

Central European Journal of Chemistry

The radioactivity and the chemical nature of additives as factors determining the photocatalytic activity of TiO₂

Research Article

Maria M. Milanova, Petya G. Kovacheva, Radina P. Kralchevska, Jovo R. Kolev, Joana Ts. Zaharieva, Dimitar S. Todorovsky*

> Faculty of Chemistry and Pharmacy, University of Sofia, Sofia 1164, Bulgaria

Received 29 April 2012; Accepted 26 July 2012

Abstract: Microcomposites consisting of TiO₂ and ThF₄ or UO₃ (0.5-2% of the TiO₂ mass) are produced by sol-gel synthesis of TiO₂ in presence of the respective additives. X-ray diffraction study reveals small effect of the latter on TiO₂ phase composition and cell parameters and significant influence on the crystallite size and UV/Vis reflectance spectra. The photocatalytic tests in presence of TiO₂-ThF₄ microcomposites under UV and solar irradiation show a non-monotonic increase of the Malachite Green degradation rate constant with the increase of ThF₄-content. No changes in the photocatalytic activity are observed in the presence of UO₃ but the latter composites exhibit activity in darkness. The results are compared with previously reported data on the performance of TiO₂-ThO₂ photocatalyst with the same radioactivity and suggest that both radioactivity and the chemical nature of the dopants are responsible for the photocatalytic performance of TiO₂-based composites containing radioactive substances.

Keywords: Actinoids • Photocatalysis • Radioactivity • Sol–gel synthesis • TiO₂ © Versita Sp. z o.o.

1. Introduction

Doping of ${\rm TiO}_2$ with different elements is a common method to increase its photocatalytic activity and shift that activity to longer wavelengths. While the effect (positive or negative) of a significant number of the d-and 4f-elements – as well as some alkalis and number of non-metals – on the photocatalytic activity of ${\rm TiO}_2$ is widely studied, the data on the effect of 5f-elements are very limited.

In a few patents, attempts are made to utilize the effect of natural radioactive components as ${\rm TiO_2}$ dopants [1-3]. Devi *et al.* [4,5] modified sol-gel produced ${\rm TiO_2}$ (anatase) with ${\rm Th(NO_3)_4}$ (0.02 - 0.1%). Doping decreases the photocatalytic activity under UV irradiation but increases it under solar illumination. The catalyst with 0.06% ${\rm Th^{4+}}$ exhibits the highest activity under the both types of illumination which is ascribed to the peculiarities of the doped samples: higher surface area, the increased adsorption ability to water and hydroxyl groups, shift

in the absorption band to visible region (important at solar irradiation), more efficient separation of charged carriers. The latter is due to the defect levels created by Th4+ ions in the TiO2 lattice (which can capture and release the photogenerated electrons or holes). While the papers [4,5] are concentrated mainly on the role of Th4+-ions as dopants modifying the physicochemical (and thence - the photocatalytic) properties of TiO2, Yu et al. [6] pay attention to the activating function of the Th radiation originated from natural mineral monazite (rare earth/thorium phosphate) in synergism with cerium. The final material is effective against phenol and Methylene Blue degradation even in darkness. The interpretation of the effects is based on the role of cerium as a mediator in the processes taking place. The Ce-ions are excited by photons with energy above 5-6 eV and the following intensive luminescence in the interval 2.8-4.5 eV due to 5d→4f transitions is sufficient to excite TiO_a.

Our previous work [7] shows that radioactivity is one of the main reasons for increased photocatalytic activity

of TiO₂-ThO₂ composites and the presence of Ce⁴⁺ ions is not an requirement for the realization of the ThO, effect. The photocatalytic tests under UV irradiation in the presence of microcomposites consisting of sol-gel synthesized TiO₂ and ThO₂ (0.5-2% of the TiO₂ mass) reveal an increase of the Malachite Green degradation rate constant depending non-monotonously on the ThO_a content. The composite exhibits activity in darkness, also. The experimental results show that (despite the significant differences in the Ti4+ and Th4+ ionic radii and the composite nature of the prepared catalyst) a small amount of the added ThO2 gets into the structure of the sol-gel prepared TiO₂. Thus the Th4+ could influence the TiO, photocatalytic performance via two ways - as a chemical dopant present in its crystal cell and as an ionization ray

The present work expands this investigation studying the performance of the catalysts under solar irradiation but its main aim is to compare and distinguish the role of the above mentioned two factors (radioactivity and the chemical nature of the additive) on the photocatalytic activity of TiO_2 . Pursuing this aim, experiments were performed substituting ThO_2 with ThF_4 or UO_3 . Synthesis and photocatalytic tests were carried out at the same conditions as those applied in [7]. The Th-content (and, respectively, the radioactivity) in the systems $\mathrm{TiO}_2\text{-ThF}_4$ were the same as in the $\mathrm{TiO}_2\text{-ThO}_2$ microcomposites. In the other studied system, the mass ratio $\mathrm{TiO}_2/\mathrm{UO}_3$ was the same as $\mathrm{TiO}_2/\mathrm{ThO}_2$ ratio used in the previous study [7].

Surface modification of TiO, with F has been investigated as an avenue to improve the photocatalytic performance of the TiO₂ (see for example [8,9] and the cited literature). Strong absorption of fluoride anions on the TiO, surface greatly affects its interfacial and surface properties [10]. Photocatalytic activity of F-doped TiO, depends on the number of factors, including catalyst phase composition [9], nature of the pollutant (cationic or anionic dye [11]), doping conditions [8]. In most of the reported cases promotion of the TiO₂ photocatalytic activity resulting from the fluorination is found. However, the fluorination in the most of the studies is realized in a way (usually treating the TiO, with NaF solution), rather different from the one applied in the present work and the established mechanisms of the influence of the adsorbed F-ions cannot be realized in the conditions of our work. So, a direct comparison of the results obtained in the present study for the system TiO₂-ThF₄ with the earlier results for the effect of F-ions (when surface fluorinated TiO₂ is applied) is impossible. Further on in the text our speculations are limited within the frames of analogous systems produced by the same method

in which the mechanism of additives' influence will be similar

2. Experimental procedure

2.1. Catalysts synthesis and characterization

The composite ${\rm TiO_2\text{-}ThF_4}$ and ${\rm TiO_2\text{--}UO_3}$ were produced according to the same sol-gel procedure, applied for ${\rm TiO_2\text{--}ThO_2}$ [7]. ${\rm ThF_4}$ (Carlo Erba, $\geq 99\%$) or ${\rm UO_3}$ (Chemapol) in the desired amount was suspended in 50 mL of absolute ethanol and 0.025 mol of ${\rm Ti[OCH(CH_3)_2]_4}$ (99%, Aldrich) was added. After stirring diluted HNO $_3$ (volume ratio ${\rm H_2O}$: 65% HNO $_3$: absolute ${\rm C_2H_5OH}=24:0.05:80$) was added slowly to pH 3 and stirred again for 30 min. Finally, all products were dried at 120°C and calcinated for 3 h at 550°C. Samples, containing 0.5, 1.0 and 2.0% UO $_3$ by mass or such amounts of ${\rm ThF_4}$ that ensure ${\rm Th-content}$ and radioactivity equivalent to 0.5, 1.0 and 2.0% of ${\rm ThO_2}$, were produced.

concentrations of the additives The predetermined by their amounts, introduced into the systems, and confirmed by energy-dispersive X-ray fluorescence analysis within the analysis error limits. A 0.25 g portion of the powdered sample was mixed with 1 g H₂BO₂ (spectroscopical grade), homogenized and pressed into a pellet of 25 mm diameter and 2 mm height. The samples were measured using a Si(Li) detector (Ortec) with energy resolution of 175 eV at 6.4 keV, thickness of the Be window 0.0254 mm and active area 28 mm². The detector was coupled to a spectroscopic amplifier (Ortec Model SLP-06175-P; CFG-PD), ADC (Canberra 8075) and MCA Canberra 35 Plus using 241Am with activity of 3.7 GBq with ring geometry as the excitation source.

Gamma spectra of the final products were taken by a Canberra 35 4096-channel gamma spectrometer (HPGe detector, effectiveness 15%). The samples' activities were measured by the areas of 338.4 keV γ -peak of ²²⁸Ac (for Th-containing samples) and of 185.7 keV peak of ²³⁵U.

X-ray diffractograms of the specimens were recorded by Siemens D500 powder diffractometer at CuK_{α} irradiation (40 kV, 30 mA, 20 step $0.02^{\circ}/2$ s) equipped with secondary monochromator to exclude K_{β} light. Quantitative analysis of the diffractograms was performed by the Rietveld method using the program BRASS [12]. Thus, the lattice parameters, the average crystallite size and the phase composition ratio of the obtained materials were calculated.

UV/Vis absorption and diffuse reflectance spectra of the powdered specimens were registered by means of an Evolution 3000 UV/Vis spectrophotometer (Thermo Scientific) equipped with a Praying-Mantis accessory.

2.2. Photocatalytic tests

The photocatalytic tests were performed as described in [7] in slurry (1 g catalyst L-1), using Malachite Green oxalate (MG, 10⁻⁵ M aqueous solution) as a model pollutant. After 30 min "dark" period (for establishing of equilibrium of the sorption process), the system was UV-illuminated by a Sylvania 18 W BLB T8 lamp (emission in the 345-400 nm region with a maximum at 365 nm), situated at 9.5 cm distance above the slurry under continuous magnetic stirring (400 min-1) and bubbling with air (45 dm³ h⁻¹). The dye concentration was followed spectrophotometrically by the band at 620 nm. Some of the experiments were performed under indirect sun light around 12-14.30 h during sunny days in May in Sofia (latitude 42.7°N, longitude 23.3°E, altitude 550 m above sea level). In the mentioned time period the sun intensity is comparatively constant (UV index 7.5-8.0 for one of the days, in which part of the experiments were done). "Solar" experiments were also done with TiO₂–1% ThO₂, prepared by the method, applied in [7] and showing best photocatalytic activity among ThO₃-containing specimens.

The data obtained were plotted in coordinates $\ln(C/C_0)/t$ (where C_0 is concentration after the "dark" period, and C is concentration after t min irradiation)

Table 1. Gamma doses of the prepared composites (μSv h-1 g-1).

Composite	At surface	At 20 cm from the surface
TiO ₂ - 1% ThO ₂ /ThF ₄	280.3	7.01×10 ⁻³
TiO ₂ -1% UO ₃	73.4	1.83×10 ⁻³

and apparent rate constants of the degradation process were determined accepting first order kinetics. The sorption ability was calculated as a ratio $(C_{oo}-C_{o})/C_{oo}$, where C_{oo} is the starting solution concentration (before the "dark" period). The relative standard deviation of the results evaluated from three parallel experiments with composite containing 1% additive is 4%.

3. Results and discussion

3.1. Radioactivity

The total radioactivity of the prepared samples is almost equal: 313.9 Bq g⁻¹ (TiO_2 -1% ThO_2 / ThF_4) and 310.5 Bq g⁻¹ (TiO_2 -1% UO_3). The dose rate at composite surface and at 20 cm from the surface is shown on Table 1. It is seen that it is negligible compared to the natural gamma-background which reaches 0.4 μ Sv h⁻¹.

3.2. Crystal structure, crystallite size, phase composition

Fig. 1 represents the X-ray diffractograms of some of the studied composites. The diffractograms of ${\rm TiO_2}$ - ${\rm ThF_4}$ composites are identical regardless of the additive content (within the studied concentration interval) (Figs. 1, 3-5). The same is also true of the composite ${\rm TiO_2}$ -1% ${\rm UO_3}$. Data for the lattice parameters, crystallite size and phase composition of the samples are shown in Table 2. For comparison, the results [7] for ${\rm TiO_2}$ -ThO₂ composites are also included.

The influence of ${\rm ThO_2}$ on the anatase crystal parameters and possible mechanisms for its incorporation in the host cell are discussed in [7]. No significant difference in the effect of the ${\rm ThF_4}$ is observed – as in the case of the ${\rm ThO_2}$ presence, the

Table 2. Lattice parameters (a, b, c, Á) size of crystallites (SC, nm), cell volume (V×10⁻⁶, pm³) and phase composition (PC, %) of the studied TiO₂ samples.

Nº	Additive Anatase					Rutile							Brookite					
	Туре	%	a, b	С	V	sc	РС	a, b	С	V	sc	РС	а	b	sc	V	sc	РС
JCPDS*	-	-	3.77600	9.48600	135.25			4.59370	2.95870	62.43			9.184	5.447	5.145	257.380		
1	-	-	3.784(1)	9.481(3)	135.73	9	91						9.184(0)	5.447(0)	5.145(0)	257.380	7	9
2	ThF ₄	0.5	3.783(8)	9.496(2)	135.96	22	90	4.571(7)	2.957(9)	61.82	13	2.5	9.018(2)	5.466(0)	5.266(9)	259.621	8	7
3	UO ₃	0.5	3.783(2)	9.504(0)	136.03	13	100											
4	ThO ₂		3.7803(5)	9.501(1)	135.77	18	96	4.587(3)	2.954(3)	62.14	25	3						
5	ThF ₄	1.0	3.783(7)	9.497(2)	135.97	13	89	4.570(9)	2.963(2)	61.91	14	2.4	9.136(9)	5.459(3)	5.176(7)	258.221	21	8
6	UO ₃		3.783(6)	9.503(3)	136.05	11	100											
7	ThO ₂		3.7819(7)	9.501(2)	135.88	17	98											
8	ThF ₄	2.0	3.784(6)	9.494(9)	135.99	11	85	4.570(7)	2.955(1)	61.74	14	3.2	9.216(5)	5.413(6)	5.183(7)	258.636	6	12
9	UO ₃		3.785(5)	9.499(2)	136.12	29	100											

^{*} Anatase: 73-1764, Rutile: 78-2485, **B**rookite: 96-900-9088

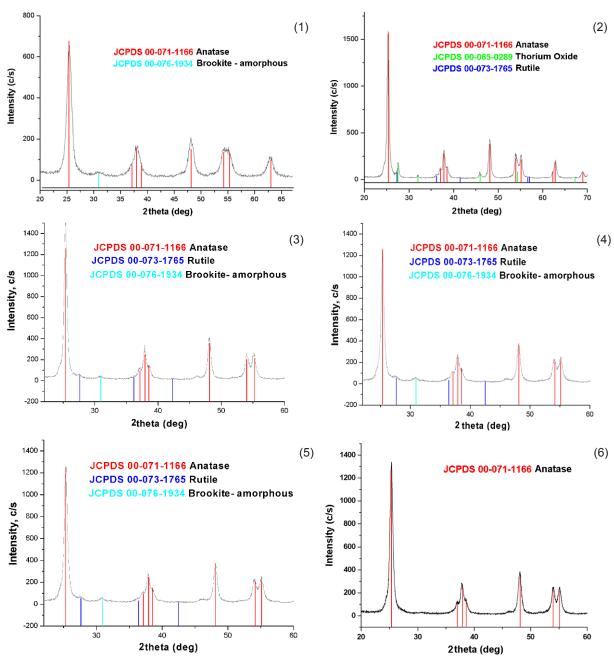


Figure 1. X-ray diffractograms of TiO₂ (1) and TiO₂ doped with 1% ThO₂ (2), ThF₄ 0.5% (3), 1% (4), 2% (5) and UO₃ (6)

parameter a is practically not changed, the elongation of the parameter c is of the same order. The anatase cell volume increases monotonically with the additive concentration growth and at 2% additive content is 0.2% larger than that of the non doped ${\rm TiO_2}$ prepared by the same way. The latter fact can be interpreted as an indication that small amount of the added compounds gets into the ${\rm TiO_2}$ structure as is proven in [4,5], also. A slightly bigger enlargement of parameter c and of the cell volume (0.3% at 2% content) caused by ${\rm UO_3}$ could be related to the smaller ${\rm U^{6+}}$ ionic radii

(87 pm compared with 108 pm for $\rm Th^{4+}$ and 74.5 pm for $\rm Ti^{4+}$) possibly leading to a slightly higher penetration of the additive in the $\rm TiO_2$ structure.

In contrast with the system ${\rm TiO_2}$ - ${\rm ThO_2}$ no reflexes of ${\rm ThF_4}$ and ${\rm UO_3}$ are observed in the respective composites' diffractograms. The same effect is observed in [5] and has been explained [13,14] with dispersion capacity of the metal oxides. Our experimental data show that the capacity of ${\rm TiO_2}$ depends on the chemical nature of the added compound.

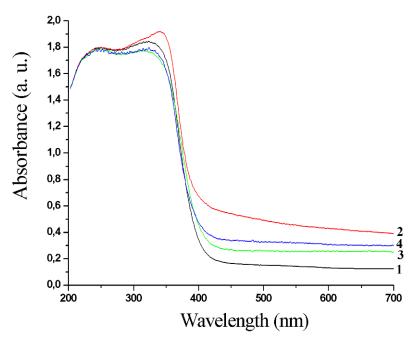


Figure 2. UV-Vis absorption spectra of TiO₂ (1) and composites TiO₂+1% UO₃ (2), TiO₂+1% ThO₂ (3), TiO₂+ThF₄ (equivalent by Th-content and radioactivity to 1% ThO₂) (4).

All studied additives cause a non-monotonic increase of the anatase crystallite size with the additive content increase (Table 2), reaching 22 nm (0.5% ThF_2) and 29 nm (2% UO_3) compared with 9 nm for the non-doped material. The effect of the ThF_2 on the brookite is statistically significant at higher (2%) additive content. Non-monotonic influence of the Th^{4+} content on the crystallites size is also reported in [4] in a rather different concentration interval.

It is known that the presence of 4f-ions stabilizes anatase modification (see, for example, [15]). The data in [4,7] suggest that ThO_2 has the same effect. Our results concerning UO_3 -containing composites are also in agreement with the above results - only anatase is registered in this type of sample. The presence of ThF_4 , however, has a different effect. The content of anatase in the TiO_2 -2% ThF_4 sample decreases from 91% in the pure TiO_2 to 85% whereas rutile and brookite content increases from 0% to 3% and from 7% to 12 %, respectively. The reasons for the observed difference in the behavior of the studied thorium compounds are yet to be elucidated.

3.3. UV-Vis absorption and diffused reflectance spectra

Two partially overlapped bands with maxima around 246 and 323 nm are registered in the absorption spectra of the ${\rm TiO_2}$ and ${\rm TiO_2}$ -Th composites, containing 1% additive (Fig. 2). In the analogous ${\rm TiO_2}$ -UO $_3$ specimen the latter band is shifted to 342 nm. Similar bands are

observed in [5] in the intervals 200–215 and 340-350 nm. The variations in the ThF_4 content does not cause any changes in the UV spectral region suggesting that (as in case of TiO_2 - ThO_2 system [7]) a rather limited amount (probably much below 0.5%) of Th-containing additive can be introduced into TiO_2 structure and, accordingly, a higher amount of the additive in the composite is meaningless from the point of view of its influence on the TiO_2 crystal and electronic structure.

The presence of Th-compounds does not lead to any changes in the reflectance spectra of the composites in the short-wave UV region (Fig. 3a) compared with the pure ${\rm TiO_2}$. An increased absorption in the interval 385-400 nm is seen in the spectra of the Th-containing samples but not in ${\rm UO_3}$ -containing one. The visible light absorption by the composites containing 1% ThO₂ or ThF₄ is practically the same and much higher than that of non-doped ${\rm TiO_2}$. The absorbance of the ${\rm UO_3}$ -containing composite is similar to that of the pure ${\rm TiO_2}$.

The clearly expressed non-monotonic dependence of the reflectance on the ${\sf ThF}_4$ content in the specimens is seen on Fig. 3b.

3.4. Sorption ability and photocatalytic activity

Fig. 4 shows the influence of the additive concentration on the sorption ability of the catalysts and on the rate constant of dye photocatalytic degradation. Fig. 5 compares the effects of different additives present in the composites in equal radioactivity/concentration.

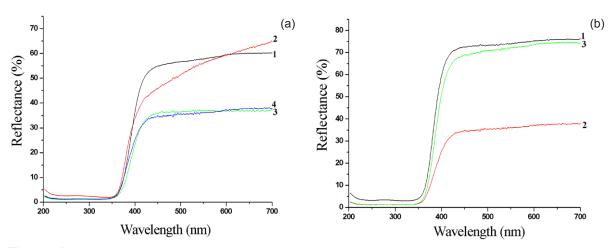


Figure 3. UV-vis diffused reflectance spectra of: (a) TiO₂ (1) and composites TiO₂+1% UO₃ (2), TiO₂+1% ThO₂ (3), TiO₂+ThF₄ (equivalent by Th-content and radioactivity to 1% ThO₃) (4); (b) TiO₂+ThF₄, equivalent by radioactivity to 0.5% (1), 1% (2) and 2% (3) ThO₅.

Data on Fig. 5 show for the first time results on the performance of Th/U-doped TiO, under solar irradiation. It is seen that the degradation rate constants for all studied catalysts (including pure TiO2) at these conditions are higher than at UV irradiation. The reason is in the very low-power UV irradiation source used in the present study (18 W) while much more powerful lamps are commonly used in similar photocatalytic tests (125 W Philips high-pressure mercury lamp [16], 150 W xenon lamp [17]), often immersed in the TiO₂-pollutant slurry [18]. At such conditions the degradation at UV illumination is much more effective than at sunlight treatment. For instance, the rate constant (min-1) for the degradation of an herbicide decreases from 225 to 25 (using the commercial product Degussa P25 TiO₂) or from 36 to 9 (sol-gel produced TiO₂) when UV and solar irradiation are applied, respectively [18].

The experimental results obtained in the present work confirm the earlier results, reported and discussed in [7]: (i) As in the case of pure ThO2, the pure ThF4 (in amounts equal to the one contained in the composite TiO₂-1% ThF₄) show no measurable effect on the pollutant degradation under UV-irradiation and in darkness; i.e., the results obtained with the studied composites have to be ascribed to a synergistic effect of the TiO./ Th-compound. (ii) Independently of the compound nature and its relative amount (within concentration interval studied), the effect of Th4+ on the TiO, crystal structure and phase composition is rather weak (Fig. 1, Table 1) but influences significantly the size of crystallites (Table 1) and the composites' sorption ability and photocatalytic activity under UV-irradiation (Fig. 4). (iii) At certain Th-contents, an increase in composite photocatalytic activity compared with the non-doped TiO, is found (Fig. 4). As is seen from Fig. 3a, both Th-containing composites exhibit an increased absorption in the interval

385-400 nm compared to that of the pure ${\rm TiO}_2$. As far as the applied UV source has an emission in the 345-400 nm region, this effect might have some contribution to the increased photocatalytic activity of the composites along with the effect from their radioactivity shown in [7]. (iv) The present experiments with ${\rm ThF}_4$ confirm the non-monotonic character of the dependences of the sorption ability and photocatalytic activity at UV-irradiation on the Th-content in the composite (Fig. 4). The specific optical behaviour of the composite with 1% ${\rm ThF}_4$ – compared with that of the samples with 0.5 and 2% additive (Fig. 3b) – confirms (under different experimental conditions) the non-monotonic changes of the band gap energy for ${\rm TiO}_2$ in ${\rm Th-doped\ TiO}_2$ samples reported in [5].

At the same time, the results in the present paper reveal a few peculiarities of the photocatalytic activity of the TiO₂-ThF₄ and TiO₂-UO₃ systems:

- Weaker effect of ThF, compared with ThO, under UV irradiation (Figs. 4,5). This difference cannot be due to a difference in the specific radioactivity of the samples, neither to the difference in their optical properties - the reflectance spectra of the two types of composites are identical in the UV spectral region (Fig. 3a). A possible reason for this effect could be the difference in the sorption ability of the two types of composites. Sorption of the pollutant on both studied catalysts varies in a relatively wide interval (Fig. 4; the variations are much more significantly expressed in TiO2-ThF4 system) without any clearly expressed dependence on the Th content. However, while the relations of the catalyst sorption ability and of the photocatalytic activity on the ThO₂ concentration in system TiO₂-ThO₂ are, in general, synchronous, the analogous relations for TiO2-ThF4 catalyst are mirror-images. The sorption is a compulsory stage in the overall photocatalytic process. However,

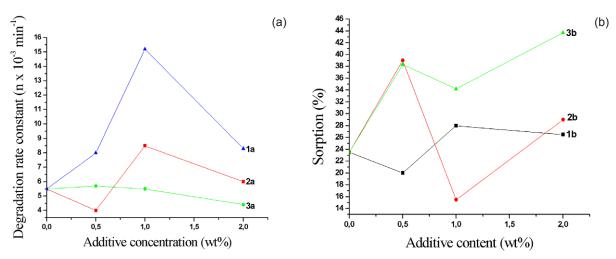


Figure 4. Relations of degradation rate constant under UV irradiation (a) and catalysts sorption ability (b) on additive concentration: ThO₂ (1), ThF₄ (2), UO₃ (3).

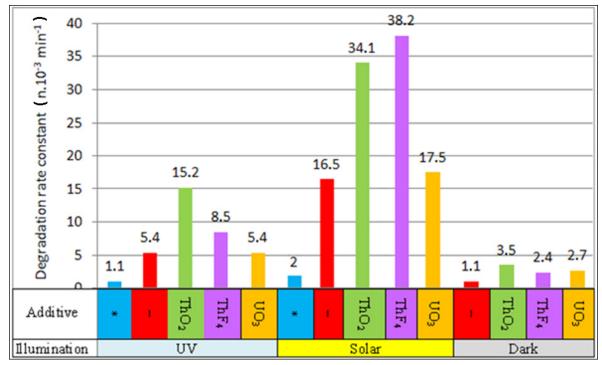


Figure 5. Degradation rate constant at 1% content of additives in the composites: * - photolysis, only; "-" pure TiO,

rather strong adsorption of the pollutant and, especially, of the degradation products can block the catalyst surface thus inhibiting its activity. The MG is a cationic dye and its strong adsorption on the F-containing surface is to be expected. An increased adsorption of Rhodamine B is observed on the fluorinated ${\rm TiO_2}$ surface [19]. We have no data on the MG degradation products. The observed bleaching of the solution can be due not to dye mineralization but to destruction of its chromophore part, only. The intermediate(s) may remain adsorbed on the surface decreasing the catalyst activity.

- Slightly stronger effect of ThF_4 in comparison to ThO_2 under the solar irradiation. Accounting for the experimental errors, the degradation rate constants for composites containing ThO_2 or ThF_4 are rather close (Fig. 5). This result is in agreement with practically equal reflectance spectra of the two types of catalysts in the visible spectral region (Fig. 3a). At the same time, the slight tendency for increase of the photocatalytic activity of TiO_2 - ThF_4 composite could be related to the higher adsorption ability of the fluoride-containing composite. It will enhance the process of visible light photocatalytic

degradation initiated by a direct electron transfer from the photoexcited dye molecules to the TiO₂ conductive band reported for Rhodamine B [19].

- Lack of effect of UO₃. It was mentioned (chapter 3.1.) that the radioactivity of samples doped with UO₃ is almost the same as of Th-containing ones. Despite that, its addition has no effect on the TiO, photocatalytic activity under UV and solar irradiation (Figs. 4,5). However, the rate constants found for UO3 and ThF4 composites in darkness are practically equal, nevertheless that the gamma-dose of the UO₃-containing composite on the surface of the sample (where catalytic process takes place) is almost 4-times lower (Table 1). The catalyst performance in darkness is a direct consequence of its radioactivity (according to [6] the high energy of 238U daughters and especially of ²²⁶Ra is the main factor for the enhancing of the photocatalytic process evoked by the TiO₂/monazite catalyst) and from this point of view the activity in darkness is to be expected. Its independence on the gamma-dose confirm our earlier made supposition [7] that the ionization of the environment by the electrons and α-particles emitted from the radioactive component and electron-hole pairs produced by their interaction with the TiO₂ semiconductor are the main reasons for the effect of the radioactive component of the catalyst.

The different behavior of Th- and U- containing catalysts has to be ascribed to differences in their sorption ability (rather high for TiO2-UO3) and to the action of UO3 as a chemical reagent. As was already mentioned, due to relative closeness of the ionic size of U6+ with that of Ti4+, it can be more easily substituted into the TiO, lattice than can Th4+. It can be observed from Table 1 that the unit cell parameter along c-axis and cell volume of the TiO₂ increase by 0.05-0.06% (up to 0.1% for the cell volume at 2% additive concentration) compared with the respective parameters for TiO₂-ThF₄ composite. In case of TiO, doping with U6+, n-type behavior is expected, creating mid-band gap states just below the conduction band. These may serve as sites for recombination. U6+ is easily inclined to nonreversible reduction to the rather stable U4+ thus it may serve as a deep trap for photogenerated electrons. The trapping of electrons by U6+ is observed during high-energy mechanical treatment of UO, leading to its mechanochemical reduction [20]. The experimental results strongly suggest that (within the studied interval

of ${\rm UO_3}$ concentrations in the composite) the positive and negative effects are canceled out keeping ${\rm TiO_2}$ photocatalytic activity constant.

4. Conclusion

Formation of ${\rm TiO_2\text{-}ThO_2/ThF_4/UO_3}$ composites do not cause significant changes of sol-gel produced ${\rm TiO_2}$ crystal cell parameters. ${\rm ThO_2}$ and ${\rm UO_3}$ inhibit phase transformation of anatase to rutile. ${\rm In\,TiO_2\text{-}ThF_4}$ samples, however, ${\rm TiO_2}$ presents in the three polymorphs with the domination of anatase. Independently of the chemical nature of the studied additives, they cause increase of the crystallite size of the formed anatase.

The photocatalytic activity of ${\rm TiO_2}\text{-ThF}_4$ under UV irradiation depends on the additive content and at 1%, the MG degradation rate constant is 1.6 times higher than that of the pure ${\rm TiO_2}$. At these conditions the enhanced action of the ${\rm ThF}_4$ is significantly weaker than that of ${\rm ThO_2}$ with the same radioactivity. However, at solar irradiation the activity of the ${\rm TiO_2}\text{-ThF}_4$ composite (measured by the rate constant) is 2.3-fold higher compared to the pure one and comparable with that of ${\rm TiO_2}\text{-ThO_2}$ composite. ${\rm UO_3}$ addition (0.5-2%) does not change the ${\rm TiO_2}$ activity.

The photocatalytic activity of all studied composites in darkness demonstrates the influence of the ionizing radiation emitted by Th and U and their daughter products on the TiO₂ activity, confirming the conclusion on this point made in [7].

The reported results (along those previously reported) on ${\rm TiO_2\text{-}ThO_2/ThF_4/UO_3}$ show that the chemical form of the radioactive additives and type of illumination during the degradation process are also important factors determining the ${\rm TiO_2}$ photocatalytic activity.

Acknowledgment

The work is performed under the financial support of the NATO Science for Peace Program (contract SfP 982835) and of Bulgarian Fund for Scientific Investigations (contract DO 02-252/08). The authors are indebted to Mr. M. Tsvetkov, MSc for the help with the X-ray diffractometry.

References

- [1] Y. Miyasaka, PCT Int. Appl., WO 2005102454 A1, 2005.11.03. Database: CAPLUS (In Japan)
- [2] K. Shiraishi, Jpn. Kokai Tokkyo Koho, JP 2004197269 A 2004.07.15. Database CAPLUS (In Japan)
- [3] T. Abe, Jpn. Kokai Tokkyo Koho, JP 2000230153 A, 2000.08.22. Database CAPLUS (In Japan)
- [4] L.G. Devi, B.N. Murthy, S.G. Kumar, J. Mol. Catal. A-Chem. 308, 174 (2009)
- [5] L.G. Devi, B.N. Murthy, Centr. Eur. J. Chem. 7, 118 (2009)
- [6] C.T. Yu, C.F. Wang, T.Y. Chen, Y.T. Chang, J. Radioanal. Nucl. Chem. 277, 337 (2008)
- [7] R. Kralchevska, M. Milanova, P. Kovacheva, J. Kolev, G. Avdeev, D. Todorovsky, Centr. Eur. J. Chem. 9, 1027 (2011)
- [8] Y. Chen, F. Chen, J. Zhang, Appl. Surface Sci. 255, 6290 (2009)
- [9] K. Lv, X. Li, K. Deng, J. Sun, X. Li, M. Li, Appl. Catalysis B: Environmental 95, 383 (2010)
- [10] C. Minero, G. Mariella, V. Maurino, E. Pelizzetti, Langmuir 16, 2632 (2000)
- [11] L. Ye, Ch. Yang, L. Tian, L. Zan, T. Peng, Appl. Surface Sci. 257, 8072 (2011)
- [12] J. Birkenstock, R.X. Fischer, T. Messner, BRASS 1.0 beta: The Bremen Rietveld Analysis and

- Structure Suite. Zentrallabor für Kristallographie und Angewandte Materialwissenschaften, Fachbereich Geowissenschaften (University of Bremen, Bremen, 2003)
- [13] L. Dong, Y. Hu, F. Xu, D. Lu, B. Xu, Zh. Hu, Y. Chen, J. Phys. Chem. B 104, 78 (2000)
- [14] D.W. Bahnemann, J. Monig, R. Chapman, J. Phys. Chem. 91, 3782 (1987)
- [15] M. Uzunova-Bujnova, R. Todorovska, D. Dimitrov, D. Todorovsky, Appl. Surf. Sci. 254, 7296 (2008)
- [16] H.M. Coleman, E.J. Routledge, J.P. Sumpter, B.R. Eggins, J.A. Byrne, Water Res. 38, 3233 (2004)
- [17] Y. Zhang, J.L. Zhou, B. Ning, Water Res. 41, 19 (2007)
- [18] R. Kralchevska, M. Milanova, T. Tišler, A. Pintar, G. Tyuliev, D. Todorovsky, Materials Chem. Physics 133, 1116 (2012)
- [19] Y. Chen, F. Chen, J. Zhang, Appl. Surf. Sci. 255, 6290 (2009)
- [20] P. Kovacheva, D. Todorovsky, D. Radev, V. Mavrodiev, R. Petrov, D. Kovacheva, K. Petrov, J. Radioanal. Nucl. Chem. 262, 573 (2004)