
1. Introduction
Multitori are complex structures consisting of more than 
one single torus [1-3]. They include negatively curved 
substructures [4-6], termed schwarzites, in honor of H. 
A. Schwarz [7,8], who firstly investigated the differential 
geometry of this kind of surfaces. Multitori probably result 
by self-assembly of some repeating units/monomers, 
formed by spanning of cages/fullerenes and can appear 
in spongy carbon and in natural zeolites, as well. Multitori 
can grow following either a spherical trend or a linear 
periodicity, in forming arrays of various complexity [9]. The 
high porosity of these materials could find applications 
in catalysis, gas and energy storage, gas and liquid 
purification, thermal insulation and in electrochemistry, 
as well.

The polybenzene [10] unit BT_48 dimerizes either by 
identification of octagons R(8) to provide a dimer named 
BDia2_88 and next a diamond-like fcc-net (Fig. 1, left 
column) or by identifying the “opening” rings R(12) when 
an “intercalated” dendimer-dimer BDen2_84 is formed, 
which can build the corresponding dendrimers: BDen5 at 

the first generation and BDen17 (Fig. 1, middle column) 
at the second generation. Further, any added unit will 
complete the diamond-like network over which the 
dendrimer is superimposed. A third way is an “eclipsed” 
isomer BTA2_90, its oligomers showing angles suitable 
to form structures of five-fold symmetry (Fig. 1, right 
column), eventually called multitori. 

Multitori can be designed by appropriate map 
operations [9,11-15], as implemented in our original 
software CVNET [16] and Nano Studio [17]. 

Because of simplicity of the polybenzene and related 
structures, we try to bring here arguments in favor of 
attempts for their laboratory synthesis.

2. Theoretical details

2.1. Design of simple structures
The multitori bearing the benzene patch (see the 
polybenzene [10]) will have B as a prefix in their name. 
Next, because the opening faces show either “zig-zag” or 
“armchair” endings, “Z” or “A” will be added as a suffix to 
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their name, as in BTZ or BTA. The number of repeating 
units and/or number of atoms will be added after the 
letters. 

The design of simple units used to build up multi 
tori was made by using some operations on maps 
[11-15], applied on the Platonic solids. Fig. 2 illustrates 
the basic substructures of the two series: BTZ_24 
and BTA_48, designed by spanning the corresponding 
cages, derived from the Tetrahedron T by map 
operations. 

The dimers of BTA_48 and the hyper-ring 
BTACy5_210 were presented in Fig. 1. The unit BTZ_24, 
due to its simplicity, can form only the dimer leading to 
multitori, BTZ2_48 (not shown) and the corresponding 
five-fold hyper-ring BTZCy5_120 (also not shown).

2.2. Design of Multitori
The hyper-ring BTXCy5, (X=A, Fig. 1), can further 
evolve to the multitorus BTX17 (Fig. 3, top tow, left), the 
reduced graph of which is just C17 (Fig. 3, top tow, left), 

 

Figure 2. Top row: BTZ_24 designed from S2(T)_28 = C28 by deleting the four blue points located at the centre of pentagon triples. Bottom 
          row: BTA_48 formed by spanning the Le(P4(T))_48 cage following the blue bonds.

Figure 1. Top row: dimer-diamond-like BDia2_88 (left), dimer-dendrimer BDen2_84 (middle), dimer-multitorus BTA2_90 (right). Bottom row: 
Diamond-like net BDia_fcc(3,3,3)_864 (left), Dendrimer BDen17_ 624 (middle), Multitorus BTACy5_210, (right); the last numbers 
represent the atoms in molecule.

 

 

1780



B. Szefler, M. V. Diudea 

the structure proposed by Diudea [18,19] as the seed for 
the diamond D5. By analogy to D5, a dimer BTX34 can 
be designed (Fig. 3, bottom row, left). It is noteworthy 
to mention that its reduced graph is C34 (Fig. 3, bottom 
row, right), the repeating unit [20] of the triple periodic 
structure of D5. 

The spherical multitorus BTX20 (the middle of 
structure, red/black - Fig. 3, right and Fig. 4, left 
column) is a g=21 multi torus, with a well-defined 
core: core(BTA20)_180=-f5(Le2,2(Do)), while core 
(BTZ20)_120=-d5(S2(Ico). In the above, -f5 means 
deletion of all pentagonal faces in the transformed 
by Leapfrog (2,2) of the Dodecahedron Do, and d5 is 
deletion of vertices of degree d=5, in the transform of  
Icosahedron=Ico by the septupling S2 operation. Also, 
-d5(S2(Ico)=Op(Le(Ico)).

Recall, g is the genus of the surface where 
a structural graph is embedded and counts the 
number of simple tori (“handles”) making that graph 
[21].   

A linear array of BTX20, with the repeating unit formed 
by two units superimposing one pentagonal hyper-face 
(i.e., BTXCy5), rotated to each other by an angle of PI/5 
as in the “dimer” BTX20_2 (Fig. 5, top, left). Next, the 
structure can evolve with a one-dimensional periodicity, 
as shown in BTX20_4 (Fig. 5, top, right) or in the hyper-
cycle BTZCy20_5_1800 (Fig. 5, bottom, left). Twelve 
units BTX20 can form a spherical array (of icosahedral 
symmetry), as in case of BTZSp20_12_3120, (Fig. 5, 
bottom, right), of which core is just BTZ20 (in fact a 13th 
unit). 

Now we prove the following:
Theorem 1. In multi tori built up from open tetrahedral 
units, the genus of structure equals the number of its 
units plus one, irrespective of the unit tessellation.

Proof comes out from construction and is illustrated 
on the multitorus in Fig. 6: there are five tetrapodal units 
inserted into exactly five simple tori and all-together 
joined to the central, thus demonstrating the first part of 
the theorem.

For the second part, we apply the Euler’s theorem 
[22]: ,  
where | ( ) |v V G=  is the number of vertices/atoms, 

| ( ) |e E G= , the number of edges/bonds and f is the 
number of faces of the graph/molecule. In the above, 
g is the genus of the (orientable) surface S on which 
a molecular graph is embedded, i.e., g is the number 
of “handles” in the structure.The genus is related to the 
Gaussian curvature of the surface S by means of Euler’s 
characteristic  of S (Gauss-Bonnet theorem [23,24]) 
as: for g=0 (case of sphere) >0 (positive curvature); 
for g=1 (case of torus) =0 while for g>1 (surfaces of 
high genera), <0 , S shows a negative curvature. 
More about surfaces of negative curvature the reader 
can find in [1,2]. To complete the demonstration, data in 
Table 1 provide the values of g in several BTX multi tori, 
tessellation differing as X=A or Z.

The number of tetrahedral units BTX1 in the 
linear array of BTX20_k (Table 1, entries 3 to 6) is 
u=20k-5(k-1)=15k+5, according to the construction 
mode. The term -5(k-1) accounts for the superimposed 
hyper-rings BTXCy5. In case of BTZCy20_5, (Table 1, 

 

Figure 3. Top row: BTZ17_408 (left) and C17 (right); Bottom row:  BTA34_1332 (right) and C34 (right).

 

1781



Polybenzene multitori 

Figure 4. Top row: multi torus BTZ20_1_480 (left) and its core_120 (right). Bottom row: multi torus BTA20_1_780 (left) and its core_180 (right) .

  

Figure 5. Top row: the repeating unit BTA20_2_1350 (left) and a rod-like BTZ20_4_1560 (right). Bottom row: multi tori BTZCy20_5_1800 (left) 
	 								and	BTZSp20_12_3120	(five-fold	symmetry).
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entry 7) formula is u=20k-5k=15k, k=5, the last hyper-
ring unit being omitted because of the cyclic structure. 
Thus, the drop in g is of 5 units for each five-fold hyper-
cycle (compare  Table 1, entries 6 and 7). 

In case of the spherical array BTZSp20_12 
(Table 1, entry 9), u=20k-2[5(k-1)], k=12. Remark the 
twice subtraction of the term 5(k-1), in case of the 
spherical array, which accounts for the difference in g 
to the linear array of k=12 (Table 1, entries 8 and 9): 
186-131=55=5(12-1). This drop in g, in case of the 

spherical array, seems to parallel the well-known result 
that sphere is the minimal surface among all known solid 
objects. The number u is also related to the number of 
faces as: 8 / 6u f=  in case BTA and 6 / 4u f= in case 
BTZ.

On the ground of Theorem 1, the spherical array 
BTZSp20_12 seems to be the minimum g (lower bound) 
while BTZ20_k maximum g (upper bound) among 
all the studied structures. We demonstrated the 
following: 

 
Figure 6. BTZCy5:	five	tetrapodal	units	(each	closing	its	own	ring)	joined	at	the	central	ring,	thus	the	genus	is	calculated	g=5+1.

Table 1. Euler formula calculation in multi tori BTX.

BMTX v e f6 f8 ftot 2(1-g) g u u-formula

1 BTACy5 210 285 35 30 65 -10 6 5 f8/6

2 BTZCy5 120 165 20 15 35 -10 6 5 f6/4

3 BTA20_1 780 1110 170 120 290 -40 21 20 f8/6

4 BTZ20_1 480 690 80 90 170 -40 21 20 f6/4

5 BTA20_5 3060 4410 710 480 1190 -160 81 80 f8/6

6 BTZ20_5 1920 2790 320 390 710 -160 81 80 f6/4

7 BTZCy20_5 1800 2625 300 375 675 -150 76 75 f6/4

8 BTZ20_12 4440 6465 740 915 1655 -370 186 185 f6/4

9 BTZSp20_12 3120 4590 520 690 1210 -260 131 130 f6/4

Table 2. Total energy Etot	per	Carbon	atom	and	HOMO-LUMO	HL	Gap,	at	Hartree-Fock	HF	level	of	theory	and	Strain	energy	according	to	POAV	
	 					theory	in	benzene-patched	structures	vs	C60 taken as the reference.

Structure Etot/(au) Etot/C (au) HL Gap (eV) Strain/C  (kcal mol-1)

1 BTA_48 -1831.484 -38.156 11.285 0.083

2 BTACy,5_210 -7986.806 -38.032 9.545 0.392

3 BTZ_24 -915.092 -38.129 8.221 7.614

4 BTZCy,5_120 -4558.826 -37.990 7.178 4.893

5 C60 -2271.830 -37.864 7.418 8.256
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Theorem 2. The genus in multi tori shows the lower 
bound value in structures of icosahedral symmetry while 
the upper bound value is shown in linear structures, 
provided the same number of (open) tetrahedral units.

Carbon atom orbit analysis in BTZSp20_12 revealed 
a 6.82 massive class (2580 atoms, about 83%), located 
inside, of the same signature as in polybenzene [10], 
and two smaller classes, of signature 6.8 (360 atoms), 
and 6 (180 atoms), disposed outside the spherical 
structure. Compare with % of 6.82 in the linear array 
BTZ20_k (about 74% at k=12) and in BTA20_k (about 
26%, at k=9). Knowing the (calculated [24]) stability 
of polybenzene, consisting of only 6.82 atoms (in the 
infinite triple periodic net), the orbit analysis can be seen 
as a “topological proof” of stability of the spherical array 
BTZSp20_12.

2.3. Stability of nanotube junctions
The test of stability was done to support the idea that 
the basic substructures of multitori could appear in real 
experiments, by self-assembly of some very simple 
repeating units. Data are listed in Table 2, taking C60 as 
the reference structure.

Total energy per carbon atom, calculated at the 
Hartree-Fock HF level of theory and the HOMO-LUMO 
gap as well, show the BTA_48 and its derived hyper-
pentagon the most stable structures in Table 2. The 
Strain energy, calculated according to the Haddon’s 
POAV theory [25,26]  is also in favor of BTA-substructures 
and is far less than in case of the closed cage C60. 
Table 2 suggests the benzene-patched as being possible 
candidates to real molecules eventually self-assembled 
in more complex multitori as exist in spongy-carbon or 
zeolites.

3. Computational details
The structures, as finite hydrogen-ended ones, were 
optimized at the Hartree-Fock HF (HF/6-31G**) level of 
theory. The calculations were performed in gas phase 

by Gaussian 09 [27]. The single point energy minima 
obtained for the investigated structures were collected 
in Table 2. Strain energy values were computed by 
JSChem program [28]. Operations on maps were 
made by our CVNET program [16] while the topological 
analysis was done by Nano Studio software package 
[17].

4. Conclusions
Polybenzene unit BT_48 was shown to dimerize either 
by identification of octagons R(8) to provide the diamond-
like fcc-net or by identifying the “opening” rings R(12) 
when the “intercalated” dendrimer-dimer will finally 
superimpose over the diamond-like network. A third way 
was shown to be an “eclipsed” isomer, the oligomers 
of which form structures of five-fold symmetry, called 
multitori. 

A rational structure construction was given for the 
multitori herein considered and for some of their subunits, 
as well. The polybenzene “armchair” BTA multitori were 
compared to the “zig-zag” BTZ, previously proposed at 
the TOPO Group Cluj. 

It is worthy to note that the BTZ structures are the 
most simple patched nanostructures, consisting of 
atoms only forming isolated benzene rings. Their stability 
was found to be at least that of C60 and this could be a 
promise for their laboratory synthesis.

A graph-theoretical study related the structure 
of multitori to the genus of their embedding surface 
and established the lower and upper bound genus 
values. 
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