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Abstract: Polybenzene unit BT_48 can dimerize either by identification of 8-membered rings to provide a diamond-like fcc net or by identifying
the opening 12-membered rings to form intercalated dendrimer-dimers which can further grow and rather quickly superimpose over
the diamond-like network. The third hypothetical moiety we consider here is an eclipsed isomer, that can form multitori as negatively
curved structures of various complexity. Multitori can evolve spherically or show a linear periodicity, as in rods. The polybenzene
(“armchair”) multitori BTA are compared to the (“zig-zag”) BTZ ones, proposed earlier by us. A graph-theoretical study related the
structure of multitori to the genus of their embedding surface and established the lower and upper bound values of genus. The total
energy per carbon atom, HOMO-LUMO gap and strain energy of BTA and BTZ multitori have been computed and the results obtained
point to BTZ multitori to be at least as stable as C, what suggests BTZ multitori can be eventually synthesized in laboratory.
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1. Introduction

Multitori are complex structures consisting of more than
one single torus [1-3]. They include negatively curved
substructures [4-6], termed schwarzites, in honor of H.
A. Schwarz [7,8], who firstly investigated the differential
geometry of this kind of surfaces. Multitori probably result
by self-assembly of some repeating units/monomers,
formed by spanning of cages/fullerenes and can appear
in spongy carbon and in natural zeolites, as well. Multitori
can grow following either a spherical trend or a linear
periodicity, in forming arrays of various complexity [9]. The
high porosity of these materials could find applications
in catalysis, gas and energy storage, gas and liquid
purification, thermal insulation and in electrochemistry,
as well.

The polybenzene [10] unit BT_48 dimerizes either by
identification of octagons R(8) to provide a dimer named
BDia2_88 and next a diamond-like fcc-net (Fig. 1, left
column) or by identifying the “opening” rings R(12) when
an “intercalated” dendimer-dimer BDen2_84 is formed,
which can build the corresponding dendrimers: BDen5 at
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the first generation and BDen17 (Fig. 1, middle column)
at the second generation. Further, any added unit will
complete the diamond-like network over which the
dendrimer is superimposed. A third way is an “eclipsed”
isomer BTA2_90, its oligomers showing angles suitable
to form structures of five-fold symmetry (Fig. 1, right
column), eventually called multitori.

Multitori can be designed by appropriate map
operations [9,11-15], as implemented in our original
software CVNET [16] and Nano Studio [17].

Because of simplicity of the polybenzene and related
structures, we try to bring here arguments in favor of
attempts for their laboratory synthesis.

2. Theoretical details

2.1. Design of simple structures

The multitori bearing the benzene patch (see the
polybenzene [10]) will have B as a prefix in their name.
Next, because the opening faces show either “zig-zag” or
“armchair” endings, “Z” or “A” will be added as a suffix to
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Figure 1. Top row: dimer-diamond-like BDia2_88 (left), dimer-dendrimer BDen2_84 (middle), dimer-multitorus BTA2_90 (right). Bottom row:
Diamond-like net BDia fcc(3,3,3) 864 (left), Dendrimer BDen17_ 624 (middle), Multitorus BTACy5 210, (right); the last numbers

represent the atoms in molecule.

Figure 2. Top row: BTZ 24 designed from S,(T)_28 = C,, by deleting the four blue points located at the centre of pentagon triples. Bottom
row: BTA_48 formed by spanning the Le(P,(T))_48 cage following the blue bonds.

their name, as in BTZ or BTA. The number of repeating
units and/or number of atoms will be added after the
letters.

The design of simple units used to build up multi
tori was made by using some operations on maps
[11-15], applied on the Platonic solids. Fig. 2 illustrates
the basic substructures of the two series: BTZ_24
and BTA_48, designed by spanning the corresponding
cages, derived from the Tetrahedron T by map
operations.

The dimers of BTA_48 and the hyper-ring
BTACy5_210 were presented in Fig. 1. The unit BTZ_24,
due to its simplicity, can form only the dimer leading to
multitori, BTZ2_48 (not shown) and the corresponding
five-fold hyper-ring BTZCy5_120 (also not shown).

2.2. Design of Multitori

The hyper-ring BTXCy5, (X=A, Fig. 1), can further
evolve to the multitorus BTX17 (Fig. 3, top tow, left), the
reduced graph of which is just C, (Fig. 3, top tow, left),
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Figure 3. Top row: BTZ17_408 (left) and C,, (right); Bottom row: BTA34_1332 (right) and C,, (right).

the structure proposed by Diudea [18,19] as the seed for
the diamond D,. By analogy to D,, a dimer BTX34 can
be designed (Fig. 3, bottom row, left). It is noteworthy
to mention that its reduced graph is C,, (Fig. 3, bottom
row, right) the repeating unit [20] of the triple periodic
structure of D,..

The spherical multitorus BTX20 (the middle of
structure, red/black - Fig. 3, right and Fig. 4, left
column) is a g=21 multi torus, with a well-defined
core:  core(BTA20)_180=-f,(Le,,(Do)), while core
(BTZ20)_120=-d(S,(Ico). In the above, -f, means
deletion of all pentagonal faces in the transformed
by Leapfrog (2,2) of the Dodecahedron Do, and d, is
deletion of vertices of degree d=5, in the transform of
Icosahedron=Ico by the septupling S, operation. Also,
-d,(S,(lco)=Op(Le(Ico)).

Recall, g is the genus of the surface where
a structural graph is embedded and counts the
number of simple tori (“handles”) making that graph
[21].

Alinear array of BTX20, with the repeating unit formed
by two units superimposing one pentagonal hyper-face
(i.e., BTXCyb5), rotated to each other by an angle of PI/5
as in the “dimer” BTX20_2 (Fig. 5, top, left). Next, the
structure can evolve with a one-dimensional periodicity,
as shown in BTX20_4 (Fig. 5, top, right) or in the hyper-
cycle BTZCy20_5 1800 (Fig. 5, bottom, left). Twelve
units BTX20 can form a spherical array (of icosahedral
symmetry), as in case of BTZSp20_12_ 3120, (Fig. 5,
bottom, right), of which core is just BTZ20 (in fact a 13"
unit).

Now we prove the following:

Theorem 1. In multi tori built up from open tetrahedral
units, the genus of structure equals the number of its
units plus one, irrespective of the unit tessellation.

Proof comes out from construction and is illustrated
on the multitorus in Fig. 6: there are five tetrapodal units
inserted into exactly five simple tori and all-together
joined to the central, thus demonstrating the first part of
the theorem.

For the second part, we apply the Euler’s theorem
[22]: v—e+ f=y=2(1-g),
where v=|V(G)| is the number of vertices/atoms,
e=| E(G)|, the number of edges/bonds and f is the
number of faces of the graph/molecule. In the above,
g is the genus of the (orientable) surface S on which
a molecular graph is embedded, i.e., g is the number
of “handles” in the structure.The genus is related to the
Gaussian curvature of the surface S by means of Euler’s
characteristic X of S (Gauss-Bonnet theorem [23,24])
as: for g=0 (case of sphere) X >0 (positive curvature);
for g=1 (case of torus) X =0 while for g>1 (surfaces of
high genera), X <0 , S shows a negative curvature.
More about surfaces of negative curvature the reader
can find in [1,2]. To complete the demonstration, data in
Table 1 provide the values of g in several BTX multi tori,
tessellation differing as X=A or Z.

The number of tetrahedral units BTX1 in the
linear array of BTX20 k (Table 1, entries 3 to 6) is
u=20k-5(k-1)=15k+5, according to the construction
mode. The term -5(k-1) accounts for the superimposed
hyper-rings BTXCy5. In case of BTZCy20_5, (Table 1,
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Figure 5. Top row: the repeating unit BTA20 2 1350 (left) and a rod-like BTZ20 4 1560 (right). Bottom row: multi tori BTZCy20 5 1800 (left)
and BTZSp20_12_3120 (five-fold symmetry).
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Figure 6. BTZCys: five tetrapodal units (each closing its own ring) joined at the central ring, thus the genus is calculated g=5+1.

Table 1. Euler formula calculation in multi tori BTX.

BMTX v e f, f, fior 2(1-g) g u u-formula
1 BTACy5 210 285 35 30 65 -10 6 5 f,/6
2 BTZCy5 120 165 20 15 35 -10 6 5 f/4
3 BTA20 1 780 1110 170 120 290 -40 21 20 f,/6
a4 BTZ20_1 480 690 80 90 170 -40 21 20 f/4
5 BTA20_5 3060 4410 710 480 1190 -160 81 80 f/6
6 BTZ20 5 1920 2790 320 390 710 -160 81 80 fo/4
7 BTZCy20 5 1800 2625 300 375 675 -150 76 75 f/4
8 BTZ20 12 4440 6465 740 915 1655 -370 186 185 f/4
9 BTZSp20 12 3120 4590 520 690 1210 -260 131 130 f/4

Table 2. Total energy E,, per Carbon atom and HOMO-LUMO HL Gap, at Hartree-Fock HF level of theory and Strain energy according to POAV
theory in benzene-patched structures vs C, taken as the reference.

Structure E. /(au) E./C (au) HL Gap (eV) Strain/C (kcal mol-')
1 BTA 48 -1831.484 -38.156 11.285 0.083
2 BTA,,s 210 -7986.806 -38.032 9.545 0.392
3 BTZ 24 -915.092 -38.129 8.221 7.614
4 B1Z,, 120 -4558.826 -37.990 7178 4.893
5 Ceo -2271.830 -37.864 7.418 8.256

entry 7) formula is u=20k-5k=15k, k=5, the last hyper-
ring unit being omitted because of the cyclic structure.
Thus, the drop in g is of 5 units for each five-fold hyper-
cycle (compare Table 1, entries 6 and 7).

In case of the spherical array BTZSp20_12
(Table 1, entry 9), u=20k-2[5(k-1)], k=12. Remark the
twice subtraction of the term 5(k-1), in case of the
spherical array, which accounts for the difference in g
to the linear array of k=12 (Table 1, entries 8 and 9):
186-131=55=5(12-1). This drop in g, in case of the

spherical array, seems to parallel the well-known result
that sphere is the minimal surface among all known solid
objects. The number u is also related to the number of
faces as: u= f;/6 in case BTA and u= f;/4in case
BTZ.

On the ground of Theorem 1, the spherical array
BTZSp20_12 seems to be the minimum g (lower bound)
while BTZ20_k maximum g (upper bound) among
all the studied structures. We demonstrated the
following:
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Theorem 2. The genus in multi tori shows the lower
bound value in structures of icosahedral symmetry while
the upper bound value is shown in linear structures,
provided the same number of (open) tetrahedral units.

Carbonatom orbitanalysisinBTZSp20_12revealed
a 6.8%2 massive class (2580 atoms, about 83%), located
inside, of the same signature as in polybenzene [10],
and two smaller classes, of signature 6.8 (360 atoms),
and 6 (180 atoms), disposed outside the spherical
structure. Compare with % of 6.82 in the linear array
BTZ20_k (about 74% at k=12) and in BTA20_k (about
26%, at k=9). Knowing the (calculated [24]) stability
of polybenzene, consisting of only 6.8% atoms (in the
infinite triple periodic net), the orbit analysis can be seen
as a “topological proof” of stability of the spherical array
BTZSp20_12.

2.3. Stability of nanotube junctions

The test of stability was done to support the idea that
the basic substructures of multitori could appear in real
experiments, by self-assembly of some very simple
repeating units. Data are listed in Table 2, taking C as
the reference structure.

Total energy per carbon atom, calculated at the
Hartree-Fock HF level of theory and the HOMO-LUMO
gap as well, show the BTA_48 and its derived hyper-
pentagon the most stable structures in Table 2. The
Strain energy, calculated according to the Haddon’s
POAV theory [25,26] is also in favor of BTA-substructures
and is far less than in case of the closed cage C.
Table 2 suggests the benzene-patched as being possible
candidates to real molecules eventually self-assembled
in more complex multitori as exist in spongy-carbon or
zeolites.

3. Computational details

The structures, as finite hydrogen-ended ones, were
optimized at the Hartree-Fock HF (HF/6-31G**) level of
theory. The calculations were performed in gas phase
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