 162 163 162 127 145 112
Fe 7.5 10.6 108 166 169 11.0 100 119
K 9.4 16.5 164 151 141 127 147 53
Mg 7.6 14.9 148 163 160 115 137 79
Na 6.6 15.9 166 170 168 127 141 83

P 102 147 146 137 134 102 138 103
Si 7.8 14.8 147 160 1568 128 136 114
Ti 1.4 109 104 171 176 108 126 140

0.0

126 00

6.6 109 00

139 108 127 00

1.8 85 100 77 0.0

1.7 82 103 9.0 7.4 0.0

133 93 121 82 8.6 1.4 00

105 99 9.6 120 109 99 107 0.0

9.2 124 92 149 131 122 139 123 00

Direct interpretation of the data set because of its
large size is relatively difficult; therefore, a Horizontal
Hierarchical Tree Plot was used for easier data
interpretation.

The combination of the horizontal hierarchical tree
plot features with the chart of the stages of binding
(as presented in Figs. 1a and 1b) facilitates correct
distribution of the tree plot for each subgroup and makes
it possible to avoid grouping mistakes.

Considering the entire data set without distribution
into groups by type of material (Fig. 1a), the following
conclusions can be drawn:

- The concentrations of carbon, sulphur, nitrogen,
hydrogen and oxygen in solid fuels have the greatest
influence on the determination of combustion heat
of material. These are evident conclusions from the
viewpoint of chemistry, but in the initial stage of the
analysis, they confirm the correctness of the calculation
(Chemometric analysis) and the inference and
correctness of the initial data preparation.

- A similarity relation between oxygen and hydrogen
concentrations indicates the existence of structures of
organic-rich oxygen, such as cellulose, hemicellulose
and lignin, which occur in biomass.

A hierarchical clustering analysis was performed
for the divided data set, including the type of
analysed material: coal, char, and several types of
biomass. The results of this analysis are shown in
Fig. 2.

By analysing the characteristics of the horizontal
hierarchical tree plot shown in Fig. 2, it is possible
to find variables indicating the origin (type) of the
sample and determine whether the sample is of
plant origin (biomass or solid fuel is secondary) or
fossil origin by assessing only the research results.
As presented in Fig. 2, one should pay attention
to the relevant groups of co-occurring elements:
hydrogen and oxygen, aluminium and iron, and the
ash content in combination with magnesium, sodium or
potassium. These groups are present only in samples
of plant origin. Char from biomass is similar in chemical
composition to carbon. In fact, thanks to the tools
used, we can easily qualify char as material originating
from the thermal processing of biomass due to the
correlations between oxygen and hydrogen and iron
and aluminium.

The hierarchical clustering analysis can be used to
obtain the linkage between the parameters and the types
of investigated material. This will help reduce the time
required for future analyses and allow for appropriate
conduct with material and analysis.

3.2. Principal component analysis PCA

Multivariate statistical tools, such as the principal
component analysis (PCA) technique, have been widely
applied in the treatment of high-complexity data sets
[6,7]. The PCA technique extracts the Eigenvalues and
Eigenvectors from the covariance matrix of the original
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Figure 1. a) Horizontal Hierarchical Tree Plot characteristics analysed in the material; b) Graph HCA bond distances (Ash - ash, HHV - enthalpy

of combustion).

variables. It makes it possible to find the association
between variables, thus reducing the dimensionality
of the data set. The principal components (PCs) are
the uncorrelated (orthogonal) variables obtained by
multiplying the original correlated variables with the
Eigenvector (loading or weighing). The Eigenvalues
of PCs are the measure of their associated variance.
The participation of the original variables in the PCs is
given by the loading, and the individual transformed
observations are called scores [8]. The use of correlated
variables in this analysis gives the best results. The
main task is detecting the internal data structure and
describing it with the other parameters resulting from the
above-mentioned structure [3,4]. A characteristic feature
of principal components is the ability to determine the
main factors (PCs) in order of decreasing volatility of the
stock. The measure of this stock is the eigenvalues. In
some cases, itis possible to assign the main components
and groups of objects to a certain chemical or physical
interpretation [4].

The principal component analysis technique is used
primarily for:

1. The reduction of the data space,

2. The transformation of correlated input variables in
the output main components, and

3. The graphical presentation of the structure of
a multidimensional data set in the plane with minimal
distortion of information.

These techniques were used to obtain orthogonal
factors from the seventeen variables remained in a
partial correlation. Seven PCs were selected, which
is approximately 91% of the studied variables. The
individual variance values of the principal components
are shown in Table 2.

As shown in Fig. 3, the first three PCs already
describe 71% of the variability of the data. This
makes a simple (three-dimensional) expression of the
relationship between PCs possible. Fig. 3 shows how
to change the scree test graph for the total variance
coordinates.

The total number of PCs in this case is 16
components. All variables were compensated more than
twice. As mentioned earlier, the main observation can be
attributed to a physical interpretation or chemical means.
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Figure 2. Horizontal Hierarchical Tree Plot for each type of test material (Ash - ash, HHV - enthalpy of combustion).

With this method, two primary principal components
(2 and 3) from the analysis of data covering coal,
biomass, and the products of their thermal treatment
of the sample can confirm the affiliation to a particular
group of fuels.

Application of principle component analysis has
confirmed the results obtained by cluster analysis. As
presented in Fig. 4a, agglomeration determined using
principal component correspond to those obtained by
the cluster analysis, and presented on Fig. 1a.

A chemical interpretation of the second and
third PC’s was also possible, combining the results
of the analyzed variables and analyzed materials
(Fig. 4B).

The second PC allows you to describe the materials
studied in terms of:

- degree of coalification sample - the higher the
value of the sample PC 2, the greater the degree of
coalification in the samples

- enthalpy of combustion - the higher the value,
the greater the energy content of the sample (inverse
relationship between carbon content and the enthalpy of
combustion of oxygen and hydrogen in the samples)

The thirtd PC allows you to describe the materials
studied in terms of the content of micro and macro
elements. Thanks to the second and thirtd PC'’s, it is
possible to classify the test materials to the respective
groups, for reasons of their kind. This classification is
presented in graphical form in Fig. 5.

The relationships among the variables can be
represented in the form of predictive equations, as
presented in Table 3.
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Figure 3. The scree test plot.

Table 2. The values characterising the principal components

Table 3. summary of the correlation function for the studied char

designated for the data set. variables.
Value | Eigenval % total Cumul. Cumul. Sample Function The correlation
Variance Eigenval % types coefficient
1 5.78 36.11 5.78 36.11 C=0.5023+0.227-HHV 0.997
2 4.17 26.08 9.95 62.19 0=-6.008+6.551-H 0.879
3 1.42 8.90 11.37 71.09 Al=-947.800+1.912-Fe 0.991
Char
4 1.15 7.16 12.52 78.25 K=-2289+1121.9-Ash 0.991
5 0.82 5.14 13.34 83.39 Mg=460.18+175.44-Ash 0.991
6 0.63 3.94 13.97 87.33 Mg=837.370+0.154-K 0.992
7 0.55 3.45 14.52 90.78 ] ] o
As showed in Table 3, the coefficients of determination
8 0.45 2.84 14.98 93.62 . . s
for the analyzed variables in these char samples is high
° 032 203 1530 95.65 and ranges from 0.88 to 0.99. Such high values of the
10 0.24 1.48 15.54 97.13 determination coefficient allows the use of equations
11 0.19 1.16 15.73 98.29 derived within the considered types of materials.
12 011 071 15.84 99.00 It is possible to calculate the correlation of
13 010 061 1594 99.60 ea.ch. variable contained Iljl the. subgroup using
principle component analysis, which shortens the
14 0.6 0-36 1599 99.96 time needed to perform the analysis because it is
15 0.01 0.04 16.00 100.00 not necessary to perform all 17 tests to obtain the
16 0.00 0.00 16.00 100.00 maximum viewable information about the examined

object.
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Figure 4. Plot of Principal Component Analysis of a) analysed variables, b) analysed materials.
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Figure 5. Plot of Principal Component Analysis of analysed materials.

Analysing the results of correlation analysis for the
rest of types these materials, it can be seen that in the
case of alternative fuels such as grass and untreated
wood, as well as in the case of the thermal processing
of biochar (char), there is a strong linear correlation
between the content of iron and aluminum. However,
this correlation does not occur in fossil fuels like coal
or chemically modified biomass (by impregnation). The
results of determination coefficients for the relationship
between iron and aluminum are presented in Table 4.

4. Conclusion

In the present investigation, the possibility of using
chemometrics tools in search of markers (variables)
that might indicate the origin of different solid fuels
was investigated, thus confirming the reliability of the
certificate of origin. The study used a variety of materials
classified as biomass (straw, grasses, energy crops,
wood) and coal and biomass char.

By applying chemometric analysis (grouping
methods), it was possible to detect the interaction
between the contents of the analysed elements occurring
in the investigated materials. The study showed the
usefulness of the chemometrics methods for identifying
the origin and the type of biofuels.

Studies using chemometric techniques are going
to make it possible to implement these methods to

Table 4. Coefficient of determination and function of samples

analysed.
Sample Function Coefficient of
types determination
Coal Al = 0.015+0.7501-Fe 0.279
Biochar (char) Al = -0.0054+1.0144-Fe 0.990
Grass Al = -0.0249+0.9954-Fe 0.864
Husk Al = -5.8157:10°+1Fe 1.000
Untreated wood | Al = -0.0014+0.9345Fe 0.942
Treated wood Al = 0.0876+0.5443 Fe 0.407
Straw Al = 0.0047+1.0058-Fe 0.994

assess the degree of contamination with undesirable
substances biofuels.

In the future, these studies may bring very tangible
benefits by reducing the number of necessary
laboratory tests and the analysis time, thereby lowering
costs.
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