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Abstract: Regressions based on fluorescence spectroscopy were developed to provide relatively inexpensive and rapid measurements
of the concentration, viscosity, and specific gravity of biodiesel-diesel blends. The methods involved obtaining a mathematical model
from spectrofluorimetric data and data from a given property (concentration, dynamic viscosity, or specific gravity) using partial least
squares (PLS) regression, which was then applied as a model for predicting properties of interest. The predicted concentrations,
dynamic viscosities, and specific gravities of the biodiesel-diesel blends were compared with actual values and agreed reasonably
well with the obtained results. The models showed high correlation between real and predicted values. The R-square values near 1
indicated excellent model accuracy for predicting concentrations, specific gravities, and dynamic viscosities of biodiesel-diesel blends.
The residual distribution did not follow a trend with respect to the predicted variables, indicating an excellent fit to the data.
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1. Introduction

Biodiesel has attracted considerable interest as an
alternative to diesel fuel [1]. Biodiesel blends are
advantageous for several reasons. For example,
biodiesel is non-toxic, it contains no aromatics or
sulfur, it biodegrades faster than fossil diesel, it is
less polluting to water and soil, and it helps to reduce
both the greenhouse effect and our dependence on
petroleum [2]. Biodiesel is miscible with diesel in any
proportion; however, the suitability of biodiesel blends
as fuels is influenced by biodiesel’s physical properties.
The concentration of biodiesel in biodiesel blends has
significant effects on performance and efficiency of
biodiesel-powered machines. Therefore, the careful

control of biodiesel concentrations is important. The use
of biodiesel blends at concentrations below 20% helps
to maintain the engine due to the inherent lubricity of
the fuel. Biodiesel blends at concentrations higher than
20% dissolve rubber components, and their use requires
changes in the engines of some vehicles [3].

Viscosity is the resistance offered by a fluid deformed
by one force, such as, shear or tensile stress. Dynamic
or absolute viscosity is more common measure of this
property. Kinematic viscosity is the value found by
dividing the dynamic viscosity by density of the fluid. In
some fluids, viscosity has a constant value over a wide
range of shear rates. These fluids are called Newtonian
fluids. Fluids without a constant viscosity cannot
be described by a single value and are called non-
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Newtonian fluids. Non-Newtonian fluids exhibit a variety
of different correlations between shear stress and shear
rate. Viscosity is measured with either viscometers
or rheometers. In general, viscometers are used for
Newtonian fluids, and rheometers are used for non-
Newtonian fluids. Vegetable oils and animal fats tend
to cause problems when used directly in diesel engines
due to their high viscosity [4]. If the oils and fats are
first transesterified, however, the resulting biodiesels
have viscosities that are closer to diesel [5-7], although
the viscosities of monoesters tend to be higher than
the viscosity of petroleum-based fuel [8]. The ability to
control viscosity in fuels promotes optimal atomization.
Viscosity values below an established lower limit may
lead to excessive injection system wear, fuel pump
leaks and piston damage. Viscosity values above
the upper limit may lead to an increased workload of the
fuel pump. Additionally, exceptionally high viscosities
provide poor fuel atomization and incomplete
combustion with a subsequent increase in smoke
and particulate matter emission. Viscosity values
that are too high may lead to ineffective engine
operation [8].

The specific gravities of biodiesels and diesels
depend on their composition and purity. The composition
of biodiesel depends primarily on the composition
of the mixed esters. The composition of diesel can
also change, depending on the refinery feedstock
and day-to-day variability of the blending streams in
the diesel fuel boiling range. The specific gravities of
hydrocarbons, and therefore of diesel, are strongly
affected by temperature [4].

Multivariate calibrations are increasingly used to
extract relevant information from different types of
spectral data to predict properties of complex samples
[9-15]. Recent works have shown the viability of
spectroscopy associated with multivariate calibration
for predicting certain properties of fuel. Multivariate
near-infrared (NIR) spectroscopy models have been
used successfully for the prediction of several physical
and operating properties of oil fractions and diesel fuels
[16], concentrations and specific gravities of biodiesel-
diesel blends [17], methanol and water content [18] as
well as iodine value, kinematic viscosity, density and
cold filter plugging point in biodiesel [19]. The NIR
and NMR have been used to determine blend levels
of biodiesel-diesel mixtures [20]. Multivariate NIR and
middle infrared spectrometry (MIR) models have been
developed to predict quality parameters of biodiesel-
diesel blends (density, sulfur content and distillation
temperatures) [21], to monitor transesterification
reactions [22-24], to determine total sulfur in diesel [25]
and to determine several gasoline properties [26,27].

In addition, multivariate NIR spectroscopy models have
also been employed to monitor the quality of oils for
biodiesel production [28]. Spectrofluorimetry has been
used to determine the adulteration of biodiesel-diesel
blends with residual oil [29,30] and stability oxidation
[31,32].

In this work, multivariate calibration methods based
on spectrofluorimetric data were developed to provide
relatively inexpensive and rapid measurements of the
concentrations, specific gravities and viscosities of
biodiesel-diesel blends. Multivariate analysis methods
allow the simultaneous use of all variables for the
interpretation of data resulting from chemical analyses.
Chemometric techniques are currently important tools
in diverse technological areas, such as in the analysis
of food, pharmaceutical, agricultural, environmental
and industrial chemistry.

There are several methods of multivariate analysis
used for very different purposes. The most common
are principal component analysis (PCA) and partial
least squares (PLS) analysis. PCA analysis allows for
a reduction in the number of variables to a few principal
components that are responsible for explaining most
variation associated with the original set. PCA analysis
provides tools to identify the most important variables in
the principal components space in addition to classifying
samples according to their similarities.

With PLS, it is possible to find a mathematical
relationship between one variable (the dependent
variable) and the remainder of the variables that describe
the system (independent variables). PLS analysis then
finds a function that describes the variables X and Y
by maximizing the correlation between them. PLS is
chiefly applied to the prediction of analytical results for
a dependent variable in the presence of independent
variables.

2. Experimental procedure

The data set consisted of blends prepared using
biodiesel and diesel samples supplied by Petrobras.
The two types of biodiesel used in this study were soy
and cottonseed biodiesel. Mixtures of biodiesel and
diesel were made with concentrations of biodiesel
ranging from 0 to 100%, as shown in Table 1.

Viscosity measurements of soy and cottonseed
biodiesel-diesel blends (Table 1) were made using an
MCR 501 rheometer Anton Paar at 25°C with a shear
rate ranging from 10-100 s™'. All analyses of viscosity
were performed in 20 replicates and their average
values were calculated. The data showed in Table 1 are
the average values.
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Table 1. Concentrations, viscosities and specific gravities of biodiesel-diesel blends at 25°C.

Samples | Biodiesel in Soy biodiesel-diesel Cottonseed Soy biodiesel- Cottonseed
diesel (%) blend Viscosity (cP) biodiesel-diesel diesel blend biodiesel-diesel
blend Viscosity (cP) specific gravity blend specific gravity
M s M s M s M s
1 0 3.6015 0.06418 3.5915 0.06409 0.821 0.004 0.823 0.004
2 5 3.6635 0.06675 3.6835 0.05650 0.824 0.004 0.828 0.001
3 10 3.6650 0.06525 3.6870 0.07610 0.832 0.004 0.830 0.002
4 15 3.7300 0.06489 3.7120 0.07736 0.834 0.005 0.832 0.002
5 20 3.7545 0.06509 3.7785 0.06499 0.836 0.002 0.834 0.002
6 25 3.7995 0.06245 3.8435 0.07450 0.838 0.004 0.841 0.002
7 30 3.8580 0.06437 3.8875 0.09408 0.851 0.011 0.842 0.003
8 35 3.9375 0.05981 3.9740 0.07783 0.844 0.002 0.846 0.002
9 40 3.9980 0.06229 4.0170 0.06929 0.851 0.003 0.852 0.002
10 50 4.1550 0.0338 4.1280 0.10938 0.852 0.001 0.858 0.002
11 60 4.2555 0.06278 4.3080 0.08727 0.865 0.013 0.863 0.002
12 70 4.3910 0.07188 4.4630 0.10058 0.867 0.011 0.867 0.004
13 80 4.5330 0.06868 4.6655 0.05680 0.876 0.012 0.875 0.007
14 90 4.6865 0.05958 4.8505 0.07156 0.887 0.016 0.883 0.002
15 100 4.8000 0.06262 5.0460 0.06012 0.898 0.030 0.885 0.002

M = Mean, s = standard deviation

Specific gravities were determined by dividing the
mass of 5 mL of each sample by the mass of the same
volume of distilled water at room temperature (25°C).
The samples were weighed on an analytical balance
(precision of 1 mg) and the volumes were measured
with a micropipette. All analyses of specific gravities
were performed in 3 replicates and their average values
were calculated. The data showed in Table 1 are the
average values.

Fluorescence measurements were performed with
a spectrofluorimeter constructed in-house that was
equipped with a light-emitting diode (LED) and quartz
cells with 1 cm optical paths. The fluorescence emission
spectra of the samples were obtained by exciting the
samples with the ultra-violet LED and capturing the
emission from 350 nm to 1000 nm with 1 nm increments
(total of 651 emission wavelengths). The spectra were
arranged into a general matrix of 15x651 (samples
versus emission wavelengths), processed using mean
centering and then analyzed using PLS.

In this study three regression models were
developed for each type of biodiesel. One model was for
determining the concentration of biodiesel in biodiesel-
diesel blends, a second model was for determining
specific gravity, and the third was for estimating the
viscosity of biodiesel-diesel blends. Each multivariate
calibration model was developed using PLS regression

with regions previously established using PCA.
The calibration models were constructed using the PLS
regression technique with the software Unscrambler®
10.0.1. The number of latent variables for PLS
was determined based on the validation error using
the default software. The general matrixes (15x651)
were used to construct the mathematical models
using PLS. By adding one column for the property
measurement, each final matrix had the dimensions
15x652.

Each PLS model was built using mean-centered
fluorescence spectra as independent variables and
the measured corresponding values of concentration,
specific gravity, or viscosity as the dependent variables.
For the calibration step using PLS, the relationship
between the spectra and property measurement was
estimated from a set of reference samples of mixtures
of soy and cottonseed biodiesel in diesel (Table 1).
In this study, we used the method of cross-validation
leave-one-out as a strategy for validation. This strategy
involves using a single observation from the data set
as the validation data, and the remaining observations
as the training data. This is repeated such that each
observation in the data setis used once as the validation
data. In each figure, blue points and curves represent
calibration data and red points and curves represent
validation data.
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3. Results and discussion

The PCA built using entire fluorescence of soy biodiesel-
diesel blends as variables showed that two principal
components (PC1 and PC2) were responsible for
capturing 99.8% of the variance being 99.4% for PC1
and 0.4% for PC2 (Fig. 1). For cottonseed biodiesel-
diesel blends, the PCA built with entire fluorescence
showed that PC1 and PC2 were responsible for
capturing 99.9% of the variance being 99.5% for PC1
and 0.4% for PC2 (Fig. 2).

Initially each PLS model was built with all data
and were then evaluated in order to detect outliers.
Then models were rebuilt with the remaining set of
samples. Sample 7, with 30% of soy biodiesel in diesel,
was detected as an outlier and removed from the
dataset in developing the PLS models for determining

concentration, specific gravity, and viscosity of soy
biodiesel-diesel blends (Figs. 3, 7 and 11). Similarly,
sample 15 with 100% of cottonseed biodiesel in diesel
was detected as outlier and removed from the datasetin
developing the PLS model for determining concentration
of cottonseed biodiesel-diesel blends (Fig. 4).

The PLS models were evaluated by examining the
calibration parameters: the correlation, the coefficient
of determination (R2), and the residual distribution. The
correlation shown the strength of the linear relationship
between actual values and values predicted by the
calibration model. The correlation values can vary in
the range from —1 to +1, and values closer to +1 suggest
higher correlation between data. The R?is defined as
the proportion of variability in y that may be attributed
to the variability in x, and it indicates the accuracy of
the model to predict answers to new observations.
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Figure 1. PCA of fluorescence spectra for samples of soy biodiesel.
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Figure 2. PCA of fluorescence spectra for samples of cottonseed biodiesel.
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Figure 3. Reference versus predicted concentrations for soy biodiesel samples. Blue line represents calibration data and red line represents

validation data.
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Figure 4. Reference versus predicted concentrations for cottonseed biodiesel samples. Blue line represents calibration data and red line

represents validation data.

The residual distribution is the distribution of differences
between calculated and observed values over the
observed values of the studied response. The residual
distribution indicates the quality of the fits. The fits are
good quality when the residual distribution does not
follow a trend with respect to the predicted variables.
For soy and cottonseed biodiesel-diesel blends,
the models were shown to be practical for predicting
changesinconcentrationbasedonfluorescence spectral
variances. Figs. 3 and 4 show plots of reference versus
predicted concentration values for soy and cottonseed
biodiesel-diesel blends, respectively. Correlations
of 0.99946 and 0.99968 for soy and cottonseed
biodiesel-diesel blends, respectively, indicated a strong
association of the observed data for the two variables.
An R? of 0.99892 and 0.99936 for soy and cottonseed

1332

biodiesel-diesel blends, respectively, demonstrated the
efficiency of the models for predicting concentrations.

Figs. 5 and 6 show plots of the residual distributions
of the models built with concentration values for soy
and cottonseed biodiesel-diesel blends, respectively.
All of the residuals in the two curves are less than 2.5%,
which indicates that the models adequately represented
the concentrations for soy and cottonseed biodiesel-
diesel blend samples, respectively, over the studied
experimental range.

Multivariate calibration models for viscosity were
then developed for soy and cottonseed biodiesel-
diesel blends using fluorescence as the independent
variables for each biodiesel and viscosity values as the
dependent variables (Table 1). Figs. 7 and 8 show plots
ofthe reference versus predicted viscosity values for soy
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Figure 5. Plot of the residuals for the model built with concentration values for soy biodiesel-diesel blends. Blue points represent calibration
data and red points represent validation data.
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Figure 6. Plot of the residuals for the model built with concentration values for cottonseed biodiesel-diesel blends. Blue points represent
calibration data and red points represent validation data.
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Figure 8. Reference versus predicted viscosity values for cottonseed biodiesel-diesel blends at 25°C. Blue line represents calibration data

and red line represents validation data.
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Figure 9. Plot of the residuals for the model built with viscosity values for soy biodiesel-diesel blends at 25°C. Blue points represent

calibration data and red points represent validation data.

and cottonseed biodiesel-diesel blends, respectively.
Correlations of 0.996365 and 0.996185 for soy and
cottonseed biodiesel-diesel blends, respectively,
indicated good correlation between the fluorescence
spectra and viscosity values. The efficiency of the PLS
models for predicting viscosity was confirmed with R?
values of 0.99275 and 0.9924 for soy and cottonseed
biodiesel-diesel blends, respectively.

Figs. 9 and 10 present plots of the residual
distributions of the models built with viscosity values
for soy and cottonseed biodiesel-diesel blends,
respectively. All of the residuals from the two curves
are less than 0.10%, which indicates that the models
adequately represented the viscosity for soy and
cottonseed biodiesel-diesel blend samples over the
studied experimental range.

Multivariate calibration models for specific gravity
were next developed for soy and cottonseed biodiesel-

diesel blends using fluorescence as the independent
variables for each biodiesel and specific gravity as the
dependent variables (Table 1). Figs. 11 and 12 present
plots of the reference versus predicted specific gravity
values for soy and cottonseed biodiesel-diesel blends,
respectively. Correlations were 0.99603 and 0.98812
for the soy and cottonseed biodiesel-diesel blends,
respectively. The R? values were 0.99196 and 0.97652
for soy and cottonseed biodiesel-diesel blends,
respectively. Both correlations and R? values near 1
indicated good correlation between the fluorescence
spectra and specific gravity values, and they
demonstrated the ability of the PLS model to accurately
predict specific gravity.

Figs. 13 and 14 show plots of the residual
distributions for the models built with specific gravity
values for soy and cottonseed biodiesel-diesel blends,
respectively. All of the residuals from the two curves
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Figure 10. Plot of the residuals for the model built with viscosity values for cottonseed biodiesel-diesel blends at 25°C. Blue points
represent calibration data and red points represent validation data.
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Figure 11. Reference versus predicted specific gravity values for soy biodiesel-diesel blends at 25°C. Blue line represents calibration
data and red line represents validation data.
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calibration data and red line represents validation data.
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Figure 14.. Plot of the residuals for the model built with specific gravity values for cottonseed biodiesel-diesel blends at 25°C.
Blue points represent calibration data and red points represent validation data.

were less than 0.01%, which indicated that the models
adequately represented the specific gravity for soy and
cottonseed biodiesel-diesel blend samples over the
studied experimental range.

The root mean square error of the calibration
(RMSEC) and root mean square error of the validation
(RMSEV) were calculated to evaluate the models.
For soy biodiesel-diesel blends, the RMSEC values
(using two factors) were 1.0398, 0.0332 and 0.0020
for calibration models developed for concentration,
viscosity and specific gravity, respectively. The RMSEV
values (using two factors) were 1.347,0.0362 and 0.0025
for validation models developed for concentration,
viscosity, and specific gravity, respectively.

For cottonseed biodiesel-diesel blends, the RMSEC
values (using twofactors) were 0.692,0.0386 and 0.0030
for calibration models developed for concentration,
viscosity, and specific gravity, respectively, from soy
biodiesel-diesel blends. The RMSEV values (using two
factors) were 1.351, 0.0479 and 0.0036 for validation

models developed for concentration, viscosity,
and specific gravity, respectively. The RMSEC and
RMSEV results exhibited acceptable levels of error for
determinations of concentration, viscosity and specific
gravity of both soy and cottonseed biodiesel-diesel
blends.

4. Conclusions

In conclusion, advantages of  fluorescence
spectroscopy, such as simplicity, speed, low cost,
and ability to implement on-line monitoring systems,
suggest that this method is a powerful analytical tool.
The association of spectrofluorimetry with the PLS
calibration developed in this study was proven perfectly
suitable as an analytical method to simultaneously
predict concentration, viscosity, and specific gravity of
biodiesel-diesel blends. The prediction of these quality
parameters displayed good agreement with the results
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obtained empirically. The models for soy biodiesel-
diesel blends exhibited R? values of 0.99892, 0.99275
and 0.99196 for concentration, viscosity and specific
gravity, respectively. The models for cottonseed
biodiesel-diesel blends exhibited R?values of 0.99936,
0.9924 and 0.97652 for concentration, viscosity and
specific gravity, respectively. These R? values were
all nearly 1, which demonstrated the accuracy and
efficiency of the models for making predictions.
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